linux/include/linux/mmzone.h
<<
>>
Prefs
   1#ifndef _LINUX_MMZONE_H
   2#define _LINUX_MMZONE_H
   3
   4#ifndef __ASSEMBLY__
   5#ifndef __GENERATING_BOUNDS_H
   6
   7#include <linux/spinlock.h>
   8#include <linux/list.h>
   9#include <linux/wait.h>
  10#include <linux/bitops.h>
  11#include <linux/cache.h>
  12#include <linux/threads.h>
  13#include <linux/numa.h>
  14#include <linux/init.h>
  15#include <linux/seqlock.h>
  16#include <linux/nodemask.h>
  17#include <linux/pageblock-flags.h>
  18#include <linux/page-flags-layout.h>
  19#include <linux/atomic.h>
  20#include <asm/page.h>
  21
  22/* Free memory management - zoned buddy allocator.  */
  23#ifndef CONFIG_FORCE_MAX_ZONEORDER
  24#define MAX_ORDER 11
  25#else
  26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  27#endif
  28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  29
  30/*
  31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  32 * costly to service.  That is between allocation orders which should
  33 * coalesce naturally under reasonable reclaim pressure and those which
  34 * will not.
  35 */
  36#define PAGE_ALLOC_COSTLY_ORDER 3
  37
  38enum migratetype {
  39        MIGRATE_UNMOVABLE,
  40        MIGRATE_MOVABLE,
  41        MIGRATE_RECLAIMABLE,
  42        MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
  43        MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
  44#ifdef CONFIG_CMA
  45        /*
  46         * MIGRATE_CMA migration type is designed to mimic the way
  47         * ZONE_MOVABLE works.  Only movable pages can be allocated
  48         * from MIGRATE_CMA pageblocks and page allocator never
  49         * implicitly change migration type of MIGRATE_CMA pageblock.
  50         *
  51         * The way to use it is to change migratetype of a range of
  52         * pageblocks to MIGRATE_CMA which can be done by
  53         * __free_pageblock_cma() function.  What is important though
  54         * is that a range of pageblocks must be aligned to
  55         * MAX_ORDER_NR_PAGES should biggest page be bigger then
  56         * a single pageblock.
  57         */
  58        MIGRATE_CMA,
  59#endif
  60#ifdef CONFIG_MEMORY_ISOLATION
  61        MIGRATE_ISOLATE,        /* can't allocate from here */
  62#endif
  63        MIGRATE_TYPES
  64};
  65
  66/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
  67extern char * const migratetype_names[MIGRATE_TYPES];
  68
  69#ifdef CONFIG_CMA
  70#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  71#  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
  72#else
  73#  define is_migrate_cma(migratetype) false
  74#  define is_migrate_cma_page(_page) false
  75#endif
  76
  77static inline bool is_migrate_movable(int mt)
  78{
  79        return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
  80}
  81
  82#define for_each_migratetype_order(order, type) \
  83        for (order = 0; order < MAX_ORDER; order++) \
  84                for (type = 0; type < MIGRATE_TYPES; type++)
  85
  86extern int page_group_by_mobility_disabled;
  87
  88#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
  89#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
  90
  91#define get_pageblock_migratetype(page)                                 \
  92        get_pfnblock_flags_mask(page, page_to_pfn(page),                \
  93                        PB_migrate_end, MIGRATETYPE_MASK)
  94
  95struct free_area {
  96        struct list_head        free_list[MIGRATE_TYPES];
  97        unsigned long           nr_free;
  98};
  99
 100struct pglist_data;
 101
 102/*
 103 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
 104 * So add a wild amount of padding here to ensure that they fall into separate
 105 * cachelines.  There are very few zone structures in the machine, so space
 106 * consumption is not a concern here.
 107 */
 108#if defined(CONFIG_SMP)
 109struct zone_padding {
 110        char x[0];
 111} ____cacheline_internodealigned_in_smp;
 112#define ZONE_PADDING(name)      struct zone_padding name;
 113#else
 114#define ZONE_PADDING(name)
 115#endif
 116
 117enum zone_stat_item {
 118        /* First 128 byte cacheline (assuming 64 bit words) */
 119        NR_FREE_PAGES,
 120        NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
 121        NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
 122        NR_ZONE_ACTIVE_ANON,
 123        NR_ZONE_INACTIVE_FILE,
 124        NR_ZONE_ACTIVE_FILE,
 125        NR_ZONE_UNEVICTABLE,
 126        NR_ZONE_WRITE_PENDING,  /* Count of dirty, writeback and unstable pages */
 127        NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
 128        NR_PAGETABLE,           /* used for pagetables */
 129        NR_KERNEL_STACK_KB,     /* measured in KiB */
 130        /* Second 128 byte cacheline */
 131        NR_BOUNCE,
 132#if IS_ENABLED(CONFIG_ZSMALLOC)
 133        NR_ZSPAGES,             /* allocated in zsmalloc */
 134#endif
 135#ifdef CONFIG_NUMA
 136        NUMA_HIT,               /* allocated in intended node */
 137        NUMA_MISS,              /* allocated in non intended node */
 138        NUMA_FOREIGN,           /* was intended here, hit elsewhere */
 139        NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
 140        NUMA_LOCAL,             /* allocation from local node */
 141        NUMA_OTHER,             /* allocation from other node */
 142#endif
 143        NR_FREE_CMA_PAGES,
 144        NR_VM_ZONE_STAT_ITEMS };
 145
 146enum node_stat_item {
 147        NR_LRU_BASE,
 148        NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
 149        NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
 150        NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
 151        NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
 152        NR_UNEVICTABLE,         /*  "     "     "   "       "         */
 153        NR_SLAB_RECLAIMABLE,
 154        NR_SLAB_UNRECLAIMABLE,
 155        NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
 156        NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
 157        WORKINGSET_REFAULT,
 158        WORKINGSET_ACTIVATE,
 159        WORKINGSET_NODERECLAIM,
 160        NR_ANON_MAPPED, /* Mapped anonymous pages */
 161        NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
 162                           only modified from process context */
 163        NR_FILE_PAGES,
 164        NR_FILE_DIRTY,
 165        NR_WRITEBACK,
 166        NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
 167        NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
 168        NR_SHMEM_THPS,
 169        NR_SHMEM_PMDMAPPED,
 170        NR_ANON_THPS,
 171        NR_UNSTABLE_NFS,        /* NFS unstable pages */
 172        NR_VMSCAN_WRITE,
 173        NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
 174        NR_DIRTIED,             /* page dirtyings since bootup */
 175        NR_WRITTEN,             /* page writings since bootup */
 176        NR_VM_NODE_STAT_ITEMS
 177};
 178
 179/*
 180 * We do arithmetic on the LRU lists in various places in the code,
 181 * so it is important to keep the active lists LRU_ACTIVE higher in
 182 * the array than the corresponding inactive lists, and to keep
 183 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 184 *
 185 * This has to be kept in sync with the statistics in zone_stat_item
 186 * above and the descriptions in vmstat_text in mm/vmstat.c
 187 */
 188#define LRU_BASE 0
 189#define LRU_ACTIVE 1
 190#define LRU_FILE 2
 191
 192enum lru_list {
 193        LRU_INACTIVE_ANON = LRU_BASE,
 194        LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 195        LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 196        LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 197        LRU_UNEVICTABLE,
 198        NR_LRU_LISTS
 199};
 200
 201#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
 202
 203#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
 204
 205static inline int is_file_lru(enum lru_list lru)
 206{
 207        return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
 208}
 209
 210static inline int is_active_lru(enum lru_list lru)
 211{
 212        return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
 213}
 214
 215struct zone_reclaim_stat {
 216        /*
 217         * The pageout code in vmscan.c keeps track of how many of the
 218         * mem/swap backed and file backed pages are referenced.
 219         * The higher the rotated/scanned ratio, the more valuable
 220         * that cache is.
 221         *
 222         * The anon LRU stats live in [0], file LRU stats in [1]
 223         */
 224        unsigned long           recent_rotated[2];
 225        unsigned long           recent_scanned[2];
 226};
 227
 228struct lruvec {
 229        struct list_head                lists[NR_LRU_LISTS];
 230        struct zone_reclaim_stat        reclaim_stat;
 231        /* Evictions & activations on the inactive file list */
 232        atomic_long_t                   inactive_age;
 233        /* Refaults at the time of last reclaim cycle */
 234        unsigned long                   refaults;
 235#ifdef CONFIG_MEMCG
 236        struct pglist_data *pgdat;
 237#endif
 238};
 239
 240/* Mask used at gathering information at once (see memcontrol.c) */
 241#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
 242#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
 243#define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
 244
 245/* Isolate unmapped file */
 246#define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
 247/* Isolate for asynchronous migration */
 248#define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
 249/* Isolate unevictable pages */
 250#define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
 251
 252/* LRU Isolation modes. */
 253typedef unsigned __bitwise isolate_mode_t;
 254
 255enum zone_watermarks {
 256        WMARK_MIN,
 257        WMARK_LOW,
 258        WMARK_HIGH,
 259        NR_WMARK
 260};
 261
 262#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
 263#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
 264#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
 265
 266struct per_cpu_pages {
 267        int count;              /* number of pages in the list */
 268        int high;               /* high watermark, emptying needed */
 269        int batch;              /* chunk size for buddy add/remove */
 270
 271        /* Lists of pages, one per migrate type stored on the pcp-lists */
 272        struct list_head lists[MIGRATE_PCPTYPES];
 273};
 274
 275struct per_cpu_pageset {
 276        struct per_cpu_pages pcp;
 277#ifdef CONFIG_NUMA
 278        s8 expire;
 279#endif
 280#ifdef CONFIG_SMP
 281        s8 stat_threshold;
 282        s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
 283#endif
 284};
 285
 286struct per_cpu_nodestat {
 287        s8 stat_threshold;
 288        s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
 289};
 290
 291#endif /* !__GENERATING_BOUNDS.H */
 292
 293enum zone_type {
 294#ifdef CONFIG_ZONE_DMA
 295        /*
 296         * ZONE_DMA is used when there are devices that are not able
 297         * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
 298         * carve out the portion of memory that is needed for these devices.
 299         * The range is arch specific.
 300         *
 301         * Some examples
 302         *
 303         * Architecture         Limit
 304         * ---------------------------
 305         * parisc, ia64, sparc  <4G
 306         * s390                 <2G
 307         * arm                  Various
 308         * alpha                Unlimited or 0-16MB.
 309         *
 310         * i386, x86_64 and multiple other arches
 311         *                      <16M.
 312         */
 313        ZONE_DMA,
 314#endif
 315#ifdef CONFIG_ZONE_DMA32
 316        /*
 317         * x86_64 needs two ZONE_DMAs because it supports devices that are
 318         * only able to do DMA to the lower 16M but also 32 bit devices that
 319         * can only do DMA areas below 4G.
 320         */
 321        ZONE_DMA32,
 322#endif
 323        /*
 324         * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
 325         * performed on pages in ZONE_NORMAL if the DMA devices support
 326         * transfers to all addressable memory.
 327         */
 328        ZONE_NORMAL,
 329#ifdef CONFIG_HIGHMEM
 330        /*
 331         * A memory area that is only addressable by the kernel through
 332         * mapping portions into its own address space. This is for example
 333         * used by i386 to allow the kernel to address the memory beyond
 334         * 900MB. The kernel will set up special mappings (page
 335         * table entries on i386) for each page that the kernel needs to
 336         * access.
 337         */
 338        ZONE_HIGHMEM,
 339#endif
 340        ZONE_MOVABLE,
 341#ifdef CONFIG_ZONE_DEVICE
 342        ZONE_DEVICE,
 343#endif
 344        __MAX_NR_ZONES
 345
 346};
 347
 348#ifndef __GENERATING_BOUNDS_H
 349
 350struct zone {
 351        /* Read-mostly fields */
 352
 353        /* zone watermarks, access with *_wmark_pages(zone) macros */
 354        unsigned long watermark[NR_WMARK];
 355
 356        unsigned long nr_reserved_highatomic;
 357
 358        /*
 359         * We don't know if the memory that we're going to allocate will be
 360         * freeable or/and it will be released eventually, so to avoid totally
 361         * wasting several GB of ram we must reserve some of the lower zone
 362         * memory (otherwise we risk to run OOM on the lower zones despite
 363         * there being tons of freeable ram on the higher zones).  This array is
 364         * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
 365         * changes.
 366         */
 367        long lowmem_reserve[MAX_NR_ZONES];
 368
 369#ifdef CONFIG_NUMA
 370        int node;
 371#endif
 372        struct pglist_data      *zone_pgdat;
 373        struct per_cpu_pageset __percpu *pageset;
 374
 375#ifndef CONFIG_SPARSEMEM
 376        /*
 377         * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
 378         * In SPARSEMEM, this map is stored in struct mem_section
 379         */
 380        unsigned long           *pageblock_flags;
 381#endif /* CONFIG_SPARSEMEM */
 382
 383        /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 384        unsigned long           zone_start_pfn;
 385
 386        /*
 387         * spanned_pages is the total pages spanned by the zone, including
 388         * holes, which is calculated as:
 389         *      spanned_pages = zone_end_pfn - zone_start_pfn;
 390         *
 391         * present_pages is physical pages existing within the zone, which
 392         * is calculated as:
 393         *      present_pages = spanned_pages - absent_pages(pages in holes);
 394         *
 395         * managed_pages is present pages managed by the buddy system, which
 396         * is calculated as (reserved_pages includes pages allocated by the
 397         * bootmem allocator):
 398         *      managed_pages = present_pages - reserved_pages;
 399         *
 400         * So present_pages may be used by memory hotplug or memory power
 401         * management logic to figure out unmanaged pages by checking
 402         * (present_pages - managed_pages). And managed_pages should be used
 403         * by page allocator and vm scanner to calculate all kinds of watermarks
 404         * and thresholds.
 405         *
 406         * Locking rules:
 407         *
 408         * zone_start_pfn and spanned_pages are protected by span_seqlock.
 409         * It is a seqlock because it has to be read outside of zone->lock,
 410         * and it is done in the main allocator path.  But, it is written
 411         * quite infrequently.
 412         *
 413         * The span_seq lock is declared along with zone->lock because it is
 414         * frequently read in proximity to zone->lock.  It's good to
 415         * give them a chance of being in the same cacheline.
 416         *
 417         * Write access to present_pages at runtime should be protected by
 418         * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
 419         * present_pages should get_online_mems() to get a stable value.
 420         *
 421         * Read access to managed_pages should be safe because it's unsigned
 422         * long. Write access to zone->managed_pages and totalram_pages are
 423         * protected by managed_page_count_lock at runtime. Idealy only
 424         * adjust_managed_page_count() should be used instead of directly
 425         * touching zone->managed_pages and totalram_pages.
 426         */
 427        unsigned long           managed_pages;
 428        unsigned long           spanned_pages;
 429        unsigned long           present_pages;
 430
 431        const char              *name;
 432
 433#ifdef CONFIG_MEMORY_ISOLATION
 434        /*
 435         * Number of isolated pageblock. It is used to solve incorrect
 436         * freepage counting problem due to racy retrieving migratetype
 437         * of pageblock. Protected by zone->lock.
 438         */
 439        unsigned long           nr_isolate_pageblock;
 440#endif
 441
 442#ifdef CONFIG_MEMORY_HOTPLUG
 443        /* see spanned/present_pages for more description */
 444        seqlock_t               span_seqlock;
 445#endif
 446
 447        int initialized;
 448
 449        /* Write-intensive fields used from the page allocator */
 450        ZONE_PADDING(_pad1_)
 451
 452        /* free areas of different sizes */
 453        struct free_area        free_area[MAX_ORDER];
 454
 455        /* zone flags, see below */
 456        unsigned long           flags;
 457
 458        /* Primarily protects free_area */
 459        spinlock_t              lock;
 460
 461        /* Write-intensive fields used by compaction and vmstats. */
 462        ZONE_PADDING(_pad2_)
 463
 464        /*
 465         * When free pages are below this point, additional steps are taken
 466         * when reading the number of free pages to avoid per-cpu counter
 467         * drift allowing watermarks to be breached
 468         */
 469        unsigned long percpu_drift_mark;
 470
 471#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 472        /* pfn where compaction free scanner should start */
 473        unsigned long           compact_cached_free_pfn;
 474        /* pfn where async and sync compaction migration scanner should start */
 475        unsigned long           compact_cached_migrate_pfn[2];
 476#endif
 477
 478#ifdef CONFIG_COMPACTION
 479        /*
 480         * On compaction failure, 1<<compact_defer_shift compactions
 481         * are skipped before trying again. The number attempted since
 482         * last failure is tracked with compact_considered.
 483         */
 484        unsigned int            compact_considered;
 485        unsigned int            compact_defer_shift;
 486        int                     compact_order_failed;
 487#endif
 488
 489#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 490        /* Set to true when the PG_migrate_skip bits should be cleared */
 491        bool                    compact_blockskip_flush;
 492#endif
 493
 494        bool                    contiguous;
 495
 496        ZONE_PADDING(_pad3_)
 497        /* Zone statistics */
 498        atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
 499} ____cacheline_internodealigned_in_smp;
 500
 501enum pgdat_flags {
 502        PGDAT_CONGESTED,                /* pgdat has many dirty pages backed by
 503                                         * a congested BDI
 504                                         */
 505        PGDAT_DIRTY,                    /* reclaim scanning has recently found
 506                                         * many dirty file pages at the tail
 507                                         * of the LRU.
 508                                         */
 509        PGDAT_WRITEBACK,                /* reclaim scanning has recently found
 510                                         * many pages under writeback
 511                                         */
 512        PGDAT_RECLAIM_LOCKED,           /* prevents concurrent reclaim */
 513};
 514
 515static inline unsigned long zone_end_pfn(const struct zone *zone)
 516{
 517        return zone->zone_start_pfn + zone->spanned_pages;
 518}
 519
 520static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
 521{
 522        return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
 523}
 524
 525static inline bool zone_is_initialized(struct zone *zone)
 526{
 527        return zone->initialized;
 528}
 529
 530static inline bool zone_is_empty(struct zone *zone)
 531{
 532        return zone->spanned_pages == 0;
 533}
 534
 535/*
 536 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
 537 * intersection with the given zone
 538 */
 539static inline bool zone_intersects(struct zone *zone,
 540                unsigned long start_pfn, unsigned long nr_pages)
 541{
 542        if (zone_is_empty(zone))
 543                return false;
 544        if (start_pfn >= zone_end_pfn(zone) ||
 545            start_pfn + nr_pages <= zone->zone_start_pfn)
 546                return false;
 547
 548        return true;
 549}
 550
 551/*
 552 * The "priority" of VM scanning is how much of the queues we will scan in one
 553 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 554 * queues ("queue_length >> 12") during an aging round.
 555 */
 556#define DEF_PRIORITY 12
 557
 558/* Maximum number of zones on a zonelist */
 559#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
 560
 561enum {
 562        ZONELIST_FALLBACK,      /* zonelist with fallback */
 563#ifdef CONFIG_NUMA
 564        /*
 565         * The NUMA zonelists are doubled because we need zonelists that
 566         * restrict the allocations to a single node for __GFP_THISNODE.
 567         */
 568        ZONELIST_NOFALLBACK,    /* zonelist without fallback (__GFP_THISNODE) */
 569#endif
 570        MAX_ZONELISTS
 571};
 572
 573/*
 574 * This struct contains information about a zone in a zonelist. It is stored
 575 * here to avoid dereferences into large structures and lookups of tables
 576 */
 577struct zoneref {
 578        struct zone *zone;      /* Pointer to actual zone */
 579        int zone_idx;           /* zone_idx(zoneref->zone) */
 580};
 581
 582/*
 583 * One allocation request operates on a zonelist. A zonelist
 584 * is a list of zones, the first one is the 'goal' of the
 585 * allocation, the other zones are fallback zones, in decreasing
 586 * priority.
 587 *
 588 * To speed the reading of the zonelist, the zonerefs contain the zone index
 589 * of the entry being read. Helper functions to access information given
 590 * a struct zoneref are
 591 *
 592 * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
 593 * zonelist_zone_idx()  - Return the index of the zone for an entry
 594 * zonelist_node_idx()  - Return the index of the node for an entry
 595 */
 596struct zonelist {
 597        struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
 598};
 599
 600#ifndef CONFIG_DISCONTIGMEM
 601/* The array of struct pages - for discontigmem use pgdat->lmem_map */
 602extern struct page *mem_map;
 603#endif
 604
 605/*
 606 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 607 * it's memory layout. On UMA machines there is a single pglist_data which
 608 * describes the whole memory.
 609 *
 610 * Memory statistics and page replacement data structures are maintained on a
 611 * per-zone basis.
 612 */
 613struct bootmem_data;
 614typedef struct pglist_data {
 615        struct zone node_zones[MAX_NR_ZONES];
 616        struct zonelist node_zonelists[MAX_ZONELISTS];
 617        int nr_zones;
 618#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
 619        struct page *node_mem_map;
 620#ifdef CONFIG_PAGE_EXTENSION
 621        struct page_ext *node_page_ext;
 622#endif
 623#endif
 624#ifndef CONFIG_NO_BOOTMEM
 625        struct bootmem_data *bdata;
 626#endif
 627#ifdef CONFIG_MEMORY_HOTPLUG
 628        /*
 629         * Must be held any time you expect node_start_pfn, node_present_pages
 630         * or node_spanned_pages stay constant.  Holding this will also
 631         * guarantee that any pfn_valid() stays that way.
 632         *
 633         * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
 634         * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
 635         *
 636         * Nests above zone->lock and zone->span_seqlock
 637         */
 638        spinlock_t node_size_lock;
 639#endif
 640        unsigned long node_start_pfn;
 641        unsigned long node_present_pages; /* total number of physical pages */
 642        unsigned long node_spanned_pages; /* total size of physical page
 643                                             range, including holes */
 644        int node_id;
 645        wait_queue_head_t kswapd_wait;
 646        wait_queue_head_t pfmemalloc_wait;
 647        struct task_struct *kswapd;     /* Protected by
 648                                           mem_hotplug_begin/end() */
 649        int kswapd_order;
 650        enum zone_type kswapd_classzone_idx;
 651
 652        int kswapd_failures;            /* Number of 'reclaimed == 0' runs */
 653
 654#ifdef CONFIG_COMPACTION
 655        int kcompactd_max_order;
 656        enum zone_type kcompactd_classzone_idx;
 657        wait_queue_head_t kcompactd_wait;
 658        struct task_struct *kcompactd;
 659#endif
 660#ifdef CONFIG_NUMA_BALANCING
 661        /* Lock serializing the migrate rate limiting window */
 662        spinlock_t numabalancing_migrate_lock;
 663
 664        /* Rate limiting time interval */
 665        unsigned long numabalancing_migrate_next_window;
 666
 667        /* Number of pages migrated during the rate limiting time interval */
 668        unsigned long numabalancing_migrate_nr_pages;
 669#endif
 670        /*
 671         * This is a per-node reserve of pages that are not available
 672         * to userspace allocations.
 673         */
 674        unsigned long           totalreserve_pages;
 675
 676#ifdef CONFIG_NUMA
 677        /*
 678         * zone reclaim becomes active if more unmapped pages exist.
 679         */
 680        unsigned long           min_unmapped_pages;
 681        unsigned long           min_slab_pages;
 682#endif /* CONFIG_NUMA */
 683
 684        /* Write-intensive fields used by page reclaim */
 685        ZONE_PADDING(_pad1_)
 686        spinlock_t              lru_lock;
 687
 688#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 689        /*
 690         * If memory initialisation on large machines is deferred then this
 691         * is the first PFN that needs to be initialised.
 692         */
 693        unsigned long first_deferred_pfn;
 694        unsigned long static_init_size;
 695#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 696
 697#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 698        spinlock_t split_queue_lock;
 699        struct list_head split_queue;
 700        unsigned long split_queue_len;
 701#endif
 702
 703        /* Fields commonly accessed by the page reclaim scanner */
 704        struct lruvec           lruvec;
 705
 706        /*
 707         * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
 708         * this node's LRU.  Maintained by the pageout code.
 709         */
 710        unsigned int inactive_ratio;
 711
 712        unsigned long           flags;
 713
 714        ZONE_PADDING(_pad2_)
 715
 716        /* Per-node vmstats */
 717        struct per_cpu_nodestat __percpu *per_cpu_nodestats;
 718        atomic_long_t           vm_stat[NR_VM_NODE_STAT_ITEMS];
 719} pg_data_t;
 720
 721#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
 722#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
 723#ifdef CONFIG_FLAT_NODE_MEM_MAP
 724#define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
 725#else
 726#define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
 727#endif
 728#define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
 729
 730#define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
 731#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
 732static inline spinlock_t *zone_lru_lock(struct zone *zone)
 733{
 734        return &zone->zone_pgdat->lru_lock;
 735}
 736
 737static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
 738{
 739        return &pgdat->lruvec;
 740}
 741
 742static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
 743{
 744        return pgdat->node_start_pfn + pgdat->node_spanned_pages;
 745}
 746
 747static inline bool pgdat_is_empty(pg_data_t *pgdat)
 748{
 749        return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
 750}
 751
 752static inline int zone_id(const struct zone *zone)
 753{
 754        struct pglist_data *pgdat = zone->zone_pgdat;
 755
 756        return zone - pgdat->node_zones;
 757}
 758
 759#ifdef CONFIG_ZONE_DEVICE
 760static inline bool is_dev_zone(const struct zone *zone)
 761{
 762        return zone_id(zone) == ZONE_DEVICE;
 763}
 764#else
 765static inline bool is_dev_zone(const struct zone *zone)
 766{
 767        return false;
 768}
 769#endif
 770
 771#include <linux/memory_hotplug.h>
 772
 773extern struct mutex zonelists_mutex;
 774void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
 775void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
 776bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
 777                         int classzone_idx, unsigned int alloc_flags,
 778                         long free_pages);
 779bool zone_watermark_ok(struct zone *z, unsigned int order,
 780                unsigned long mark, int classzone_idx,
 781                unsigned int alloc_flags);
 782bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
 783                unsigned long mark, int classzone_idx);
 784enum memmap_context {
 785        MEMMAP_EARLY,
 786        MEMMAP_HOTPLUG,
 787};
 788extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
 789                                     unsigned long size);
 790
 791extern void lruvec_init(struct lruvec *lruvec);
 792
 793static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
 794{
 795#ifdef CONFIG_MEMCG
 796        return lruvec->pgdat;
 797#else
 798        return container_of(lruvec, struct pglist_data, lruvec);
 799#endif
 800}
 801
 802extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
 803
 804#ifdef CONFIG_HAVE_MEMORY_PRESENT
 805void memory_present(int nid, unsigned long start, unsigned long end);
 806#else
 807static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
 808#endif
 809
 810#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 811int local_memory_node(int node_id);
 812#else
 813static inline int local_memory_node(int node_id) { return node_id; };
 814#endif
 815
 816#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
 817unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
 818#endif
 819
 820/*
 821 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 822 */
 823#define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
 824
 825/*
 826 * Returns true if a zone has pages managed by the buddy allocator.
 827 * All the reclaim decisions have to use this function rather than
 828 * populated_zone(). If the whole zone is reserved then we can easily
 829 * end up with populated_zone() && !managed_zone().
 830 */
 831static inline bool managed_zone(struct zone *zone)
 832{
 833        return zone->managed_pages;
 834}
 835
 836/* Returns true if a zone has memory */
 837static inline bool populated_zone(struct zone *zone)
 838{
 839        return zone->present_pages;
 840}
 841
 842extern int movable_zone;
 843
 844#ifdef CONFIG_HIGHMEM
 845static inline int zone_movable_is_highmem(void)
 846{
 847#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 848        return movable_zone == ZONE_HIGHMEM;
 849#else
 850        return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
 851#endif
 852}
 853#endif
 854
 855static inline int is_highmem_idx(enum zone_type idx)
 856{
 857#ifdef CONFIG_HIGHMEM
 858        return (idx == ZONE_HIGHMEM ||
 859                (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
 860#else
 861        return 0;
 862#endif
 863}
 864
 865/**
 866 * is_highmem - helper function to quickly check if a struct zone is a 
 867 *              highmem zone or not.  This is an attempt to keep references
 868 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 869 * @zone - pointer to struct zone variable
 870 */
 871static inline int is_highmem(struct zone *zone)
 872{
 873#ifdef CONFIG_HIGHMEM
 874        return is_highmem_idx(zone_idx(zone));
 875#else
 876        return 0;
 877#endif
 878}
 879
 880/* These two functions are used to setup the per zone pages min values */
 881struct ctl_table;
 882int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
 883                                        void __user *, size_t *, loff_t *);
 884int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
 885                                        void __user *, size_t *, loff_t *);
 886extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
 887int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
 888                                        void __user *, size_t *, loff_t *);
 889int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
 890                                        void __user *, size_t *, loff_t *);
 891int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
 892                        void __user *, size_t *, loff_t *);
 893int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
 894                        void __user *, size_t *, loff_t *);
 895
 896extern int numa_zonelist_order_handler(struct ctl_table *, int,
 897                        void __user *, size_t *, loff_t *);
 898extern char numa_zonelist_order[];
 899#define NUMA_ZONELIST_ORDER_LEN 16      /* string buffer size */
 900
 901#ifndef CONFIG_NEED_MULTIPLE_NODES
 902
 903extern struct pglist_data contig_page_data;
 904#define NODE_DATA(nid)          (&contig_page_data)
 905#define NODE_MEM_MAP(nid)       mem_map
 906
 907#else /* CONFIG_NEED_MULTIPLE_NODES */
 908
 909#include <asm/mmzone.h>
 910
 911#endif /* !CONFIG_NEED_MULTIPLE_NODES */
 912
 913extern struct pglist_data *first_online_pgdat(void);
 914extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
 915extern struct zone *next_zone(struct zone *zone);
 916
 917/**
 918 * for_each_online_pgdat - helper macro to iterate over all online nodes
 919 * @pgdat - pointer to a pg_data_t variable
 920 */
 921#define for_each_online_pgdat(pgdat)                    \
 922        for (pgdat = first_online_pgdat();              \
 923             pgdat;                                     \
 924             pgdat = next_online_pgdat(pgdat))
 925/**
 926 * for_each_zone - helper macro to iterate over all memory zones
 927 * @zone - pointer to struct zone variable
 928 *
 929 * The user only needs to declare the zone variable, for_each_zone
 930 * fills it in.
 931 */
 932#define for_each_zone(zone)                             \
 933        for (zone = (first_online_pgdat())->node_zones; \
 934             zone;                                      \
 935             zone = next_zone(zone))
 936
 937#define for_each_populated_zone(zone)                   \
 938        for (zone = (first_online_pgdat())->node_zones; \
 939             zone;                                      \
 940             zone = next_zone(zone))                    \
 941                if (!populated_zone(zone))              \
 942                        ; /* do nothing */              \
 943                else
 944
 945static inline struct zone *zonelist_zone(struct zoneref *zoneref)
 946{
 947        return zoneref->zone;
 948}
 949
 950static inline int zonelist_zone_idx(struct zoneref *zoneref)
 951{
 952        return zoneref->zone_idx;
 953}
 954
 955static inline int zonelist_node_idx(struct zoneref *zoneref)
 956{
 957#ifdef CONFIG_NUMA
 958        /* zone_to_nid not available in this context */
 959        return zoneref->zone->node;
 960#else
 961        return 0;
 962#endif /* CONFIG_NUMA */
 963}
 964
 965struct zoneref *__next_zones_zonelist(struct zoneref *z,
 966                                        enum zone_type highest_zoneidx,
 967                                        nodemask_t *nodes);
 968
 969/**
 970 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
 971 * @z - The cursor used as a starting point for the search
 972 * @highest_zoneidx - The zone index of the highest zone to return
 973 * @nodes - An optional nodemask to filter the zonelist with
 974 *
 975 * This function returns the next zone at or below a given zone index that is
 976 * within the allowed nodemask using a cursor as the starting point for the
 977 * search. The zoneref returned is a cursor that represents the current zone
 978 * being examined. It should be advanced by one before calling
 979 * next_zones_zonelist again.
 980 */
 981static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
 982                                        enum zone_type highest_zoneidx,
 983                                        nodemask_t *nodes)
 984{
 985        if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
 986                return z;
 987        return __next_zones_zonelist(z, highest_zoneidx, nodes);
 988}
 989
 990/**
 991 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
 992 * @zonelist - The zonelist to search for a suitable zone
 993 * @highest_zoneidx - The zone index of the highest zone to return
 994 * @nodes - An optional nodemask to filter the zonelist with
 995 * @return - Zoneref pointer for the first suitable zone found (see below)
 996 *
 997 * This function returns the first zone at or below a given zone index that is
 998 * within the allowed nodemask. The zoneref returned is a cursor that can be
 999 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1000 * one before calling.
1001 *
1002 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1003 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1004 * update due to cpuset modification.
1005 */
1006static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1007                                        enum zone_type highest_zoneidx,
1008                                        nodemask_t *nodes)
1009{
1010        return next_zones_zonelist(zonelist->_zonerefs,
1011                                                        highest_zoneidx, nodes);
1012}
1013
1014/**
1015 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1016 * @zone - The current zone in the iterator
1017 * @z - The current pointer within zonelist->zones being iterated
1018 * @zlist - The zonelist being iterated
1019 * @highidx - The zone index of the highest zone to return
1020 * @nodemask - Nodemask allowed by the allocator
1021 *
1022 * This iterator iterates though all zones at or below a given zone index and
1023 * within a given nodemask
1024 */
1025#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1026        for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);       \
1027                zone;                                                   \
1028                z = next_zones_zonelist(++z, highidx, nodemask),        \
1029                        zone = zonelist_zone(z))
1030
1031#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1032        for (zone = z->zone;    \
1033                zone;                                                   \
1034                z = next_zones_zonelist(++z, highidx, nodemask),        \
1035                        zone = zonelist_zone(z))
1036
1037
1038/**
1039 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1040 * @zone - The current zone in the iterator
1041 * @z - The current pointer within zonelist->zones being iterated
1042 * @zlist - The zonelist being iterated
1043 * @highidx - The zone index of the highest zone to return
1044 *
1045 * This iterator iterates though all zones at or below a given zone index.
1046 */
1047#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1048        for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1049
1050#ifdef CONFIG_SPARSEMEM
1051#include <asm/sparsemem.h>
1052#endif
1053
1054#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1055        !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1056static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1057{
1058        BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1059        return 0;
1060}
1061#endif
1062
1063#ifdef CONFIG_FLATMEM
1064#define pfn_to_nid(pfn)         (0)
1065#endif
1066
1067#ifdef CONFIG_SPARSEMEM
1068
1069/*
1070 * SECTION_SHIFT                #bits space required to store a section #
1071 *
1072 * PA_SECTION_SHIFT             physical address to/from section number
1073 * PFN_SECTION_SHIFT            pfn to/from section number
1074 */
1075#define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
1076#define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
1077
1078#define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
1079
1080#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1081#define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
1082
1083#define SECTION_BLOCKFLAGS_BITS \
1084        ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1085
1086#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1087#error Allocator MAX_ORDER exceeds SECTION_SIZE
1088#endif
1089
1090#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1091#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1092
1093#define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1094#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1095
1096struct page;
1097struct page_ext;
1098struct mem_section {
1099        /*
1100         * This is, logically, a pointer to an array of struct
1101         * pages.  However, it is stored with some other magic.
1102         * (see sparse.c::sparse_init_one_section())
1103         *
1104         * Additionally during early boot we encode node id of
1105         * the location of the section here to guide allocation.
1106         * (see sparse.c::memory_present())
1107         *
1108         * Making it a UL at least makes someone do a cast
1109         * before using it wrong.
1110         */
1111        unsigned long section_mem_map;
1112
1113        /* See declaration of similar field in struct zone */
1114        unsigned long *pageblock_flags;
1115#ifdef CONFIG_PAGE_EXTENSION
1116        /*
1117         * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1118         * section. (see page_ext.h about this.)
1119         */
1120        struct page_ext *page_ext;
1121        unsigned long pad;
1122#endif
1123        /*
1124         * WARNING: mem_section must be a power-of-2 in size for the
1125         * calculation and use of SECTION_ROOT_MASK to make sense.
1126         */
1127};
1128
1129#ifdef CONFIG_SPARSEMEM_EXTREME
1130#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1131#else
1132#define SECTIONS_PER_ROOT       1
1133#endif
1134
1135#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1136#define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1137#define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1138
1139#ifdef CONFIG_SPARSEMEM_EXTREME
1140extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1141#else
1142extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1143#endif
1144
1145static inline struct mem_section *__nr_to_section(unsigned long nr)
1146{
1147        if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1148                return NULL;
1149        return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1150}
1151extern int __section_nr(struct mem_section* ms);
1152extern unsigned long usemap_size(void);
1153
1154/*
1155 * We use the lower bits of the mem_map pointer to store
1156 * a little bit of information.  There should be at least
1157 * 3 bits here due to 32-bit alignment.
1158 */
1159#define SECTION_MARKED_PRESENT  (1UL<<0)
1160#define SECTION_HAS_MEM_MAP     (1UL<<1)
1161#define SECTION_IS_ONLINE       (1UL<<2)
1162#define SECTION_MAP_LAST_BIT    (1UL<<3)
1163#define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
1164#define SECTION_NID_SHIFT       3
1165
1166static inline struct page *__section_mem_map_addr(struct mem_section *section)
1167{
1168        unsigned long map = section->section_mem_map;
1169        map &= SECTION_MAP_MASK;
1170        return (struct page *)map;
1171}
1172
1173static inline int present_section(struct mem_section *section)
1174{
1175        return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1176}
1177
1178static inline int present_section_nr(unsigned long nr)
1179{
1180        return present_section(__nr_to_section(nr));
1181}
1182
1183static inline int valid_section(struct mem_section *section)
1184{
1185        return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1186}
1187
1188static inline int valid_section_nr(unsigned long nr)
1189{
1190        return valid_section(__nr_to_section(nr));
1191}
1192
1193static inline int online_section(struct mem_section *section)
1194{
1195        return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1196}
1197
1198static inline int online_section_nr(unsigned long nr)
1199{
1200        return online_section(__nr_to_section(nr));
1201}
1202
1203#ifdef CONFIG_MEMORY_HOTPLUG
1204void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1205#ifdef CONFIG_MEMORY_HOTREMOVE
1206void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1207#endif
1208#endif
1209
1210static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1211{
1212        return __nr_to_section(pfn_to_section_nr(pfn));
1213}
1214
1215extern int __highest_present_section_nr;
1216
1217#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1218static inline int pfn_valid(unsigned long pfn)
1219{
1220        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1221                return 0;
1222        return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1223}
1224#endif
1225
1226static inline int pfn_present(unsigned long pfn)
1227{
1228        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1229                return 0;
1230        return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1231}
1232
1233/*
1234 * These are _only_ used during initialisation, therefore they
1235 * can use __initdata ...  They could have names to indicate
1236 * this restriction.
1237 */
1238#ifdef CONFIG_NUMA
1239#define pfn_to_nid(pfn)                                                 \
1240({                                                                      \
1241        unsigned long __pfn_to_nid_pfn = (pfn);                         \
1242        page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1243})
1244#else
1245#define pfn_to_nid(pfn)         (0)
1246#endif
1247
1248#define early_pfn_valid(pfn)    pfn_valid(pfn)
1249void sparse_init(void);
1250#else
1251#define sparse_init()   do {} while (0)
1252#define sparse_index_init(_sec, _nid)  do {} while (0)
1253#endif /* CONFIG_SPARSEMEM */
1254
1255/*
1256 * During memory init memblocks map pfns to nids. The search is expensive and
1257 * this caches recent lookups. The implementation of __early_pfn_to_nid
1258 * may treat start/end as pfns or sections.
1259 */
1260struct mminit_pfnnid_cache {
1261        unsigned long last_start;
1262        unsigned long last_end;
1263        int last_nid;
1264};
1265
1266#ifndef early_pfn_valid
1267#define early_pfn_valid(pfn)    (1)
1268#endif
1269
1270void memory_present(int nid, unsigned long start, unsigned long end);
1271unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1272
1273/*
1274 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1275 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1276 * pfn_valid_within() should be used in this case; we optimise this away
1277 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1278 */
1279#ifdef CONFIG_HOLES_IN_ZONE
1280#define pfn_valid_within(pfn) pfn_valid(pfn)
1281#else
1282#define pfn_valid_within(pfn) (1)
1283#endif
1284
1285#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1286/*
1287 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1288 * associated with it or not. This means that a struct page exists for this
1289 * pfn. The caller cannot assume the page is fully initialized in general.
1290 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1291 * will ensure the struct page is fully online and initialized. Special pages
1292 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1293 *
1294 * In FLATMEM, it is expected that holes always have valid memmap as long as
1295 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1296 * that a valid section has a memmap for the entire section.
1297 *
1298 * However, an ARM, and maybe other embedded architectures in the future
1299 * free memmap backing holes to save memory on the assumption the memmap is
1300 * never used. The page_zone linkages are then broken even though pfn_valid()
1301 * returns true. A walker of the full memmap must then do this additional
1302 * check to ensure the memmap they are looking at is sane by making sure
1303 * the zone and PFN linkages are still valid. This is expensive, but walkers
1304 * of the full memmap are extremely rare.
1305 */
1306bool memmap_valid_within(unsigned long pfn,
1307                                        struct page *page, struct zone *zone);
1308#else
1309static inline bool memmap_valid_within(unsigned long pfn,
1310                                        struct page *page, struct zone *zone)
1311{
1312        return true;
1313}
1314#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1315
1316#endif /* !__GENERATING_BOUNDS.H */
1317#endif /* !__ASSEMBLY__ */
1318#endif /* _LINUX_MMZONE_H */
1319