linux/include/linux/jiffies.h
<<
>>
Prefs
   1#ifndef _LINUX_JIFFIES_H
   2#define _LINUX_JIFFIES_H
   3
   4#include <linux/cache.h>
   5#include <linux/math64.h>
   6#include <linux/kernel.h>
   7#include <linux/types.h>
   8#include <linux/time.h>
   9#include <linux/timex.h>
  10#include <asm/param.h>                  /* for HZ */
  11#include <generated/timeconst.h>
  12
  13/*
  14 * The following defines establish the engineering parameters of the PLL
  15 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
  16 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
  17 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
  18 * nearest power of two in order to avoid hardware multiply operations.
  19 */
  20#if HZ >= 12 && HZ < 24
  21# define SHIFT_HZ       4
  22#elif HZ >= 24 && HZ < 48
  23# define SHIFT_HZ       5
  24#elif HZ >= 48 && HZ < 96
  25# define SHIFT_HZ       6
  26#elif HZ >= 96 && HZ < 192
  27# define SHIFT_HZ       7
  28#elif HZ >= 192 && HZ < 384
  29# define SHIFT_HZ       8
  30#elif HZ >= 384 && HZ < 768
  31# define SHIFT_HZ       9
  32#elif HZ >= 768 && HZ < 1536
  33# define SHIFT_HZ       10
  34#elif HZ >= 1536 && HZ < 3072
  35# define SHIFT_HZ       11
  36#elif HZ >= 3072 && HZ < 6144
  37# define SHIFT_HZ       12
  38#elif HZ >= 6144 && HZ < 12288
  39# define SHIFT_HZ       13
  40#else
  41# error Invalid value of HZ.
  42#endif
  43
  44/* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
  45 * improve accuracy by shifting LSH bits, hence calculating:
  46 *     (NOM << LSH) / DEN
  47 * This however means trouble for large NOM, because (NOM << LSH) may no
  48 * longer fit in 32 bits. The following way of calculating this gives us
  49 * some slack, under the following conditions:
  50 *   - (NOM / DEN) fits in (32 - LSH) bits.
  51 *   - (NOM % DEN) fits in (32 - LSH) bits.
  52 */
  53#define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
  54                             + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
  55
  56/* LATCH is used in the interval timer and ftape setup. */
  57#define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ)   /* For divider */
  58
  59extern int register_refined_jiffies(long clock_tick_rate);
  60
  61/* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
  62#define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ)
  63
  64/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
  65#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
  66
  67#ifndef __jiffy_arch_data
  68#define __jiffy_arch_data
  69#endif
  70
  71/*
  72 * The 64-bit value is not atomic - you MUST NOT read it
  73 * without sampling the sequence number in jiffies_lock.
  74 * get_jiffies_64() will do this for you as appropriate.
  75 */
  76extern u64 __cacheline_aligned_in_smp jiffies_64;
  77extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies;
  78
  79#if (BITS_PER_LONG < 64)
  80u64 get_jiffies_64(void);
  81#else
  82static inline u64 get_jiffies_64(void)
  83{
  84        return (u64)jiffies;
  85}
  86#endif
  87
  88/*
  89 *      These inlines deal with timer wrapping correctly. You are 
  90 *      strongly encouraged to use them
  91 *      1. Because people otherwise forget
  92 *      2. Because if the timer wrap changes in future you won't have to
  93 *         alter your driver code.
  94 *
  95 * time_after(a,b) returns true if the time a is after time b.
  96 *
  97 * Do this with "<0" and ">=0" to only test the sign of the result. A
  98 * good compiler would generate better code (and a really good compiler
  99 * wouldn't care). Gcc is currently neither.
 100 */
 101#define time_after(a,b)         \
 102        (typecheck(unsigned long, a) && \
 103         typecheck(unsigned long, b) && \
 104         ((long)((b) - (a)) < 0))
 105#define time_before(a,b)        time_after(b,a)
 106
 107#define time_after_eq(a,b)      \
 108        (typecheck(unsigned long, a) && \
 109         typecheck(unsigned long, b) && \
 110         ((long)((a) - (b)) >= 0))
 111#define time_before_eq(a,b)     time_after_eq(b,a)
 112
 113/*
 114 * Calculate whether a is in the range of [b, c].
 115 */
 116#define time_in_range(a,b,c) \
 117        (time_after_eq(a,b) && \
 118         time_before_eq(a,c))
 119
 120/*
 121 * Calculate whether a is in the range of [b, c).
 122 */
 123#define time_in_range_open(a,b,c) \
 124        (time_after_eq(a,b) && \
 125         time_before(a,c))
 126
 127/* Same as above, but does so with platform independent 64bit types.
 128 * These must be used when utilizing jiffies_64 (i.e. return value of
 129 * get_jiffies_64() */
 130#define time_after64(a,b)       \
 131        (typecheck(__u64, a) && \
 132         typecheck(__u64, b) && \
 133         ((__s64)((b) - (a)) < 0))
 134#define time_before64(a,b)      time_after64(b,a)
 135
 136#define time_after_eq64(a,b)    \
 137        (typecheck(__u64, a) && \
 138         typecheck(__u64, b) && \
 139         ((__s64)((a) - (b)) >= 0))
 140#define time_before_eq64(a,b)   time_after_eq64(b,a)
 141
 142#define time_in_range64(a, b, c) \
 143        (time_after_eq64(a, b) && \
 144         time_before_eq64(a, c))
 145
 146/*
 147 * These four macros compare jiffies and 'a' for convenience.
 148 */
 149
 150/* time_is_before_jiffies(a) return true if a is before jiffies */
 151#define time_is_before_jiffies(a) time_after(jiffies, a)
 152#define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a)
 153
 154/* time_is_after_jiffies(a) return true if a is after jiffies */
 155#define time_is_after_jiffies(a) time_before(jiffies, a)
 156#define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a)
 157
 158/* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
 159#define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
 160#define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a)
 161
 162/* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
 163#define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
 164#define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a)
 165
 166/*
 167 * Have the 32 bit jiffies value wrap 5 minutes after boot
 168 * so jiffies wrap bugs show up earlier.
 169 */
 170#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
 171
 172/*
 173 * Change timeval to jiffies, trying to avoid the
 174 * most obvious overflows..
 175 *
 176 * And some not so obvious.
 177 *
 178 * Note that we don't want to return LONG_MAX, because
 179 * for various timeout reasons we often end up having
 180 * to wait "jiffies+1" in order to guarantee that we wait
 181 * at _least_ "jiffies" - so "jiffies+1" had better still
 182 * be positive.
 183 */
 184#define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
 185
 186extern unsigned long preset_lpj;
 187
 188/*
 189 * We want to do realistic conversions of time so we need to use the same
 190 * values the update wall clock code uses as the jiffies size.  This value
 191 * is: TICK_NSEC (which is defined in timex.h).  This
 192 * is a constant and is in nanoseconds.  We will use scaled math
 193 * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
 194 * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
 195 * constants and so are computed at compile time.  SHIFT_HZ (computed in
 196 * timex.h) adjusts the scaling for different HZ values.
 197
 198 * Scaled math???  What is that?
 199 *
 200 * Scaled math is a way to do integer math on values that would,
 201 * otherwise, either overflow, underflow, or cause undesired div
 202 * instructions to appear in the execution path.  In short, we "scale"
 203 * up the operands so they take more bits (more precision, less
 204 * underflow), do the desired operation and then "scale" the result back
 205 * by the same amount.  If we do the scaling by shifting we avoid the
 206 * costly mpy and the dastardly div instructions.
 207
 208 * Suppose, for example, we want to convert from seconds to jiffies
 209 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
 210 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
 211 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
 212 * might calculate at compile time, however, the result will only have
 213 * about 3-4 bits of precision (less for smaller values of HZ).
 214 *
 215 * So, we scale as follows:
 216 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
 217 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
 218 * Then we make SCALE a power of two so:
 219 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
 220 * Now we define:
 221 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
 222 * jiff = (sec * SEC_CONV) >> SCALE;
 223 *
 224 * Often the math we use will expand beyond 32-bits so we tell C how to
 225 * do this and pass the 64-bit result of the mpy through the ">> SCALE"
 226 * which should take the result back to 32-bits.  We want this expansion
 227 * to capture as much precision as possible.  At the same time we don't
 228 * want to overflow so we pick the SCALE to avoid this.  In this file,
 229 * that means using a different scale for each range of HZ values (as
 230 * defined in timex.h).
 231 *
 232 * For those who want to know, gcc will give a 64-bit result from a "*"
 233 * operator if the result is a long long AND at least one of the
 234 * operands is cast to long long (usually just prior to the "*" so as
 235 * not to confuse it into thinking it really has a 64-bit operand,
 236 * which, buy the way, it can do, but it takes more code and at least 2
 237 * mpys).
 238
 239 * We also need to be aware that one second in nanoseconds is only a
 240 * couple of bits away from overflowing a 32-bit word, so we MUST use
 241 * 64-bits to get the full range time in nanoseconds.
 242
 243 */
 244
 245/*
 246 * Here are the scales we will use.  One for seconds, nanoseconds and
 247 * microseconds.
 248 *
 249 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
 250 * check if the sign bit is set.  If not, we bump the shift count by 1.
 251 * (Gets an extra bit of precision where we can use it.)
 252 * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
 253 * Haven't tested others.
 254
 255 * Limits of cpp (for #if expressions) only long (no long long), but
 256 * then we only need the most signicant bit.
 257 */
 258
 259#define SEC_JIFFIE_SC (31 - SHIFT_HZ)
 260#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
 261#undef SEC_JIFFIE_SC
 262#define SEC_JIFFIE_SC (32 - SHIFT_HZ)
 263#endif
 264#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
 265#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
 266                                TICK_NSEC -1) / (u64)TICK_NSEC))
 267
 268#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
 269                                        TICK_NSEC -1) / (u64)TICK_NSEC))
 270/*
 271 * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that
 272 * into seconds.  The 64-bit case will overflow if we are not careful,
 273 * so use the messy SH_DIV macro to do it.  Still all constants.
 274 */
 275#if BITS_PER_LONG < 64
 276# define MAX_SEC_IN_JIFFIES \
 277        (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
 278#else   /* take care of overflow on 64 bits machines */
 279# define MAX_SEC_IN_JIFFIES \
 280        (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
 281
 282#endif
 283
 284/*
 285 * Convert various time units to each other:
 286 */
 287extern unsigned int jiffies_to_msecs(const unsigned long j);
 288extern unsigned int jiffies_to_usecs(const unsigned long j);
 289
 290static inline u64 jiffies_to_nsecs(const unsigned long j)
 291{
 292        return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
 293}
 294
 295extern u64 jiffies64_to_nsecs(u64 j);
 296
 297extern unsigned long __msecs_to_jiffies(const unsigned int m);
 298#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 299/*
 300 * HZ is equal to or smaller than 1000, and 1000 is a nice round
 301 * multiple of HZ, divide with the factor between them, but round
 302 * upwards:
 303 */
 304static inline unsigned long _msecs_to_jiffies(const unsigned int m)
 305{
 306        return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
 307}
 308#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
 309/*
 310 * HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
 311 * simply multiply with the factor between them.
 312 *
 313 * But first make sure the multiplication result cannot overflow:
 314 */
 315static inline unsigned long _msecs_to_jiffies(const unsigned int m)
 316{
 317        if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
 318                return MAX_JIFFY_OFFSET;
 319        return m * (HZ / MSEC_PER_SEC);
 320}
 321#else
 322/*
 323 * Generic case - multiply, round and divide. But first check that if
 324 * we are doing a net multiplication, that we wouldn't overflow:
 325 */
 326static inline unsigned long _msecs_to_jiffies(const unsigned int m)
 327{
 328        if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
 329                return MAX_JIFFY_OFFSET;
 330
 331        return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32;
 332}
 333#endif
 334/**
 335 * msecs_to_jiffies: - convert milliseconds to jiffies
 336 * @m:  time in milliseconds
 337 *
 338 * conversion is done as follows:
 339 *
 340 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 341 *
 342 * - 'too large' values [that would result in larger than
 343 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 344 *
 345 * - all other values are converted to jiffies by either multiplying
 346 *   the input value by a factor or dividing it with a factor and
 347 *   handling any 32-bit overflows.
 348 *   for the details see __msecs_to_jiffies()
 349 *
 350 * msecs_to_jiffies() checks for the passed in value being a constant
 351 * via __builtin_constant_p() allowing gcc to eliminate most of the
 352 * code, __msecs_to_jiffies() is called if the value passed does not
 353 * allow constant folding and the actual conversion must be done at
 354 * runtime.
 355 * the HZ range specific helpers _msecs_to_jiffies() are called both
 356 * directly here and from __msecs_to_jiffies() in the case where
 357 * constant folding is not possible.
 358 */
 359static __always_inline unsigned long msecs_to_jiffies(const unsigned int m)
 360{
 361        if (__builtin_constant_p(m)) {
 362                if ((int)m < 0)
 363                        return MAX_JIFFY_OFFSET;
 364                return _msecs_to_jiffies(m);
 365        } else {
 366                return __msecs_to_jiffies(m);
 367        }
 368}
 369
 370extern unsigned long __usecs_to_jiffies(const unsigned int u);
 371#if !(USEC_PER_SEC % HZ)
 372static inline unsigned long _usecs_to_jiffies(const unsigned int u)
 373{
 374        return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
 375}
 376#else
 377static inline unsigned long _usecs_to_jiffies(const unsigned int u)
 378{
 379        return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
 380                >> USEC_TO_HZ_SHR32;
 381}
 382#endif
 383
 384/**
 385 * usecs_to_jiffies: - convert microseconds to jiffies
 386 * @u:  time in microseconds
 387 *
 388 * conversion is done as follows:
 389 *
 390 * - 'too large' values [that would result in larger than
 391 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 392 *
 393 * - all other values are converted to jiffies by either multiplying
 394 *   the input value by a factor or dividing it with a factor and
 395 *   handling any 32-bit overflows as for msecs_to_jiffies.
 396 *
 397 * usecs_to_jiffies() checks for the passed in value being a constant
 398 * via __builtin_constant_p() allowing gcc to eliminate most of the
 399 * code, __usecs_to_jiffies() is called if the value passed does not
 400 * allow constant folding and the actual conversion must be done at
 401 * runtime.
 402 * the HZ range specific helpers _usecs_to_jiffies() are called both
 403 * directly here and from __msecs_to_jiffies() in the case where
 404 * constant folding is not possible.
 405 */
 406static __always_inline unsigned long usecs_to_jiffies(const unsigned int u)
 407{
 408        if (__builtin_constant_p(u)) {
 409                if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
 410                        return MAX_JIFFY_OFFSET;
 411                return _usecs_to_jiffies(u);
 412        } else {
 413                return __usecs_to_jiffies(u);
 414        }
 415}
 416
 417extern unsigned long timespec64_to_jiffies(const struct timespec64 *value);
 418extern void jiffies_to_timespec64(const unsigned long jiffies,
 419                                  struct timespec64 *value);
 420static inline unsigned long timespec_to_jiffies(const struct timespec *value)
 421{
 422        struct timespec64 ts = timespec_to_timespec64(*value);
 423
 424        return timespec64_to_jiffies(&ts);
 425}
 426
 427static inline void jiffies_to_timespec(const unsigned long jiffies,
 428                                       struct timespec *value)
 429{
 430        struct timespec64 ts;
 431
 432        jiffies_to_timespec64(jiffies, &ts);
 433        *value = timespec64_to_timespec(ts);
 434}
 435
 436extern unsigned long timeval_to_jiffies(const struct timeval *value);
 437extern void jiffies_to_timeval(const unsigned long jiffies,
 438                               struct timeval *value);
 439
 440extern clock_t jiffies_to_clock_t(unsigned long x);
 441static inline clock_t jiffies_delta_to_clock_t(long delta)
 442{
 443        return jiffies_to_clock_t(max(0L, delta));
 444}
 445
 446extern unsigned long clock_t_to_jiffies(unsigned long x);
 447extern u64 jiffies_64_to_clock_t(u64 x);
 448extern u64 nsec_to_clock_t(u64 x);
 449extern u64 nsecs_to_jiffies64(u64 n);
 450extern unsigned long nsecs_to_jiffies(u64 n);
 451
 452#define TIMESTAMP_SIZE  30
 453
 454#endif
 455