linux/include/uapi/linux/perf_event.h
<<
>>
Prefs
   1/*
   2 * Performance events:
   3 *
   4 *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
   5 *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
   6 *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
   7 *
   8 * Data type definitions, declarations, prototypes.
   9 *
  10 *    Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 * For licencing details see kernel-base/COPYING
  13 */
  14#ifndef _UAPI_LINUX_PERF_EVENT_H
  15#define _UAPI_LINUX_PERF_EVENT_H
  16
  17#include <linux/types.h>
  18#include <linux/ioctl.h>
  19#include <asm/byteorder.h>
  20
  21/*
  22 * User-space ABI bits:
  23 */
  24
  25/*
  26 * attr.type
  27 */
  28enum perf_type_id {
  29        PERF_TYPE_HARDWARE                      = 0,
  30        PERF_TYPE_SOFTWARE                      = 1,
  31        PERF_TYPE_TRACEPOINT                    = 2,
  32        PERF_TYPE_HW_CACHE                      = 3,
  33        PERF_TYPE_RAW                           = 4,
  34        PERF_TYPE_BREAKPOINT                    = 5,
  35
  36        PERF_TYPE_MAX,                          /* non-ABI */
  37};
  38
  39/*
  40 * Generalized performance event event_id types, used by the
  41 * attr.event_id parameter of the sys_perf_event_open()
  42 * syscall:
  43 */
  44enum perf_hw_id {
  45        /*
  46         * Common hardware events, generalized by the kernel:
  47         */
  48        PERF_COUNT_HW_CPU_CYCLES                = 0,
  49        PERF_COUNT_HW_INSTRUCTIONS              = 1,
  50        PERF_COUNT_HW_CACHE_REFERENCES          = 2,
  51        PERF_COUNT_HW_CACHE_MISSES              = 3,
  52        PERF_COUNT_HW_BRANCH_INSTRUCTIONS       = 4,
  53        PERF_COUNT_HW_BRANCH_MISSES             = 5,
  54        PERF_COUNT_HW_BUS_CYCLES                = 6,
  55        PERF_COUNT_HW_STALLED_CYCLES_FRONTEND   = 7,
  56        PERF_COUNT_HW_STALLED_CYCLES_BACKEND    = 8,
  57        PERF_COUNT_HW_REF_CPU_CYCLES            = 9,
  58
  59        PERF_COUNT_HW_MAX,                      /* non-ABI */
  60};
  61
  62/*
  63 * Generalized hardware cache events:
  64 *
  65 *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
  66 *       { read, write, prefetch } x
  67 *       { accesses, misses }
  68 */
  69enum perf_hw_cache_id {
  70        PERF_COUNT_HW_CACHE_L1D                 = 0,
  71        PERF_COUNT_HW_CACHE_L1I                 = 1,
  72        PERF_COUNT_HW_CACHE_LL                  = 2,
  73        PERF_COUNT_HW_CACHE_DTLB                = 3,
  74        PERF_COUNT_HW_CACHE_ITLB                = 4,
  75        PERF_COUNT_HW_CACHE_BPU                 = 5,
  76        PERF_COUNT_HW_CACHE_NODE                = 6,
  77
  78        PERF_COUNT_HW_CACHE_MAX,                /* non-ABI */
  79};
  80
  81enum perf_hw_cache_op_id {
  82        PERF_COUNT_HW_CACHE_OP_READ             = 0,
  83        PERF_COUNT_HW_CACHE_OP_WRITE            = 1,
  84        PERF_COUNT_HW_CACHE_OP_PREFETCH         = 2,
  85
  86        PERF_COUNT_HW_CACHE_OP_MAX,             /* non-ABI */
  87};
  88
  89enum perf_hw_cache_op_result_id {
  90        PERF_COUNT_HW_CACHE_RESULT_ACCESS       = 0,
  91        PERF_COUNT_HW_CACHE_RESULT_MISS         = 1,
  92
  93        PERF_COUNT_HW_CACHE_RESULT_MAX,         /* non-ABI */
  94};
  95
  96/*
  97 * Special "software" events provided by the kernel, even if the hardware
  98 * does not support performance events. These events measure various
  99 * physical and sw events of the kernel (and allow the profiling of them as
 100 * well):
 101 */
 102enum perf_sw_ids {
 103        PERF_COUNT_SW_CPU_CLOCK                 = 0,
 104        PERF_COUNT_SW_TASK_CLOCK                = 1,
 105        PERF_COUNT_SW_PAGE_FAULTS               = 2,
 106        PERF_COUNT_SW_CONTEXT_SWITCHES          = 3,
 107        PERF_COUNT_SW_CPU_MIGRATIONS            = 4,
 108        PERF_COUNT_SW_PAGE_FAULTS_MIN           = 5,
 109        PERF_COUNT_SW_PAGE_FAULTS_MAJ           = 6,
 110        PERF_COUNT_SW_ALIGNMENT_FAULTS          = 7,
 111        PERF_COUNT_SW_EMULATION_FAULTS          = 8,
 112        PERF_COUNT_SW_DUMMY                     = 9,
 113        PERF_COUNT_SW_BPF_OUTPUT                = 10,
 114
 115        PERF_COUNT_SW_MAX,                      /* non-ABI */
 116};
 117
 118/*
 119 * Bits that can be set in attr.sample_type to request information
 120 * in the overflow packets.
 121 */
 122enum perf_event_sample_format {
 123        PERF_SAMPLE_IP                          = 1U << 0,
 124        PERF_SAMPLE_TID                         = 1U << 1,
 125        PERF_SAMPLE_TIME                        = 1U << 2,
 126        PERF_SAMPLE_ADDR                        = 1U << 3,
 127        PERF_SAMPLE_READ                        = 1U << 4,
 128        PERF_SAMPLE_CALLCHAIN                   = 1U << 5,
 129        PERF_SAMPLE_ID                          = 1U << 6,
 130        PERF_SAMPLE_CPU                         = 1U << 7,
 131        PERF_SAMPLE_PERIOD                      = 1U << 8,
 132        PERF_SAMPLE_STREAM_ID                   = 1U << 9,
 133        PERF_SAMPLE_RAW                         = 1U << 10,
 134        PERF_SAMPLE_BRANCH_STACK                = 1U << 11,
 135        PERF_SAMPLE_REGS_USER                   = 1U << 12,
 136        PERF_SAMPLE_STACK_USER                  = 1U << 13,
 137        PERF_SAMPLE_WEIGHT                      = 1U << 14,
 138        PERF_SAMPLE_DATA_SRC                    = 1U << 15,
 139        PERF_SAMPLE_IDENTIFIER                  = 1U << 16,
 140        PERF_SAMPLE_TRANSACTION                 = 1U << 17,
 141        PERF_SAMPLE_REGS_INTR                   = 1U << 18,
 142
 143        PERF_SAMPLE_MAX = 1U << 19,             /* non-ABI */
 144};
 145
 146/*
 147 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
 148 *
 149 * If the user does not pass priv level information via branch_sample_type,
 150 * the kernel uses the event's priv level. Branch and event priv levels do
 151 * not have to match. Branch priv level is checked for permissions.
 152 *
 153 * The branch types can be combined, however BRANCH_ANY covers all types
 154 * of branches and therefore it supersedes all the other types.
 155 */
 156enum perf_branch_sample_type_shift {
 157        PERF_SAMPLE_BRANCH_USER_SHIFT           = 0, /* user branches */
 158        PERF_SAMPLE_BRANCH_KERNEL_SHIFT         = 1, /* kernel branches */
 159        PERF_SAMPLE_BRANCH_HV_SHIFT             = 2, /* hypervisor branches */
 160
 161        PERF_SAMPLE_BRANCH_ANY_SHIFT            = 3, /* any branch types */
 162        PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT       = 4, /* any call branch */
 163        PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT     = 5, /* any return branch */
 164        PERF_SAMPLE_BRANCH_IND_CALL_SHIFT       = 6, /* indirect calls */
 165        PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT       = 7, /* transaction aborts */
 166        PERF_SAMPLE_BRANCH_IN_TX_SHIFT          = 8, /* in transaction */
 167        PERF_SAMPLE_BRANCH_NO_TX_SHIFT          = 9, /* not in transaction */
 168        PERF_SAMPLE_BRANCH_COND_SHIFT           = 10, /* conditional branches */
 169
 170        PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT     = 11, /* call/ret stack */
 171        PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT       = 12, /* indirect jumps */
 172        PERF_SAMPLE_BRANCH_CALL_SHIFT           = 13, /* direct call */
 173
 174        PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT       = 14, /* no flags */
 175        PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT      = 15, /* no cycles */
 176
 177        PERF_SAMPLE_BRANCH_MAX_SHIFT            /* non-ABI */
 178};
 179
 180enum perf_branch_sample_type {
 181        PERF_SAMPLE_BRANCH_USER         = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
 182        PERF_SAMPLE_BRANCH_KERNEL       = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
 183        PERF_SAMPLE_BRANCH_HV           = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
 184
 185        PERF_SAMPLE_BRANCH_ANY          = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
 186        PERF_SAMPLE_BRANCH_ANY_CALL     = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
 187        PERF_SAMPLE_BRANCH_ANY_RETURN   = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
 188        PERF_SAMPLE_BRANCH_IND_CALL     = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
 189        PERF_SAMPLE_BRANCH_ABORT_TX     = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
 190        PERF_SAMPLE_BRANCH_IN_TX        = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
 191        PERF_SAMPLE_BRANCH_NO_TX        = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
 192        PERF_SAMPLE_BRANCH_COND         = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
 193
 194        PERF_SAMPLE_BRANCH_CALL_STACK   = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
 195        PERF_SAMPLE_BRANCH_IND_JUMP     = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
 196        PERF_SAMPLE_BRANCH_CALL         = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
 197
 198        PERF_SAMPLE_BRANCH_NO_FLAGS     = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
 199        PERF_SAMPLE_BRANCH_NO_CYCLES    = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
 200
 201        PERF_SAMPLE_BRANCH_MAX          = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
 202};
 203
 204#define PERF_SAMPLE_BRANCH_PLM_ALL \
 205        (PERF_SAMPLE_BRANCH_USER|\
 206         PERF_SAMPLE_BRANCH_KERNEL|\
 207         PERF_SAMPLE_BRANCH_HV)
 208
 209/*
 210 * Values to determine ABI of the registers dump.
 211 */
 212enum perf_sample_regs_abi {
 213        PERF_SAMPLE_REGS_ABI_NONE       = 0,
 214        PERF_SAMPLE_REGS_ABI_32         = 1,
 215        PERF_SAMPLE_REGS_ABI_64         = 2,
 216};
 217
 218/*
 219 * Values for the memory transaction event qualifier, mostly for
 220 * abort events. Multiple bits can be set.
 221 */
 222enum {
 223        PERF_TXN_ELISION        = (1 << 0), /* From elision */
 224        PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
 225        PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
 226        PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
 227        PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
 228        PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
 229        PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
 230        PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
 231
 232        PERF_TXN_MAX            = (1 << 8), /* non-ABI */
 233
 234        /* bits 32..63 are reserved for the abort code */
 235
 236        PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
 237        PERF_TXN_ABORT_SHIFT = 32,
 238};
 239
 240/*
 241 * The format of the data returned by read() on a perf event fd,
 242 * as specified by attr.read_format:
 243 *
 244 * struct read_format {
 245 *      { u64           value;
 246 *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
 247 *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
 248 *        { u64         id;           } && PERF_FORMAT_ID
 249 *      } && !PERF_FORMAT_GROUP
 250 *
 251 *      { u64           nr;
 252 *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
 253 *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
 254 *        { u64         value;
 255 *          { u64       id;           } && PERF_FORMAT_ID
 256 *        }             cntr[nr];
 257 *      } && PERF_FORMAT_GROUP
 258 * };
 259 */
 260enum perf_event_read_format {
 261        PERF_FORMAT_TOTAL_TIME_ENABLED          = 1U << 0,
 262        PERF_FORMAT_TOTAL_TIME_RUNNING          = 1U << 1,
 263        PERF_FORMAT_ID                          = 1U << 2,
 264        PERF_FORMAT_GROUP                       = 1U << 3,
 265
 266        PERF_FORMAT_MAX = 1U << 4,              /* non-ABI */
 267};
 268
 269#define PERF_ATTR_SIZE_VER0     64      /* sizeof first published struct */
 270#define PERF_ATTR_SIZE_VER1     72      /* add: config2 */
 271#define PERF_ATTR_SIZE_VER2     80      /* add: branch_sample_type */
 272#define PERF_ATTR_SIZE_VER3     96      /* add: sample_regs_user */
 273                                        /* add: sample_stack_user */
 274#define PERF_ATTR_SIZE_VER4     104     /* add: sample_regs_intr */
 275#define PERF_ATTR_SIZE_VER5     112     /* add: aux_watermark */
 276
 277/*
 278 * Hardware event_id to monitor via a performance monitoring event:
 279 *
 280 * @sample_max_stack: Max number of frame pointers in a callchain,
 281 *                    should be < /proc/sys/kernel/perf_event_max_stack
 282 */
 283struct perf_event_attr {
 284
 285        /*
 286         * Major type: hardware/software/tracepoint/etc.
 287         */
 288        __u32                   type;
 289
 290        /*
 291         * Size of the attr structure, for fwd/bwd compat.
 292         */
 293        __u32                   size;
 294
 295        /*
 296         * Type specific configuration information.
 297         */
 298        __u64                   config;
 299
 300        union {
 301                __u64           sample_period;
 302                __u64           sample_freq;
 303        };
 304
 305        __u64                   sample_type;
 306        __u64                   read_format;
 307
 308        __u64                   disabled       :  1, /* off by default        */
 309                                inherit        :  1, /* children inherit it   */
 310                                pinned         :  1, /* must always be on PMU */
 311                                exclusive      :  1, /* only group on PMU     */
 312                                exclude_user   :  1, /* don't count user      */
 313                                exclude_kernel :  1, /* ditto kernel          */
 314                                exclude_hv     :  1, /* ditto hypervisor      */
 315                                exclude_idle   :  1, /* don't count when idle */
 316                                mmap           :  1, /* include mmap data     */
 317                                comm           :  1, /* include comm data     */
 318                                freq           :  1, /* use freq, not period  */
 319                                inherit_stat   :  1, /* per task counts       */
 320                                enable_on_exec :  1, /* next exec enables     */
 321                                task           :  1, /* trace fork/exit       */
 322                                watermark      :  1, /* wakeup_watermark      */
 323                                /*
 324                                 * precise_ip:
 325                                 *
 326                                 *  0 - SAMPLE_IP can have arbitrary skid
 327                                 *  1 - SAMPLE_IP must have constant skid
 328                                 *  2 - SAMPLE_IP requested to have 0 skid
 329                                 *  3 - SAMPLE_IP must have 0 skid
 330                                 *
 331                                 *  See also PERF_RECORD_MISC_EXACT_IP
 332                                 */
 333                                precise_ip     :  2, /* skid constraint       */
 334                                mmap_data      :  1, /* non-exec mmap data    */
 335                                sample_id_all  :  1, /* sample_type all events */
 336
 337                                exclude_host   :  1, /* don't count in host   */
 338                                exclude_guest  :  1, /* don't count in guest  */
 339
 340                                exclude_callchain_kernel : 1, /* exclude kernel callchains */
 341                                exclude_callchain_user   : 1, /* exclude user callchains */
 342                                mmap2          :  1, /* include mmap with inode data     */
 343                                comm_exec      :  1, /* flag comm events that are due to an exec */
 344                                use_clockid    :  1, /* use @clockid for time fields */
 345                                context_switch :  1, /* context switch data */
 346                                write_backward :  1, /* Write ring buffer from end to beginning */
 347                                namespaces     :  1, /* include namespaces data */
 348                                __reserved_1   : 35;
 349
 350        union {
 351                __u32           wakeup_events;    /* wakeup every n events */
 352                __u32           wakeup_watermark; /* bytes before wakeup   */
 353        };
 354
 355        __u32                   bp_type;
 356        union {
 357                __u64           bp_addr;
 358                __u64           config1; /* extension of config */
 359        };
 360        union {
 361                __u64           bp_len;
 362                __u64           config2; /* extension of config1 */
 363        };
 364        __u64   branch_sample_type; /* enum perf_branch_sample_type */
 365
 366        /*
 367         * Defines set of user regs to dump on samples.
 368         * See asm/perf_regs.h for details.
 369         */
 370        __u64   sample_regs_user;
 371
 372        /*
 373         * Defines size of the user stack to dump on samples.
 374         */
 375        __u32   sample_stack_user;
 376
 377        __s32   clockid;
 378        /*
 379         * Defines set of regs to dump for each sample
 380         * state captured on:
 381         *  - precise = 0: PMU interrupt
 382         *  - precise > 0: sampled instruction
 383         *
 384         * See asm/perf_regs.h for details.
 385         */
 386        __u64   sample_regs_intr;
 387
 388        /*
 389         * Wakeup watermark for AUX area
 390         */
 391        __u32   aux_watermark;
 392        __u16   sample_max_stack;
 393        __u16   __reserved_2;   /* align to __u64 */
 394};
 395
 396#define perf_flags(attr)        (*(&(attr)->read_format + 1))
 397
 398/*
 399 * Ioctls that can be done on a perf event fd:
 400 */
 401#define PERF_EVENT_IOC_ENABLE           _IO ('$', 0)
 402#define PERF_EVENT_IOC_DISABLE          _IO ('$', 1)
 403#define PERF_EVENT_IOC_REFRESH          _IO ('$', 2)
 404#define PERF_EVENT_IOC_RESET            _IO ('$', 3)
 405#define PERF_EVENT_IOC_PERIOD           _IOW('$', 4, __u64)
 406#define PERF_EVENT_IOC_SET_OUTPUT       _IO ('$', 5)
 407#define PERF_EVENT_IOC_SET_FILTER       _IOW('$', 6, char *)
 408#define PERF_EVENT_IOC_ID               _IOR('$', 7, __u64 *)
 409#define PERF_EVENT_IOC_SET_BPF          _IOW('$', 8, __u32)
 410#define PERF_EVENT_IOC_PAUSE_OUTPUT     _IOW('$', 9, __u32)
 411
 412enum perf_event_ioc_flags {
 413        PERF_IOC_FLAG_GROUP             = 1U << 0,
 414};
 415
 416/*
 417 * Structure of the page that can be mapped via mmap
 418 */
 419struct perf_event_mmap_page {
 420        __u32   version;                /* version number of this structure */
 421        __u32   compat_version;         /* lowest version this is compat with */
 422
 423        /*
 424         * Bits needed to read the hw events in user-space.
 425         *
 426         *   u32 seq, time_mult, time_shift, index, width;
 427         *   u64 count, enabled, running;
 428         *   u64 cyc, time_offset;
 429         *   s64 pmc = 0;
 430         *
 431         *   do {
 432         *     seq = pc->lock;
 433         *     barrier()
 434         *
 435         *     enabled = pc->time_enabled;
 436         *     running = pc->time_running;
 437         *
 438         *     if (pc->cap_usr_time && enabled != running) {
 439         *       cyc = rdtsc();
 440         *       time_offset = pc->time_offset;
 441         *       time_mult   = pc->time_mult;
 442         *       time_shift  = pc->time_shift;
 443         *     }
 444         *
 445         *     index = pc->index;
 446         *     count = pc->offset;
 447         *     if (pc->cap_user_rdpmc && index) {
 448         *       width = pc->pmc_width;
 449         *       pmc = rdpmc(index - 1);
 450         *     }
 451         *
 452         *     barrier();
 453         *   } while (pc->lock != seq);
 454         *
 455         * NOTE: for obvious reason this only works on self-monitoring
 456         *       processes.
 457         */
 458        __u32   lock;                   /* seqlock for synchronization */
 459        __u32   index;                  /* hardware event identifier */
 460        __s64   offset;                 /* add to hardware event value */
 461        __u64   time_enabled;           /* time event active */
 462        __u64   time_running;           /* time event on cpu */
 463        union {
 464                __u64   capabilities;
 465                struct {
 466                        __u64   cap_bit0                : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
 467                                cap_bit0_is_deprecated  : 1, /* Always 1, signals that bit 0 is zero */
 468
 469                                cap_user_rdpmc          : 1, /* The RDPMC instruction can be used to read counts */
 470                                cap_user_time           : 1, /* The time_* fields are used */
 471                                cap_user_time_zero      : 1, /* The time_zero field is used */
 472                                cap_____res             : 59;
 473                };
 474        };
 475
 476        /*
 477         * If cap_user_rdpmc this field provides the bit-width of the value
 478         * read using the rdpmc() or equivalent instruction. This can be used
 479         * to sign extend the result like:
 480         *
 481         *   pmc <<= 64 - width;
 482         *   pmc >>= 64 - width; // signed shift right
 483         *   count += pmc;
 484         */
 485        __u16   pmc_width;
 486
 487        /*
 488         * If cap_usr_time the below fields can be used to compute the time
 489         * delta since time_enabled (in ns) using rdtsc or similar.
 490         *
 491         *   u64 quot, rem;
 492         *   u64 delta;
 493         *
 494         *   quot = (cyc >> time_shift);
 495         *   rem = cyc & (((u64)1 << time_shift) - 1);
 496         *   delta = time_offset + quot * time_mult +
 497         *              ((rem * time_mult) >> time_shift);
 498         *
 499         * Where time_offset,time_mult,time_shift and cyc are read in the
 500         * seqcount loop described above. This delta can then be added to
 501         * enabled and possible running (if index), improving the scaling:
 502         *
 503         *   enabled += delta;
 504         *   if (index)
 505         *     running += delta;
 506         *
 507         *   quot = count / running;
 508         *   rem  = count % running;
 509         *   count = quot * enabled + (rem * enabled) / running;
 510         */
 511        __u16   time_shift;
 512        __u32   time_mult;
 513        __u64   time_offset;
 514        /*
 515         * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
 516         * from sample timestamps.
 517         *
 518         *   time = timestamp - time_zero;
 519         *   quot = time / time_mult;
 520         *   rem  = time % time_mult;
 521         *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
 522         *
 523         * And vice versa:
 524         *
 525         *   quot = cyc >> time_shift;
 526         *   rem  = cyc & (((u64)1 << time_shift) - 1);
 527         *   timestamp = time_zero + quot * time_mult +
 528         *               ((rem * time_mult) >> time_shift);
 529         */
 530        __u64   time_zero;
 531        __u32   size;                   /* Header size up to __reserved[] fields. */
 532
 533                /*
 534                 * Hole for extension of the self monitor capabilities
 535                 */
 536
 537        __u8    __reserved[118*8+4];    /* align to 1k. */
 538
 539        /*
 540         * Control data for the mmap() data buffer.
 541         *
 542         * User-space reading the @data_head value should issue an smp_rmb(),
 543         * after reading this value.
 544         *
 545         * When the mapping is PROT_WRITE the @data_tail value should be
 546         * written by userspace to reflect the last read data, after issueing
 547         * an smp_mb() to separate the data read from the ->data_tail store.
 548         * In this case the kernel will not over-write unread data.
 549         *
 550         * See perf_output_put_handle() for the data ordering.
 551         *
 552         * data_{offset,size} indicate the location and size of the perf record
 553         * buffer within the mmapped area.
 554         */
 555        __u64   data_head;              /* head in the data section */
 556        __u64   data_tail;              /* user-space written tail */
 557        __u64   data_offset;            /* where the buffer starts */
 558        __u64   data_size;              /* data buffer size */
 559
 560        /*
 561         * AUX area is defined by aux_{offset,size} fields that should be set
 562         * by the userspace, so that
 563         *
 564         *   aux_offset >= data_offset + data_size
 565         *
 566         * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
 567         *
 568         * Ring buffer pointers aux_{head,tail} have the same semantics as
 569         * data_{head,tail} and same ordering rules apply.
 570         */
 571        __u64   aux_head;
 572        __u64   aux_tail;
 573        __u64   aux_offset;
 574        __u64   aux_size;
 575};
 576
 577#define PERF_RECORD_MISC_CPUMODE_MASK           (7 << 0)
 578#define PERF_RECORD_MISC_CPUMODE_UNKNOWN        (0 << 0)
 579#define PERF_RECORD_MISC_KERNEL                 (1 << 0)
 580#define PERF_RECORD_MISC_USER                   (2 << 0)
 581#define PERF_RECORD_MISC_HYPERVISOR             (3 << 0)
 582#define PERF_RECORD_MISC_GUEST_KERNEL           (4 << 0)
 583#define PERF_RECORD_MISC_GUEST_USER             (5 << 0)
 584
 585/*
 586 * Indicates that /proc/PID/maps parsing are truncated by time out.
 587 */
 588#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12)
 589/*
 590 * PERF_RECORD_MISC_MMAP_DATA and PERF_RECORD_MISC_COMM_EXEC are used on
 591 * different events so can reuse the same bit position.
 592 * Ditto PERF_RECORD_MISC_SWITCH_OUT.
 593 */
 594#define PERF_RECORD_MISC_MMAP_DATA              (1 << 13)
 595#define PERF_RECORD_MISC_COMM_EXEC              (1 << 13)
 596#define PERF_RECORD_MISC_SWITCH_OUT             (1 << 13)
 597/*
 598 * Indicates that the content of PERF_SAMPLE_IP points to
 599 * the actual instruction that triggered the event. See also
 600 * perf_event_attr::precise_ip.
 601 */
 602#define PERF_RECORD_MISC_EXACT_IP               (1 << 14)
 603/*
 604 * Reserve the last bit to indicate some extended misc field
 605 */
 606#define PERF_RECORD_MISC_EXT_RESERVED           (1 << 15)
 607
 608struct perf_event_header {
 609        __u32   type;
 610        __u16   misc;
 611        __u16   size;
 612};
 613
 614struct perf_ns_link_info {
 615        __u64   dev;
 616        __u64   ino;
 617};
 618
 619enum {
 620        NET_NS_INDEX            = 0,
 621        UTS_NS_INDEX            = 1,
 622        IPC_NS_INDEX            = 2,
 623        PID_NS_INDEX            = 3,
 624        USER_NS_INDEX           = 4,
 625        MNT_NS_INDEX            = 5,
 626        CGROUP_NS_INDEX         = 6,
 627
 628        NR_NAMESPACES,          /* number of available namespaces */
 629};
 630
 631enum perf_event_type {
 632
 633        /*
 634         * If perf_event_attr.sample_id_all is set then all event types will
 635         * have the sample_type selected fields related to where/when
 636         * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
 637         * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
 638         * just after the perf_event_header and the fields already present for
 639         * the existing fields, i.e. at the end of the payload. That way a newer
 640         * perf.data file will be supported by older perf tools, with these new
 641         * optional fields being ignored.
 642         *
 643         * struct sample_id {
 644         *      { u32                   pid, tid; } && PERF_SAMPLE_TID
 645         *      { u64                   time;     } && PERF_SAMPLE_TIME
 646         *      { u64                   id;       } && PERF_SAMPLE_ID
 647         *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
 648         *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
 649         *      { u64                   id;       } && PERF_SAMPLE_IDENTIFIER
 650         * } && perf_event_attr::sample_id_all
 651         *
 652         * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
 653         * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
 654         * relative to header.size.
 655         */
 656
 657        /*
 658         * The MMAP events record the PROT_EXEC mappings so that we can
 659         * correlate userspace IPs to code. They have the following structure:
 660         *
 661         * struct {
 662         *      struct perf_event_header        header;
 663         *
 664         *      u32                             pid, tid;
 665         *      u64                             addr;
 666         *      u64                             len;
 667         *      u64                             pgoff;
 668         *      char                            filename[];
 669         *      struct sample_id                sample_id;
 670         * };
 671         */
 672        PERF_RECORD_MMAP                        = 1,
 673
 674        /*
 675         * struct {
 676         *      struct perf_event_header        header;
 677         *      u64                             id;
 678         *      u64                             lost;
 679         *      struct sample_id                sample_id;
 680         * };
 681         */
 682        PERF_RECORD_LOST                        = 2,
 683
 684        /*
 685         * struct {
 686         *      struct perf_event_header        header;
 687         *
 688         *      u32                             pid, tid;
 689         *      char                            comm[];
 690         *      struct sample_id                sample_id;
 691         * };
 692         */
 693        PERF_RECORD_COMM                        = 3,
 694
 695        /*
 696         * struct {
 697         *      struct perf_event_header        header;
 698         *      u32                             pid, ppid;
 699         *      u32                             tid, ptid;
 700         *      u64                             time;
 701         *      struct sample_id                sample_id;
 702         * };
 703         */
 704        PERF_RECORD_EXIT                        = 4,
 705
 706        /*
 707         * struct {
 708         *      struct perf_event_header        header;
 709         *      u64                             time;
 710         *      u64                             id;
 711         *      u64                             stream_id;
 712         *      struct sample_id                sample_id;
 713         * };
 714         */
 715        PERF_RECORD_THROTTLE                    = 5,
 716        PERF_RECORD_UNTHROTTLE                  = 6,
 717
 718        /*
 719         * struct {
 720         *      struct perf_event_header        header;
 721         *      u32                             pid, ppid;
 722         *      u32                             tid, ptid;
 723         *      u64                             time;
 724         *      struct sample_id                sample_id;
 725         * };
 726         */
 727        PERF_RECORD_FORK                        = 7,
 728
 729        /*
 730         * struct {
 731         *      struct perf_event_header        header;
 732         *      u32                             pid, tid;
 733         *
 734         *      struct read_format              values;
 735         *      struct sample_id                sample_id;
 736         * };
 737         */
 738        PERF_RECORD_READ                        = 8,
 739
 740        /*
 741         * struct {
 742         *      struct perf_event_header        header;
 743         *
 744         *      #
 745         *      # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
 746         *      # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
 747         *      # is fixed relative to header.
 748         *      #
 749         *
 750         *      { u64                   id;       } && PERF_SAMPLE_IDENTIFIER
 751         *      { u64                   ip;       } && PERF_SAMPLE_IP
 752         *      { u32                   pid, tid; } && PERF_SAMPLE_TID
 753         *      { u64                   time;     } && PERF_SAMPLE_TIME
 754         *      { u64                   addr;     } && PERF_SAMPLE_ADDR
 755         *      { u64                   id;       } && PERF_SAMPLE_ID
 756         *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
 757         *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
 758         *      { u64                   period;   } && PERF_SAMPLE_PERIOD
 759         *
 760         *      { struct read_format    values;   } && PERF_SAMPLE_READ
 761         *
 762         *      { u64                   nr,
 763         *        u64                   ips[nr];  } && PERF_SAMPLE_CALLCHAIN
 764         *
 765         *      #
 766         *      # The RAW record below is opaque data wrt the ABI
 767         *      #
 768         *      # That is, the ABI doesn't make any promises wrt to
 769         *      # the stability of its content, it may vary depending
 770         *      # on event, hardware, kernel version and phase of
 771         *      # the moon.
 772         *      #
 773         *      # In other words, PERF_SAMPLE_RAW contents are not an ABI.
 774         *      #
 775         *
 776         *      { u32                   size;
 777         *        char                  data[size];}&& PERF_SAMPLE_RAW
 778         *
 779         *      { u64                   nr;
 780         *        { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
 781         *
 782         *      { u64                   abi; # enum perf_sample_regs_abi
 783         *        u64                   regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
 784         *
 785         *      { u64                   size;
 786         *        char                  data[size];
 787         *        u64                   dyn_size; } && PERF_SAMPLE_STACK_USER
 788         *
 789         *      { u64                   weight;   } && PERF_SAMPLE_WEIGHT
 790         *      { u64                   data_src; } && PERF_SAMPLE_DATA_SRC
 791         *      { u64                   transaction; } && PERF_SAMPLE_TRANSACTION
 792         *      { u64                   abi; # enum perf_sample_regs_abi
 793         *        u64                   regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
 794         * };
 795         */
 796        PERF_RECORD_SAMPLE                      = 9,
 797
 798        /*
 799         * The MMAP2 records are an augmented version of MMAP, they add
 800         * maj, min, ino numbers to be used to uniquely identify each mapping
 801         *
 802         * struct {
 803         *      struct perf_event_header        header;
 804         *
 805         *      u32                             pid, tid;
 806         *      u64                             addr;
 807         *      u64                             len;
 808         *      u64                             pgoff;
 809         *      u32                             maj;
 810         *      u32                             min;
 811         *      u64                             ino;
 812         *      u64                             ino_generation;
 813         *      u32                             prot, flags;
 814         *      char                            filename[];
 815         *      struct sample_id                sample_id;
 816         * };
 817         */
 818        PERF_RECORD_MMAP2                       = 10,
 819
 820        /*
 821         * Records that new data landed in the AUX buffer part.
 822         *
 823         * struct {
 824         *      struct perf_event_header        header;
 825         *
 826         *      u64                             aux_offset;
 827         *      u64                             aux_size;
 828         *      u64                             flags;
 829         *      struct sample_id                sample_id;
 830         * };
 831         */
 832        PERF_RECORD_AUX                         = 11,
 833
 834        /*
 835         * Indicates that instruction trace has started
 836         *
 837         * struct {
 838         *      struct perf_event_header        header;
 839         *      u32                             pid;
 840         *      u32                             tid;
 841         * };
 842         */
 843        PERF_RECORD_ITRACE_START                = 12,
 844
 845        /*
 846         * Records the dropped/lost sample number.
 847         *
 848         * struct {
 849         *      struct perf_event_header        header;
 850         *
 851         *      u64                             lost;
 852         *      struct sample_id                sample_id;
 853         * };
 854         */
 855        PERF_RECORD_LOST_SAMPLES                = 13,
 856
 857        /*
 858         * Records a context switch in or out (flagged by
 859         * PERF_RECORD_MISC_SWITCH_OUT). See also
 860         * PERF_RECORD_SWITCH_CPU_WIDE.
 861         *
 862         * struct {
 863         *      struct perf_event_header        header;
 864         *      struct sample_id                sample_id;
 865         * };
 866         */
 867        PERF_RECORD_SWITCH                      = 14,
 868
 869        /*
 870         * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
 871         * next_prev_tid that are the next (switching out) or previous
 872         * (switching in) pid/tid.
 873         *
 874         * struct {
 875         *      struct perf_event_header        header;
 876         *      u32                             next_prev_pid;
 877         *      u32                             next_prev_tid;
 878         *      struct sample_id                sample_id;
 879         * };
 880         */
 881        PERF_RECORD_SWITCH_CPU_WIDE             = 15,
 882
 883        /*
 884         * struct {
 885         *      struct perf_event_header        header;
 886         *      u32                             pid;
 887         *      u32                             tid;
 888         *      u64                             nr_namespaces;
 889         *      { u64                           dev, inode; } [nr_namespaces];
 890         *      struct sample_id                sample_id;
 891         * };
 892         */
 893        PERF_RECORD_NAMESPACES                  = 16,
 894
 895        PERF_RECORD_MAX,                        /* non-ABI */
 896};
 897
 898#define PERF_MAX_STACK_DEPTH            127
 899#define PERF_MAX_CONTEXTS_PER_STACK       8
 900
 901enum perf_callchain_context {
 902        PERF_CONTEXT_HV                 = (__u64)-32,
 903        PERF_CONTEXT_KERNEL             = (__u64)-128,
 904        PERF_CONTEXT_USER               = (__u64)-512,
 905
 906        PERF_CONTEXT_GUEST              = (__u64)-2048,
 907        PERF_CONTEXT_GUEST_KERNEL       = (__u64)-2176,
 908        PERF_CONTEXT_GUEST_USER         = (__u64)-2560,
 909
 910        PERF_CONTEXT_MAX                = (__u64)-4095,
 911};
 912
 913/**
 914 * PERF_RECORD_AUX::flags bits
 915 */
 916#define PERF_AUX_FLAG_TRUNCATED         0x01    /* record was truncated to fit */
 917#define PERF_AUX_FLAG_OVERWRITE         0x02    /* snapshot from overwrite mode */
 918#define PERF_AUX_FLAG_PARTIAL           0x04    /* record contains gaps */
 919
 920#define PERF_FLAG_FD_NO_GROUP           (1UL << 0)
 921#define PERF_FLAG_FD_OUTPUT             (1UL << 1)
 922#define PERF_FLAG_PID_CGROUP            (1UL << 2) /* pid=cgroup id, per-cpu mode only */
 923#define PERF_FLAG_FD_CLOEXEC            (1UL << 3) /* O_CLOEXEC */
 924
 925#if defined(__LITTLE_ENDIAN_BITFIELD)
 926union perf_mem_data_src {
 927        __u64 val;
 928        struct {
 929                __u64   mem_op:5,       /* type of opcode */
 930                        mem_lvl:14,     /* memory hierarchy level */
 931                        mem_snoop:5,    /* snoop mode */
 932                        mem_lock:2,     /* lock instr */
 933                        mem_dtlb:7,     /* tlb access */
 934                        mem_rsvd:31;
 935        };
 936};
 937#elif defined(__BIG_ENDIAN_BITFIELD)
 938union perf_mem_data_src {
 939        __u64 val;
 940        struct {
 941                __u64   mem_rsvd:31,
 942                        mem_dtlb:7,     /* tlb access */
 943                        mem_lock:2,     /* lock instr */
 944                        mem_snoop:5,    /* snoop mode */
 945                        mem_lvl:14,     /* memory hierarchy level */
 946                        mem_op:5;       /* type of opcode */
 947        };
 948};
 949#else
 950#error "Unknown endianness"
 951#endif
 952
 953/* type of opcode (load/store/prefetch,code) */
 954#define PERF_MEM_OP_NA          0x01 /* not available */
 955#define PERF_MEM_OP_LOAD        0x02 /* load instruction */
 956#define PERF_MEM_OP_STORE       0x04 /* store instruction */
 957#define PERF_MEM_OP_PFETCH      0x08 /* prefetch */
 958#define PERF_MEM_OP_EXEC        0x10 /* code (execution) */
 959#define PERF_MEM_OP_SHIFT       0
 960
 961/* memory hierarchy (memory level, hit or miss) */
 962#define PERF_MEM_LVL_NA         0x01  /* not available */
 963#define PERF_MEM_LVL_HIT        0x02  /* hit level */
 964#define PERF_MEM_LVL_MISS       0x04  /* miss level  */
 965#define PERF_MEM_LVL_L1         0x08  /* L1 */
 966#define PERF_MEM_LVL_LFB        0x10  /* Line Fill Buffer */
 967#define PERF_MEM_LVL_L2         0x20  /* L2 */
 968#define PERF_MEM_LVL_L3         0x40  /* L3 */
 969#define PERF_MEM_LVL_LOC_RAM    0x80  /* Local DRAM */
 970#define PERF_MEM_LVL_REM_RAM1   0x100 /* Remote DRAM (1 hop) */
 971#define PERF_MEM_LVL_REM_RAM2   0x200 /* Remote DRAM (2 hops) */
 972#define PERF_MEM_LVL_REM_CCE1   0x400 /* Remote Cache (1 hop) */
 973#define PERF_MEM_LVL_REM_CCE2   0x800 /* Remote Cache (2 hops) */
 974#define PERF_MEM_LVL_IO         0x1000 /* I/O memory */
 975#define PERF_MEM_LVL_UNC        0x2000 /* Uncached memory */
 976#define PERF_MEM_LVL_SHIFT      5
 977
 978/* snoop mode */
 979#define PERF_MEM_SNOOP_NA       0x01 /* not available */
 980#define PERF_MEM_SNOOP_NONE     0x02 /* no snoop */
 981#define PERF_MEM_SNOOP_HIT      0x04 /* snoop hit */
 982#define PERF_MEM_SNOOP_MISS     0x08 /* snoop miss */
 983#define PERF_MEM_SNOOP_HITM     0x10 /* snoop hit modified */
 984#define PERF_MEM_SNOOP_SHIFT    19
 985
 986/* locked instruction */
 987#define PERF_MEM_LOCK_NA        0x01 /* not available */
 988#define PERF_MEM_LOCK_LOCKED    0x02 /* locked transaction */
 989#define PERF_MEM_LOCK_SHIFT     24
 990
 991/* TLB access */
 992#define PERF_MEM_TLB_NA         0x01 /* not available */
 993#define PERF_MEM_TLB_HIT        0x02 /* hit level */
 994#define PERF_MEM_TLB_MISS       0x04 /* miss level */
 995#define PERF_MEM_TLB_L1         0x08 /* L1 */
 996#define PERF_MEM_TLB_L2         0x10 /* L2 */
 997#define PERF_MEM_TLB_WK         0x20 /* Hardware Walker*/
 998#define PERF_MEM_TLB_OS         0x40 /* OS fault handler */
 999#define PERF_MEM_TLB_SHIFT      26
1000
1001#define PERF_MEM_S(a, s) \
1002        (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
1003
1004/*
1005 * single taken branch record layout:
1006 *
1007 *      from: source instruction (may not always be a branch insn)
1008 *        to: branch target
1009 *   mispred: branch target was mispredicted
1010 * predicted: branch target was predicted
1011 *
1012 * support for mispred, predicted is optional. In case it
1013 * is not supported mispred = predicted = 0.
1014 *
1015 *     in_tx: running in a hardware transaction
1016 *     abort: aborting a hardware transaction
1017 *    cycles: cycles from last branch (or 0 if not supported)
1018 */
1019struct perf_branch_entry {
1020        __u64   from;
1021        __u64   to;
1022        __u64   mispred:1,  /* target mispredicted */
1023                predicted:1,/* target predicted */
1024                in_tx:1,    /* in transaction */
1025                abort:1,    /* transaction abort */
1026                cycles:16,  /* cycle count to last branch */
1027                reserved:44;
1028};
1029
1030#endif /* _UAPI_LINUX_PERF_EVENT_H */
1031