linux/include/linux/sched/signal.h
<<
>>
Prefs
   1#ifndef _LINUX_SCHED_SIGNAL_H
   2#define _LINUX_SCHED_SIGNAL_H
   3
   4#include <linux/rculist.h>
   5#include <linux/signal.h>
   6#include <linux/sched.h>
   7#include <linux/sched/jobctl.h>
   8#include <linux/sched/task.h>
   9#include <linux/cred.h>
  10
  11/*
  12 * Types defining task->signal and task->sighand and APIs using them:
  13 */
  14
  15struct sighand_struct {
  16        atomic_t                count;
  17        struct k_sigaction      action[_NSIG];
  18        spinlock_t              siglock;
  19        wait_queue_head_t       signalfd_wqh;
  20};
  21
  22/*
  23 * Per-process accounting stats:
  24 */
  25struct pacct_struct {
  26        int                     ac_flag;
  27        long                    ac_exitcode;
  28        unsigned long           ac_mem;
  29        u64                     ac_utime, ac_stime;
  30        unsigned long           ac_minflt, ac_majflt;
  31};
  32
  33struct cpu_itimer {
  34        u64 expires;
  35        u64 incr;
  36};
  37
  38/*
  39 * This is the atomic variant of task_cputime, which can be used for
  40 * storing and updating task_cputime statistics without locking.
  41 */
  42struct task_cputime_atomic {
  43        atomic64_t utime;
  44        atomic64_t stime;
  45        atomic64_t sum_exec_runtime;
  46};
  47
  48#define INIT_CPUTIME_ATOMIC \
  49        (struct task_cputime_atomic) {                          \
  50                .utime = ATOMIC64_INIT(0),                      \
  51                .stime = ATOMIC64_INIT(0),                      \
  52                .sum_exec_runtime = ATOMIC64_INIT(0),           \
  53        }
  54/**
  55 * struct thread_group_cputimer - thread group interval timer counts
  56 * @cputime_atomic:     atomic thread group interval timers.
  57 * @running:            true when there are timers running and
  58 *                      @cputime_atomic receives updates.
  59 * @checking_timer:     true when a thread in the group is in the
  60 *                      process of checking for thread group timers.
  61 *
  62 * This structure contains the version of task_cputime, above, that is
  63 * used for thread group CPU timer calculations.
  64 */
  65struct thread_group_cputimer {
  66        struct task_cputime_atomic cputime_atomic;
  67        bool running;
  68        bool checking_timer;
  69};
  70
  71/*
  72 * NOTE! "signal_struct" does not have its own
  73 * locking, because a shared signal_struct always
  74 * implies a shared sighand_struct, so locking
  75 * sighand_struct is always a proper superset of
  76 * the locking of signal_struct.
  77 */
  78struct signal_struct {
  79        atomic_t                sigcnt;
  80        atomic_t                live;
  81        int                     nr_threads;
  82        struct list_head        thread_head;
  83
  84        wait_queue_head_t       wait_chldexit;  /* for wait4() */
  85
  86        /* current thread group signal load-balancing target: */
  87        struct task_struct      *curr_target;
  88
  89        /* shared signal handling: */
  90        struct sigpending       shared_pending;
  91
  92        /* thread group exit support */
  93        int                     group_exit_code;
  94        /* overloaded:
  95         * - notify group_exit_task when ->count is equal to notify_count
  96         * - everyone except group_exit_task is stopped during signal delivery
  97         *   of fatal signals, group_exit_task processes the signal.
  98         */
  99        int                     notify_count;
 100        struct task_struct      *group_exit_task;
 101
 102        /* thread group stop support, overloads group_exit_code too */
 103        int                     group_stop_count;
 104        unsigned int            flags; /* see SIGNAL_* flags below */
 105
 106        /*
 107         * PR_SET_CHILD_SUBREAPER marks a process, like a service
 108         * manager, to re-parent orphan (double-forking) child processes
 109         * to this process instead of 'init'. The service manager is
 110         * able to receive SIGCHLD signals and is able to investigate
 111         * the process until it calls wait(). All children of this
 112         * process will inherit a flag if they should look for a
 113         * child_subreaper process at exit.
 114         */
 115        unsigned int            is_child_subreaper:1;
 116        unsigned int            has_child_subreaper:1;
 117
 118#ifdef CONFIG_POSIX_TIMERS
 119
 120        /* POSIX.1b Interval Timers */
 121        int                     posix_timer_id;
 122        struct list_head        posix_timers;
 123
 124        /* ITIMER_REAL timer for the process */
 125        struct hrtimer real_timer;
 126        ktime_t it_real_incr;
 127
 128        /*
 129         * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 130         * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 131         * values are defined to 0 and 1 respectively
 132         */
 133        struct cpu_itimer it[2];
 134
 135        /*
 136         * Thread group totals for process CPU timers.
 137         * See thread_group_cputimer(), et al, for details.
 138         */
 139        struct thread_group_cputimer cputimer;
 140
 141        /* Earliest-expiration cache. */
 142        struct task_cputime cputime_expires;
 143
 144        struct list_head cpu_timers[3];
 145
 146#endif
 147
 148        struct pid *leader_pid;
 149
 150#ifdef CONFIG_NO_HZ_FULL
 151        atomic_t tick_dep_mask;
 152#endif
 153
 154        struct pid *tty_old_pgrp;
 155
 156        /* boolean value for session group leader */
 157        int leader;
 158
 159        struct tty_struct *tty; /* NULL if no tty */
 160
 161#ifdef CONFIG_SCHED_AUTOGROUP
 162        struct autogroup *autogroup;
 163#endif
 164        /*
 165         * Cumulative resource counters for dead threads in the group,
 166         * and for reaped dead child processes forked by this group.
 167         * Live threads maintain their own counters and add to these
 168         * in __exit_signal, except for the group leader.
 169         */
 170        seqlock_t stats_lock;
 171        u64 utime, stime, cutime, cstime;
 172        u64 gtime;
 173        u64 cgtime;
 174        struct prev_cputime prev_cputime;
 175        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 176        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 177        unsigned long inblock, oublock, cinblock, coublock;
 178        unsigned long maxrss, cmaxrss;
 179        struct task_io_accounting ioac;
 180
 181        /*
 182         * Cumulative ns of schedule CPU time fo dead threads in the
 183         * group, not including a zombie group leader, (This only differs
 184         * from jiffies_to_ns(utime + stime) if sched_clock uses something
 185         * other than jiffies.)
 186         */
 187        unsigned long long sum_sched_runtime;
 188
 189        /*
 190         * We don't bother to synchronize most readers of this at all,
 191         * because there is no reader checking a limit that actually needs
 192         * to get both rlim_cur and rlim_max atomically, and either one
 193         * alone is a single word that can safely be read normally.
 194         * getrlimit/setrlimit use task_lock(current->group_leader) to
 195         * protect this instead of the siglock, because they really
 196         * have no need to disable irqs.
 197         */
 198        struct rlimit rlim[RLIM_NLIMITS];
 199
 200#ifdef CONFIG_BSD_PROCESS_ACCT
 201        struct pacct_struct pacct;      /* per-process accounting information */
 202#endif
 203#ifdef CONFIG_TASKSTATS
 204        struct taskstats *stats;
 205#endif
 206#ifdef CONFIG_AUDIT
 207        unsigned audit_tty;
 208        struct tty_audit_buf *tty_audit_buf;
 209#endif
 210
 211        /*
 212         * Thread is the potential origin of an oom condition; kill first on
 213         * oom
 214         */
 215        bool oom_flag_origin;
 216        short oom_score_adj;            /* OOM kill score adjustment */
 217        short oom_score_adj_min;        /* OOM kill score adjustment min value.
 218                                         * Only settable by CAP_SYS_RESOURCE. */
 219        struct mm_struct *oom_mm;       /* recorded mm when the thread group got
 220                                         * killed by the oom killer */
 221
 222        struct mutex cred_guard_mutex;  /* guard against foreign influences on
 223                                         * credential calculations
 224                                         * (notably. ptrace) */
 225} __randomize_layout;
 226
 227/*
 228 * Bits in flags field of signal_struct.
 229 */
 230#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
 231#define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
 232#define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
 233#define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
 234/*
 235 * Pending notifications to parent.
 236 */
 237#define SIGNAL_CLD_STOPPED      0x00000010
 238#define SIGNAL_CLD_CONTINUED    0x00000020
 239#define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 240
 241#define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
 242
 243#define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
 244                          SIGNAL_STOP_CONTINUED)
 245
 246static inline void signal_set_stop_flags(struct signal_struct *sig,
 247                                         unsigned int flags)
 248{
 249        WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
 250        sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
 251}
 252
 253/* If true, all threads except ->group_exit_task have pending SIGKILL */
 254static inline int signal_group_exit(const struct signal_struct *sig)
 255{
 256        return  (sig->flags & SIGNAL_GROUP_EXIT) ||
 257                (sig->group_exit_task != NULL);
 258}
 259
 260extern void flush_signals(struct task_struct *);
 261extern void ignore_signals(struct task_struct *);
 262extern void flush_signal_handlers(struct task_struct *, int force_default);
 263extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
 264
 265static inline int kernel_dequeue_signal(siginfo_t *info)
 266{
 267        struct task_struct *tsk = current;
 268        siginfo_t __info;
 269        int ret;
 270
 271        spin_lock_irq(&tsk->sighand->siglock);
 272        ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
 273        spin_unlock_irq(&tsk->sighand->siglock);
 274
 275        return ret;
 276}
 277
 278static inline void kernel_signal_stop(void)
 279{
 280        spin_lock_irq(&current->sighand->siglock);
 281        if (current->jobctl & JOBCTL_STOP_DEQUEUED)
 282                __set_current_state(TASK_STOPPED);
 283        spin_unlock_irq(&current->sighand->siglock);
 284
 285        schedule();
 286}
 287extern int send_sig_info(int, struct siginfo *, struct task_struct *);
 288extern int force_sigsegv(int, struct task_struct *);
 289extern int force_sig_info(int, struct siginfo *, struct task_struct *);
 290extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
 291extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
 292extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
 293                                const struct cred *, u32);
 294extern int kill_pgrp(struct pid *pid, int sig, int priv);
 295extern int kill_pid(struct pid *pid, int sig, int priv);
 296extern __must_check bool do_notify_parent(struct task_struct *, int);
 297extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
 298extern void force_sig(int, struct task_struct *);
 299extern int send_sig(int, struct task_struct *, int);
 300extern int zap_other_threads(struct task_struct *p);
 301extern struct sigqueue *sigqueue_alloc(void);
 302extern void sigqueue_free(struct sigqueue *);
 303extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
 304extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
 305
 306static inline int restart_syscall(void)
 307{
 308        set_tsk_thread_flag(current, TIF_SIGPENDING);
 309        return -ERESTARTNOINTR;
 310}
 311
 312static inline int signal_pending(struct task_struct *p)
 313{
 314        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
 315}
 316
 317static inline int __fatal_signal_pending(struct task_struct *p)
 318{
 319        return unlikely(sigismember(&p->pending.signal, SIGKILL));
 320}
 321
 322static inline int fatal_signal_pending(struct task_struct *p)
 323{
 324        return signal_pending(p) && __fatal_signal_pending(p);
 325}
 326
 327static inline int signal_pending_state(long state, struct task_struct *p)
 328{
 329        if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
 330                return 0;
 331        if (!signal_pending(p))
 332                return 0;
 333
 334        return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
 335}
 336
 337/*
 338 * Reevaluate whether the task has signals pending delivery.
 339 * Wake the task if so.
 340 * This is required every time the blocked sigset_t changes.
 341 * callers must hold sighand->siglock.
 342 */
 343extern void recalc_sigpending_and_wake(struct task_struct *t);
 344extern void recalc_sigpending(void);
 345
 346extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
 347
 348static inline void signal_wake_up(struct task_struct *t, bool resume)
 349{
 350        signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
 351}
 352static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
 353{
 354        signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
 355}
 356
 357#ifdef TIF_RESTORE_SIGMASK
 358/*
 359 * Legacy restore_sigmask accessors.  These are inefficient on
 360 * SMP architectures because they require atomic operations.
 361 */
 362
 363/**
 364 * set_restore_sigmask() - make sure saved_sigmask processing gets done
 365 *
 366 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
 367 * will run before returning to user mode, to process the flag.  For
 368 * all callers, TIF_SIGPENDING is already set or it's no harm to set
 369 * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
 370 * arch code will notice on return to user mode, in case those bits
 371 * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
 372 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
 373 */
 374static inline void set_restore_sigmask(void)
 375{
 376        set_thread_flag(TIF_RESTORE_SIGMASK);
 377        WARN_ON(!test_thread_flag(TIF_SIGPENDING));
 378}
 379static inline void clear_restore_sigmask(void)
 380{
 381        clear_thread_flag(TIF_RESTORE_SIGMASK);
 382}
 383static inline bool test_restore_sigmask(void)
 384{
 385        return test_thread_flag(TIF_RESTORE_SIGMASK);
 386}
 387static inline bool test_and_clear_restore_sigmask(void)
 388{
 389        return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
 390}
 391
 392#else   /* TIF_RESTORE_SIGMASK */
 393
 394/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
 395static inline void set_restore_sigmask(void)
 396{
 397        current->restore_sigmask = true;
 398        WARN_ON(!test_thread_flag(TIF_SIGPENDING));
 399}
 400static inline void clear_restore_sigmask(void)
 401{
 402        current->restore_sigmask = false;
 403}
 404static inline bool test_restore_sigmask(void)
 405{
 406        return current->restore_sigmask;
 407}
 408static inline bool test_and_clear_restore_sigmask(void)
 409{
 410        if (!current->restore_sigmask)
 411                return false;
 412        current->restore_sigmask = false;
 413        return true;
 414}
 415#endif
 416
 417static inline void restore_saved_sigmask(void)
 418{
 419        if (test_and_clear_restore_sigmask())
 420                __set_current_blocked(&current->saved_sigmask);
 421}
 422
 423static inline sigset_t *sigmask_to_save(void)
 424{
 425        sigset_t *res = &current->blocked;
 426        if (unlikely(test_restore_sigmask()))
 427                res = &current->saved_sigmask;
 428        return res;
 429}
 430
 431static inline int kill_cad_pid(int sig, int priv)
 432{
 433        return kill_pid(cad_pid, sig, priv);
 434}
 435
 436/* These can be the second arg to send_sig_info/send_group_sig_info.  */
 437#define SEND_SIG_NOINFO ((struct siginfo *) 0)
 438#define SEND_SIG_PRIV   ((struct siginfo *) 1)
 439#define SEND_SIG_FORCED ((struct siginfo *) 2)
 440
 441/*
 442 * True if we are on the alternate signal stack.
 443 */
 444static inline int on_sig_stack(unsigned long sp)
 445{
 446        /*
 447         * If the signal stack is SS_AUTODISARM then, by construction, we
 448         * can't be on the signal stack unless user code deliberately set
 449         * SS_AUTODISARM when we were already on it.
 450         *
 451         * This improves reliability: if user state gets corrupted such that
 452         * the stack pointer points very close to the end of the signal stack,
 453         * then this check will enable the signal to be handled anyway.
 454         */
 455        if (current->sas_ss_flags & SS_AUTODISARM)
 456                return 0;
 457
 458#ifdef CONFIG_STACK_GROWSUP
 459        return sp >= current->sas_ss_sp &&
 460                sp - current->sas_ss_sp < current->sas_ss_size;
 461#else
 462        return sp > current->sas_ss_sp &&
 463                sp - current->sas_ss_sp <= current->sas_ss_size;
 464#endif
 465}
 466
 467static inline int sas_ss_flags(unsigned long sp)
 468{
 469        if (!current->sas_ss_size)
 470                return SS_DISABLE;
 471
 472        return on_sig_stack(sp) ? SS_ONSTACK : 0;
 473}
 474
 475static inline void sas_ss_reset(struct task_struct *p)
 476{
 477        p->sas_ss_sp = 0;
 478        p->sas_ss_size = 0;
 479        p->sas_ss_flags = SS_DISABLE;
 480}
 481
 482static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
 483{
 484        if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
 485#ifdef CONFIG_STACK_GROWSUP
 486                return current->sas_ss_sp;
 487#else
 488                return current->sas_ss_sp + current->sas_ss_size;
 489#endif
 490        return sp;
 491}
 492
 493extern void __cleanup_sighand(struct sighand_struct *);
 494extern void flush_itimer_signals(void);
 495
 496#define tasklist_empty() \
 497        list_empty(&init_task.tasks)
 498
 499#define next_task(p) \
 500        list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
 501
 502#define for_each_process(p) \
 503        for (p = &init_task ; (p = next_task(p)) != &init_task ; )
 504
 505extern bool current_is_single_threaded(void);
 506
 507/*
 508 * Careful: do_each_thread/while_each_thread is a double loop so
 509 *          'break' will not work as expected - use goto instead.
 510 */
 511#define do_each_thread(g, t) \
 512        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
 513
 514#define while_each_thread(g, t) \
 515        while ((t = next_thread(t)) != g)
 516
 517#define __for_each_thread(signal, t)    \
 518        list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
 519
 520#define for_each_thread(p, t)           \
 521        __for_each_thread((p)->signal, t)
 522
 523/* Careful: this is a double loop, 'break' won't work as expected. */
 524#define for_each_process_thread(p, t)   \
 525        for_each_process(p) for_each_thread(p, t)
 526
 527typedef int (*proc_visitor)(struct task_struct *p, void *data);
 528void walk_process_tree(struct task_struct *top, proc_visitor, void *);
 529
 530static inline int get_nr_threads(struct task_struct *tsk)
 531{
 532        return tsk->signal->nr_threads;
 533}
 534
 535static inline bool thread_group_leader(struct task_struct *p)
 536{
 537        return p->exit_signal >= 0;
 538}
 539
 540/* Do to the insanities of de_thread it is possible for a process
 541 * to have the pid of the thread group leader without actually being
 542 * the thread group leader.  For iteration through the pids in proc
 543 * all we care about is that we have a task with the appropriate
 544 * pid, we don't actually care if we have the right task.
 545 */
 546static inline bool has_group_leader_pid(struct task_struct *p)
 547{
 548        return task_pid(p) == p->signal->leader_pid;
 549}
 550
 551static inline
 552bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
 553{
 554        return p1->signal == p2->signal;
 555}
 556
 557static inline struct task_struct *next_thread(const struct task_struct *p)
 558{
 559        return list_entry_rcu(p->thread_group.next,
 560                              struct task_struct, thread_group);
 561}
 562
 563static inline int thread_group_empty(struct task_struct *p)
 564{
 565        return list_empty(&p->thread_group);
 566}
 567
 568#define delay_group_leader(p) \
 569                (thread_group_leader(p) && !thread_group_empty(p))
 570
 571extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
 572                                                        unsigned long *flags);
 573
 574static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
 575                                                       unsigned long *flags)
 576{
 577        struct sighand_struct *ret;
 578
 579        ret = __lock_task_sighand(tsk, flags);
 580        (void)__cond_lock(&tsk->sighand->siglock, ret);
 581        return ret;
 582}
 583
 584static inline void unlock_task_sighand(struct task_struct *tsk,
 585                                                unsigned long *flags)
 586{
 587        spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
 588}
 589
 590static inline unsigned long task_rlimit(const struct task_struct *tsk,
 591                unsigned int limit)
 592{
 593        return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
 594}
 595
 596static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
 597                unsigned int limit)
 598{
 599        return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
 600}
 601
 602static inline unsigned long rlimit(unsigned int limit)
 603{
 604        return task_rlimit(current, limit);
 605}
 606
 607static inline unsigned long rlimit_max(unsigned int limit)
 608{
 609        return task_rlimit_max(current, limit);
 610}
 611
 612#endif /* _LINUX_SCHED_SIGNAL_H */
 613