linux/include/linux/skbuff.h
<<
>>
Prefs
   1/*
   2 *      Definitions for the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:
   5 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
   6 *              Florian La Roche, <rzsfl@rz.uni-sb.de>
   7 *
   8 *      This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 */
  13
  14#ifndef _LINUX_SKBUFF_H
  15#define _LINUX_SKBUFF_H
  16
  17#include <linux/kernel.h>
  18#include <linux/kmemcheck.h>
  19#include <linux/compiler.h>
  20#include <linux/time.h>
  21#include <linux/bug.h>
  22#include <linux/cache.h>
  23#include <linux/rbtree.h>
  24#include <linux/socket.h>
  25
  26#include <linux/atomic.h>
  27#include <asm/types.h>
  28#include <linux/spinlock.h>
  29#include <linux/net.h>
  30#include <linux/textsearch.h>
  31#include <net/checksum.h>
  32#include <linux/rcupdate.h>
  33#include <linux/hrtimer.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/netdev_features.h>
  36#include <linux/sched.h>
  37#include <linux/sched/clock.h>
  38#include <net/flow_dissector.h>
  39#include <linux/splice.h>
  40#include <linux/in6.h>
  41#include <linux/if_packet.h>
  42#include <net/flow.h>
  43
  44/* The interface for checksum offload between the stack and networking drivers
  45 * is as follows...
  46 *
  47 * A. IP checksum related features
  48 *
  49 * Drivers advertise checksum offload capabilities in the features of a device.
  50 * From the stack's point of view these are capabilities offered by the driver,
  51 * a driver typically only advertises features that it is capable of offloading
  52 * to its device.
  53 *
  54 * The checksum related features are:
  55 *
  56 *      NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
  57 *                        IP (one's complement) checksum for any combination
  58 *                        of protocols or protocol layering. The checksum is
  59 *                        computed and set in a packet per the CHECKSUM_PARTIAL
  60 *                        interface (see below).
  61 *
  62 *      NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
  63 *                        TCP or UDP packets over IPv4. These are specifically
  64 *                        unencapsulated packets of the form IPv4|TCP or
  65 *                        IPv4|UDP where the Protocol field in the IPv4 header
  66 *                        is TCP or UDP. The IPv4 header may contain IP options
  67 *                        This feature cannot be set in features for a device
  68 *                        with NETIF_F_HW_CSUM also set. This feature is being
  69 *                        DEPRECATED (see below).
  70 *
  71 *      NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
  72 *                        TCP or UDP packets over IPv6. These are specifically
  73 *                        unencapsulated packets of the form IPv6|TCP or
  74 *                        IPv4|UDP where the Next Header field in the IPv6
  75 *                        header is either TCP or UDP. IPv6 extension headers
  76 *                        are not supported with this feature. This feature
  77 *                        cannot be set in features for a device with
  78 *                        NETIF_F_HW_CSUM also set. This feature is being
  79 *                        DEPRECATED (see below).
  80 *
  81 *      NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
  82 *                       This flag is used only used to disable the RX checksum
  83 *                       feature for a device. The stack will accept receive
  84 *                       checksum indication in packets received on a device
  85 *                       regardless of whether NETIF_F_RXCSUM is set.
  86 *
  87 * B. Checksumming of received packets by device. Indication of checksum
  88 *    verification is in set skb->ip_summed. Possible values are:
  89 *
  90 * CHECKSUM_NONE:
  91 *
  92 *   Device did not checksum this packet e.g. due to lack of capabilities.
  93 *   The packet contains full (though not verified) checksum in packet but
  94 *   not in skb->csum. Thus, skb->csum is undefined in this case.
  95 *
  96 * CHECKSUM_UNNECESSARY:
  97 *
  98 *   The hardware you're dealing with doesn't calculate the full checksum
  99 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
 100 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
 101 *   if their checksums are okay. skb->csum is still undefined in this case
 102 *   though. A driver or device must never modify the checksum field in the
 103 *   packet even if checksum is verified.
 104 *
 105 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
 106 *     TCP: IPv6 and IPv4.
 107 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
 108 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
 109 *       may perform further validation in this case.
 110 *     GRE: only if the checksum is present in the header.
 111 *     SCTP: indicates the CRC in SCTP header has been validated.
 112 *     FCOE: indicates the CRC in FC frame has been validated.
 113 *
 114 *   skb->csum_level indicates the number of consecutive checksums found in
 115 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
 116 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
 117 *   and a device is able to verify the checksums for UDP (possibly zero),
 118 *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
 119 *   two. If the device were only able to verify the UDP checksum and not
 120 *   GRE, either because it doesn't support GRE checksum of because GRE
 121 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
 122 *   not considered in this case).
 123 *
 124 * CHECKSUM_COMPLETE:
 125 *
 126 *   This is the most generic way. The device supplied checksum of the _whole_
 127 *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
 128 *   hardware doesn't need to parse L3/L4 headers to implement this.
 129 *
 130 *   Notes:
 131 *   - Even if device supports only some protocols, but is able to produce
 132 *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
 133 *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
 134 *
 135 * CHECKSUM_PARTIAL:
 136 *
 137 *   A checksum is set up to be offloaded to a device as described in the
 138 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
 139 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
 140 *   on the same host, or it may be set in the input path in GRO or remote
 141 *   checksum offload. For the purposes of checksum verification, the checksum
 142 *   referred to by skb->csum_start + skb->csum_offset and any preceding
 143 *   checksums in the packet are considered verified. Any checksums in the
 144 *   packet that are after the checksum being offloaded are not considered to
 145 *   be verified.
 146 *
 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
 148 *    in the skb->ip_summed for a packet. Values are:
 149 *
 150 * CHECKSUM_PARTIAL:
 151 *
 152 *   The driver is required to checksum the packet as seen by hard_start_xmit()
 153 *   from skb->csum_start up to the end, and to record/write the checksum at
 154 *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
 155 *   csum_start and csum_offset values are valid values given the length and
 156 *   offset of the packet, however they should not attempt to validate that the
 157 *   checksum refers to a legitimate transport layer checksum-- it is the
 158 *   purview of the stack to validate that csum_start and csum_offset are set
 159 *   correctly.
 160 *
 161 *   When the stack requests checksum offload for a packet, the driver MUST
 162 *   ensure that the checksum is set correctly. A driver can either offload the
 163 *   checksum calculation to the device, or call skb_checksum_help (in the case
 164 *   that the device does not support offload for a particular checksum).
 165 *
 166 *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
 167 *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
 168 *   checksum offload capability.
 169 *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
 170 *   on network device checksumming capabilities: if a packet does not match
 171 *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
 172 *   csum_not_inet, see item D.) is called to resolve the checksum.
 173 *
 174 * CHECKSUM_NONE:
 175 *
 176 *   The skb was already checksummed by the protocol, or a checksum is not
 177 *   required.
 178 *
 179 * CHECKSUM_UNNECESSARY:
 180 *
 181 *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
 182 *   output.
 183 *
 184 * CHECKSUM_COMPLETE:
 185 *   Not used in checksum output. If a driver observes a packet with this value
 186 *   set in skbuff, if should treat as CHECKSUM_NONE being set.
 187 *
 188 * D. Non-IP checksum (CRC) offloads
 189 *
 190 *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
 191 *     offloading the SCTP CRC in a packet. To perform this offload the stack
 192 *     will set set csum_start and csum_offset accordingly, set ip_summed to
 193 *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
 194 *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
 195 *     A driver that supports both IP checksum offload and SCTP CRC32c offload
 196 *     must verify which offload is configured for a packet by testing the
 197 *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
 198 *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
 199 *
 200 *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
 201 *     offloading the FCOE CRC in a packet. To perform this offload the stack
 202 *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
 203 *     accordingly. Note the there is no indication in the skbuff that the
 204 *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
 205 *     both IP checksum offload and FCOE CRC offload must verify which offload
 206 *     is configured for a packet presumably by inspecting packet headers.
 207 *
 208 * E. Checksumming on output with GSO.
 209 *
 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
 213 * part of the GSO operation is implied. If a checksum is being offloaded
 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
 215 * are set to refer to the outermost checksum being offload (two offloaded
 216 * checksums are possible with UDP encapsulation).
 217 */
 218
 219/* Don't change this without changing skb_csum_unnecessary! */
 220#define CHECKSUM_NONE           0
 221#define CHECKSUM_UNNECESSARY    1
 222#define CHECKSUM_COMPLETE       2
 223#define CHECKSUM_PARTIAL        3
 224
 225/* Maximum value in skb->csum_level */
 226#define SKB_MAX_CSUM_LEVEL      3
 227
 228#define SKB_DATA_ALIGN(X)       ALIGN(X, SMP_CACHE_BYTES)
 229#define SKB_WITH_OVERHEAD(X)    \
 230        ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 231#define SKB_MAX_ORDER(X, ORDER) \
 232        SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
 233#define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
 234#define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
 235
 236/* return minimum truesize of one skb containing X bytes of data */
 237#define SKB_TRUESIZE(X) ((X) +                                          \
 238                         SKB_DATA_ALIGN(sizeof(struct sk_buff)) +       \
 239                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 240
 241struct net_device;
 242struct scatterlist;
 243struct pipe_inode_info;
 244struct iov_iter;
 245struct napi_struct;
 246
 247#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 248struct nf_conntrack {
 249        atomic_t use;
 250};
 251#endif
 252
 253#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 254struct nf_bridge_info {
 255        refcount_t              use;
 256        enum {
 257                BRNF_PROTO_UNCHANGED,
 258                BRNF_PROTO_8021Q,
 259                BRNF_PROTO_PPPOE
 260        } orig_proto:8;
 261        u8                      pkt_otherhost:1;
 262        u8                      in_prerouting:1;
 263        u8                      bridged_dnat:1;
 264        __u16                   frag_max_size;
 265        struct net_device       *physindev;
 266
 267        /* always valid & non-NULL from FORWARD on, for physdev match */
 268        struct net_device       *physoutdev;
 269        union {
 270                /* prerouting: detect dnat in orig/reply direction */
 271                __be32          ipv4_daddr;
 272                struct in6_addr ipv6_daddr;
 273
 274                /* after prerouting + nat detected: store original source
 275                 * mac since neigh resolution overwrites it, only used while
 276                 * skb is out in neigh layer.
 277                 */
 278                char neigh_header[8];
 279        };
 280};
 281#endif
 282
 283struct sk_buff_head {
 284        /* These two members must be first. */
 285        struct sk_buff  *next;
 286        struct sk_buff  *prev;
 287
 288        __u32           qlen;
 289        spinlock_t      lock;
 290};
 291
 292struct sk_buff;
 293
 294/* To allow 64K frame to be packed as single skb without frag_list we
 295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 296 * buffers which do not start on a page boundary.
 297 *
 298 * Since GRO uses frags we allocate at least 16 regardless of page
 299 * size.
 300 */
 301#if (65536/PAGE_SIZE + 1) < 16
 302#define MAX_SKB_FRAGS 16UL
 303#else
 304#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
 305#endif
 306extern int sysctl_max_skb_frags;
 307
 308/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
 309 * segment using its current segmentation instead.
 310 */
 311#define GSO_BY_FRAGS    0xFFFF
 312
 313typedef struct skb_frag_struct skb_frag_t;
 314
 315struct skb_frag_struct {
 316        struct {
 317                struct page *p;
 318        } page;
 319#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
 320        __u32 page_offset;
 321        __u32 size;
 322#else
 323        __u16 page_offset;
 324        __u16 size;
 325#endif
 326};
 327
 328static inline unsigned int skb_frag_size(const skb_frag_t *frag)
 329{
 330        return frag->size;
 331}
 332
 333static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
 334{
 335        frag->size = size;
 336}
 337
 338static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
 339{
 340        frag->size += delta;
 341}
 342
 343static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
 344{
 345        frag->size -= delta;
 346}
 347
 348#define HAVE_HW_TIME_STAMP
 349
 350/**
 351 * struct skb_shared_hwtstamps - hardware time stamps
 352 * @hwtstamp:   hardware time stamp transformed into duration
 353 *              since arbitrary point in time
 354 *
 355 * Software time stamps generated by ktime_get_real() are stored in
 356 * skb->tstamp.
 357 *
 358 * hwtstamps can only be compared against other hwtstamps from
 359 * the same device.
 360 *
 361 * This structure is attached to packets as part of the
 362 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 363 */
 364struct skb_shared_hwtstamps {
 365        ktime_t hwtstamp;
 366};
 367
 368/* Definitions for tx_flags in struct skb_shared_info */
 369enum {
 370        /* generate hardware time stamp */
 371        SKBTX_HW_TSTAMP = 1 << 0,
 372
 373        /* generate software time stamp when queueing packet to NIC */
 374        SKBTX_SW_TSTAMP = 1 << 1,
 375
 376        /* device driver is going to provide hardware time stamp */
 377        SKBTX_IN_PROGRESS = 1 << 2,
 378
 379        /* device driver supports TX zero-copy buffers */
 380        SKBTX_DEV_ZEROCOPY = 1 << 3,
 381
 382        /* generate wifi status information (where possible) */
 383        SKBTX_WIFI_STATUS = 1 << 4,
 384
 385        /* This indicates at least one fragment might be overwritten
 386         * (as in vmsplice(), sendfile() ...)
 387         * If we need to compute a TX checksum, we'll need to copy
 388         * all frags to avoid possible bad checksum
 389         */
 390        SKBTX_SHARED_FRAG = 1 << 5,
 391
 392        /* generate software time stamp when entering packet scheduling */
 393        SKBTX_SCHED_TSTAMP = 1 << 6,
 394};
 395
 396#define SKBTX_ANY_SW_TSTAMP     (SKBTX_SW_TSTAMP    | \
 397                                 SKBTX_SCHED_TSTAMP)
 398#define SKBTX_ANY_TSTAMP        (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
 399
 400/*
 401 * The callback notifies userspace to release buffers when skb DMA is done in
 402 * lower device, the skb last reference should be 0 when calling this.
 403 * The zerocopy_success argument is true if zero copy transmit occurred,
 404 * false on data copy or out of memory error caused by data copy attempt.
 405 * The ctx field is used to track device context.
 406 * The desc field is used to track userspace buffer index.
 407 */
 408struct ubuf_info {
 409        void (*callback)(struct ubuf_info *, bool zerocopy_success);
 410        void *ctx;
 411        unsigned long desc;
 412};
 413
 414/* This data is invariant across clones and lives at
 415 * the end of the header data, ie. at skb->end.
 416 */
 417struct skb_shared_info {
 418        unsigned short  _unused;
 419        unsigned char   nr_frags;
 420        __u8            tx_flags;
 421        unsigned short  gso_size;
 422        /* Warning: this field is not always filled in (UFO)! */
 423        unsigned short  gso_segs;
 424        struct sk_buff  *frag_list;
 425        struct skb_shared_hwtstamps hwtstamps;
 426        unsigned int    gso_type;
 427        u32             tskey;
 428        __be32          ip6_frag_id;
 429
 430        /*
 431         * Warning : all fields before dataref are cleared in __alloc_skb()
 432         */
 433        atomic_t        dataref;
 434
 435        /* Intermediate layers must ensure that destructor_arg
 436         * remains valid until skb destructor */
 437        void *          destructor_arg;
 438
 439        /* must be last field, see pskb_expand_head() */
 440        skb_frag_t      frags[MAX_SKB_FRAGS];
 441};
 442
 443/* We divide dataref into two halves.  The higher 16 bits hold references
 444 * to the payload part of skb->data.  The lower 16 bits hold references to
 445 * the entire skb->data.  A clone of a headerless skb holds the length of
 446 * the header in skb->hdr_len.
 447 *
 448 * All users must obey the rule that the skb->data reference count must be
 449 * greater than or equal to the payload reference count.
 450 *
 451 * Holding a reference to the payload part means that the user does not
 452 * care about modifications to the header part of skb->data.
 453 */
 454#define SKB_DATAREF_SHIFT 16
 455#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
 456
 457
 458enum {
 459        SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
 460        SKB_FCLONE_ORIG,        /* orig skb (from fclone_cache) */
 461        SKB_FCLONE_CLONE,       /* companion fclone skb (from fclone_cache) */
 462};
 463
 464enum {
 465        SKB_GSO_TCPV4 = 1 << 0,
 466        SKB_GSO_UDP = 1 << 1,
 467
 468        /* This indicates the skb is from an untrusted source. */
 469        SKB_GSO_DODGY = 1 << 2,
 470
 471        /* This indicates the tcp segment has CWR set. */
 472        SKB_GSO_TCP_ECN = 1 << 3,
 473
 474        SKB_GSO_TCP_FIXEDID = 1 << 4,
 475
 476        SKB_GSO_TCPV6 = 1 << 5,
 477
 478        SKB_GSO_FCOE = 1 << 6,
 479
 480        SKB_GSO_GRE = 1 << 7,
 481
 482        SKB_GSO_GRE_CSUM = 1 << 8,
 483
 484        SKB_GSO_IPXIP4 = 1 << 9,
 485
 486        SKB_GSO_IPXIP6 = 1 << 10,
 487
 488        SKB_GSO_UDP_TUNNEL = 1 << 11,
 489
 490        SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,
 491
 492        SKB_GSO_PARTIAL = 1 << 13,
 493
 494        SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
 495
 496        SKB_GSO_SCTP = 1 << 15,
 497
 498        SKB_GSO_ESP = 1 << 16,
 499};
 500
 501#if BITS_PER_LONG > 32
 502#define NET_SKBUFF_DATA_USES_OFFSET 1
 503#endif
 504
 505#ifdef NET_SKBUFF_DATA_USES_OFFSET
 506typedef unsigned int sk_buff_data_t;
 507#else
 508typedef unsigned char *sk_buff_data_t;
 509#endif
 510
 511/** 
 512 *      struct sk_buff - socket buffer
 513 *      @next: Next buffer in list
 514 *      @prev: Previous buffer in list
 515 *      @tstamp: Time we arrived/left
 516 *      @rbnode: RB tree node, alternative to next/prev for netem/tcp
 517 *      @sk: Socket we are owned by
 518 *      @dev: Device we arrived on/are leaving by
 519 *      @cb: Control buffer. Free for use by every layer. Put private vars here
 520 *      @_skb_refdst: destination entry (with norefcount bit)
 521 *      @sp: the security path, used for xfrm
 522 *      @len: Length of actual data
 523 *      @data_len: Data length
 524 *      @mac_len: Length of link layer header
 525 *      @hdr_len: writable header length of cloned skb
 526 *      @csum: Checksum (must include start/offset pair)
 527 *      @csum_start: Offset from skb->head where checksumming should start
 528 *      @csum_offset: Offset from csum_start where checksum should be stored
 529 *      @priority: Packet queueing priority
 530 *      @ignore_df: allow local fragmentation
 531 *      @cloned: Head may be cloned (check refcnt to be sure)
 532 *      @ip_summed: Driver fed us an IP checksum
 533 *      @nohdr: Payload reference only, must not modify header
 534 *      @pkt_type: Packet class
 535 *      @fclone: skbuff clone status
 536 *      @ipvs_property: skbuff is owned by ipvs
 537 *      @tc_skip_classify: do not classify packet. set by IFB device
 538 *      @tc_at_ingress: used within tc_classify to distinguish in/egress
 539 *      @tc_redirected: packet was redirected by a tc action
 540 *      @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
 541 *      @peeked: this packet has been seen already, so stats have been
 542 *              done for it, don't do them again
 543 *      @nf_trace: netfilter packet trace flag
 544 *      @protocol: Packet protocol from driver
 545 *      @destructor: Destruct function
 546 *      @_nfct: Associated connection, if any (with nfctinfo bits)
 547 *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
 548 *      @skb_iif: ifindex of device we arrived on
 549 *      @tc_index: Traffic control index
 550 *      @hash: the packet hash
 551 *      @queue_mapping: Queue mapping for multiqueue devices
 552 *      @xmit_more: More SKBs are pending for this queue
 553 *      @ndisc_nodetype: router type (from link layer)
 554 *      @ooo_okay: allow the mapping of a socket to a queue to be changed
 555 *      @l4_hash: indicate hash is a canonical 4-tuple hash over transport
 556 *              ports.
 557 *      @sw_hash: indicates hash was computed in software stack
 558 *      @wifi_acked_valid: wifi_acked was set
 559 *      @wifi_acked: whether frame was acked on wifi or not
 560 *      @no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
 561 *      @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
 562 *      @dst_pending_confirm: need to confirm neighbour
 563  *     @napi_id: id of the NAPI struct this skb came from
 564 *      @secmark: security marking
 565 *      @mark: Generic packet mark
 566 *      @vlan_proto: vlan encapsulation protocol
 567 *      @vlan_tci: vlan tag control information
 568 *      @inner_protocol: Protocol (encapsulation)
 569 *      @inner_transport_header: Inner transport layer header (encapsulation)
 570 *      @inner_network_header: Network layer header (encapsulation)
 571 *      @inner_mac_header: Link layer header (encapsulation)
 572 *      @transport_header: Transport layer header
 573 *      @network_header: Network layer header
 574 *      @mac_header: Link layer header
 575 *      @tail: Tail pointer
 576 *      @end: End pointer
 577 *      @head: Head of buffer
 578 *      @data: Data head pointer
 579 *      @truesize: Buffer size
 580 *      @users: User count - see {datagram,tcp}.c
 581 */
 582
 583struct sk_buff {
 584        union {
 585                struct {
 586                        /* These two members must be first. */
 587                        struct sk_buff          *next;
 588                        struct sk_buff          *prev;
 589
 590                        union {
 591                                ktime_t         tstamp;
 592                                u64             skb_mstamp;
 593                        };
 594                };
 595                struct rb_node  rbnode; /* used in netem & tcp stack */
 596        };
 597        struct sock             *sk;
 598
 599        union {
 600                struct net_device       *dev;
 601                /* Some protocols might use this space to store information,
 602                 * while device pointer would be NULL.
 603                 * UDP receive path is one user.
 604                 */
 605                unsigned long           dev_scratch;
 606        };
 607        /*
 608         * This is the control buffer. It is free to use for every
 609         * layer. Please put your private variables there. If you
 610         * want to keep them across layers you have to do a skb_clone()
 611         * first. This is owned by whoever has the skb queued ATM.
 612         */
 613        char                    cb[48] __aligned(8);
 614
 615        unsigned long           _skb_refdst;
 616        void                    (*destructor)(struct sk_buff *skb);
 617#ifdef CONFIG_XFRM
 618        struct  sec_path        *sp;
 619#endif
 620#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 621        unsigned long            _nfct;
 622#endif
 623#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 624        struct nf_bridge_info   *nf_bridge;
 625#endif
 626        unsigned int            len,
 627                                data_len;
 628        __u16                   mac_len,
 629                                hdr_len;
 630
 631        /* Following fields are _not_ copied in __copy_skb_header()
 632         * Note that queue_mapping is here mostly to fill a hole.
 633         */
 634        kmemcheck_bitfield_begin(flags1);
 635        __u16                   queue_mapping;
 636
 637/* if you move cloned around you also must adapt those constants */
 638#ifdef __BIG_ENDIAN_BITFIELD
 639#define CLONED_MASK     (1 << 7)
 640#else
 641#define CLONED_MASK     1
 642#endif
 643#define CLONED_OFFSET()         offsetof(struct sk_buff, __cloned_offset)
 644
 645        __u8                    __cloned_offset[0];
 646        __u8                    cloned:1,
 647                                nohdr:1,
 648                                fclone:2,
 649                                peeked:1,
 650                                head_frag:1,
 651                                xmit_more:1,
 652                                __unused:1; /* one bit hole */
 653        kmemcheck_bitfield_end(flags1);
 654
 655        /* fields enclosed in headers_start/headers_end are copied
 656         * using a single memcpy() in __copy_skb_header()
 657         */
 658        /* private: */
 659        __u32                   headers_start[0];
 660        /* public: */
 661
 662/* if you move pkt_type around you also must adapt those constants */
 663#ifdef __BIG_ENDIAN_BITFIELD
 664#define PKT_TYPE_MAX    (7 << 5)
 665#else
 666#define PKT_TYPE_MAX    7
 667#endif
 668#define PKT_TYPE_OFFSET()       offsetof(struct sk_buff, __pkt_type_offset)
 669
 670        __u8                    __pkt_type_offset[0];
 671        __u8                    pkt_type:3;
 672        __u8                    pfmemalloc:1;
 673        __u8                    ignore_df:1;
 674
 675        __u8                    nf_trace:1;
 676        __u8                    ip_summed:2;
 677        __u8                    ooo_okay:1;
 678        __u8                    l4_hash:1;
 679        __u8                    sw_hash:1;
 680        __u8                    wifi_acked_valid:1;
 681        __u8                    wifi_acked:1;
 682
 683        __u8                    no_fcs:1;
 684        /* Indicates the inner headers are valid in the skbuff. */
 685        __u8                    encapsulation:1;
 686        __u8                    encap_hdr_csum:1;
 687        __u8                    csum_valid:1;
 688        __u8                    csum_complete_sw:1;
 689        __u8                    csum_level:2;
 690        __u8                    csum_not_inet:1;
 691
 692        __u8                    dst_pending_confirm:1;
 693#ifdef CONFIG_IPV6_NDISC_NODETYPE
 694        __u8                    ndisc_nodetype:2;
 695#endif
 696        __u8                    ipvs_property:1;
 697        __u8                    inner_protocol_type:1;
 698        __u8                    remcsum_offload:1;
 699#ifdef CONFIG_NET_SWITCHDEV
 700        __u8                    offload_fwd_mark:1;
 701#endif
 702#ifdef CONFIG_NET_CLS_ACT
 703        __u8                    tc_skip_classify:1;
 704        __u8                    tc_at_ingress:1;
 705        __u8                    tc_redirected:1;
 706        __u8                    tc_from_ingress:1;
 707#endif
 708
 709#ifdef CONFIG_NET_SCHED
 710        __u16                   tc_index;       /* traffic control index */
 711#endif
 712
 713        union {
 714                __wsum          csum;
 715                struct {
 716                        __u16   csum_start;
 717                        __u16   csum_offset;
 718                };
 719        };
 720        __u32                   priority;
 721        int                     skb_iif;
 722        __u32                   hash;
 723        __be16                  vlan_proto;
 724        __u16                   vlan_tci;
 725#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
 726        union {
 727                unsigned int    napi_id;
 728                unsigned int    sender_cpu;
 729        };
 730#endif
 731#ifdef CONFIG_NETWORK_SECMARK
 732        __u32           secmark;
 733#endif
 734
 735        union {
 736                __u32           mark;
 737                __u32           reserved_tailroom;
 738        };
 739
 740        union {
 741                __be16          inner_protocol;
 742                __u8            inner_ipproto;
 743        };
 744
 745        __u16                   inner_transport_header;
 746        __u16                   inner_network_header;
 747        __u16                   inner_mac_header;
 748
 749        __be16                  protocol;
 750        __u16                   transport_header;
 751        __u16                   network_header;
 752        __u16                   mac_header;
 753
 754        /* private: */
 755        __u32                   headers_end[0];
 756        /* public: */
 757
 758        /* These elements must be at the end, see alloc_skb() for details.  */
 759        sk_buff_data_t          tail;
 760        sk_buff_data_t          end;
 761        unsigned char           *head,
 762                                *data;
 763        unsigned int            truesize;
 764        refcount_t              users;
 765};
 766
 767#ifdef __KERNEL__
 768/*
 769 *      Handling routines are only of interest to the kernel
 770 */
 771#include <linux/slab.h>
 772
 773
 774#define SKB_ALLOC_FCLONE        0x01
 775#define SKB_ALLOC_RX            0x02
 776#define SKB_ALLOC_NAPI          0x04
 777
 778/* Returns true if the skb was allocated from PFMEMALLOC reserves */
 779static inline bool skb_pfmemalloc(const struct sk_buff *skb)
 780{
 781        return unlikely(skb->pfmemalloc);
 782}
 783
 784/*
 785 * skb might have a dst pointer attached, refcounted or not.
 786 * _skb_refdst low order bit is set if refcount was _not_ taken
 787 */
 788#define SKB_DST_NOREF   1UL
 789#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
 790
 791#define SKB_NFCT_PTRMASK        ~(7UL)
 792/**
 793 * skb_dst - returns skb dst_entry
 794 * @skb: buffer
 795 *
 796 * Returns skb dst_entry, regardless of reference taken or not.
 797 */
 798static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
 799{
 800        /* If refdst was not refcounted, check we still are in a 
 801         * rcu_read_lock section
 802         */
 803        WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
 804                !rcu_read_lock_held() &&
 805                !rcu_read_lock_bh_held());
 806        return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
 807}
 808
 809/**
 810 * skb_dst_set - sets skb dst
 811 * @skb: buffer
 812 * @dst: dst entry
 813 *
 814 * Sets skb dst, assuming a reference was taken on dst and should
 815 * be released by skb_dst_drop()
 816 */
 817static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
 818{
 819        skb->_skb_refdst = (unsigned long)dst;
 820}
 821
 822/**
 823 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 824 * @skb: buffer
 825 * @dst: dst entry
 826 *
 827 * Sets skb dst, assuming a reference was not taken on dst.
 828 * If dst entry is cached, we do not take reference and dst_release
 829 * will be avoided by refdst_drop. If dst entry is not cached, we take
 830 * reference, so that last dst_release can destroy the dst immediately.
 831 */
 832static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
 833{
 834        WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
 835        skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
 836}
 837
 838/**
 839 * skb_dst_is_noref - Test if skb dst isn't refcounted
 840 * @skb: buffer
 841 */
 842static inline bool skb_dst_is_noref(const struct sk_buff *skb)
 843{
 844        return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
 845}
 846
 847static inline struct rtable *skb_rtable(const struct sk_buff *skb)
 848{
 849        return (struct rtable *)skb_dst(skb);
 850}
 851
 852/* For mangling skb->pkt_type from user space side from applications
 853 * such as nft, tc, etc, we only allow a conservative subset of
 854 * possible pkt_types to be set.
 855*/
 856static inline bool skb_pkt_type_ok(u32 ptype)
 857{
 858        return ptype <= PACKET_OTHERHOST;
 859}
 860
 861static inline unsigned int skb_napi_id(const struct sk_buff *skb)
 862{
 863#ifdef CONFIG_NET_RX_BUSY_POLL
 864        return skb->napi_id;
 865#else
 866        return 0;
 867#endif
 868}
 869
 870/* decrement the reference count and return true if we can free the skb */
 871static inline bool skb_unref(struct sk_buff *skb)
 872{
 873        if (unlikely(!skb))
 874                return false;
 875        if (likely(refcount_read(&skb->users) == 1))
 876                smp_rmb();
 877        else if (likely(!refcount_dec_and_test(&skb->users)))
 878                return false;
 879
 880        return true;
 881}
 882
 883void skb_release_head_state(struct sk_buff *skb);
 884void kfree_skb(struct sk_buff *skb);
 885void kfree_skb_list(struct sk_buff *segs);
 886void skb_tx_error(struct sk_buff *skb);
 887void consume_skb(struct sk_buff *skb);
 888void consume_stateless_skb(struct sk_buff *skb);
 889void  __kfree_skb(struct sk_buff *skb);
 890extern struct kmem_cache *skbuff_head_cache;
 891
 892void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
 893bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
 894                      bool *fragstolen, int *delta_truesize);
 895
 896struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
 897                            int node);
 898struct sk_buff *__build_skb(void *data, unsigned int frag_size);
 899struct sk_buff *build_skb(void *data, unsigned int frag_size);
 900static inline struct sk_buff *alloc_skb(unsigned int size,
 901                                        gfp_t priority)
 902{
 903        return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
 904}
 905
 906struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
 907                                     unsigned long data_len,
 908                                     int max_page_order,
 909                                     int *errcode,
 910                                     gfp_t gfp_mask);
 911
 912/* Layout of fast clones : [skb1][skb2][fclone_ref] */
 913struct sk_buff_fclones {
 914        struct sk_buff  skb1;
 915
 916        struct sk_buff  skb2;
 917
 918        refcount_t      fclone_ref;
 919};
 920
 921/**
 922 *      skb_fclone_busy - check if fclone is busy
 923 *      @sk: socket
 924 *      @skb: buffer
 925 *
 926 * Returns true if skb is a fast clone, and its clone is not freed.
 927 * Some drivers call skb_orphan() in their ndo_start_xmit(),
 928 * so we also check that this didnt happen.
 929 */
 930static inline bool skb_fclone_busy(const struct sock *sk,
 931                                   const struct sk_buff *skb)
 932{
 933        const struct sk_buff_fclones *fclones;
 934
 935        fclones = container_of(skb, struct sk_buff_fclones, skb1);
 936
 937        return skb->fclone == SKB_FCLONE_ORIG &&
 938               refcount_read(&fclones->fclone_ref) > 1 &&
 939               fclones->skb2.sk == sk;
 940}
 941
 942static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
 943                                               gfp_t priority)
 944{
 945        return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
 946}
 947
 948struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
 949static inline struct sk_buff *alloc_skb_head(gfp_t priority)
 950{
 951        return __alloc_skb_head(priority, -1);
 952}
 953
 954struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
 955int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
 956struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
 957struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
 958struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
 959                                   gfp_t gfp_mask, bool fclone);
 960static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
 961                                          gfp_t gfp_mask)
 962{
 963        return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
 964}
 965
 966int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
 967struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
 968                                     unsigned int headroom);
 969struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
 970                                int newtailroom, gfp_t priority);
 971int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
 972                                     int offset, int len);
 973int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
 974                              int offset, int len);
 975int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
 976int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
 977
 978/**
 979 *      skb_pad                 -       zero pad the tail of an skb
 980 *      @skb: buffer to pad
 981 *      @pad: space to pad
 982 *
 983 *      Ensure that a buffer is followed by a padding area that is zero
 984 *      filled. Used by network drivers which may DMA or transfer data
 985 *      beyond the buffer end onto the wire.
 986 *
 987 *      May return error in out of memory cases. The skb is freed on error.
 988 */
 989static inline int skb_pad(struct sk_buff *skb, int pad)
 990{
 991        return __skb_pad(skb, pad, true);
 992}
 993#define dev_kfree_skb(a)        consume_skb(a)
 994
 995int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
 996                            int getfrag(void *from, char *to, int offset,
 997                                        int len, int odd, struct sk_buff *skb),
 998                            void *from, int length);
 999
1000int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1001                         int offset, size_t size);
1002
1003struct skb_seq_state {
1004        __u32           lower_offset;
1005        __u32           upper_offset;
1006        __u32           frag_idx;
1007        __u32           stepped_offset;
1008        struct sk_buff  *root_skb;
1009        struct sk_buff  *cur_skb;
1010        __u8            *frag_data;
1011};
1012
1013void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1014                          unsigned int to, struct skb_seq_state *st);
1015unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1016                          struct skb_seq_state *st);
1017void skb_abort_seq_read(struct skb_seq_state *st);
1018
1019unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1020                           unsigned int to, struct ts_config *config);
1021
1022/*
1023 * Packet hash types specify the type of hash in skb_set_hash.
1024 *
1025 * Hash types refer to the protocol layer addresses which are used to
1026 * construct a packet's hash. The hashes are used to differentiate or identify
1027 * flows of the protocol layer for the hash type. Hash types are either
1028 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1029 *
1030 * Properties of hashes:
1031 *
1032 * 1) Two packets in different flows have different hash values
1033 * 2) Two packets in the same flow should have the same hash value
1034 *
1035 * A hash at a higher layer is considered to be more specific. A driver should
1036 * set the most specific hash possible.
1037 *
1038 * A driver cannot indicate a more specific hash than the layer at which a hash
1039 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1040 *
1041 * A driver may indicate a hash level which is less specific than the
1042 * actual layer the hash was computed on. For instance, a hash computed
1043 * at L4 may be considered an L3 hash. This should only be done if the
1044 * driver can't unambiguously determine that the HW computed the hash at
1045 * the higher layer. Note that the "should" in the second property above
1046 * permits this.
1047 */
1048enum pkt_hash_types {
1049        PKT_HASH_TYPE_NONE,     /* Undefined type */
1050        PKT_HASH_TYPE_L2,       /* Input: src_MAC, dest_MAC */
1051        PKT_HASH_TYPE_L3,       /* Input: src_IP, dst_IP */
1052        PKT_HASH_TYPE_L4,       /* Input: src_IP, dst_IP, src_port, dst_port */
1053};
1054
1055static inline void skb_clear_hash(struct sk_buff *skb)
1056{
1057        skb->hash = 0;
1058        skb->sw_hash = 0;
1059        skb->l4_hash = 0;
1060}
1061
1062static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1063{
1064        if (!skb->l4_hash)
1065                skb_clear_hash(skb);
1066}
1067
1068static inline void
1069__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1070{
1071        skb->l4_hash = is_l4;
1072        skb->sw_hash = is_sw;
1073        skb->hash = hash;
1074}
1075
1076static inline void
1077skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1078{
1079        /* Used by drivers to set hash from HW */
1080        __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1081}
1082
1083static inline void
1084__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1085{
1086        __skb_set_hash(skb, hash, true, is_l4);
1087}
1088
1089void __skb_get_hash(struct sk_buff *skb);
1090u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1091u32 skb_get_poff(const struct sk_buff *skb);
1092u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1093                   const struct flow_keys *keys, int hlen);
1094__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1095                            void *data, int hlen_proto);
1096
1097static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1098                                        int thoff, u8 ip_proto)
1099{
1100        return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1101}
1102
1103void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1104                             const struct flow_dissector_key *key,
1105                             unsigned int key_count);
1106
1107bool __skb_flow_dissect(const struct sk_buff *skb,
1108                        struct flow_dissector *flow_dissector,
1109                        void *target_container,
1110                        void *data, __be16 proto, int nhoff, int hlen,
1111                        unsigned int flags);
1112
1113static inline bool skb_flow_dissect(const struct sk_buff *skb,
1114                                    struct flow_dissector *flow_dissector,
1115                                    void *target_container, unsigned int flags)
1116{
1117        return __skb_flow_dissect(skb, flow_dissector, target_container,
1118                                  NULL, 0, 0, 0, flags);
1119}
1120
1121static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1122                                              struct flow_keys *flow,
1123                                              unsigned int flags)
1124{
1125        memset(flow, 0, sizeof(*flow));
1126        return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1127                                  NULL, 0, 0, 0, flags);
1128}
1129
1130static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1131                                                  void *data, __be16 proto,
1132                                                  int nhoff, int hlen,
1133                                                  unsigned int flags)
1134{
1135        memset(flow, 0, sizeof(*flow));
1136        return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1137                                  data, proto, nhoff, hlen, flags);
1138}
1139
1140static inline __u32 skb_get_hash(struct sk_buff *skb)
1141{
1142        if (!skb->l4_hash && !skb->sw_hash)
1143                __skb_get_hash(skb);
1144
1145        return skb->hash;
1146}
1147
1148__u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1149
1150static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1151{
1152        if (!skb->l4_hash && !skb->sw_hash) {
1153                struct flow_keys keys;
1154                __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1155
1156                __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1157        }
1158
1159        return skb->hash;
1160}
1161
1162__u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1163
1164static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1165{
1166        if (!skb->l4_hash && !skb->sw_hash) {
1167                struct flow_keys keys;
1168                __u32 hash = __get_hash_from_flowi4(fl4, &keys);
1169
1170                __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1171        }
1172
1173        return skb->hash;
1174}
1175
1176__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1177
1178static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1179{
1180        return skb->hash;
1181}
1182
1183static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1184{
1185        to->hash = from->hash;
1186        to->sw_hash = from->sw_hash;
1187        to->l4_hash = from->l4_hash;
1188};
1189
1190#ifdef NET_SKBUFF_DATA_USES_OFFSET
1191static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1192{
1193        return skb->head + skb->end;
1194}
1195
1196static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1197{
1198        return skb->end;
1199}
1200#else
1201static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1202{
1203        return skb->end;
1204}
1205
1206static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1207{
1208        return skb->end - skb->head;
1209}
1210#endif
1211
1212/* Internal */
1213#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1214
1215static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1216{
1217        return &skb_shinfo(skb)->hwtstamps;
1218}
1219
1220/**
1221 *      skb_queue_empty - check if a queue is empty
1222 *      @list: queue head
1223 *
1224 *      Returns true if the queue is empty, false otherwise.
1225 */
1226static inline int skb_queue_empty(const struct sk_buff_head *list)
1227{
1228        return list->next == (const struct sk_buff *) list;
1229}
1230
1231/**
1232 *      skb_queue_is_last - check if skb is the last entry in the queue
1233 *      @list: queue head
1234 *      @skb: buffer
1235 *
1236 *      Returns true if @skb is the last buffer on the list.
1237 */
1238static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1239                                     const struct sk_buff *skb)
1240{
1241        return skb->next == (const struct sk_buff *) list;
1242}
1243
1244/**
1245 *      skb_queue_is_first - check if skb is the first entry in the queue
1246 *      @list: queue head
1247 *      @skb: buffer
1248 *
1249 *      Returns true if @skb is the first buffer on the list.
1250 */
1251static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1252                                      const struct sk_buff *skb)
1253{
1254        return skb->prev == (const struct sk_buff *) list;
1255}
1256
1257/**
1258 *      skb_queue_next - return the next packet in the queue
1259 *      @list: queue head
1260 *      @skb: current buffer
1261 *
1262 *      Return the next packet in @list after @skb.  It is only valid to
1263 *      call this if skb_queue_is_last() evaluates to false.
1264 */
1265static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1266                                             const struct sk_buff *skb)
1267{
1268        /* This BUG_ON may seem severe, but if we just return then we
1269         * are going to dereference garbage.
1270         */
1271        BUG_ON(skb_queue_is_last(list, skb));
1272        return skb->next;
1273}
1274
1275/**
1276 *      skb_queue_prev - return the prev packet in the queue
1277 *      @list: queue head
1278 *      @skb: current buffer
1279 *
1280 *      Return the prev packet in @list before @skb.  It is only valid to
1281 *      call this if skb_queue_is_first() evaluates to false.
1282 */
1283static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1284                                             const struct sk_buff *skb)
1285{
1286        /* This BUG_ON may seem severe, but if we just return then we
1287         * are going to dereference garbage.
1288         */
1289        BUG_ON(skb_queue_is_first(list, skb));
1290        return skb->prev;
1291}
1292
1293/**
1294 *      skb_get - reference buffer
1295 *      @skb: buffer to reference
1296 *
1297 *      Makes another reference to a socket buffer and returns a pointer
1298 *      to the buffer.
1299 */
1300static inline struct sk_buff *skb_get(struct sk_buff *skb)
1301{
1302        refcount_inc(&skb->users);
1303        return skb;
1304}
1305
1306/*
1307 * If users == 1, we are the only owner and are can avoid redundant
1308 * atomic change.
1309 */
1310
1311/**
1312 *      skb_cloned - is the buffer a clone
1313 *      @skb: buffer to check
1314 *
1315 *      Returns true if the buffer was generated with skb_clone() and is
1316 *      one of multiple shared copies of the buffer. Cloned buffers are
1317 *      shared data so must not be written to under normal circumstances.
1318 */
1319static inline int skb_cloned(const struct sk_buff *skb)
1320{
1321        return skb->cloned &&
1322               (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1323}
1324
1325static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1326{
1327        might_sleep_if(gfpflags_allow_blocking(pri));
1328
1329        if (skb_cloned(skb))
1330                return pskb_expand_head(skb, 0, 0, pri);
1331
1332        return 0;
1333}
1334
1335/**
1336 *      skb_header_cloned - is the header a clone
1337 *      @skb: buffer to check
1338 *
1339 *      Returns true if modifying the header part of the buffer requires
1340 *      the data to be copied.
1341 */
1342static inline int skb_header_cloned(const struct sk_buff *skb)
1343{
1344        int dataref;
1345
1346        if (!skb->cloned)
1347                return 0;
1348
1349        dataref = atomic_read(&skb_shinfo(skb)->dataref);
1350        dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1351        return dataref != 1;
1352}
1353
1354static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1355{
1356        might_sleep_if(gfpflags_allow_blocking(pri));
1357
1358        if (skb_header_cloned(skb))
1359                return pskb_expand_head(skb, 0, 0, pri);
1360
1361        return 0;
1362}
1363
1364/**
1365 *      skb_header_release - release reference to header
1366 *      @skb: buffer to operate on
1367 *
1368 *      Drop a reference to the header part of the buffer.  This is done
1369 *      by acquiring a payload reference.  You must not read from the header
1370 *      part of skb->data after this.
1371 *      Note : Check if you can use __skb_header_release() instead.
1372 */
1373static inline void skb_header_release(struct sk_buff *skb)
1374{
1375        BUG_ON(skb->nohdr);
1376        skb->nohdr = 1;
1377        atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1378}
1379
1380/**
1381 *      __skb_header_release - release reference to header
1382 *      @skb: buffer to operate on
1383 *
1384 *      Variant of skb_header_release() assuming skb is private to caller.
1385 *      We can avoid one atomic operation.
1386 */
1387static inline void __skb_header_release(struct sk_buff *skb)
1388{
1389        skb->nohdr = 1;
1390        atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1391}
1392
1393
1394/**
1395 *      skb_shared - is the buffer shared
1396 *      @skb: buffer to check
1397 *
1398 *      Returns true if more than one person has a reference to this
1399 *      buffer.
1400 */
1401static inline int skb_shared(const struct sk_buff *skb)
1402{
1403        return refcount_read(&skb->users) != 1;
1404}
1405
1406/**
1407 *      skb_share_check - check if buffer is shared and if so clone it
1408 *      @skb: buffer to check
1409 *      @pri: priority for memory allocation
1410 *
1411 *      If the buffer is shared the buffer is cloned and the old copy
1412 *      drops a reference. A new clone with a single reference is returned.
1413 *      If the buffer is not shared the original buffer is returned. When
1414 *      being called from interrupt status or with spinlocks held pri must
1415 *      be GFP_ATOMIC.
1416 *
1417 *      NULL is returned on a memory allocation failure.
1418 */
1419static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1420{
1421        might_sleep_if(gfpflags_allow_blocking(pri));
1422        if (skb_shared(skb)) {
1423                struct sk_buff *nskb = skb_clone(skb, pri);
1424
1425                if (likely(nskb))
1426                        consume_skb(skb);
1427                else
1428                        kfree_skb(skb);
1429                skb = nskb;
1430        }
1431        return skb;
1432}
1433
1434/*
1435 *      Copy shared buffers into a new sk_buff. We effectively do COW on
1436 *      packets to handle cases where we have a local reader and forward
1437 *      and a couple of other messy ones. The normal one is tcpdumping
1438 *      a packet thats being forwarded.
1439 */
1440
1441/**
1442 *      skb_unshare - make a copy of a shared buffer
1443 *      @skb: buffer to check
1444 *      @pri: priority for memory allocation
1445 *
1446 *      If the socket buffer is a clone then this function creates a new
1447 *      copy of the data, drops a reference count on the old copy and returns
1448 *      the new copy with the reference count at 1. If the buffer is not a clone
1449 *      the original buffer is returned. When called with a spinlock held or
1450 *      from interrupt state @pri must be %GFP_ATOMIC
1451 *
1452 *      %NULL is returned on a memory allocation failure.
1453 */
1454static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1455                                          gfp_t pri)
1456{
1457        might_sleep_if(gfpflags_allow_blocking(pri));
1458        if (skb_cloned(skb)) {
1459                struct sk_buff *nskb = skb_copy(skb, pri);
1460
1461                /* Free our shared copy */
1462                if (likely(nskb))
1463                        consume_skb(skb);
1464                else
1465                        kfree_skb(skb);
1466                skb = nskb;
1467        }
1468        return skb;
1469}
1470
1471/**
1472 *      skb_peek - peek at the head of an &sk_buff_head
1473 *      @list_: list to peek at
1474 *
1475 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1476 *      be careful with this one. A peek leaves the buffer on the
1477 *      list and someone else may run off with it. You must hold
1478 *      the appropriate locks or have a private queue to do this.
1479 *
1480 *      Returns %NULL for an empty list or a pointer to the head element.
1481 *      The reference count is not incremented and the reference is therefore
1482 *      volatile. Use with caution.
1483 */
1484static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1485{
1486        struct sk_buff *skb = list_->next;
1487
1488        if (skb == (struct sk_buff *)list_)
1489                skb = NULL;
1490        return skb;
1491}
1492
1493/**
1494 *      skb_peek_next - peek skb following the given one from a queue
1495 *      @skb: skb to start from
1496 *      @list_: list to peek at
1497 *
1498 *      Returns %NULL when the end of the list is met or a pointer to the
1499 *      next element. The reference count is not incremented and the
1500 *      reference is therefore volatile. Use with caution.
1501 */
1502static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1503                const struct sk_buff_head *list_)
1504{
1505        struct sk_buff *next = skb->next;
1506
1507        if (next == (struct sk_buff *)list_)
1508                next = NULL;
1509        return next;
1510}
1511
1512/**
1513 *      skb_peek_tail - peek at the tail of an &sk_buff_head
1514 *      @list_: list to peek at
1515 *
1516 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1517 *      be careful with this one. A peek leaves the buffer on the
1518 *      list and someone else may run off with it. You must hold
1519 *      the appropriate locks or have a private queue to do this.
1520 *
1521 *      Returns %NULL for an empty list or a pointer to the tail element.
1522 *      The reference count is not incremented and the reference is therefore
1523 *      volatile. Use with caution.
1524 */
1525static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1526{
1527        struct sk_buff *skb = list_->prev;
1528
1529        if (skb == (struct sk_buff *)list_)
1530                skb = NULL;
1531        return skb;
1532
1533}
1534
1535/**
1536 *      skb_queue_len   - get queue length
1537 *      @list_: list to measure
1538 *
1539 *      Return the length of an &sk_buff queue.
1540 */
1541static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1542{
1543        return list_->qlen;
1544}
1545
1546/**
1547 *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1548 *      @list: queue to initialize
1549 *
1550 *      This initializes only the list and queue length aspects of
1551 *      an sk_buff_head object.  This allows to initialize the list
1552 *      aspects of an sk_buff_head without reinitializing things like
1553 *      the spinlock.  It can also be used for on-stack sk_buff_head
1554 *      objects where the spinlock is known to not be used.
1555 */
1556static inline void __skb_queue_head_init(struct sk_buff_head *list)
1557{
1558        list->prev = list->next = (struct sk_buff *)list;
1559        list->qlen = 0;
1560}
1561
1562/*
1563 * This function creates a split out lock class for each invocation;
1564 * this is needed for now since a whole lot of users of the skb-queue
1565 * infrastructure in drivers have different locking usage (in hardirq)
1566 * than the networking core (in softirq only). In the long run either the
1567 * network layer or drivers should need annotation to consolidate the
1568 * main types of usage into 3 classes.
1569 */
1570static inline void skb_queue_head_init(struct sk_buff_head *list)
1571{
1572        spin_lock_init(&list->lock);
1573        __skb_queue_head_init(list);
1574}
1575
1576static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1577                struct lock_class_key *class)
1578{
1579        skb_queue_head_init(list);
1580        lockdep_set_class(&list->lock, class);
1581}
1582
1583/*
1584 *      Insert an sk_buff on a list.
1585 *
1586 *      The "__skb_xxxx()" functions are the non-atomic ones that
1587 *      can only be called with interrupts disabled.
1588 */
1589void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1590                struct sk_buff_head *list);
1591static inline void __skb_insert(struct sk_buff *newsk,
1592                                struct sk_buff *prev, struct sk_buff *next,
1593                                struct sk_buff_head *list)
1594{
1595        newsk->next = next;
1596        newsk->prev = prev;
1597        next->prev  = prev->next = newsk;
1598        list->qlen++;
1599}
1600
1601static inline void __skb_queue_splice(const struct sk_buff_head *list,
1602                                      struct sk_buff *prev,
1603                                      struct sk_buff *next)
1604{
1605        struct sk_buff *first = list->next;
1606        struct sk_buff *last = list->prev;
1607
1608        first->prev = prev;
1609        prev->next = first;
1610
1611        last->next = next;
1612        next->prev = last;
1613}
1614
1615/**
1616 *      skb_queue_splice - join two skb lists, this is designed for stacks
1617 *      @list: the new list to add
1618 *      @head: the place to add it in the first list
1619 */
1620static inline void skb_queue_splice(const struct sk_buff_head *list,
1621                                    struct sk_buff_head *head)
1622{
1623        if (!skb_queue_empty(list)) {
1624                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1625                head->qlen += list->qlen;
1626        }
1627}
1628
1629/**
1630 *      skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1631 *      @list: the new list to add
1632 *      @head: the place to add it in the first list
1633 *
1634 *      The list at @list is reinitialised
1635 */
1636static inline void skb_queue_splice_init(struct sk_buff_head *list,
1637                                         struct sk_buff_head *head)
1638{
1639        if (!skb_queue_empty(list)) {
1640                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1641                head->qlen += list->qlen;
1642                __skb_queue_head_init(list);
1643        }
1644}
1645
1646/**
1647 *      skb_queue_splice_tail - join two skb lists, each list being a queue
1648 *      @list: the new list to add
1649 *      @head: the place to add it in the first list
1650 */
1651static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1652                                         struct sk_buff_head *head)
1653{
1654        if (!skb_queue_empty(list)) {
1655                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1656                head->qlen += list->qlen;
1657        }
1658}
1659
1660/**
1661 *      skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1662 *      @list: the new list to add
1663 *      @head: the place to add it in the first list
1664 *
1665 *      Each of the lists is a queue.
1666 *      The list at @list is reinitialised
1667 */
1668static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1669                                              struct sk_buff_head *head)
1670{
1671        if (!skb_queue_empty(list)) {
1672                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1673                head->qlen += list->qlen;
1674                __skb_queue_head_init(list);
1675        }
1676}
1677
1678/**
1679 *      __skb_queue_after - queue a buffer at the list head
1680 *      @list: list to use
1681 *      @prev: place after this buffer
1682 *      @newsk: buffer to queue
1683 *
1684 *      Queue a buffer int the middle of a list. This function takes no locks
1685 *      and you must therefore hold required locks before calling it.
1686 *
1687 *      A buffer cannot be placed on two lists at the same time.
1688 */
1689static inline void __skb_queue_after(struct sk_buff_head *list,
1690                                     struct sk_buff *prev,
1691                                     struct sk_buff *newsk)
1692{
1693        __skb_insert(newsk, prev, prev->next, list);
1694}
1695
1696void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1697                struct sk_buff_head *list);
1698
1699static inline void __skb_queue_before(struct sk_buff_head *list,
1700                                      struct sk_buff *next,
1701                                      struct sk_buff *newsk)
1702{
1703        __skb_insert(newsk, next->prev, next, list);
1704}
1705
1706/**
1707 *      __skb_queue_head - queue a buffer at the list head
1708 *      @list: list to use
1709 *      @newsk: buffer to queue
1710 *
1711 *      Queue a buffer at the start of a list. This function takes no locks
1712 *      and you must therefore hold required locks before calling it.
1713 *
1714 *      A buffer cannot be placed on two lists at the same time.
1715 */
1716void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1717static inline void __skb_queue_head(struct sk_buff_head *list,
1718                                    struct sk_buff *newsk)
1719{
1720        __skb_queue_after(list, (struct sk_buff *)list, newsk);
1721}
1722
1723/**
1724 *      __skb_queue_tail - queue a buffer at the list tail
1725 *      @list: list to use
1726 *      @newsk: buffer to queue
1727 *
1728 *      Queue a buffer at the end of a list. This function takes no locks
1729 *      and you must therefore hold required locks before calling it.
1730 *
1731 *      A buffer cannot be placed on two lists at the same time.
1732 */
1733void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1734static inline void __skb_queue_tail(struct sk_buff_head *list,
1735                                   struct sk_buff *newsk)
1736{
1737        __skb_queue_before(list, (struct sk_buff *)list, newsk);
1738}
1739
1740/*
1741 * remove sk_buff from list. _Must_ be called atomically, and with
1742 * the list known..
1743 */
1744void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1745static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1746{
1747        struct sk_buff *next, *prev;
1748
1749        list->qlen--;
1750        next       = skb->next;
1751        prev       = skb->prev;
1752        skb->next  = skb->prev = NULL;
1753        next->prev = prev;
1754        prev->next = next;
1755}
1756
1757/**
1758 *      __skb_dequeue - remove from the head of the queue
1759 *      @list: list to dequeue from
1760 *
1761 *      Remove the head of the list. This function does not take any locks
1762 *      so must be used with appropriate locks held only. The head item is
1763 *      returned or %NULL if the list is empty.
1764 */
1765struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1766static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1767{
1768        struct sk_buff *skb = skb_peek(list);
1769        if (skb)
1770                __skb_unlink(skb, list);
1771        return skb;
1772}
1773
1774/**
1775 *      __skb_dequeue_tail - remove from the tail of the queue
1776 *      @list: list to dequeue from
1777 *
1778 *      Remove the tail of the list. This function does not take any locks
1779 *      so must be used with appropriate locks held only. The tail item is
1780 *      returned or %NULL if the list is empty.
1781 */
1782struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1783static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1784{
1785        struct sk_buff *skb = skb_peek_tail(list);
1786        if (skb)
1787                __skb_unlink(skb, list);
1788        return skb;
1789}
1790
1791
1792static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1793{
1794        return skb->data_len;
1795}
1796
1797static inline unsigned int skb_headlen(const struct sk_buff *skb)
1798{
1799        return skb->len - skb->data_len;
1800}
1801
1802static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1803{
1804        unsigned int i, len = 0;
1805
1806        for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1807                len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1808        return len + skb_headlen(skb);
1809}
1810
1811/**
1812 * __skb_fill_page_desc - initialise a paged fragment in an skb
1813 * @skb: buffer containing fragment to be initialised
1814 * @i: paged fragment index to initialise
1815 * @page: the page to use for this fragment
1816 * @off: the offset to the data with @page
1817 * @size: the length of the data
1818 *
1819 * Initialises the @i'th fragment of @skb to point to &size bytes at
1820 * offset @off within @page.
1821 *
1822 * Does not take any additional reference on the fragment.
1823 */
1824static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1825                                        struct page *page, int off, int size)
1826{
1827        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1828
1829        /*
1830         * Propagate page pfmemalloc to the skb if we can. The problem is
1831         * that not all callers have unique ownership of the page but rely
1832         * on page_is_pfmemalloc doing the right thing(tm).
1833         */
1834        frag->page.p              = page;
1835        frag->page_offset         = off;
1836        skb_frag_size_set(frag, size);
1837
1838        page = compound_head(page);
1839        if (page_is_pfmemalloc(page))
1840                skb->pfmemalloc = true;
1841}
1842
1843/**
1844 * skb_fill_page_desc - initialise a paged fragment in an skb
1845 * @skb: buffer containing fragment to be initialised
1846 * @i: paged fragment index to initialise
1847 * @page: the page to use for this fragment
1848 * @off: the offset to the data with @page
1849 * @size: the length of the data
1850 *
1851 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1852 * @skb to point to @size bytes at offset @off within @page. In
1853 * addition updates @skb such that @i is the last fragment.
1854 *
1855 * Does not take any additional reference on the fragment.
1856 */
1857static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1858                                      struct page *page, int off, int size)
1859{
1860        __skb_fill_page_desc(skb, i, page, off, size);
1861        skb_shinfo(skb)->nr_frags = i + 1;
1862}
1863
1864void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1865                     int size, unsigned int truesize);
1866
1867void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1868                          unsigned int truesize);
1869
1870#define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
1871#define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_has_frag_list(skb))
1872#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1873
1874#ifdef NET_SKBUFF_DATA_USES_OFFSET
1875static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1876{
1877        return skb->head + skb->tail;
1878}
1879
1880static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1881{
1882        skb->tail = skb->data - skb->head;
1883}
1884
1885static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1886{
1887        skb_reset_tail_pointer(skb);
1888        skb->tail += offset;
1889}
1890
1891#else /* NET_SKBUFF_DATA_USES_OFFSET */
1892static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1893{
1894        return skb->tail;
1895}
1896
1897static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1898{
1899        skb->tail = skb->data;
1900}
1901
1902static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1903{
1904        skb->tail = skb->data + offset;
1905}
1906
1907#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1908
1909/*
1910 *      Add data to an sk_buff
1911 */
1912void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1913void *skb_put(struct sk_buff *skb, unsigned int len);
1914static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
1915{
1916        void *tmp = skb_tail_pointer(skb);
1917        SKB_LINEAR_ASSERT(skb);
1918        skb->tail += len;
1919        skb->len  += len;
1920        return tmp;
1921}
1922
1923static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
1924{
1925        void *tmp = __skb_put(skb, len);
1926
1927        memset(tmp, 0, len);
1928        return tmp;
1929}
1930
1931static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
1932                                   unsigned int len)
1933{
1934        void *tmp = __skb_put(skb, len);
1935
1936        memcpy(tmp, data, len);
1937        return tmp;
1938}
1939
1940static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
1941{
1942        *(u8 *)__skb_put(skb, 1) = val;
1943}
1944
1945static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
1946{
1947        void *tmp = skb_put(skb, len);
1948
1949        memset(tmp, 0, len);
1950
1951        return tmp;
1952}
1953
1954static inline void *skb_put_data(struct sk_buff *skb, const void *data,
1955                                 unsigned int len)
1956{
1957        void *tmp = skb_put(skb, len);
1958
1959        memcpy(tmp, data, len);
1960
1961        return tmp;
1962}
1963
1964static inline void skb_put_u8(struct sk_buff *skb, u8 val)
1965{
1966        *(u8 *)skb_put(skb, 1) = val;
1967}
1968
1969void *skb_push(struct sk_buff *skb, unsigned int len);
1970static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
1971{
1972        skb->data -= len;
1973        skb->len  += len;
1974        return skb->data;
1975}
1976
1977void *skb_pull(struct sk_buff *skb, unsigned int len);
1978static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
1979{
1980        skb->len -= len;
1981        BUG_ON(skb->len < skb->data_len);
1982        return skb->data += len;
1983}
1984
1985static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1986{
1987        return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1988}
1989
1990void *__pskb_pull_tail(struct sk_buff *skb, int delta);
1991
1992static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
1993{
1994        if (len > skb_headlen(skb) &&
1995            !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1996                return NULL;
1997        skb->len -= len;
1998        return skb->data += len;
1999}
2000
2001static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2002{
2003        return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2004}
2005
2006static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2007{
2008        if (likely(len <= skb_headlen(skb)))
2009                return 1;
2010        if (unlikely(len > skb->len))
2011                return 0;
2012        return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2013}
2014
2015void skb_condense(struct sk_buff *skb);
2016
2017/**
2018 *      skb_headroom - bytes at buffer head
2019 *      @skb: buffer to check
2020 *
2021 *      Return the number of bytes of free space at the head of an &sk_buff.
2022 */
2023static inline unsigned int skb_headroom(const struct sk_buff *skb)
2024{
2025        return skb->data - skb->head;
2026}
2027
2028/**
2029 *      skb_tailroom - bytes at buffer end
2030 *      @skb: buffer to check
2031 *
2032 *      Return the number of bytes of free space at the tail of an sk_buff
2033 */
2034static inline int skb_tailroom(const struct sk_buff *skb)
2035{
2036        return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2037}
2038
2039/**
2040 *      skb_availroom - bytes at buffer end
2041 *      @skb: buffer to check
2042 *
2043 *      Return the number of bytes of free space at the tail of an sk_buff
2044 *      allocated by sk_stream_alloc()
2045 */
2046static inline int skb_availroom(const struct sk_buff *skb)
2047{
2048        if (skb_is_nonlinear(skb))
2049                return 0;
2050
2051        return skb->end - skb->tail - skb->reserved_tailroom;
2052}
2053
2054/**
2055 *      skb_reserve - adjust headroom
2056 *      @skb: buffer to alter
2057 *      @len: bytes to move
2058 *
2059 *      Increase the headroom of an empty &sk_buff by reducing the tail
2060 *      room. This is only allowed for an empty buffer.
2061 */
2062static inline void skb_reserve(struct sk_buff *skb, int len)
2063{
2064        skb->data += len;
2065        skb->tail += len;
2066}
2067
2068/**
2069 *      skb_tailroom_reserve - adjust reserved_tailroom
2070 *      @skb: buffer to alter
2071 *      @mtu: maximum amount of headlen permitted
2072 *      @needed_tailroom: minimum amount of reserved_tailroom
2073 *
2074 *      Set reserved_tailroom so that headlen can be as large as possible but
2075 *      not larger than mtu and tailroom cannot be smaller than
2076 *      needed_tailroom.
2077 *      The required headroom should already have been reserved before using
2078 *      this function.
2079 */
2080static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2081                                        unsigned int needed_tailroom)
2082{
2083        SKB_LINEAR_ASSERT(skb);
2084        if (mtu < skb_tailroom(skb) - needed_tailroom)
2085                /* use at most mtu */
2086                skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2087        else
2088                /* use up to all available space */
2089                skb->reserved_tailroom = needed_tailroom;
2090}
2091
2092#define ENCAP_TYPE_ETHER        0
2093#define ENCAP_TYPE_IPPROTO      1
2094
2095static inline void skb_set_inner_protocol(struct sk_buff *skb,
2096                                          __be16 protocol)
2097{
2098        skb->inner_protocol = protocol;
2099        skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2100}
2101
2102static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2103                                         __u8 ipproto)
2104{
2105        skb->inner_ipproto = ipproto;
2106        skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2107}
2108
2109static inline void skb_reset_inner_headers(struct sk_buff *skb)
2110{
2111        skb->inner_mac_header = skb->mac_header;
2112        skb->inner_network_header = skb->network_header;
2113        skb->inner_transport_header = skb->transport_header;
2114}
2115
2116static inline void skb_reset_mac_len(struct sk_buff *skb)
2117{
2118        skb->mac_len = skb->network_header - skb->mac_header;
2119}
2120
2121static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2122                                                        *skb)
2123{
2124        return skb->head + skb->inner_transport_header;
2125}
2126
2127static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2128{
2129        return skb_inner_transport_header(skb) - skb->data;
2130}
2131
2132static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2133{
2134        skb->inner_transport_header = skb->data - skb->head;
2135}
2136
2137static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2138                                                   const int offset)
2139{
2140        skb_reset_inner_transport_header(skb);
2141        skb->inner_transport_header += offset;
2142}
2143
2144static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2145{
2146        return skb->head + skb->inner_network_header;
2147}
2148
2149static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2150{
2151        skb->inner_network_header = skb->data - skb->head;
2152}
2153
2154static inline void skb_set_inner_network_header(struct sk_buff *skb,
2155                                                const int offset)
2156{
2157        skb_reset_inner_network_header(skb);
2158        skb->inner_network_header += offset;
2159}
2160
2161static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2162{
2163        return skb->head + skb->inner_mac_header;
2164}
2165
2166static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2167{
2168        skb->inner_mac_header = skb->data - skb->head;
2169}
2170
2171static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2172                                            const int offset)
2173{
2174        skb_reset_inner_mac_header(skb);
2175        skb->inner_mac_header += offset;
2176}
2177static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2178{
2179        return skb->transport_header != (typeof(skb->transport_header))~0U;
2180}
2181
2182static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2183{
2184        return skb->head + skb->transport_header;
2185}
2186
2187static inline void skb_reset_transport_header(struct sk_buff *skb)
2188{
2189        skb->transport_header = skb->data - skb->head;
2190}
2191
2192static inline void skb_set_transport_header(struct sk_buff *skb,
2193                                            const int offset)
2194{
2195        skb_reset_transport_header(skb);
2196        skb->transport_header += offset;
2197}
2198
2199static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2200{
2201        return skb->head + skb->network_header;
2202}
2203
2204static inline void skb_reset_network_header(struct sk_buff *skb)
2205{
2206        skb->network_header = skb->data - skb->head;
2207}
2208
2209static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2210{
2211        skb_reset_network_header(skb);
2212        skb->network_header += offset;
2213}
2214
2215static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2216{
2217        return skb->head + skb->mac_header;
2218}
2219
2220static inline int skb_mac_offset(const struct sk_buff *skb)
2221{
2222        return skb_mac_header(skb) - skb->data;
2223}
2224
2225static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2226{
2227        return skb->network_header - skb->mac_header;
2228}
2229
2230static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2231{
2232        return skb->mac_header != (typeof(skb->mac_header))~0U;
2233}
2234
2235static inline void skb_reset_mac_header(struct sk_buff *skb)
2236{
2237        skb->mac_header = skb->data - skb->head;
2238}
2239
2240static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2241{
2242        skb_reset_mac_header(skb);
2243        skb->mac_header += offset;
2244}
2245
2246static inline void skb_pop_mac_header(struct sk_buff *skb)
2247{
2248        skb->mac_header = skb->network_header;
2249}
2250
2251static inline void skb_probe_transport_header(struct sk_buff *skb,
2252                                              const int offset_hint)
2253{
2254        struct flow_keys keys;
2255
2256        if (skb_transport_header_was_set(skb))
2257                return;
2258        else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2259                skb_set_transport_header(skb, keys.control.thoff);
2260        else
2261                skb_set_transport_header(skb, offset_hint);
2262}
2263
2264static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2265{
2266        if (skb_mac_header_was_set(skb)) {
2267                const unsigned char *old_mac = skb_mac_header(skb);
2268
2269                skb_set_mac_header(skb, -skb->mac_len);
2270                memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2271        }
2272}
2273
2274static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2275{
2276        return skb->csum_start - skb_headroom(skb);
2277}
2278
2279static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2280{
2281        return skb->head + skb->csum_start;
2282}
2283
2284static inline int skb_transport_offset(const struct sk_buff *skb)
2285{
2286        return skb_transport_header(skb) - skb->data;
2287}
2288
2289static inline u32 skb_network_header_len(const struct sk_buff *skb)
2290{
2291        return skb->transport_header - skb->network_header;
2292}
2293
2294static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2295{
2296        return skb->inner_transport_header - skb->inner_network_header;
2297}
2298
2299static inline int skb_network_offset(const struct sk_buff *skb)
2300{
2301        return skb_network_header(skb) - skb->data;
2302}
2303
2304static inline int skb_inner_network_offset(const struct sk_buff *skb)
2305{
2306        return skb_inner_network_header(skb) - skb->data;
2307}
2308
2309static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2310{
2311        return pskb_may_pull(skb, skb_network_offset(skb) + len);
2312}
2313
2314/*
2315 * CPUs often take a performance hit when accessing unaligned memory
2316 * locations. The actual performance hit varies, it can be small if the
2317 * hardware handles it or large if we have to take an exception and fix it
2318 * in software.
2319 *
2320 * Since an ethernet header is 14 bytes network drivers often end up with
2321 * the IP header at an unaligned offset. The IP header can be aligned by
2322 * shifting the start of the packet by 2 bytes. Drivers should do this
2323 * with:
2324 *
2325 * skb_reserve(skb, NET_IP_ALIGN);
2326 *
2327 * The downside to this alignment of the IP header is that the DMA is now
2328 * unaligned. On some architectures the cost of an unaligned DMA is high
2329 * and this cost outweighs the gains made by aligning the IP header.
2330 *
2331 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2332 * to be overridden.
2333 */
2334#ifndef NET_IP_ALIGN
2335#define NET_IP_ALIGN    2
2336#endif
2337
2338/*
2339 * The networking layer reserves some headroom in skb data (via
2340 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2341 * the header has to grow. In the default case, if the header has to grow
2342 * 32 bytes or less we avoid the reallocation.
2343 *
2344 * Unfortunately this headroom changes the DMA alignment of the resulting
2345 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2346 * on some architectures. An architecture can override this value,
2347 * perhaps setting it to a cacheline in size (since that will maintain
2348 * cacheline alignment of the DMA). It must be a power of 2.
2349 *
2350 * Various parts of the networking layer expect at least 32 bytes of
2351 * headroom, you should not reduce this.
2352 *
2353 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2354 * to reduce average number of cache lines per packet.
2355 * get_rps_cpus() for example only access one 64 bytes aligned block :
2356 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2357 */
2358#ifndef NET_SKB_PAD
2359#define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
2360#endif
2361
2362int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2363
2364static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2365{
2366        if (unlikely(skb_is_nonlinear(skb))) {
2367                WARN_ON(1);
2368                return;
2369        }
2370        skb->len = len;
2371        skb_set_tail_pointer(skb, len);
2372}
2373
2374static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2375{
2376        __skb_set_length(skb, len);
2377}
2378
2379void skb_trim(struct sk_buff *skb, unsigned int len);
2380
2381static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2382{
2383        if (skb->data_len)
2384                return ___pskb_trim(skb, len);
2385        __skb_trim(skb, len);
2386        return 0;
2387}
2388
2389static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2390{
2391        return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2392}
2393
2394/**
2395 *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2396 *      @skb: buffer to alter
2397 *      @len: new length
2398 *
2399 *      This is identical to pskb_trim except that the caller knows that
2400 *      the skb is not cloned so we should never get an error due to out-
2401 *      of-memory.
2402 */
2403static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2404{
2405        int err = pskb_trim(skb, len);
2406        BUG_ON(err);
2407}
2408
2409static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2410{
2411        unsigned int diff = len - skb->len;
2412
2413        if (skb_tailroom(skb) < diff) {
2414                int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2415                                           GFP_ATOMIC);
2416                if (ret)
2417                        return ret;
2418        }
2419        __skb_set_length(skb, len);
2420        return 0;
2421}
2422
2423/**
2424 *      skb_orphan - orphan a buffer
2425 *      @skb: buffer to orphan
2426 *
2427 *      If a buffer currently has an owner then we call the owner's
2428 *      destructor function and make the @skb unowned. The buffer continues
2429 *      to exist but is no longer charged to its former owner.
2430 */
2431static inline void skb_orphan(struct sk_buff *skb)
2432{
2433        if (skb->destructor) {
2434                skb->destructor(skb);
2435                skb->destructor = NULL;
2436                skb->sk         = NULL;
2437        } else {
2438                BUG_ON(skb->sk);
2439        }
2440}
2441
2442/**
2443 *      skb_orphan_frags - orphan the frags contained in a buffer
2444 *      @skb: buffer to orphan frags from
2445 *      @gfp_mask: allocation mask for replacement pages
2446 *
2447 *      For each frag in the SKB which needs a destructor (i.e. has an
2448 *      owner) create a copy of that frag and release the original
2449 *      page by calling the destructor.
2450 */
2451static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2452{
2453        if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2454                return 0;
2455        return skb_copy_ubufs(skb, gfp_mask);
2456}
2457
2458/**
2459 *      __skb_queue_purge - empty a list
2460 *      @list: list to empty
2461 *
2462 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2463 *      the list and one reference dropped. This function does not take the
2464 *      list lock and the caller must hold the relevant locks to use it.
2465 */
2466void skb_queue_purge(struct sk_buff_head *list);
2467static inline void __skb_queue_purge(struct sk_buff_head *list)
2468{
2469        struct sk_buff *skb;
2470        while ((skb = __skb_dequeue(list)) != NULL)
2471                kfree_skb(skb);
2472}
2473
2474void skb_rbtree_purge(struct rb_root *root);
2475
2476void *netdev_alloc_frag(unsigned int fragsz);
2477
2478struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2479                                   gfp_t gfp_mask);
2480
2481/**
2482 *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
2483 *      @dev: network device to receive on
2484 *      @length: length to allocate
2485 *
2486 *      Allocate a new &sk_buff and assign it a usage count of one. The
2487 *      buffer has unspecified headroom built in. Users should allocate
2488 *      the headroom they think they need without accounting for the
2489 *      built in space. The built in space is used for optimisations.
2490 *
2491 *      %NULL is returned if there is no free memory. Although this function
2492 *      allocates memory it can be called from an interrupt.
2493 */
2494static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2495                                               unsigned int length)
2496{
2497        return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2498}
2499
2500/* legacy helper around __netdev_alloc_skb() */
2501static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2502                                              gfp_t gfp_mask)
2503{
2504        return __netdev_alloc_skb(NULL, length, gfp_mask);
2505}
2506
2507/* legacy helper around netdev_alloc_skb() */
2508static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2509{
2510        return netdev_alloc_skb(NULL, length);
2511}
2512
2513
2514static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2515                unsigned int length, gfp_t gfp)
2516{
2517        struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2518
2519        if (NET_IP_ALIGN && skb)
2520                skb_reserve(skb, NET_IP_ALIGN);
2521        return skb;
2522}
2523
2524static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2525                unsigned int length)
2526{
2527        return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2528}
2529
2530static inline void skb_free_frag(void *addr)
2531{
2532        page_frag_free(addr);
2533}
2534
2535void *napi_alloc_frag(unsigned int fragsz);
2536struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2537                                 unsigned int length, gfp_t gfp_mask);
2538static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2539                                             unsigned int length)
2540{
2541        return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2542}
2543void napi_consume_skb(struct sk_buff *skb, int budget);
2544
2545void __kfree_skb_flush(void);
2546void __kfree_skb_defer(struct sk_buff *skb);
2547
2548/**
2549 * __dev_alloc_pages - allocate page for network Rx
2550 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2551 * @order: size of the allocation
2552 *
2553 * Allocate a new page.
2554 *
2555 * %NULL is returned if there is no free memory.
2556*/
2557static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2558                                             unsigned int order)
2559{
2560        /* This piece of code contains several assumptions.
2561         * 1.  This is for device Rx, therefor a cold page is preferred.
2562         * 2.  The expectation is the user wants a compound page.
2563         * 3.  If requesting a order 0 page it will not be compound
2564         *     due to the check to see if order has a value in prep_new_page
2565         * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2566         *     code in gfp_to_alloc_flags that should be enforcing this.
2567         */
2568        gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2569
2570        return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2571}
2572
2573static inline struct page *dev_alloc_pages(unsigned int order)
2574{
2575        return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2576}
2577
2578/**
2579 * __dev_alloc_page - allocate a page for network Rx
2580 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2581 *
2582 * Allocate a new page.
2583 *
2584 * %NULL is returned if there is no free memory.
2585 */
2586static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2587{
2588        return __dev_alloc_pages(gfp_mask, 0);
2589}
2590
2591static inline struct page *dev_alloc_page(void)
2592{
2593        return dev_alloc_pages(0);
2594}
2595
2596/**
2597 *      skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2598 *      @page: The page that was allocated from skb_alloc_page
2599 *      @skb: The skb that may need pfmemalloc set
2600 */
2601static inline void skb_propagate_pfmemalloc(struct page *page,
2602                                             struct sk_buff *skb)
2603{
2604        if (page_is_pfmemalloc(page))
2605                skb->pfmemalloc = true;
2606}
2607
2608/**
2609 * skb_frag_page - retrieve the page referred to by a paged fragment
2610 * @frag: the paged fragment
2611 *
2612 * Returns the &struct page associated with @frag.
2613 */
2614static inline struct page *skb_frag_page(const skb_frag_t *frag)
2615{
2616        return frag->page.p;
2617}
2618
2619/**
2620 * __skb_frag_ref - take an addition reference on a paged fragment.
2621 * @frag: the paged fragment
2622 *
2623 * Takes an additional reference on the paged fragment @frag.
2624 */
2625static inline void __skb_frag_ref(skb_frag_t *frag)
2626{
2627        get_page(skb_frag_page(frag));
2628}
2629
2630/**
2631 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2632 * @skb: the buffer
2633 * @f: the fragment offset.
2634 *
2635 * Takes an additional reference on the @f'th paged fragment of @skb.
2636 */
2637static inline void skb_frag_ref(struct sk_buff *skb, int f)
2638{
2639        __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2640}
2641
2642/**
2643 * __skb_frag_unref - release a reference on a paged fragment.
2644 * @frag: the paged fragment
2645 *
2646 * Releases a reference on the paged fragment @frag.
2647 */
2648static inline void __skb_frag_unref(skb_frag_t *frag)
2649{
2650        put_page(skb_frag_page(frag));
2651}
2652
2653/**
2654 * skb_frag_unref - release a reference on a paged fragment of an skb.
2655 * @skb: the buffer
2656 * @f: the fragment offset
2657 *
2658 * Releases a reference on the @f'th paged fragment of @skb.
2659 */
2660static inline void skb_frag_unref(struct sk_buff *skb, int f)
2661{
2662        __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2663}
2664
2665/**
2666 * skb_frag_address - gets the address of the data contained in a paged fragment
2667 * @frag: the paged fragment buffer
2668 *
2669 * Returns the address of the data within @frag. The page must already
2670 * be mapped.
2671 */
2672static inline void *skb_frag_address(const skb_frag_t *frag)
2673{
2674        return page_address(skb_frag_page(frag)) + frag->page_offset;
2675}
2676
2677/**
2678 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2679 * @frag: the paged fragment buffer
2680 *
2681 * Returns the address of the data within @frag. Checks that the page
2682 * is mapped and returns %NULL otherwise.
2683 */
2684static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2685{
2686        void *ptr = page_address(skb_frag_page(frag));
2687        if (unlikely(!ptr))
2688                return NULL;
2689
2690        return ptr + frag->page_offset;
2691}
2692
2693/**
2694 * __skb_frag_set_page - sets the page contained in a paged fragment
2695 * @frag: the paged fragment
2696 * @page: the page to set
2697 *
2698 * Sets the fragment @frag to contain @page.
2699 */
2700static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2701{
2702        frag->page.p = page;
2703}
2704
2705/**
2706 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2707 * @skb: the buffer
2708 * @f: the fragment offset
2709 * @page: the page to set
2710 *
2711 * Sets the @f'th fragment of @skb to contain @page.
2712 */
2713static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2714                                     struct page *page)
2715{
2716        __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2717}
2718
2719bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2720
2721/**
2722 * skb_frag_dma_map - maps a paged fragment via the DMA API
2723 * @dev: the device to map the fragment to
2724 * @frag: the paged fragment to map
2725 * @offset: the offset within the fragment (starting at the
2726 *          fragment's own offset)
2727 * @size: the number of bytes to map
2728 * @dir: the direction of the mapping (``PCI_DMA_*``)
2729 *
2730 * Maps the page associated with @frag to @device.
2731 */
2732static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2733                                          const skb_frag_t *frag,
2734                                          size_t offset, size_t size,
2735                                          enum dma_data_direction dir)
2736{
2737        return dma_map_page(dev, skb_frag_page(frag),
2738                            frag->page_offset + offset, size, dir);
2739}
2740
2741static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2742                                        gfp_t gfp_mask)
2743{
2744        return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2745}
2746
2747
2748static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2749                                                  gfp_t gfp_mask)
2750{
2751        return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2752}
2753
2754
2755/**
2756 *      skb_clone_writable - is the header of a clone writable
2757 *      @skb: buffer to check
2758 *      @len: length up to which to write
2759 *
2760 *      Returns true if modifying the header part of the cloned buffer
2761 *      does not requires the data to be copied.
2762 */
2763static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2764{
2765        return !skb_header_cloned(skb) &&
2766               skb_headroom(skb) + len <= skb->hdr_len;
2767}
2768
2769static inline int skb_try_make_writable(struct sk_buff *skb,
2770                                        unsigned int write_len)
2771{
2772        return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2773               pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2774}
2775
2776static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2777                            int cloned)
2778{
2779        int delta = 0;
2780
2781        if (headroom > skb_headroom(skb))
2782                delta = headroom - skb_headroom(skb);
2783
2784        if (delta || cloned)
2785                return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2786                                        GFP_ATOMIC);
2787        return 0;
2788}
2789
2790/**
2791 *      skb_cow - copy header of skb when it is required
2792 *      @skb: buffer to cow
2793 *      @headroom: needed headroom
2794 *
2795 *      If the skb passed lacks sufficient headroom or its data part
2796 *      is shared, data is reallocated. If reallocation fails, an error
2797 *      is returned and original skb is not changed.
2798 *
2799 *      The result is skb with writable area skb->head...skb->tail
2800 *      and at least @headroom of space at head.
2801 */
2802static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2803{
2804        return __skb_cow(skb, headroom, skb_cloned(skb));
2805}
2806
2807/**
2808 *      skb_cow_head - skb_cow but only making the head writable
2809 *      @skb: buffer to cow
2810 *      @headroom: needed headroom
2811 *
2812 *      This function is identical to skb_cow except that we replace the
2813 *      skb_cloned check by skb_header_cloned.  It should be used when
2814 *      you only need to push on some header and do not need to modify
2815 *      the data.
2816 */
2817static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2818{
2819        return __skb_cow(skb, headroom, skb_header_cloned(skb));
2820}
2821
2822/**
2823 *      skb_padto       - pad an skbuff up to a minimal size
2824 *      @skb: buffer to pad
2825 *      @len: minimal length
2826 *
2827 *      Pads up a buffer to ensure the trailing bytes exist and are
2828 *      blanked. If the buffer already contains sufficient data it
2829 *      is untouched. Otherwise it is extended. Returns zero on
2830 *      success. The skb is freed on error.
2831 */
2832static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2833{
2834        unsigned int size = skb->len;
2835        if (likely(size >= len))
2836                return 0;
2837        return skb_pad(skb, len - size);
2838}
2839
2840/**
2841 *      skb_put_padto - increase size and pad an skbuff up to a minimal size
2842 *      @skb: buffer to pad
2843 *      @len: minimal length
2844 *      @free_on_error: free buffer on error
2845 *
2846 *      Pads up a buffer to ensure the trailing bytes exist and are
2847 *      blanked. If the buffer already contains sufficient data it
2848 *      is untouched. Otherwise it is extended. Returns zero on
2849 *      success. The skb is freed on error if @free_on_error is true.
2850 */
2851static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2852                                  bool free_on_error)
2853{
2854        unsigned int size = skb->len;
2855
2856        if (unlikely(size < len)) {
2857                len -= size;
2858                if (__skb_pad(skb, len, free_on_error))
2859                        return -ENOMEM;
2860                __skb_put(skb, len);
2861        }
2862        return 0;
2863}
2864
2865/**
2866 *      skb_put_padto - increase size and pad an skbuff up to a minimal size
2867 *      @skb: buffer to pad
2868 *      @len: minimal length
2869 *
2870 *      Pads up a buffer to ensure the trailing bytes exist and are
2871 *      blanked. If the buffer already contains sufficient data it
2872 *      is untouched. Otherwise it is extended. Returns zero on
2873 *      success. The skb is freed on error.
2874 */
2875static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2876{
2877        return __skb_put_padto(skb, len, true);
2878}
2879
2880static inline int skb_add_data(struct sk_buff *skb,
2881                               struct iov_iter *from, int copy)
2882{
2883        const int off = skb->len;
2884
2885        if (skb->ip_summed == CHECKSUM_NONE) {
2886                __wsum csum = 0;
2887                if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2888                                                 &csum, from)) {
2889                        skb->csum = csum_block_add(skb->csum, csum, off);
2890                        return 0;
2891                }
2892        } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
2893                return 0;
2894
2895        __skb_trim(skb, off);
2896        return -EFAULT;
2897}
2898
2899static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2900                                    const struct page *page, int off)
2901{
2902        if (i) {
2903                const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2904
2905                return page == skb_frag_page(frag) &&
2906                       off == frag->page_offset + skb_frag_size(frag);
2907        }
2908        return false;
2909}
2910
2911static inline int __skb_linearize(struct sk_buff *skb)
2912{
2913        return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2914}
2915
2916/**
2917 *      skb_linearize - convert paged skb to linear one
2918 *      @skb: buffer to linarize
2919 *
2920 *      If there is no free memory -ENOMEM is returned, otherwise zero
2921 *      is returned and the old skb data released.
2922 */
2923static inline int skb_linearize(struct sk_buff *skb)
2924{
2925        return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2926}
2927
2928/**
2929 * skb_has_shared_frag - can any frag be overwritten
2930 * @skb: buffer to test
2931 *
2932 * Return true if the skb has at least one frag that might be modified
2933 * by an external entity (as in vmsplice()/sendfile())
2934 */
2935static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2936{
2937        return skb_is_nonlinear(skb) &&
2938               skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2939}
2940
2941/**
2942 *      skb_linearize_cow - make sure skb is linear and writable
2943 *      @skb: buffer to process
2944 *
2945 *      If there is no free memory -ENOMEM is returned, otherwise zero
2946 *      is returned and the old skb data released.
2947 */
2948static inline int skb_linearize_cow(struct sk_buff *skb)
2949{
2950        return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2951               __skb_linearize(skb) : 0;
2952}
2953
2954static __always_inline void
2955__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2956                     unsigned int off)
2957{
2958        if (skb->ip_summed == CHECKSUM_COMPLETE)
2959                skb->csum = csum_block_sub(skb->csum,
2960                                           csum_partial(start, len, 0), off);
2961        else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2962                 skb_checksum_start_offset(skb) < 0)
2963                skb->ip_summed = CHECKSUM_NONE;
2964}
2965
2966/**
2967 *      skb_postpull_rcsum - update checksum for received skb after pull
2968 *      @skb: buffer to update
2969 *      @start: start of data before pull
2970 *      @len: length of data pulled
2971 *
2972 *      After doing a pull on a received packet, you need to call this to
2973 *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2974 *      CHECKSUM_NONE so that it can be recomputed from scratch.
2975 */
2976static inline void skb_postpull_rcsum(struct sk_buff *skb,
2977                                      const void *start, unsigned int len)
2978{
2979        __skb_postpull_rcsum(skb, start, len, 0);
2980}
2981
2982static __always_inline void
2983__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
2984                     unsigned int off)
2985{
2986        if (skb->ip_summed == CHECKSUM_COMPLETE)
2987                skb->csum = csum_block_add(skb->csum,
2988                                           csum_partial(start, len, 0), off);
2989}
2990
2991/**
2992 *      skb_postpush_rcsum - update checksum for received skb after push
2993 *      @skb: buffer to update
2994 *      @start: start of data after push
2995 *      @len: length of data pushed
2996 *
2997 *      After doing a push on a received packet, you need to call this to
2998 *      update the CHECKSUM_COMPLETE checksum.
2999 */
3000static inline void skb_postpush_rcsum(struct sk_buff *skb,
3001                                      const void *start, unsigned int len)
3002{
3003        __skb_postpush_rcsum(skb, start, len, 0);
3004}
3005
3006void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3007
3008/**
3009 *      skb_push_rcsum - push skb and update receive checksum
3010 *      @skb: buffer to update
3011 *      @len: length of data pulled
3012 *
3013 *      This function performs an skb_push on the packet and updates
3014 *      the CHECKSUM_COMPLETE checksum.  It should be used on
3015 *      receive path processing instead of skb_push unless you know
3016 *      that the checksum difference is zero (e.g., a valid IP header)
3017 *      or you are setting ip_summed to CHECKSUM_NONE.
3018 */
3019static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3020{
3021        skb_push(skb, len);
3022        skb_postpush_rcsum(skb, skb->data, len);
3023        return skb->data;
3024}
3025
3026/**
3027 *      pskb_trim_rcsum - trim received skb and update checksum
3028 *      @skb: buffer to trim
3029 *      @len: new length
3030 *
3031 *      This is exactly the same as pskb_trim except that it ensures the
3032 *      checksum of received packets are still valid after the operation.
3033 */
3034
3035static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3036{
3037        if (likely(len >= skb->len))
3038                return 0;
3039        if (skb->ip_summed == CHECKSUM_COMPLETE)
3040                skb->ip_summed = CHECKSUM_NONE;
3041        return __pskb_trim(skb, len);
3042}
3043
3044static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3045{
3046        if (skb->ip_summed == CHECKSUM_COMPLETE)
3047                skb->ip_summed = CHECKSUM_NONE;
3048        __skb_trim(skb, len);
3049        return 0;
3050}
3051
3052static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3053{
3054        if (skb->ip_summed == CHECKSUM_COMPLETE)
3055                skb->ip_summed = CHECKSUM_NONE;
3056        return __skb_grow(skb, len);
3057}
3058
3059#define skb_queue_walk(queue, skb) \
3060                for (skb = (queue)->next;                                       \
3061                     skb != (struct sk_buff *)(queue);                          \
3062                     skb = skb->next)
3063
3064#define skb_queue_walk_safe(queue, skb, tmp)                                    \
3065                for (skb = (queue)->next, tmp = skb->next;                      \
3066                     skb != (struct sk_buff *)(queue);                          \
3067                     skb = tmp, tmp = skb->next)
3068
3069#define skb_queue_walk_from(queue, skb)                                         \
3070                for (; skb != (struct sk_buff *)(queue);                        \
3071                     skb = skb->next)
3072
3073#define skb_queue_walk_from_safe(queue, skb, tmp)                               \
3074                for (tmp = skb->next;                                           \
3075                     skb != (struct sk_buff *)(queue);                          \
3076                     skb = tmp, tmp = skb->next)
3077
3078#define skb_queue_reverse_walk(queue, skb) \
3079                for (skb = (queue)->prev;                                       \
3080                     skb != (struct sk_buff *)(queue);                          \
3081                     skb = skb->prev)
3082
3083#define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
3084                for (skb = (queue)->prev, tmp = skb->prev;                      \
3085                     skb != (struct sk_buff *)(queue);                          \
3086                     skb = tmp, tmp = skb->prev)
3087
3088#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
3089                for (tmp = skb->prev;                                           \
3090                     skb != (struct sk_buff *)(queue);                          \
3091                     skb = tmp, tmp = skb->prev)
3092
3093static inline bool skb_has_frag_list(const struct sk_buff *skb)
3094{
3095        return skb_shinfo(skb)->frag_list != NULL;
3096}
3097
3098static inline void skb_frag_list_init(struct sk_buff *skb)
3099{
3100        skb_shinfo(skb)->frag_list = NULL;
3101}
3102
3103#define skb_walk_frags(skb, iter)       \
3104        for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3105
3106
3107int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3108                                const struct sk_buff *skb);
3109struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3110                                          struct sk_buff_head *queue,
3111                                          unsigned int flags,
3112                                          void (*destructor)(struct sock *sk,
3113                                                           struct sk_buff *skb),
3114                                          int *peeked, int *off, int *err,
3115                                          struct sk_buff **last);
3116struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3117                                        void (*destructor)(struct sock *sk,
3118                                                           struct sk_buff *skb),
3119                                        int *peeked, int *off, int *err,
3120                                        struct sk_buff **last);
3121struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3122                                    void (*destructor)(struct sock *sk,
3123                                                       struct sk_buff *skb),
3124                                    int *peeked, int *off, int *err);
3125struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3126                                  int *err);
3127unsigned int datagram_poll(struct file *file, struct socket *sock,
3128                           struct poll_table_struct *wait);
3129int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3130                           struct iov_iter *to, int size);
3131static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3132                                        struct msghdr *msg, int size)
3133{
3134        return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3135}
3136int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3137                                   struct msghdr *msg);
3138int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3139                                 struct iov_iter *from, int len);
3140int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3141void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3142void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3143static inline void skb_free_datagram_locked(struct sock *sk,
3144                                            struct sk_buff *skb)
3145{
3146        __skb_free_datagram_locked(sk, skb, 0);
3147}
3148int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3149int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3150int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3151__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3152                              int len, __wsum csum);
3153int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3154                    struct pipe_inode_info *pipe, unsigned int len,
3155                    unsigned int flags);
3156void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3157unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3158int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3159                 int len, int hlen);
3160void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3161int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3162void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3163unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3164bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3165struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3166struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3167int skb_ensure_writable(struct sk_buff *skb, int write_len);
3168int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3169int skb_vlan_pop(struct sk_buff *skb);
3170int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3171struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3172                             gfp_t gfp);
3173
3174static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3175{
3176        return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3177}
3178
3179static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3180{
3181        return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3182}
3183
3184struct skb_checksum_ops {
3185        __wsum (*update)(const void *mem, int len, __wsum wsum);
3186        __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3187};
3188
3189extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3190
3191__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3192                      __wsum csum, const struct skb_checksum_ops *ops);
3193__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3194                    __wsum csum);
3195
3196static inline void * __must_check
3197__skb_header_pointer(const struct sk_buff *skb, int offset,
3198                     int len, void *data, int hlen, void *buffer)
3199{
3200        if (hlen - offset >= len)
3201                return data + offset;
3202
3203        if (!skb ||
3204            skb_copy_bits(skb, offset, buffer, len) < 0)
3205                return NULL;
3206
3207        return buffer;
3208}
3209
3210static inline void * __must_check
3211skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3212{
3213        return __skb_header_pointer(skb, offset, len, skb->data,
3214                                    skb_headlen(skb), buffer);
3215}
3216
3217/**
3218 *      skb_needs_linearize - check if we need to linearize a given skb
3219 *                            depending on the given device features.
3220 *      @skb: socket buffer to check
3221 *      @features: net device features
3222 *
3223 *      Returns true if either:
3224 *      1. skb has frag_list and the device doesn't support FRAGLIST, or
3225 *      2. skb is fragmented and the device does not support SG.
3226 */
3227static inline bool skb_needs_linearize(struct sk_buff *skb,
3228                                       netdev_features_t features)
3229{
3230        return skb_is_nonlinear(skb) &&
3231               ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3232                (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3233}
3234
3235static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3236                                             void *to,
3237                                             const unsigned int len)
3238{
3239        memcpy(to, skb->data, len);
3240}
3241
3242static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3243                                                    const int offset, void *to,
3244                                                    const unsigned int len)
3245{
3246        memcpy(to, skb->data + offset, len);
3247}
3248
3249static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3250                                           const void *from,
3251                                           const unsigned int len)
3252{
3253        memcpy(skb->data, from, len);
3254}
3255
3256static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3257                                                  const int offset,
3258                                                  const void *from,
3259                                                  const unsigned int len)
3260{
3261        memcpy(skb->data + offset, from, len);
3262}
3263
3264void skb_init(void);
3265
3266static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3267{
3268        return skb->tstamp;
3269}
3270
3271/**
3272 *      skb_get_timestamp - get timestamp from a skb
3273 *      @skb: skb to get stamp from
3274 *      @stamp: pointer to struct timeval to store stamp in
3275 *
3276 *      Timestamps are stored in the skb as offsets to a base timestamp.
3277 *      This function converts the offset back to a struct timeval and stores
3278 *      it in stamp.
3279 */
3280static inline void skb_get_timestamp(const struct sk_buff *skb,
3281                                     struct timeval *stamp)
3282{
3283        *stamp = ktime_to_timeval(skb->tstamp);
3284}
3285
3286static inline void skb_get_timestampns(const struct sk_buff *skb,
3287                                       struct timespec *stamp)
3288{
3289        *stamp = ktime_to_timespec(skb->tstamp);
3290}
3291
3292static inline void __net_timestamp(struct sk_buff *skb)
3293{
3294        skb->tstamp = ktime_get_real();
3295}
3296
3297static inline ktime_t net_timedelta(ktime_t t)
3298{
3299        return ktime_sub(ktime_get_real(), t);
3300}
3301
3302static inline ktime_t net_invalid_timestamp(void)
3303{
3304        return 0;
3305}
3306
3307struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3308
3309#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3310
3311void skb_clone_tx_timestamp(struct sk_buff *skb);
3312bool skb_defer_rx_timestamp(struct sk_buff *skb);
3313
3314#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3315
3316static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3317{
3318}
3319
3320static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3321{
3322        return false;
3323}
3324
3325#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3326
3327/**
3328 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3329 *
3330 * PHY drivers may accept clones of transmitted packets for
3331 * timestamping via their phy_driver.txtstamp method. These drivers
3332 * must call this function to return the skb back to the stack with a
3333 * timestamp.
3334 *
3335 * @skb: clone of the the original outgoing packet
3336 * @hwtstamps: hardware time stamps
3337 *
3338 */
3339void skb_complete_tx_timestamp(struct sk_buff *skb,
3340                               struct skb_shared_hwtstamps *hwtstamps);
3341
3342void __skb_tstamp_tx(struct sk_buff *orig_skb,
3343                     struct skb_shared_hwtstamps *hwtstamps,
3344                     struct sock *sk, int tstype);
3345
3346/**
3347 * skb_tstamp_tx - queue clone of skb with send time stamps
3348 * @orig_skb:   the original outgoing packet
3349 * @hwtstamps:  hardware time stamps, may be NULL if not available
3350 *
3351 * If the skb has a socket associated, then this function clones the
3352 * skb (thus sharing the actual data and optional structures), stores
3353 * the optional hardware time stamping information (if non NULL) or
3354 * generates a software time stamp (otherwise), then queues the clone
3355 * to the error queue of the socket.  Errors are silently ignored.
3356 */
3357void skb_tstamp_tx(struct sk_buff *orig_skb,
3358                   struct skb_shared_hwtstamps *hwtstamps);
3359
3360/**
3361 * skb_tx_timestamp() - Driver hook for transmit timestamping
3362 *
3363 * Ethernet MAC Drivers should call this function in their hard_xmit()
3364 * function immediately before giving the sk_buff to the MAC hardware.
3365 *
3366 * Specifically, one should make absolutely sure that this function is
3367 * called before TX completion of this packet can trigger.  Otherwise
3368 * the packet could potentially already be freed.
3369 *
3370 * @skb: A socket buffer.
3371 */
3372static inline void skb_tx_timestamp(struct sk_buff *skb)
3373{
3374        skb_clone_tx_timestamp(skb);
3375        if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3376                skb_tstamp_tx(skb, NULL);
3377}
3378
3379/**
3380 * skb_complete_wifi_ack - deliver skb with wifi status
3381 *
3382 * @skb: the original outgoing packet
3383 * @acked: ack status
3384 *
3385 */
3386void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3387
3388__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3389__sum16 __skb_checksum_complete(struct sk_buff *skb);
3390
3391static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3392{
3393        return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3394                skb->csum_valid ||
3395                (skb->ip_summed == CHECKSUM_PARTIAL &&
3396                 skb_checksum_start_offset(skb) >= 0));
3397}
3398
3399/**
3400 *      skb_checksum_complete - Calculate checksum of an entire packet
3401 *      @skb: packet to process
3402 *
3403 *      This function calculates the checksum over the entire packet plus
3404 *      the value of skb->csum.  The latter can be used to supply the
3405 *      checksum of a pseudo header as used by TCP/UDP.  It returns the
3406 *      checksum.
3407 *
3408 *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
3409 *      this function can be used to verify that checksum on received
3410 *      packets.  In that case the function should return zero if the
3411 *      checksum is correct.  In particular, this function will return zero
3412 *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3413 *      hardware has already verified the correctness of the checksum.
3414 */
3415static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3416{
3417        return skb_csum_unnecessary(skb) ?
3418               0 : __skb_checksum_complete(skb);
3419}
3420
3421static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3422{
3423        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3424                if (skb->csum_level == 0)
3425                        skb->ip_summed = CHECKSUM_NONE;
3426                else
3427                        skb->csum_level--;
3428        }
3429}
3430
3431static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3432{
3433        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3434                if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3435                        skb->csum_level++;
3436        } else if (skb->ip_summed == CHECKSUM_NONE) {
3437                skb->ip_summed = CHECKSUM_UNNECESSARY;
3438                skb->csum_level = 0;
3439        }
3440}
3441
3442/* Check if we need to perform checksum complete validation.
3443 *
3444 * Returns true if checksum complete is needed, false otherwise
3445 * (either checksum is unnecessary or zero checksum is allowed).
3446 */
3447static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3448                                                  bool zero_okay,
3449                                                  __sum16 check)
3450{
3451        if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3452                skb->csum_valid = 1;
3453                __skb_decr_checksum_unnecessary(skb);
3454                return false;
3455        }
3456
3457        return true;
3458}
3459
3460/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3461 * in checksum_init.
3462 */
3463#define CHECKSUM_BREAK 76
3464
3465/* Unset checksum-complete
3466 *
3467 * Unset checksum complete can be done when packet is being modified
3468 * (uncompressed for instance) and checksum-complete value is
3469 * invalidated.
3470 */
3471static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3472{
3473        if (skb->ip_summed == CHECKSUM_COMPLETE)
3474                skb->ip_summed = CHECKSUM_NONE;
3475}
3476
3477/* Validate (init) checksum based on checksum complete.
3478 *
3479 * Return values:
3480 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3481 *      case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3482 *      checksum is stored in skb->csum for use in __skb_checksum_complete
3483 *   non-zero: value of invalid checksum
3484 *
3485 */
3486static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3487                                                       bool complete,
3488                                                       __wsum psum)
3489{
3490        if (skb->ip_summed == CHECKSUM_COMPLETE) {
3491                if (!csum_fold(csum_add(psum, skb->csum))) {
3492                        skb->csum_valid = 1;
3493                        return 0;
3494                }
3495        }
3496
3497        skb->csum = psum;
3498
3499        if (complete || skb->len <= CHECKSUM_BREAK) {
3500                __sum16 csum;
3501
3502                csum = __skb_checksum_complete(skb);
3503                skb->csum_valid = !csum;
3504                return csum;
3505        }
3506
3507        return 0;
3508}
3509
3510static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3511{
3512        return 0;
3513}
3514
3515/* Perform checksum validate (init). Note that this is a macro since we only
3516 * want to calculate the pseudo header which is an input function if necessary.
3517 * First we try to validate without any computation (checksum unnecessary) and
3518 * then calculate based on checksum complete calling the function to compute
3519 * pseudo header.
3520 *
3521 * Return values:
3522 *   0: checksum is validated or try to in skb_checksum_complete
3523 *   non-zero: value of invalid checksum
3524 */
3525#define __skb_checksum_validate(skb, proto, complete,                   \
3526                                zero_okay, check, compute_pseudo)       \
3527({                                                                      \
3528        __sum16 __ret = 0;                                              \
3529        skb->csum_valid = 0;                                            \
3530        if (__skb_checksum_validate_needed(skb, zero_okay, check))      \
3531                __ret = __skb_checksum_validate_complete(skb,           \
3532                                complete, compute_pseudo(skb, proto));  \
3533        __ret;                                                          \
3534})
3535
3536#define skb_checksum_init(skb, proto, compute_pseudo)                   \
3537        __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3538
3539#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3540        __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3541
3542#define skb_checksum_validate(skb, proto, compute_pseudo)               \
3543        __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3544
3545#define skb_checksum_validate_zero_check(skb, proto, check,             \
3546                                         compute_pseudo)                \
3547        __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3548
3549#define skb_checksum_simple_validate(skb)                               \
3550        __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3551
3552static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3553{
3554        return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3555}
3556
3557static inline void __skb_checksum_convert(struct sk_buff *skb,
3558                                          __sum16 check, __wsum pseudo)
3559{
3560        skb->csum = ~pseudo;
3561        skb->ip_summed = CHECKSUM_COMPLETE;
3562}
3563
3564#define skb_checksum_try_convert(skb, proto, check, compute_pseudo)     \
3565do {                                                                    \
3566        if (__skb_checksum_convert_check(skb))                          \
3567                __skb_checksum_convert(skb, check,                      \
3568                                       compute_pseudo(skb, proto));     \
3569} while (0)
3570
3571static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3572                                              u16 start, u16 offset)
3573{
3574        skb->ip_summed = CHECKSUM_PARTIAL;
3575        skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3576        skb->csum_offset = offset - start;
3577}
3578
3579/* Update skbuf and packet to reflect the remote checksum offload operation.
3580 * When called, ptr indicates the starting point for skb->csum when
3581 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3582 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3583 */
3584static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3585                                       int start, int offset, bool nopartial)
3586{
3587        __wsum delta;
3588
3589        if (!nopartial) {
3590                skb_remcsum_adjust_partial(skb, ptr, start, offset);
3591                return;
3592        }
3593
3594         if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3595                __skb_checksum_complete(skb);
3596                skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3597        }
3598
3599        delta = remcsum_adjust(ptr, skb->csum, start, offset);
3600
3601        /* Adjust skb->csum since we changed the packet */
3602        skb->csum = csum_add(skb->csum, delta);
3603}
3604
3605static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3606{
3607#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3608        return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3609#else
3610        return NULL;
3611#endif
3612}
3613
3614#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3615void nf_conntrack_destroy(struct nf_conntrack *nfct);
3616static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3617{
3618        if (nfct && atomic_dec_and_test(&nfct->use))
3619                nf_conntrack_destroy(nfct);
3620}
3621static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3622{
3623        if (nfct)
3624                atomic_inc(&nfct->use);
3625}
3626#endif
3627#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3628static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3629{
3630        if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3631                kfree(nf_bridge);
3632}
3633static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3634{
3635        if (nf_bridge)
3636                refcount_inc(&nf_bridge->use);
3637}
3638#endif /* CONFIG_BRIDGE_NETFILTER */
3639static inline void nf_reset(struct sk_buff *skb)
3640{
3641#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3642        nf_conntrack_put(skb_nfct(skb));
3643        skb->_nfct = 0;
3644#endif
3645#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3646        nf_bridge_put(skb->nf_bridge);
3647        skb->nf_bridge = NULL;
3648#endif
3649}
3650
3651static inline void nf_reset_trace(struct sk_buff *skb)
3652{
3653#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3654        skb->nf_trace = 0;
3655#endif
3656}
3657
3658/* Note: This doesn't put any conntrack and bridge info in dst. */
3659static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3660                             bool copy)
3661{
3662#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3663        dst->_nfct = src->_nfct;
3664        nf_conntrack_get(skb_nfct(src));
3665#endif
3666#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3667        dst->nf_bridge  = src->nf_bridge;
3668        nf_bridge_get(src->nf_bridge);
3669#endif
3670#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3671        if (copy)
3672                dst->nf_trace = src->nf_trace;
3673#endif
3674}
3675
3676static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3677{
3678#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3679        nf_conntrack_put(skb_nfct(dst));
3680#endif
3681#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3682        nf_bridge_put(dst->nf_bridge);
3683#endif
3684        __nf_copy(dst, src, true);
3685}
3686
3687#ifdef CONFIG_NETWORK_SECMARK
3688static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3689{
3690        to->secmark = from->secmark;
3691}
3692
3693static inline void skb_init_secmark(struct sk_buff *skb)
3694{
3695        skb->secmark = 0;
3696}
3697#else
3698static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3699{ }
3700
3701static inline void skb_init_secmark(struct sk_buff *skb)
3702{ }
3703#endif
3704
3705static inline bool skb_irq_freeable(const struct sk_buff *skb)
3706{
3707        return !skb->destructor &&
3708#if IS_ENABLED(CONFIG_XFRM)
3709                !skb->sp &&
3710#endif
3711                !skb_nfct(skb) &&
3712                !skb->_skb_refdst &&
3713                !skb_has_frag_list(skb);
3714}
3715
3716static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3717{
3718        skb->queue_mapping = queue_mapping;
3719}
3720
3721static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3722{
3723        return skb->queue_mapping;
3724}
3725
3726static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3727{
3728        to->queue_mapping = from->queue_mapping;
3729}
3730
3731static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3732{
3733        skb->queue_mapping = rx_queue + 1;
3734}
3735
3736static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3737{
3738        return skb->queue_mapping - 1;
3739}
3740
3741static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3742{
3743        return skb->queue_mapping != 0;
3744}
3745
3746static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3747{
3748        skb->dst_pending_confirm = val;
3749}
3750
3751static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3752{
3753        return skb->dst_pending_confirm != 0;
3754}
3755
3756static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3757{
3758#ifdef CONFIG_XFRM
3759        return skb->sp;
3760#else
3761        return NULL;
3762#endif
3763}
3764
3765/* Keeps track of mac header offset relative to skb->head.
3766 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3767 * For non-tunnel skb it points to skb_mac_header() and for
3768 * tunnel skb it points to outer mac header.
3769 * Keeps track of level of encapsulation of network headers.
3770 */
3771struct skb_gso_cb {
3772        union {
3773                int     mac_offset;
3774                int     data_offset;
3775        };
3776        int     encap_level;
3777        __wsum  csum;
3778        __u16   csum_start;
3779};
3780#define SKB_SGO_CB_OFFSET       32
3781#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3782
3783static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3784{
3785        return (skb_mac_header(inner_skb) - inner_skb->head) -
3786                SKB_GSO_CB(inner_skb)->mac_offset;
3787}
3788
3789static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3790{
3791        int new_headroom, headroom;
3792        int ret;
3793
3794        headroom = skb_headroom(skb);
3795        ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3796        if (ret)
3797                return ret;
3798
3799        new_headroom = skb_headroom(skb);
3800        SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3801        return 0;
3802}
3803
3804static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3805{
3806        /* Do not update partial checksums if remote checksum is enabled. */
3807        if (skb->remcsum_offload)
3808                return;
3809
3810        SKB_GSO_CB(skb)->csum = res;
3811        SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3812}
3813
3814/* Compute the checksum for a gso segment. First compute the checksum value
3815 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3816 * then add in skb->csum (checksum from csum_start to end of packet).
3817 * skb->csum and csum_start are then updated to reflect the checksum of the
3818 * resultant packet starting from the transport header-- the resultant checksum
3819 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3820 * header.
3821 */
3822static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3823{
3824        unsigned char *csum_start = skb_transport_header(skb);
3825        int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3826        __wsum partial = SKB_GSO_CB(skb)->csum;
3827
3828        SKB_GSO_CB(skb)->csum = res;
3829        SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3830
3831        return csum_fold(csum_partial(csum_start, plen, partial));
3832}
3833
3834static inline bool skb_is_gso(const struct sk_buff *skb)
3835{
3836        return skb_shinfo(skb)->gso_size;
3837}
3838
3839/* Note: Should be called only if skb_is_gso(skb) is true */
3840static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3841{
3842        return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3843}
3844
3845static inline void skb_gso_reset(struct sk_buff *skb)
3846{
3847        skb_shinfo(skb)->gso_size = 0;
3848        skb_shinfo(skb)->gso_segs = 0;
3849        skb_shinfo(skb)->gso_type = 0;
3850}
3851
3852void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3853
3854static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3855{
3856        /* LRO sets gso_size but not gso_type, whereas if GSO is really
3857         * wanted then gso_type will be set. */
3858        const struct skb_shared_info *shinfo = skb_shinfo(skb);
3859
3860        if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3861            unlikely(shinfo->gso_type == 0)) {
3862                __skb_warn_lro_forwarding(skb);
3863                return true;
3864        }
3865        return false;
3866}
3867
3868static inline void skb_forward_csum(struct sk_buff *skb)
3869{
3870        /* Unfortunately we don't support this one.  Any brave souls? */
3871        if (skb->ip_summed == CHECKSUM_COMPLETE)
3872                skb->ip_summed = CHECKSUM_NONE;
3873}
3874
3875/**
3876 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3877 * @skb: skb to check
3878 *
3879 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3880 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3881 * use this helper, to document places where we make this assertion.
3882 */
3883static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3884{
3885#ifdef DEBUG
3886        BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3887#endif
3888}
3889
3890bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3891
3892int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3893struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3894                                     unsigned int transport_len,
3895                                     __sum16(*skb_chkf)(struct sk_buff *skb));
3896
3897/**
3898 * skb_head_is_locked - Determine if the skb->head is locked down
3899 * @skb: skb to check
3900 *
3901 * The head on skbs build around a head frag can be removed if they are
3902 * not cloned.  This function returns true if the skb head is locked down
3903 * due to either being allocated via kmalloc, or by being a clone with
3904 * multiple references to the head.
3905 */
3906static inline bool skb_head_is_locked(const struct sk_buff *skb)
3907{
3908        return !skb->head_frag || skb_cloned(skb);
3909}
3910
3911/**
3912 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3913 *
3914 * @skb: GSO skb
3915 *
3916 * skb_gso_network_seglen is used to determine the real size of the
3917 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3918 *
3919 * The MAC/L2 header is not accounted for.
3920 */
3921static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3922{
3923        unsigned int hdr_len = skb_transport_header(skb) -
3924                               skb_network_header(skb);
3925        return hdr_len + skb_gso_transport_seglen(skb);
3926}
3927
3928/* Local Checksum Offload.
3929 * Compute outer checksum based on the assumption that the
3930 * inner checksum will be offloaded later.
3931 * See Documentation/networking/checksum-offloads.txt for
3932 * explanation of how this works.
3933 * Fill in outer checksum adjustment (e.g. with sum of outer
3934 * pseudo-header) before calling.
3935 * Also ensure that inner checksum is in linear data area.
3936 */
3937static inline __wsum lco_csum(struct sk_buff *skb)
3938{
3939        unsigned char *csum_start = skb_checksum_start(skb);
3940        unsigned char *l4_hdr = skb_transport_header(skb);
3941        __wsum partial;
3942
3943        /* Start with complement of inner checksum adjustment */
3944        partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
3945                                                    skb->csum_offset));
3946
3947        /* Add in checksum of our headers (incl. outer checksum
3948         * adjustment filled in by caller) and return result.
3949         */
3950        return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
3951}
3952
3953#endif  /* __KERNEL__ */
3954#endif  /* _LINUX_SKBUFF_H */
3955