linux/include/linux/usb/gadget.h
<<
>>
Prefs
   1/*
   2 * <linux/usb/gadget.h>
   3 *
   4 * We call the USB code inside a Linux-based peripheral device a "gadget"
   5 * driver, except for the hardware-specific bus glue.  One USB host can
   6 * master many USB gadgets, but the gadgets are only slaved to one host.
   7 *
   8 *
   9 * (C) Copyright 2002-2004 by David Brownell
  10 * All Rights Reserved.
  11 *
  12 * This software is licensed under the GNU GPL version 2.
  13 */
  14
  15#ifndef __LINUX_USB_GADGET_H
  16#define __LINUX_USB_GADGET_H
  17
  18#include <linux/device.h>
  19#include <linux/errno.h>
  20#include <linux/init.h>
  21#include <linux/list.h>
  22#include <linux/slab.h>
  23#include <linux/scatterlist.h>
  24#include <linux/types.h>
  25#include <linux/workqueue.h>
  26#include <linux/usb/ch9.h>
  27
  28#define UDC_TRACE_STR_MAX       512
  29
  30struct usb_ep;
  31
  32/**
  33 * struct usb_request - describes one i/o request
  34 * @buf: Buffer used for data.  Always provide this; some controllers
  35 *      only use PIO, or don't use DMA for some endpoints.
  36 * @dma: DMA address corresponding to 'buf'.  If you don't set this
  37 *      field, and the usb controller needs one, it is responsible
  38 *      for mapping and unmapping the buffer.
  39 * @sg: a scatterlist for SG-capable controllers.
  40 * @num_sgs: number of SG entries
  41 * @num_mapped_sgs: number of SG entries mapped to DMA (internal)
  42 * @length: Length of that data
  43 * @stream_id: The stream id, when USB3.0 bulk streams are being used
  44 * @no_interrupt: If true, hints that no completion irq is needed.
  45 *      Helpful sometimes with deep request queues that are handled
  46 *      directly by DMA controllers.
  47 * @zero: If true, when writing data, makes the last packet be "short"
  48 *     by adding a zero length packet as needed;
  49 * @short_not_ok: When reading data, makes short packets be
  50 *     treated as errors (queue stops advancing till cleanup).
  51 * @complete: Function called when request completes, so this request and
  52 *      its buffer may be re-used.  The function will always be called with
  53 *      interrupts disabled, and it must not sleep.
  54 *      Reads terminate with a short packet, or when the buffer fills,
  55 *      whichever comes first.  When writes terminate, some data bytes
  56 *      will usually still be in flight (often in a hardware fifo).
  57 *      Errors (for reads or writes) stop the queue from advancing
  58 *      until the completion function returns, so that any transfers
  59 *      invalidated by the error may first be dequeued.
  60 * @context: For use by the completion callback
  61 * @list: For use by the gadget driver.
  62 * @status: Reports completion code, zero or a negative errno.
  63 *      Normally, faults block the transfer queue from advancing until
  64 *      the completion callback returns.
  65 *      Code "-ESHUTDOWN" indicates completion caused by device disconnect,
  66 *      or when the driver disabled the endpoint.
  67 * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
  68 *      transfers) this may be less than the requested length.  If the
  69 *      short_not_ok flag is set, short reads are treated as errors
  70 *      even when status otherwise indicates successful completion.
  71 *      Note that for writes (IN transfers) some data bytes may still
  72 *      reside in a device-side FIFO when the request is reported as
  73 *      complete.
  74 *
  75 * These are allocated/freed through the endpoint they're used with.  The
  76 * hardware's driver can add extra per-request data to the memory it returns,
  77 * which often avoids separate memory allocations (potential failures),
  78 * later when the request is queued.
  79 *
  80 * Request flags affect request handling, such as whether a zero length
  81 * packet is written (the "zero" flag), whether a short read should be
  82 * treated as an error (blocking request queue advance, the "short_not_ok"
  83 * flag), or hinting that an interrupt is not required (the "no_interrupt"
  84 * flag, for use with deep request queues).
  85 *
  86 * Bulk endpoints can use any size buffers, and can also be used for interrupt
  87 * transfers. interrupt-only endpoints can be much less functional.
  88 *
  89 * NOTE:  this is analogous to 'struct urb' on the host side, except that
  90 * it's thinner and promotes more pre-allocation.
  91 */
  92
  93struct usb_request {
  94        void                    *buf;
  95        unsigned                length;
  96        dma_addr_t              dma;
  97
  98        struct scatterlist      *sg;
  99        unsigned                num_sgs;
 100        unsigned                num_mapped_sgs;
 101
 102        unsigned                stream_id:16;
 103        unsigned                no_interrupt:1;
 104        unsigned                zero:1;
 105        unsigned                short_not_ok:1;
 106
 107        void                    (*complete)(struct usb_ep *ep,
 108                                        struct usb_request *req);
 109        void                    *context;
 110        struct list_head        list;
 111
 112        int                     status;
 113        unsigned                actual;
 114};
 115
 116/*-------------------------------------------------------------------------*/
 117
 118/* endpoint-specific parts of the api to the usb controller hardware.
 119 * unlike the urb model, (de)multiplexing layers are not required.
 120 * (so this api could slash overhead if used on the host side...)
 121 *
 122 * note that device side usb controllers commonly differ in how many
 123 * endpoints they support, as well as their capabilities.
 124 */
 125struct usb_ep_ops {
 126        int (*enable) (struct usb_ep *ep,
 127                const struct usb_endpoint_descriptor *desc);
 128        int (*disable) (struct usb_ep *ep);
 129
 130        struct usb_request *(*alloc_request) (struct usb_ep *ep,
 131                gfp_t gfp_flags);
 132        void (*free_request) (struct usb_ep *ep, struct usb_request *req);
 133
 134        int (*queue) (struct usb_ep *ep, struct usb_request *req,
 135                gfp_t gfp_flags);
 136        int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
 137
 138        int (*set_halt) (struct usb_ep *ep, int value);
 139        int (*set_wedge) (struct usb_ep *ep);
 140
 141        int (*fifo_status) (struct usb_ep *ep);
 142        void (*fifo_flush) (struct usb_ep *ep);
 143};
 144
 145/**
 146 * struct usb_ep_caps - endpoint capabilities description
 147 * @type_control:Endpoint supports control type (reserved for ep0).
 148 * @type_iso:Endpoint supports isochronous transfers.
 149 * @type_bulk:Endpoint supports bulk transfers.
 150 * @type_int:Endpoint supports interrupt transfers.
 151 * @dir_in:Endpoint supports IN direction.
 152 * @dir_out:Endpoint supports OUT direction.
 153 */
 154struct usb_ep_caps {
 155        unsigned type_control:1;
 156        unsigned type_iso:1;
 157        unsigned type_bulk:1;
 158        unsigned type_int:1;
 159        unsigned dir_in:1;
 160        unsigned dir_out:1;
 161};
 162
 163#define USB_EP_CAPS_TYPE_CONTROL     0x01
 164#define USB_EP_CAPS_TYPE_ISO         0x02
 165#define USB_EP_CAPS_TYPE_BULK        0x04
 166#define USB_EP_CAPS_TYPE_INT         0x08
 167#define USB_EP_CAPS_TYPE_ALL \
 168        (USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT)
 169#define USB_EP_CAPS_DIR_IN           0x01
 170#define USB_EP_CAPS_DIR_OUT          0x02
 171#define USB_EP_CAPS_DIR_ALL  (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT)
 172
 173#define USB_EP_CAPS(_type, _dir) \
 174        { \
 175                .type_control = !!(_type & USB_EP_CAPS_TYPE_CONTROL), \
 176                .type_iso = !!(_type & USB_EP_CAPS_TYPE_ISO), \
 177                .type_bulk = !!(_type & USB_EP_CAPS_TYPE_BULK), \
 178                .type_int = !!(_type & USB_EP_CAPS_TYPE_INT), \
 179                .dir_in = !!(_dir & USB_EP_CAPS_DIR_IN), \
 180                .dir_out = !!(_dir & USB_EP_CAPS_DIR_OUT), \
 181        }
 182
 183/**
 184 * struct usb_ep - device side representation of USB endpoint
 185 * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
 186 * @ops: Function pointers used to access hardware-specific operations.
 187 * @ep_list:the gadget's ep_list holds all of its endpoints
 188 * @caps:The structure describing types and directions supported by endoint.
 189 * @maxpacket:The maximum packet size used on this endpoint.  The initial
 190 *      value can sometimes be reduced (hardware allowing), according to
 191 *      the endpoint descriptor used to configure the endpoint.
 192 * @maxpacket_limit:The maximum packet size value which can be handled by this
 193 *      endpoint. It's set once by UDC driver when endpoint is initialized, and
 194 *      should not be changed. Should not be confused with maxpacket.
 195 * @max_streams: The maximum number of streams supported
 196 *      by this EP (0 - 16, actual number is 2^n)
 197 * @mult: multiplier, 'mult' value for SS Isoc EPs
 198 * @maxburst: the maximum number of bursts supported by this EP (for usb3)
 199 * @driver_data:for use by the gadget driver.
 200 * @address: used to identify the endpoint when finding descriptor that
 201 *      matches connection speed
 202 * @desc: endpoint descriptor.  This pointer is set before the endpoint is
 203 *      enabled and remains valid until the endpoint is disabled.
 204 * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
 205 *      descriptor that is used to configure the endpoint
 206 *
 207 * the bus controller driver lists all the general purpose endpoints in
 208 * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
 209 * and is accessed only in response to a driver setup() callback.
 210 */
 211
 212struct usb_ep {
 213        void                    *driver_data;
 214
 215        const char              *name;
 216        const struct usb_ep_ops *ops;
 217        struct list_head        ep_list;
 218        struct usb_ep_caps      caps;
 219        bool                    claimed;
 220        bool                    enabled;
 221        unsigned                maxpacket:16;
 222        unsigned                maxpacket_limit:16;
 223        unsigned                max_streams:16;
 224        unsigned                mult:2;
 225        unsigned                maxburst:5;
 226        u8                      address;
 227        const struct usb_endpoint_descriptor    *desc;
 228        const struct usb_ss_ep_comp_descriptor  *comp_desc;
 229};
 230
 231/*-------------------------------------------------------------------------*/
 232
 233#if IS_ENABLED(CONFIG_USB_GADGET)
 234void usb_ep_set_maxpacket_limit(struct usb_ep *ep, unsigned maxpacket_limit);
 235int usb_ep_enable(struct usb_ep *ep);
 236int usb_ep_disable(struct usb_ep *ep);
 237struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags);
 238void usb_ep_free_request(struct usb_ep *ep, struct usb_request *req);
 239int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags);
 240int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req);
 241int usb_ep_set_halt(struct usb_ep *ep);
 242int usb_ep_clear_halt(struct usb_ep *ep);
 243int usb_ep_set_wedge(struct usb_ep *ep);
 244int usb_ep_fifo_status(struct usb_ep *ep);
 245void usb_ep_fifo_flush(struct usb_ep *ep);
 246#else
 247static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
 248                unsigned maxpacket_limit)
 249{ }
 250static inline int usb_ep_enable(struct usb_ep *ep)
 251{ return 0; }
 252static inline int usb_ep_disable(struct usb_ep *ep)
 253{ return 0; }
 254static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
 255                gfp_t gfp_flags)
 256{ return NULL; }
 257static inline void usb_ep_free_request(struct usb_ep *ep,
 258                struct usb_request *req)
 259{ }
 260static inline int usb_ep_queue(struct usb_ep *ep, struct usb_request *req,
 261                gfp_t gfp_flags)
 262{ return 0; }
 263static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
 264{ return 0; }
 265static inline int usb_ep_set_halt(struct usb_ep *ep)
 266{ return 0; }
 267static inline int usb_ep_clear_halt(struct usb_ep *ep)
 268{ return 0; }
 269static inline int usb_ep_set_wedge(struct usb_ep *ep)
 270{ return 0; }
 271static inline int usb_ep_fifo_status(struct usb_ep *ep)
 272{ return 0; }
 273static inline void usb_ep_fifo_flush(struct usb_ep *ep)
 274{ }
 275#endif /* USB_GADGET */
 276
 277/*-------------------------------------------------------------------------*/
 278
 279struct usb_dcd_config_params {
 280        __u8  bU1devExitLat;    /* U1 Device exit Latency */
 281#define USB_DEFAULT_U1_DEV_EXIT_LAT     0x01    /* Less then 1 microsec */
 282        __le16 bU2DevExitLat;   /* U2 Device exit Latency */
 283#define USB_DEFAULT_U2_DEV_EXIT_LAT     0x1F4   /* Less then 500 microsec */
 284};
 285
 286
 287struct usb_gadget;
 288struct usb_gadget_driver;
 289struct usb_udc;
 290
 291/* the rest of the api to the controller hardware: device operations,
 292 * which don't involve endpoints (or i/o).
 293 */
 294struct usb_gadget_ops {
 295        int     (*get_frame)(struct usb_gadget *);
 296        int     (*wakeup)(struct usb_gadget *);
 297        int     (*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
 298        int     (*vbus_session) (struct usb_gadget *, int is_active);
 299        int     (*vbus_draw) (struct usb_gadget *, unsigned mA);
 300        int     (*pullup) (struct usb_gadget *, int is_on);
 301        int     (*ioctl)(struct usb_gadget *,
 302                                unsigned code, unsigned long param);
 303        void    (*get_config_params)(struct usb_dcd_config_params *);
 304        int     (*udc_start)(struct usb_gadget *,
 305                        struct usb_gadget_driver *);
 306        int     (*udc_stop)(struct usb_gadget *);
 307        void    (*udc_set_speed)(struct usb_gadget *, enum usb_device_speed);
 308        struct usb_ep *(*match_ep)(struct usb_gadget *,
 309                        struct usb_endpoint_descriptor *,
 310                        struct usb_ss_ep_comp_descriptor *);
 311};
 312
 313/**
 314 * struct usb_gadget - represents a usb slave device
 315 * @work: (internal use) Workqueue to be used for sysfs_notify()
 316 * @udc: struct usb_udc pointer for this gadget
 317 * @ops: Function pointers used to access hardware-specific operations.
 318 * @ep0: Endpoint zero, used when reading or writing responses to
 319 *      driver setup() requests
 320 * @ep_list: List of other endpoints supported by the device.
 321 * @speed: Speed of current connection to USB host.
 322 * @max_speed: Maximal speed the UDC can handle.  UDC must support this
 323 *      and all slower speeds.
 324 * @state: the state we are now (attached, suspended, configured, etc)
 325 * @name: Identifies the controller hardware type.  Used in diagnostics
 326 *      and sometimes configuration.
 327 * @dev: Driver model state for this abstract device.
 328 * @out_epnum: last used out ep number
 329 * @in_epnum: last used in ep number
 330 * @mA: last set mA value
 331 * @otg_caps: OTG capabilities of this gadget.
 332 * @sg_supported: true if we can handle scatter-gather
 333 * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
 334 *      gadget driver must provide a USB OTG descriptor.
 335 * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
 336 *      is in the Mini-AB jack, and HNP has been used to switch roles
 337 *      so that the "A" device currently acts as A-Peripheral, not A-Host.
 338 * @a_hnp_support: OTG device feature flag, indicating that the A-Host
 339 *      supports HNP at this port.
 340 * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
 341 *      only supports HNP on a different root port.
 342 * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
 343 *      enabled HNP support.
 344 * @hnp_polling_support: OTG device feature flag, indicating if the OTG device
 345 *      in peripheral mode can support HNP polling.
 346 * @host_request_flag: OTG device feature flag, indicating if A-Peripheral
 347 *      or B-Peripheral wants to take host role.
 348 * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
 349 *      MaxPacketSize.
 350 * @quirk_avoids_skb_reserve: udc/platform wants to avoid skb_reserve() in
 351 *      u_ether.c to improve performance.
 352 * @is_selfpowered: if the gadget is self-powered.
 353 * @deactivated: True if gadget is deactivated - in deactivated state it cannot
 354 *      be connected.
 355 * @connected: True if gadget is connected.
 356 * @lpm_capable: If the gadget max_speed is FULL or HIGH, this flag
 357 *      indicates that it supports LPM as per the LPM ECN & errata.
 358 *
 359 * Gadgets have a mostly-portable "gadget driver" implementing device
 360 * functions, handling all usb configurations and interfaces.  Gadget
 361 * drivers talk to hardware-specific code indirectly, through ops vectors.
 362 * That insulates the gadget driver from hardware details, and packages
 363 * the hardware endpoints through generic i/o queues.  The "usb_gadget"
 364 * and "usb_ep" interfaces provide that insulation from the hardware.
 365 *
 366 * Except for the driver data, all fields in this structure are
 367 * read-only to the gadget driver.  That driver data is part of the
 368 * "driver model" infrastructure in 2.6 (and later) kernels, and for
 369 * earlier systems is grouped in a similar structure that's not known
 370 * to the rest of the kernel.
 371 *
 372 * Values of the three OTG device feature flags are updated before the
 373 * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
 374 * driver suspend() calls.  They are valid only when is_otg, and when the
 375 * device is acting as a B-Peripheral (so is_a_peripheral is false).
 376 */
 377struct usb_gadget {
 378        struct work_struct              work;
 379        struct usb_udc                  *udc;
 380        /* readonly to gadget driver */
 381        const struct usb_gadget_ops     *ops;
 382        struct usb_ep                   *ep0;
 383        struct list_head                ep_list;        /* of usb_ep */
 384        enum usb_device_speed           speed;
 385        enum usb_device_speed           max_speed;
 386        enum usb_device_state           state;
 387        const char                      *name;
 388        struct device                   dev;
 389        unsigned                        out_epnum;
 390        unsigned                        in_epnum;
 391        unsigned                        mA;
 392        struct usb_otg_caps             *otg_caps;
 393
 394        unsigned                        sg_supported:1;
 395        unsigned                        is_otg:1;
 396        unsigned                        is_a_peripheral:1;
 397        unsigned                        b_hnp_enable:1;
 398        unsigned                        a_hnp_support:1;
 399        unsigned                        a_alt_hnp_support:1;
 400        unsigned                        hnp_polling_support:1;
 401        unsigned                        host_request_flag:1;
 402        unsigned                        quirk_ep_out_aligned_size:1;
 403        unsigned                        quirk_altset_not_supp:1;
 404        unsigned                        quirk_stall_not_supp:1;
 405        unsigned                        quirk_zlp_not_supp:1;
 406        unsigned                        quirk_avoids_skb_reserve:1;
 407        unsigned                        is_selfpowered:1;
 408        unsigned                        deactivated:1;
 409        unsigned                        connected:1;
 410        unsigned                        lpm_capable:1;
 411};
 412#define work_to_gadget(w)       (container_of((w), struct usb_gadget, work))
 413
 414static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
 415        { dev_set_drvdata(&gadget->dev, data); }
 416static inline void *get_gadget_data(struct usb_gadget *gadget)
 417        { return dev_get_drvdata(&gadget->dev); }
 418static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
 419{
 420        return container_of(dev, struct usb_gadget, dev);
 421}
 422
 423/* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
 424#define gadget_for_each_ep(tmp, gadget) \
 425        list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
 426
 427/**
 428 * usb_ep_align - returns @len aligned to ep's maxpacketsize.
 429 * @ep: the endpoint whose maxpacketsize is used to align @len
 430 * @len: buffer size's length to align to @ep's maxpacketsize
 431 *
 432 * This helper is used to align buffer's size to an ep's maxpacketsize.
 433 */
 434static inline size_t usb_ep_align(struct usb_ep *ep, size_t len)
 435{
 436        int max_packet_size = (size_t)usb_endpoint_maxp(ep->desc) & 0x7ff;
 437
 438        return round_up(len, max_packet_size);
 439}
 440
 441/**
 442 * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget
 443 *      requires quirk_ep_out_aligned_size, otherwise returns len.
 444 * @g: controller to check for quirk
 445 * @ep: the endpoint whose maxpacketsize is used to align @len
 446 * @len: buffer size's length to align to @ep's maxpacketsize
 447 *
 448 * This helper is used in case it's required for any reason to check and maybe
 449 * align buffer's size to an ep's maxpacketsize.
 450 */
 451static inline size_t
 452usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len)
 453{
 454        return g->quirk_ep_out_aligned_size ? usb_ep_align(ep, len) : len;
 455}
 456
 457/**
 458 * gadget_is_altset_supported - return true iff the hardware supports
 459 *      altsettings
 460 * @g: controller to check for quirk
 461 */
 462static inline int gadget_is_altset_supported(struct usb_gadget *g)
 463{
 464        return !g->quirk_altset_not_supp;
 465}
 466
 467/**
 468 * gadget_is_stall_supported - return true iff the hardware supports stalling
 469 * @g: controller to check for quirk
 470 */
 471static inline int gadget_is_stall_supported(struct usb_gadget *g)
 472{
 473        return !g->quirk_stall_not_supp;
 474}
 475
 476/**
 477 * gadget_is_zlp_supported - return true iff the hardware supports zlp
 478 * @g: controller to check for quirk
 479 */
 480static inline int gadget_is_zlp_supported(struct usb_gadget *g)
 481{
 482        return !g->quirk_zlp_not_supp;
 483}
 484
 485/**
 486 * gadget_avoids_skb_reserve - return true iff the hardware would like to avoid
 487 *      skb_reserve to improve performance.
 488 * @g: controller to check for quirk
 489 */
 490static inline int gadget_avoids_skb_reserve(struct usb_gadget *g)
 491{
 492        return g->quirk_avoids_skb_reserve;
 493}
 494
 495/**
 496 * gadget_is_dualspeed - return true iff the hardware handles high speed
 497 * @g: controller that might support both high and full speeds
 498 */
 499static inline int gadget_is_dualspeed(struct usb_gadget *g)
 500{
 501        return g->max_speed >= USB_SPEED_HIGH;
 502}
 503
 504/**
 505 * gadget_is_superspeed() - return true if the hardware handles superspeed
 506 * @g: controller that might support superspeed
 507 */
 508static inline int gadget_is_superspeed(struct usb_gadget *g)
 509{
 510        return g->max_speed >= USB_SPEED_SUPER;
 511}
 512
 513/**
 514 * gadget_is_superspeed_plus() - return true if the hardware handles
 515 *      superspeed plus
 516 * @g: controller that might support superspeed plus
 517 */
 518static inline int gadget_is_superspeed_plus(struct usb_gadget *g)
 519{
 520        return g->max_speed >= USB_SPEED_SUPER_PLUS;
 521}
 522
 523/**
 524 * gadget_is_otg - return true iff the hardware is OTG-ready
 525 * @g: controller that might have a Mini-AB connector
 526 *
 527 * This is a runtime test, since kernels with a USB-OTG stack sometimes
 528 * run on boards which only have a Mini-B (or Mini-A) connector.
 529 */
 530static inline int gadget_is_otg(struct usb_gadget *g)
 531{
 532#ifdef CONFIG_USB_OTG
 533        return g->is_otg;
 534#else
 535        return 0;
 536#endif
 537}
 538
 539/*-------------------------------------------------------------------------*/
 540
 541#if IS_ENABLED(CONFIG_USB_GADGET)
 542int usb_gadget_frame_number(struct usb_gadget *gadget);
 543int usb_gadget_wakeup(struct usb_gadget *gadget);
 544int usb_gadget_set_selfpowered(struct usb_gadget *gadget);
 545int usb_gadget_clear_selfpowered(struct usb_gadget *gadget);
 546int usb_gadget_vbus_connect(struct usb_gadget *gadget);
 547int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA);
 548int usb_gadget_vbus_disconnect(struct usb_gadget *gadget);
 549int usb_gadget_connect(struct usb_gadget *gadget);
 550int usb_gadget_disconnect(struct usb_gadget *gadget);
 551int usb_gadget_deactivate(struct usb_gadget *gadget);
 552int usb_gadget_activate(struct usb_gadget *gadget);
 553#else
 554static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
 555{ return 0; }
 556static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
 557{ return 0; }
 558static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
 559{ return 0; }
 560static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
 561{ return 0; }
 562static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
 563{ return 0; }
 564static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
 565{ return 0; }
 566static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
 567{ return 0; }
 568static inline int usb_gadget_connect(struct usb_gadget *gadget)
 569{ return 0; }
 570static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
 571{ return 0; }
 572static inline int usb_gadget_deactivate(struct usb_gadget *gadget)
 573{ return 0; }
 574static inline int usb_gadget_activate(struct usb_gadget *gadget)
 575{ return 0; }
 576#endif /* CONFIG_USB_GADGET */
 577
 578/*-------------------------------------------------------------------------*/
 579
 580/**
 581 * struct usb_gadget_driver - driver for usb 'slave' devices
 582 * @function: String describing the gadget's function
 583 * @max_speed: Highest speed the driver handles.
 584 * @setup: Invoked for ep0 control requests that aren't handled by
 585 *      the hardware level driver. Most calls must be handled by
 586 *      the gadget driver, including descriptor and configuration
 587 *      management.  The 16 bit members of the setup data are in
 588 *      USB byte order. Called in_interrupt; this may not sleep.  Driver
 589 *      queues a response to ep0, or returns negative to stall.
 590 * @disconnect: Invoked after all transfers have been stopped,
 591 *      when the host is disconnected.  May be called in_interrupt; this
 592 *      may not sleep.  Some devices can't detect disconnect, so this might
 593 *      not be called except as part of controller shutdown.
 594 * @bind: the driver's bind callback
 595 * @unbind: Invoked when the driver is unbound from a gadget,
 596 *      usually from rmmod (after a disconnect is reported).
 597 *      Called in a context that permits sleeping.
 598 * @suspend: Invoked on USB suspend.  May be called in_interrupt.
 599 * @resume: Invoked on USB resume.  May be called in_interrupt.
 600 * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
 601 *      and should be called in_interrupt.
 602 * @driver: Driver model state for this driver.
 603 * @udc_name: A name of UDC this driver should be bound to. If udc_name is NULL,
 604 *      this driver will be bound to any available UDC.
 605 * @pending: UDC core private data used for deferred probe of this driver.
 606 * @match_existing_only: If udc is not found, return an error and don't add this
 607 *      gadget driver to list of pending driver
 608 *
 609 * Devices are disabled till a gadget driver successfully bind()s, which
 610 * means the driver will handle setup() requests needed to enumerate (and
 611 * meet "chapter 9" requirements) then do some useful work.
 612 *
 613 * If gadget->is_otg is true, the gadget driver must provide an OTG
 614 * descriptor during enumeration, or else fail the bind() call.  In such
 615 * cases, no USB traffic may flow until both bind() returns without
 616 * having called usb_gadget_disconnect(), and the USB host stack has
 617 * initialized.
 618 *
 619 * Drivers use hardware-specific knowledge to configure the usb hardware.
 620 * endpoint addressing is only one of several hardware characteristics that
 621 * are in descriptors the ep0 implementation returns from setup() calls.
 622 *
 623 * Except for ep0 implementation, most driver code shouldn't need change to
 624 * run on top of different usb controllers.  It'll use endpoints set up by
 625 * that ep0 implementation.
 626 *
 627 * The usb controller driver handles a few standard usb requests.  Those
 628 * include set_address, and feature flags for devices, interfaces, and
 629 * endpoints (the get_status, set_feature, and clear_feature requests).
 630 *
 631 * Accordingly, the driver's setup() callback must always implement all
 632 * get_descriptor requests, returning at least a device descriptor and
 633 * a configuration descriptor.  Drivers must make sure the endpoint
 634 * descriptors match any hardware constraints. Some hardware also constrains
 635 * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
 636 *
 637 * The driver's setup() callback must also implement set_configuration,
 638 * and should also implement set_interface, get_configuration, and
 639 * get_interface.  Setting a configuration (or interface) is where
 640 * endpoints should be activated or (config 0) shut down.
 641 *
 642 * (Note that only the default control endpoint is supported.  Neither
 643 * hosts nor devices generally support control traffic except to ep0.)
 644 *
 645 * Most devices will ignore USB suspend/resume operations, and so will
 646 * not provide those callbacks.  However, some may need to change modes
 647 * when the host is not longer directing those activities.  For example,
 648 * local controls (buttons, dials, etc) may need to be re-enabled since
 649 * the (remote) host can't do that any longer; or an error state might
 650 * be cleared, to make the device behave identically whether or not
 651 * power is maintained.
 652 */
 653struct usb_gadget_driver {
 654        char                    *function;
 655        enum usb_device_speed   max_speed;
 656        int                     (*bind)(struct usb_gadget *gadget,
 657                                        struct usb_gadget_driver *driver);
 658        void                    (*unbind)(struct usb_gadget *);
 659        int                     (*setup)(struct usb_gadget *,
 660                                        const struct usb_ctrlrequest *);
 661        void                    (*disconnect)(struct usb_gadget *);
 662        void                    (*suspend)(struct usb_gadget *);
 663        void                    (*resume)(struct usb_gadget *);
 664        void                    (*reset)(struct usb_gadget *);
 665
 666        /* FIXME support safe rmmod */
 667        struct device_driver    driver;
 668
 669        char                    *udc_name;
 670        struct list_head        pending;
 671        unsigned                match_existing_only:1;
 672};
 673
 674
 675
 676/*-------------------------------------------------------------------------*/
 677
 678/* driver modules register and unregister, as usual.
 679 * these calls must be made in a context that can sleep.
 680 *
 681 * these will usually be implemented directly by the hardware-dependent
 682 * usb bus interface driver, which will only support a single driver.
 683 */
 684
 685/**
 686 * usb_gadget_probe_driver - probe a gadget driver
 687 * @driver: the driver being registered
 688 * Context: can sleep
 689 *
 690 * Call this in your gadget driver's module initialization function,
 691 * to tell the underlying usb controller driver about your driver.
 692 * The @bind() function will be called to bind it to a gadget before this
 693 * registration call returns.  It's expected that the @bind() function will
 694 * be in init sections.
 695 */
 696int usb_gadget_probe_driver(struct usb_gadget_driver *driver);
 697
 698/**
 699 * usb_gadget_unregister_driver - unregister a gadget driver
 700 * @driver:the driver being unregistered
 701 * Context: can sleep
 702 *
 703 * Call this in your gadget driver's module cleanup function,
 704 * to tell the underlying usb controller that your driver is
 705 * going away.  If the controller is connected to a USB host,
 706 * it will first disconnect().  The driver is also requested
 707 * to unbind() and clean up any device state, before this procedure
 708 * finally returns.  It's expected that the unbind() functions
 709 * will in in exit sections, so may not be linked in some kernels.
 710 */
 711int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
 712
 713extern int usb_add_gadget_udc_release(struct device *parent,
 714                struct usb_gadget *gadget, void (*release)(struct device *dev));
 715extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
 716extern void usb_del_gadget_udc(struct usb_gadget *gadget);
 717extern char *usb_get_gadget_udc_name(void);
 718
 719/*-------------------------------------------------------------------------*/
 720
 721/* utility to simplify dealing with string descriptors */
 722
 723/**
 724 * struct usb_string - wraps a C string and its USB id
 725 * @id:the (nonzero) ID for this string
 726 * @s:the string, in UTF-8 encoding
 727 *
 728 * If you're using usb_gadget_get_string(), use this to wrap a string
 729 * together with its ID.
 730 */
 731struct usb_string {
 732        u8                      id;
 733        const char              *s;
 734};
 735
 736/**
 737 * struct usb_gadget_strings - a set of USB strings in a given language
 738 * @language:identifies the strings' language (0x0409 for en-us)
 739 * @strings:array of strings with their ids
 740 *
 741 * If you're using usb_gadget_get_string(), use this to wrap all the
 742 * strings for a given language.
 743 */
 744struct usb_gadget_strings {
 745        u16                     language;       /* 0x0409 for en-us */
 746        struct usb_string       *strings;
 747};
 748
 749struct usb_gadget_string_container {
 750        struct list_head        list;
 751        u8                      *stash[0];
 752};
 753
 754/* put descriptor for string with that id into buf (buflen >= 256) */
 755int usb_gadget_get_string(struct usb_gadget_strings *table, int id, u8 *buf);
 756
 757/*-------------------------------------------------------------------------*/
 758
 759/* utility to simplify managing config descriptors */
 760
 761/* write vector of descriptors into buffer */
 762int usb_descriptor_fillbuf(void *, unsigned,
 763                const struct usb_descriptor_header **);
 764
 765/* build config descriptor from single descriptor vector */
 766int usb_gadget_config_buf(const struct usb_config_descriptor *config,
 767        void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
 768
 769/* copy a NULL-terminated vector of descriptors */
 770struct usb_descriptor_header **usb_copy_descriptors(
 771                struct usb_descriptor_header **);
 772
 773/**
 774 * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
 775 * @v: vector of descriptors
 776 */
 777static inline void usb_free_descriptors(struct usb_descriptor_header **v)
 778{
 779        kfree(v);
 780}
 781
 782struct usb_function;
 783int usb_assign_descriptors(struct usb_function *f,
 784                struct usb_descriptor_header **fs,
 785                struct usb_descriptor_header **hs,
 786                struct usb_descriptor_header **ss,
 787                struct usb_descriptor_header **ssp);
 788void usb_free_all_descriptors(struct usb_function *f);
 789
 790struct usb_descriptor_header *usb_otg_descriptor_alloc(
 791                                struct usb_gadget *gadget);
 792int usb_otg_descriptor_init(struct usb_gadget *gadget,
 793                struct usb_descriptor_header *otg_desc);
 794/*-------------------------------------------------------------------------*/
 795
 796/* utility to simplify map/unmap of usb_requests to/from DMA */
 797
 798extern int usb_gadget_map_request_by_dev(struct device *dev,
 799                struct usb_request *req, int is_in);
 800extern int usb_gadget_map_request(struct usb_gadget *gadget,
 801                struct usb_request *req, int is_in);
 802
 803extern void usb_gadget_unmap_request_by_dev(struct device *dev,
 804                struct usb_request *req, int is_in);
 805extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
 806                struct usb_request *req, int is_in);
 807
 808/*-------------------------------------------------------------------------*/
 809
 810/* utility to set gadget state properly */
 811
 812extern void usb_gadget_set_state(struct usb_gadget *gadget,
 813                enum usb_device_state state);
 814
 815/*-------------------------------------------------------------------------*/
 816
 817/* utility to tell udc core that the bus reset occurs */
 818extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
 819                struct usb_gadget_driver *driver);
 820
 821/*-------------------------------------------------------------------------*/
 822
 823/* utility to give requests back to the gadget layer */
 824
 825extern void usb_gadget_giveback_request(struct usb_ep *ep,
 826                struct usb_request *req);
 827
 828/*-------------------------------------------------------------------------*/
 829
 830/* utility to find endpoint by name */
 831
 832extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g,
 833                const char *name);
 834
 835/*-------------------------------------------------------------------------*/
 836
 837/* utility to check if endpoint caps match descriptor needs */
 838
 839extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
 840                struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
 841                struct usb_ss_ep_comp_descriptor *ep_comp);
 842
 843/*-------------------------------------------------------------------------*/
 844
 845/* utility to update vbus status for udc core, it may be scheduled */
 846extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status);
 847
 848/*-------------------------------------------------------------------------*/
 849
 850/* utility wrapping a simple endpoint selection policy */
 851
 852extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
 853                        struct usb_endpoint_descriptor *);
 854
 855
 856extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
 857                        struct usb_endpoint_descriptor *,
 858                        struct usb_ss_ep_comp_descriptor *);
 859
 860extern void usb_ep_autoconfig_release(struct usb_ep *);
 861
 862extern void usb_ep_autoconfig_reset(struct usb_gadget *);
 863
 864#endif /* __LINUX_USB_GADGET_H */
 865