linux/include/crypto/skcipher.h
<<
>>
Prefs
   1/*
   2 * Symmetric key ciphers.
   3 * 
   4 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the Free
   8 * Software Foundation; either version 2 of the License, or (at your option) 
   9 * any later version.
  10 *
  11 */
  12
  13#ifndef _CRYPTO_SKCIPHER_H
  14#define _CRYPTO_SKCIPHER_H
  15
  16#include <linux/crypto.h>
  17#include <linux/kernel.h>
  18#include <linux/slab.h>
  19
  20/**
  21 *      struct skcipher_request - Symmetric key cipher request
  22 *      @cryptlen: Number of bytes to encrypt or decrypt
  23 *      @iv: Initialisation Vector
  24 *      @src: Source SG list
  25 *      @dst: Destination SG list
  26 *      @base: Underlying async request request
  27 *      @__ctx: Start of private context data
  28 */
  29struct skcipher_request {
  30        unsigned int cryptlen;
  31
  32        u8 *iv;
  33
  34        struct scatterlist *src;
  35        struct scatterlist *dst;
  36
  37        struct crypto_async_request base;
  38
  39        void *__ctx[] CRYPTO_MINALIGN_ATTR;
  40};
  41
  42/**
  43 *      struct skcipher_givcrypt_request - Crypto request with IV generation
  44 *      @seq: Sequence number for IV generation
  45 *      @giv: Space for generated IV
  46 *      @creq: The crypto request itself
  47 */
  48struct skcipher_givcrypt_request {
  49        u64 seq;
  50        u8 *giv;
  51
  52        struct ablkcipher_request creq;
  53};
  54
  55struct crypto_skcipher {
  56        int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
  57                      unsigned int keylen);
  58        int (*encrypt)(struct skcipher_request *req);
  59        int (*decrypt)(struct skcipher_request *req);
  60
  61        unsigned int ivsize;
  62        unsigned int reqsize;
  63        unsigned int keysize;
  64
  65        struct crypto_tfm base;
  66};
  67
  68/**
  69 * struct skcipher_alg - symmetric key cipher definition
  70 * @min_keysize: Minimum key size supported by the transformation. This is the
  71 *               smallest key length supported by this transformation algorithm.
  72 *               This must be set to one of the pre-defined values as this is
  73 *               not hardware specific. Possible values for this field can be
  74 *               found via git grep "_MIN_KEY_SIZE" include/crypto/
  75 * @max_keysize: Maximum key size supported by the transformation. This is the
  76 *               largest key length supported by this transformation algorithm.
  77 *               This must be set to one of the pre-defined values as this is
  78 *               not hardware specific. Possible values for this field can be
  79 *               found via git grep "_MAX_KEY_SIZE" include/crypto/
  80 * @setkey: Set key for the transformation. This function is used to either
  81 *          program a supplied key into the hardware or store the key in the
  82 *          transformation context for programming it later. Note that this
  83 *          function does modify the transformation context. This function can
  84 *          be called multiple times during the existence of the transformation
  85 *          object, so one must make sure the key is properly reprogrammed into
  86 *          the hardware. This function is also responsible for checking the key
  87 *          length for validity. In case a software fallback was put in place in
  88 *          the @cra_init call, this function might need to use the fallback if
  89 *          the algorithm doesn't support all of the key sizes.
  90 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
  91 *           the supplied scatterlist containing the blocks of data. The crypto
  92 *           API consumer is responsible for aligning the entries of the
  93 *           scatterlist properly and making sure the chunks are correctly
  94 *           sized. In case a software fallback was put in place in the
  95 *           @cra_init call, this function might need to use the fallback if
  96 *           the algorithm doesn't support all of the key sizes. In case the
  97 *           key was stored in transformation context, the key might need to be
  98 *           re-programmed into the hardware in this function. This function
  99 *           shall not modify the transformation context, as this function may
 100 *           be called in parallel with the same transformation object.
 101 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
 102 *           and the conditions are exactly the same.
 103 * @init: Initialize the cryptographic transformation object. This function
 104 *        is used to initialize the cryptographic transformation object.
 105 *        This function is called only once at the instantiation time, right
 106 *        after the transformation context was allocated. In case the
 107 *        cryptographic hardware has some special requirements which need to
 108 *        be handled by software, this function shall check for the precise
 109 *        requirement of the transformation and put any software fallbacks
 110 *        in place.
 111 * @exit: Deinitialize the cryptographic transformation object. This is a
 112 *        counterpart to @init, used to remove various changes set in
 113 *        @init.
 114 * @ivsize: IV size applicable for transformation. The consumer must provide an
 115 *          IV of exactly that size to perform the encrypt or decrypt operation.
 116 * @chunksize: Equal to the block size except for stream ciphers such as
 117 *             CTR where it is set to the underlying block size.
 118 * @walksize: Equal to the chunk size except in cases where the algorithm is
 119 *            considerably more efficient if it can operate on multiple chunks
 120 *            in parallel. Should be a multiple of chunksize.
 121 * @base: Definition of a generic crypto algorithm.
 122 *
 123 * All fields except @ivsize are mandatory and must be filled.
 124 */
 125struct skcipher_alg {
 126        int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
 127                      unsigned int keylen);
 128        int (*encrypt)(struct skcipher_request *req);
 129        int (*decrypt)(struct skcipher_request *req);
 130        int (*init)(struct crypto_skcipher *tfm);
 131        void (*exit)(struct crypto_skcipher *tfm);
 132
 133        unsigned int min_keysize;
 134        unsigned int max_keysize;
 135        unsigned int ivsize;
 136        unsigned int chunksize;
 137        unsigned int walksize;
 138
 139        struct crypto_alg base;
 140};
 141
 142#define SKCIPHER_REQUEST_ON_STACK(name, tfm) \
 143        char __##name##_desc[sizeof(struct skcipher_request) + \
 144                crypto_skcipher_reqsize(tfm)] CRYPTO_MINALIGN_ATTR; \
 145        struct skcipher_request *name = (void *)__##name##_desc
 146
 147/**
 148 * DOC: Symmetric Key Cipher API
 149 *
 150 * Symmetric key cipher API is used with the ciphers of type
 151 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
 152 *
 153 * Asynchronous cipher operations imply that the function invocation for a
 154 * cipher request returns immediately before the completion of the operation.
 155 * The cipher request is scheduled as a separate kernel thread and therefore
 156 * load-balanced on the different CPUs via the process scheduler. To allow
 157 * the kernel crypto API to inform the caller about the completion of a cipher
 158 * request, the caller must provide a callback function. That function is
 159 * invoked with the cipher handle when the request completes.
 160 *
 161 * To support the asynchronous operation, additional information than just the
 162 * cipher handle must be supplied to the kernel crypto API. That additional
 163 * information is given by filling in the skcipher_request data structure.
 164 *
 165 * For the symmetric key cipher API, the state is maintained with the tfm
 166 * cipher handle. A single tfm can be used across multiple calls and in
 167 * parallel. For asynchronous block cipher calls, context data supplied and
 168 * only used by the caller can be referenced the request data structure in
 169 * addition to the IV used for the cipher request. The maintenance of such
 170 * state information would be important for a crypto driver implementer to
 171 * have, because when calling the callback function upon completion of the
 172 * cipher operation, that callback function may need some information about
 173 * which operation just finished if it invoked multiple in parallel. This
 174 * state information is unused by the kernel crypto API.
 175 */
 176
 177static inline struct crypto_skcipher *__crypto_skcipher_cast(
 178        struct crypto_tfm *tfm)
 179{
 180        return container_of(tfm, struct crypto_skcipher, base);
 181}
 182
 183/**
 184 * crypto_alloc_skcipher() - allocate symmetric key cipher handle
 185 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 186 *            skcipher cipher
 187 * @type: specifies the type of the cipher
 188 * @mask: specifies the mask for the cipher
 189 *
 190 * Allocate a cipher handle for an skcipher. The returned struct
 191 * crypto_skcipher is the cipher handle that is required for any subsequent
 192 * API invocation for that skcipher.
 193 *
 194 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 195 *         of an error, PTR_ERR() returns the error code.
 196 */
 197struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
 198                                              u32 type, u32 mask);
 199
 200static inline struct crypto_tfm *crypto_skcipher_tfm(
 201        struct crypto_skcipher *tfm)
 202{
 203        return &tfm->base;
 204}
 205
 206/**
 207 * crypto_free_skcipher() - zeroize and free cipher handle
 208 * @tfm: cipher handle to be freed
 209 */
 210static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
 211{
 212        crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
 213}
 214
 215/**
 216 * crypto_has_skcipher() - Search for the availability of an skcipher.
 217 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 218 *            skcipher
 219 * @type: specifies the type of the cipher
 220 * @mask: specifies the mask for the cipher
 221 *
 222 * Return: true when the skcipher is known to the kernel crypto API; false
 223 *         otherwise
 224 */
 225static inline int crypto_has_skcipher(const char *alg_name, u32 type,
 226                                        u32 mask)
 227{
 228        return crypto_has_alg(alg_name, crypto_skcipher_type(type),
 229                              crypto_skcipher_mask(mask));
 230}
 231
 232/**
 233 * crypto_has_skcipher2() - Search for the availability of an skcipher.
 234 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 235 *            skcipher
 236 * @type: specifies the type of the skcipher
 237 * @mask: specifies the mask for the skcipher
 238 *
 239 * Return: true when the skcipher is known to the kernel crypto API; false
 240 *         otherwise
 241 */
 242int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask);
 243
 244static inline const char *crypto_skcipher_driver_name(
 245        struct crypto_skcipher *tfm)
 246{
 247        return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
 248}
 249
 250static inline struct skcipher_alg *crypto_skcipher_alg(
 251        struct crypto_skcipher *tfm)
 252{
 253        return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
 254                            struct skcipher_alg, base);
 255}
 256
 257static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
 258{
 259        if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
 260            CRYPTO_ALG_TYPE_BLKCIPHER)
 261                return alg->base.cra_blkcipher.ivsize;
 262
 263        if (alg->base.cra_ablkcipher.encrypt)
 264                return alg->base.cra_ablkcipher.ivsize;
 265
 266        return alg->ivsize;
 267}
 268
 269/**
 270 * crypto_skcipher_ivsize() - obtain IV size
 271 * @tfm: cipher handle
 272 *
 273 * The size of the IV for the skcipher referenced by the cipher handle is
 274 * returned. This IV size may be zero if the cipher does not need an IV.
 275 *
 276 * Return: IV size in bytes
 277 */
 278static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
 279{
 280        return tfm->ivsize;
 281}
 282
 283static inline unsigned int crypto_skcipher_alg_chunksize(
 284        struct skcipher_alg *alg)
 285{
 286        if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
 287            CRYPTO_ALG_TYPE_BLKCIPHER)
 288                return alg->base.cra_blocksize;
 289
 290        if (alg->base.cra_ablkcipher.encrypt)
 291                return alg->base.cra_blocksize;
 292
 293        return alg->chunksize;
 294}
 295
 296static inline unsigned int crypto_skcipher_alg_walksize(
 297        struct skcipher_alg *alg)
 298{
 299        if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
 300            CRYPTO_ALG_TYPE_BLKCIPHER)
 301                return alg->base.cra_blocksize;
 302
 303        if (alg->base.cra_ablkcipher.encrypt)
 304                return alg->base.cra_blocksize;
 305
 306        return alg->walksize;
 307}
 308
 309/**
 310 * crypto_skcipher_chunksize() - obtain chunk size
 311 * @tfm: cipher handle
 312 *
 313 * The block size is set to one for ciphers such as CTR.  However,
 314 * you still need to provide incremental updates in multiples of
 315 * the underlying block size as the IV does not have sub-block
 316 * granularity.  This is known in this API as the chunk size.
 317 *
 318 * Return: chunk size in bytes
 319 */
 320static inline unsigned int crypto_skcipher_chunksize(
 321        struct crypto_skcipher *tfm)
 322{
 323        return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
 324}
 325
 326/**
 327 * crypto_skcipher_walksize() - obtain walk size
 328 * @tfm: cipher handle
 329 *
 330 * In some cases, algorithms can only perform optimally when operating on
 331 * multiple blocks in parallel. This is reflected by the walksize, which
 332 * must be a multiple of the chunksize (or equal if the concern does not
 333 * apply)
 334 *
 335 * Return: walk size in bytes
 336 */
 337static inline unsigned int crypto_skcipher_walksize(
 338        struct crypto_skcipher *tfm)
 339{
 340        return crypto_skcipher_alg_walksize(crypto_skcipher_alg(tfm));
 341}
 342
 343/**
 344 * crypto_skcipher_blocksize() - obtain block size of cipher
 345 * @tfm: cipher handle
 346 *
 347 * The block size for the skcipher referenced with the cipher handle is
 348 * returned. The caller may use that information to allocate appropriate
 349 * memory for the data returned by the encryption or decryption operation
 350 *
 351 * Return: block size of cipher
 352 */
 353static inline unsigned int crypto_skcipher_blocksize(
 354        struct crypto_skcipher *tfm)
 355{
 356        return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
 357}
 358
 359static inline unsigned int crypto_skcipher_alignmask(
 360        struct crypto_skcipher *tfm)
 361{
 362        return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
 363}
 364
 365static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
 366{
 367        return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
 368}
 369
 370static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
 371                                               u32 flags)
 372{
 373        crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
 374}
 375
 376static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
 377                                                 u32 flags)
 378{
 379        crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
 380}
 381
 382/**
 383 * crypto_skcipher_setkey() - set key for cipher
 384 * @tfm: cipher handle
 385 * @key: buffer holding the key
 386 * @keylen: length of the key in bytes
 387 *
 388 * The caller provided key is set for the skcipher referenced by the cipher
 389 * handle.
 390 *
 391 * Note, the key length determines the cipher type. Many block ciphers implement
 392 * different cipher modes depending on the key size, such as AES-128 vs AES-192
 393 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
 394 * is performed.
 395 *
 396 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 397 */
 398static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
 399                                         const u8 *key, unsigned int keylen)
 400{
 401        return tfm->setkey(tfm, key, keylen);
 402}
 403
 404static inline bool crypto_skcipher_has_setkey(struct crypto_skcipher *tfm)
 405{
 406        return tfm->keysize;
 407}
 408
 409static inline unsigned int crypto_skcipher_default_keysize(
 410        struct crypto_skcipher *tfm)
 411{
 412        return tfm->keysize;
 413}
 414
 415/**
 416 * crypto_skcipher_reqtfm() - obtain cipher handle from request
 417 * @req: skcipher_request out of which the cipher handle is to be obtained
 418 *
 419 * Return the crypto_skcipher handle when furnishing an skcipher_request
 420 * data structure.
 421 *
 422 * Return: crypto_skcipher handle
 423 */
 424static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
 425        struct skcipher_request *req)
 426{
 427        return __crypto_skcipher_cast(req->base.tfm);
 428}
 429
 430/**
 431 * crypto_skcipher_encrypt() - encrypt plaintext
 432 * @req: reference to the skcipher_request handle that holds all information
 433 *       needed to perform the cipher operation
 434 *
 435 * Encrypt plaintext data using the skcipher_request handle. That data
 436 * structure and how it is filled with data is discussed with the
 437 * skcipher_request_* functions.
 438 *
 439 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 440 */
 441static inline int crypto_skcipher_encrypt(struct skcipher_request *req)
 442{
 443        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 444
 445        return tfm->encrypt(req);
 446}
 447
 448/**
 449 * crypto_skcipher_decrypt() - decrypt ciphertext
 450 * @req: reference to the skcipher_request handle that holds all information
 451 *       needed to perform the cipher operation
 452 *
 453 * Decrypt ciphertext data using the skcipher_request handle. That data
 454 * structure and how it is filled with data is discussed with the
 455 * skcipher_request_* functions.
 456 *
 457 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
 458 */
 459static inline int crypto_skcipher_decrypt(struct skcipher_request *req)
 460{
 461        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 462
 463        return tfm->decrypt(req);
 464}
 465
 466/**
 467 * DOC: Symmetric Key Cipher Request Handle
 468 *
 469 * The skcipher_request data structure contains all pointers to data
 470 * required for the symmetric key cipher operation. This includes the cipher
 471 * handle (which can be used by multiple skcipher_request instances), pointer
 472 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
 473 * as a handle to the skcipher_request_* API calls in a similar way as
 474 * skcipher handle to the crypto_skcipher_* API calls.
 475 */
 476
 477/**
 478 * crypto_skcipher_reqsize() - obtain size of the request data structure
 479 * @tfm: cipher handle
 480 *
 481 * Return: number of bytes
 482 */
 483static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
 484{
 485        return tfm->reqsize;
 486}
 487
 488/**
 489 * skcipher_request_set_tfm() - update cipher handle reference in request
 490 * @req: request handle to be modified
 491 * @tfm: cipher handle that shall be added to the request handle
 492 *
 493 * Allow the caller to replace the existing skcipher handle in the request
 494 * data structure with a different one.
 495 */
 496static inline void skcipher_request_set_tfm(struct skcipher_request *req,
 497                                            struct crypto_skcipher *tfm)
 498{
 499        req->base.tfm = crypto_skcipher_tfm(tfm);
 500}
 501
 502static inline struct skcipher_request *skcipher_request_cast(
 503        struct crypto_async_request *req)
 504{
 505        return container_of(req, struct skcipher_request, base);
 506}
 507
 508/**
 509 * skcipher_request_alloc() - allocate request data structure
 510 * @tfm: cipher handle to be registered with the request
 511 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
 512 *
 513 * Allocate the request data structure that must be used with the skcipher
 514 * encrypt and decrypt API calls. During the allocation, the provided skcipher
 515 * handle is registered in the request data structure.
 516 *
 517 * Return: allocated request handle in case of success, or NULL if out of memory
 518 */
 519static inline struct skcipher_request *skcipher_request_alloc(
 520        struct crypto_skcipher *tfm, gfp_t gfp)
 521{
 522        struct skcipher_request *req;
 523
 524        req = kmalloc(sizeof(struct skcipher_request) +
 525                      crypto_skcipher_reqsize(tfm), gfp);
 526
 527        if (likely(req))
 528                skcipher_request_set_tfm(req, tfm);
 529
 530        return req;
 531}
 532
 533/**
 534 * skcipher_request_free() - zeroize and free request data structure
 535 * @req: request data structure cipher handle to be freed
 536 */
 537static inline void skcipher_request_free(struct skcipher_request *req)
 538{
 539        kzfree(req);
 540}
 541
 542static inline void skcipher_request_zero(struct skcipher_request *req)
 543{
 544        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 545
 546        memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
 547}
 548
 549/**
 550 * skcipher_request_set_callback() - set asynchronous callback function
 551 * @req: request handle
 552 * @flags: specify zero or an ORing of the flags
 553 *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
 554 *         increase the wait queue beyond the initial maximum size;
 555 *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
 556 * @compl: callback function pointer to be registered with the request handle
 557 * @data: The data pointer refers to memory that is not used by the kernel
 558 *        crypto API, but provided to the callback function for it to use. Here,
 559 *        the caller can provide a reference to memory the callback function can
 560 *        operate on. As the callback function is invoked asynchronously to the
 561 *        related functionality, it may need to access data structures of the
 562 *        related functionality which can be referenced using this pointer. The
 563 *        callback function can access the memory via the "data" field in the
 564 *        crypto_async_request data structure provided to the callback function.
 565 *
 566 * This function allows setting the callback function that is triggered once the
 567 * cipher operation completes.
 568 *
 569 * The callback function is registered with the skcipher_request handle and
 570 * must comply with the following template::
 571 *
 572 *      void callback_function(struct crypto_async_request *req, int error)
 573 */
 574static inline void skcipher_request_set_callback(struct skcipher_request *req,
 575                                                 u32 flags,
 576                                                 crypto_completion_t compl,
 577                                                 void *data)
 578{
 579        req->base.complete = compl;
 580        req->base.data = data;
 581        req->base.flags = flags;
 582}
 583
 584/**
 585 * skcipher_request_set_crypt() - set data buffers
 586 * @req: request handle
 587 * @src: source scatter / gather list
 588 * @dst: destination scatter / gather list
 589 * @cryptlen: number of bytes to process from @src
 590 * @iv: IV for the cipher operation which must comply with the IV size defined
 591 *      by crypto_skcipher_ivsize
 592 *
 593 * This function allows setting of the source data and destination data
 594 * scatter / gather lists.
 595 *
 596 * For encryption, the source is treated as the plaintext and the
 597 * destination is the ciphertext. For a decryption operation, the use is
 598 * reversed - the source is the ciphertext and the destination is the plaintext.
 599 */
 600static inline void skcipher_request_set_crypt(
 601        struct skcipher_request *req,
 602        struct scatterlist *src, struct scatterlist *dst,
 603        unsigned int cryptlen, void *iv)
 604{
 605        req->src = src;
 606        req->dst = dst;
 607        req->cryptlen = cryptlen;
 608        req->iv = iv;
 609}
 610
 611#endif  /* _CRYPTO_SKCIPHER_H */
 612
 613