linux/kernel/events/core.c
<<
>>
Prefs
   1/*
   2 * Performance events core code:
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
   7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   8 *
   9 * For licensing details see kernel-base/COPYING
  10 */
  11
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/cpu.h>
  15#include <linux/smp.h>
  16#include <linux/idr.h>
  17#include <linux/file.h>
  18#include <linux/poll.h>
  19#include <linux/slab.h>
  20#include <linux/hash.h>
  21#include <linux/tick.h>
  22#include <linux/sysfs.h>
  23#include <linux/dcache.h>
  24#include <linux/percpu.h>
  25#include <linux/ptrace.h>
  26#include <linux/reboot.h>
  27#include <linux/vmstat.h>
  28#include <linux/device.h>
  29#include <linux/export.h>
  30#include <linux/vmalloc.h>
  31#include <linux/hardirq.h>
  32#include <linux/rculist.h>
  33#include <linux/uaccess.h>
  34#include <linux/syscalls.h>
  35#include <linux/anon_inodes.h>
  36#include <linux/kernel_stat.h>
  37#include <linux/cgroup.h>
  38#include <linux/perf_event.h>
  39#include <linux/trace_events.h>
  40#include <linux/hw_breakpoint.h>
  41#include <linux/mm_types.h>
  42#include <linux/module.h>
  43#include <linux/mman.h>
  44#include <linux/compat.h>
  45#include <linux/bpf.h>
  46#include <linux/filter.h>
  47#include <linux/namei.h>
  48#include <linux/parser.h>
  49#include <linux/sched/clock.h>
  50#include <linux/sched/mm.h>
  51#include <linux/proc_ns.h>
  52#include <linux/mount.h>
  53
  54#include "internal.h"
  55
  56#include <asm/irq_regs.h>
  57
  58typedef int (*remote_function_f)(void *);
  59
  60struct remote_function_call {
  61        struct task_struct      *p;
  62        remote_function_f       func;
  63        void                    *info;
  64        int                     ret;
  65};
  66
  67static void remote_function(void *data)
  68{
  69        struct remote_function_call *tfc = data;
  70        struct task_struct *p = tfc->p;
  71
  72        if (p) {
  73                /* -EAGAIN */
  74                if (task_cpu(p) != smp_processor_id())
  75                        return;
  76
  77                /*
  78                 * Now that we're on right CPU with IRQs disabled, we can test
  79                 * if we hit the right task without races.
  80                 */
  81
  82                tfc->ret = -ESRCH; /* No such (running) process */
  83                if (p != current)
  84                        return;
  85        }
  86
  87        tfc->ret = tfc->func(tfc->info);
  88}
  89
  90/**
  91 * task_function_call - call a function on the cpu on which a task runs
  92 * @p:          the task to evaluate
  93 * @func:       the function to be called
  94 * @info:       the function call argument
  95 *
  96 * Calls the function @func when the task is currently running. This might
  97 * be on the current CPU, which just calls the function directly
  98 *
  99 * returns: @func return value, or
 100 *          -ESRCH  - when the process isn't running
 101 *          -EAGAIN - when the process moved away
 102 */
 103static int
 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
 105{
 106        struct remote_function_call data = {
 107                .p      = p,
 108                .func   = func,
 109                .info   = info,
 110                .ret    = -EAGAIN,
 111        };
 112        int ret;
 113
 114        do {
 115                ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
 116                if (!ret)
 117                        ret = data.ret;
 118        } while (ret == -EAGAIN);
 119
 120        return ret;
 121}
 122
 123/**
 124 * cpu_function_call - call a function on the cpu
 125 * @func:       the function to be called
 126 * @info:       the function call argument
 127 *
 128 * Calls the function @func on the remote cpu.
 129 *
 130 * returns: @func return value or -ENXIO when the cpu is offline
 131 */
 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
 133{
 134        struct remote_function_call data = {
 135                .p      = NULL,
 136                .func   = func,
 137                .info   = info,
 138                .ret    = -ENXIO, /* No such CPU */
 139        };
 140
 141        smp_call_function_single(cpu, remote_function, &data, 1);
 142
 143        return data.ret;
 144}
 145
 146static inline struct perf_cpu_context *
 147__get_cpu_context(struct perf_event_context *ctx)
 148{
 149        return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
 150}
 151
 152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
 153                          struct perf_event_context *ctx)
 154{
 155        raw_spin_lock(&cpuctx->ctx.lock);
 156        if (ctx)
 157                raw_spin_lock(&ctx->lock);
 158}
 159
 160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
 161                            struct perf_event_context *ctx)
 162{
 163        if (ctx)
 164                raw_spin_unlock(&ctx->lock);
 165        raw_spin_unlock(&cpuctx->ctx.lock);
 166}
 167
 168#define TASK_TOMBSTONE ((void *)-1L)
 169
 170static bool is_kernel_event(struct perf_event *event)
 171{
 172        return READ_ONCE(event->owner) == TASK_TOMBSTONE;
 173}
 174
 175/*
 176 * On task ctx scheduling...
 177 *
 178 * When !ctx->nr_events a task context will not be scheduled. This means
 179 * we can disable the scheduler hooks (for performance) without leaving
 180 * pending task ctx state.
 181 *
 182 * This however results in two special cases:
 183 *
 184 *  - removing the last event from a task ctx; this is relatively straight
 185 *    forward and is done in __perf_remove_from_context.
 186 *
 187 *  - adding the first event to a task ctx; this is tricky because we cannot
 188 *    rely on ctx->is_active and therefore cannot use event_function_call().
 189 *    See perf_install_in_context().
 190 *
 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 192 */
 193
 194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
 195                        struct perf_event_context *, void *);
 196
 197struct event_function_struct {
 198        struct perf_event *event;
 199        event_f func;
 200        void *data;
 201};
 202
 203static int event_function(void *info)
 204{
 205        struct event_function_struct *efs = info;
 206        struct perf_event *event = efs->event;
 207        struct perf_event_context *ctx = event->ctx;
 208        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 209        struct perf_event_context *task_ctx = cpuctx->task_ctx;
 210        int ret = 0;
 211
 212        WARN_ON_ONCE(!irqs_disabled());
 213
 214        perf_ctx_lock(cpuctx, task_ctx);
 215        /*
 216         * Since we do the IPI call without holding ctx->lock things can have
 217         * changed, double check we hit the task we set out to hit.
 218         */
 219        if (ctx->task) {
 220                if (ctx->task != current) {
 221                        ret = -ESRCH;
 222                        goto unlock;
 223                }
 224
 225                /*
 226                 * We only use event_function_call() on established contexts,
 227                 * and event_function() is only ever called when active (or
 228                 * rather, we'll have bailed in task_function_call() or the
 229                 * above ctx->task != current test), therefore we must have
 230                 * ctx->is_active here.
 231                 */
 232                WARN_ON_ONCE(!ctx->is_active);
 233                /*
 234                 * And since we have ctx->is_active, cpuctx->task_ctx must
 235                 * match.
 236                 */
 237                WARN_ON_ONCE(task_ctx != ctx);
 238        } else {
 239                WARN_ON_ONCE(&cpuctx->ctx != ctx);
 240        }
 241
 242        efs->func(event, cpuctx, ctx, efs->data);
 243unlock:
 244        perf_ctx_unlock(cpuctx, task_ctx);
 245
 246        return ret;
 247}
 248
 249static void event_function_call(struct perf_event *event, event_f func, void *data)
 250{
 251        struct perf_event_context *ctx = event->ctx;
 252        struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
 253        struct event_function_struct efs = {
 254                .event = event,
 255                .func = func,
 256                .data = data,
 257        };
 258
 259        if (!event->parent) {
 260                /*
 261                 * If this is a !child event, we must hold ctx::mutex to
 262                 * stabilize the the event->ctx relation. See
 263                 * perf_event_ctx_lock().
 264                 */
 265                lockdep_assert_held(&ctx->mutex);
 266        }
 267
 268        if (!task) {
 269                cpu_function_call(event->cpu, event_function, &efs);
 270                return;
 271        }
 272
 273        if (task == TASK_TOMBSTONE)
 274                return;
 275
 276again:
 277        if (!task_function_call(task, event_function, &efs))
 278                return;
 279
 280        raw_spin_lock_irq(&ctx->lock);
 281        /*
 282         * Reload the task pointer, it might have been changed by
 283         * a concurrent perf_event_context_sched_out().
 284         */
 285        task = ctx->task;
 286        if (task == TASK_TOMBSTONE) {
 287                raw_spin_unlock_irq(&ctx->lock);
 288                return;
 289        }
 290        if (ctx->is_active) {
 291                raw_spin_unlock_irq(&ctx->lock);
 292                goto again;
 293        }
 294        func(event, NULL, ctx, data);
 295        raw_spin_unlock_irq(&ctx->lock);
 296}
 297
 298/*
 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 300 * are already disabled and we're on the right CPU.
 301 */
 302static void event_function_local(struct perf_event *event, event_f func, void *data)
 303{
 304        struct perf_event_context *ctx = event->ctx;
 305        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 306        struct task_struct *task = READ_ONCE(ctx->task);
 307        struct perf_event_context *task_ctx = NULL;
 308
 309        WARN_ON_ONCE(!irqs_disabled());
 310
 311        if (task) {
 312                if (task == TASK_TOMBSTONE)
 313                        return;
 314
 315                task_ctx = ctx;
 316        }
 317
 318        perf_ctx_lock(cpuctx, task_ctx);
 319
 320        task = ctx->task;
 321        if (task == TASK_TOMBSTONE)
 322                goto unlock;
 323
 324        if (task) {
 325                /*
 326                 * We must be either inactive or active and the right task,
 327                 * otherwise we're screwed, since we cannot IPI to somewhere
 328                 * else.
 329                 */
 330                if (ctx->is_active) {
 331                        if (WARN_ON_ONCE(task != current))
 332                                goto unlock;
 333
 334                        if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
 335                                goto unlock;
 336                }
 337        } else {
 338                WARN_ON_ONCE(&cpuctx->ctx != ctx);
 339        }
 340
 341        func(event, cpuctx, ctx, data);
 342unlock:
 343        perf_ctx_unlock(cpuctx, task_ctx);
 344}
 345
 346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
 347                       PERF_FLAG_FD_OUTPUT  |\
 348                       PERF_FLAG_PID_CGROUP |\
 349                       PERF_FLAG_FD_CLOEXEC)
 350
 351/*
 352 * branch priv levels that need permission checks
 353 */
 354#define PERF_SAMPLE_BRANCH_PERM_PLM \
 355        (PERF_SAMPLE_BRANCH_KERNEL |\
 356         PERF_SAMPLE_BRANCH_HV)
 357
 358enum event_type_t {
 359        EVENT_FLEXIBLE = 0x1,
 360        EVENT_PINNED = 0x2,
 361        EVENT_TIME = 0x4,
 362        /* see ctx_resched() for details */
 363        EVENT_CPU = 0x8,
 364        EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
 365};
 366
 367/*
 368 * perf_sched_events : >0 events exist
 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 370 */
 371
 372static void perf_sched_delayed(struct work_struct *work);
 373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
 374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
 375static DEFINE_MUTEX(perf_sched_mutex);
 376static atomic_t perf_sched_count;
 377
 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
 381
 382static atomic_t nr_mmap_events __read_mostly;
 383static atomic_t nr_comm_events __read_mostly;
 384static atomic_t nr_namespaces_events __read_mostly;
 385static atomic_t nr_task_events __read_mostly;
 386static atomic_t nr_freq_events __read_mostly;
 387static atomic_t nr_switch_events __read_mostly;
 388
 389static LIST_HEAD(pmus);
 390static DEFINE_MUTEX(pmus_lock);
 391static struct srcu_struct pmus_srcu;
 392static cpumask_var_t perf_online_mask;
 393
 394/*
 395 * perf event paranoia level:
 396 *  -1 - not paranoid at all
 397 *   0 - disallow raw tracepoint access for unpriv
 398 *   1 - disallow cpu events for unpriv
 399 *   2 - disallow kernel profiling for unpriv
 400 */
 401int sysctl_perf_event_paranoid __read_mostly = 2;
 402
 403/* Minimum for 512 kiB + 1 user control page */
 404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
 405
 406/*
 407 * max perf event sample rate
 408 */
 409#define DEFAULT_MAX_SAMPLE_RATE         100000
 410#define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
 411#define DEFAULT_CPU_TIME_MAX_PERCENT    25
 412
 413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
 414
 415static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
 416static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
 417
 418static int perf_sample_allowed_ns __read_mostly =
 419        DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
 420
 421static void update_perf_cpu_limits(void)
 422{
 423        u64 tmp = perf_sample_period_ns;
 424
 425        tmp *= sysctl_perf_cpu_time_max_percent;
 426        tmp = div_u64(tmp, 100);
 427        if (!tmp)
 428                tmp = 1;
 429
 430        WRITE_ONCE(perf_sample_allowed_ns, tmp);
 431}
 432
 433static int perf_rotate_context(struct perf_cpu_context *cpuctx);
 434
 435int perf_proc_update_handler(struct ctl_table *table, int write,
 436                void __user *buffer, size_t *lenp,
 437                loff_t *ppos)
 438{
 439        int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 440
 441        if (ret || !write)
 442                return ret;
 443
 444        /*
 445         * If throttling is disabled don't allow the write:
 446         */
 447        if (sysctl_perf_cpu_time_max_percent == 100 ||
 448            sysctl_perf_cpu_time_max_percent == 0)
 449                return -EINVAL;
 450
 451        max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
 452        perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 453        update_perf_cpu_limits();
 454
 455        return 0;
 456}
 457
 458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
 459
 460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
 461                                void __user *buffer, size_t *lenp,
 462                                loff_t *ppos)
 463{
 464        int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 465
 466        if (ret || !write)
 467                return ret;
 468
 469        if (sysctl_perf_cpu_time_max_percent == 100 ||
 470            sysctl_perf_cpu_time_max_percent == 0) {
 471                printk(KERN_WARNING
 472                       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
 473                WRITE_ONCE(perf_sample_allowed_ns, 0);
 474        } else {
 475                update_perf_cpu_limits();
 476        }
 477
 478        return 0;
 479}
 480
 481/*
 482 * perf samples are done in some very critical code paths (NMIs).
 483 * If they take too much CPU time, the system can lock up and not
 484 * get any real work done.  This will drop the sample rate when
 485 * we detect that events are taking too long.
 486 */
 487#define NR_ACCUMULATED_SAMPLES 128
 488static DEFINE_PER_CPU(u64, running_sample_length);
 489
 490static u64 __report_avg;
 491static u64 __report_allowed;
 492
 493static void perf_duration_warn(struct irq_work *w)
 494{
 495        printk_ratelimited(KERN_INFO
 496                "perf: interrupt took too long (%lld > %lld), lowering "
 497                "kernel.perf_event_max_sample_rate to %d\n",
 498                __report_avg, __report_allowed,
 499                sysctl_perf_event_sample_rate);
 500}
 501
 502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
 503
 504void perf_sample_event_took(u64 sample_len_ns)
 505{
 506        u64 max_len = READ_ONCE(perf_sample_allowed_ns);
 507        u64 running_len;
 508        u64 avg_len;
 509        u32 max;
 510
 511        if (max_len == 0)
 512                return;
 513
 514        /* Decay the counter by 1 average sample. */
 515        running_len = __this_cpu_read(running_sample_length);
 516        running_len -= running_len/NR_ACCUMULATED_SAMPLES;
 517        running_len += sample_len_ns;
 518        __this_cpu_write(running_sample_length, running_len);
 519
 520        /*
 521         * Note: this will be biased artifically low until we have
 522         * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
 523         * from having to maintain a count.
 524         */
 525        avg_len = running_len/NR_ACCUMULATED_SAMPLES;
 526        if (avg_len <= max_len)
 527                return;
 528
 529        __report_avg = avg_len;
 530        __report_allowed = max_len;
 531
 532        /*
 533         * Compute a throttle threshold 25% below the current duration.
 534         */
 535        avg_len += avg_len / 4;
 536        max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
 537        if (avg_len < max)
 538                max /= (u32)avg_len;
 539        else
 540                max = 1;
 541
 542        WRITE_ONCE(perf_sample_allowed_ns, avg_len);
 543        WRITE_ONCE(max_samples_per_tick, max);
 544
 545        sysctl_perf_event_sample_rate = max * HZ;
 546        perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 547
 548        if (!irq_work_queue(&perf_duration_work)) {
 549                early_printk("perf: interrupt took too long (%lld > %lld), lowering "
 550                             "kernel.perf_event_max_sample_rate to %d\n",
 551                             __report_avg, __report_allowed,
 552                             sysctl_perf_event_sample_rate);
 553        }
 554}
 555
 556static atomic64_t perf_event_id;
 557
 558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 559                              enum event_type_t event_type);
 560
 561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 562                             enum event_type_t event_type,
 563                             struct task_struct *task);
 564
 565static void update_context_time(struct perf_event_context *ctx);
 566static u64 perf_event_time(struct perf_event *event);
 567
 568void __weak perf_event_print_debug(void)        { }
 569
 570extern __weak const char *perf_pmu_name(void)
 571{
 572        return "pmu";
 573}
 574
 575static inline u64 perf_clock(void)
 576{
 577        return local_clock();
 578}
 579
 580static inline u64 perf_event_clock(struct perf_event *event)
 581{
 582        return event->clock();
 583}
 584
 585#ifdef CONFIG_CGROUP_PERF
 586
 587static inline bool
 588perf_cgroup_match(struct perf_event *event)
 589{
 590        struct perf_event_context *ctx = event->ctx;
 591        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 592
 593        /* @event doesn't care about cgroup */
 594        if (!event->cgrp)
 595                return true;
 596
 597        /* wants specific cgroup scope but @cpuctx isn't associated with any */
 598        if (!cpuctx->cgrp)
 599                return false;
 600
 601        /*
 602         * Cgroup scoping is recursive.  An event enabled for a cgroup is
 603         * also enabled for all its descendant cgroups.  If @cpuctx's
 604         * cgroup is a descendant of @event's (the test covers identity
 605         * case), it's a match.
 606         */
 607        return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
 608                                    event->cgrp->css.cgroup);
 609}
 610
 611static inline void perf_detach_cgroup(struct perf_event *event)
 612{
 613        css_put(&event->cgrp->css);
 614        event->cgrp = NULL;
 615}
 616
 617static inline int is_cgroup_event(struct perf_event *event)
 618{
 619        return event->cgrp != NULL;
 620}
 621
 622static inline u64 perf_cgroup_event_time(struct perf_event *event)
 623{
 624        struct perf_cgroup_info *t;
 625
 626        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 627        return t->time;
 628}
 629
 630static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
 631{
 632        struct perf_cgroup_info *info;
 633        u64 now;
 634
 635        now = perf_clock();
 636
 637        info = this_cpu_ptr(cgrp->info);
 638
 639        info->time += now - info->timestamp;
 640        info->timestamp = now;
 641}
 642
 643static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 644{
 645        struct perf_cgroup *cgrp_out = cpuctx->cgrp;
 646        if (cgrp_out)
 647                __update_cgrp_time(cgrp_out);
 648}
 649
 650static inline void update_cgrp_time_from_event(struct perf_event *event)
 651{
 652        struct perf_cgroup *cgrp;
 653
 654        /*
 655         * ensure we access cgroup data only when needed and
 656         * when we know the cgroup is pinned (css_get)
 657         */
 658        if (!is_cgroup_event(event))
 659                return;
 660
 661        cgrp = perf_cgroup_from_task(current, event->ctx);
 662        /*
 663         * Do not update time when cgroup is not active
 664         */
 665        if (cgrp == event->cgrp)
 666                __update_cgrp_time(event->cgrp);
 667}
 668
 669static inline void
 670perf_cgroup_set_timestamp(struct task_struct *task,
 671                          struct perf_event_context *ctx)
 672{
 673        struct perf_cgroup *cgrp;
 674        struct perf_cgroup_info *info;
 675
 676        /*
 677         * ctx->lock held by caller
 678         * ensure we do not access cgroup data
 679         * unless we have the cgroup pinned (css_get)
 680         */
 681        if (!task || !ctx->nr_cgroups)
 682                return;
 683
 684        cgrp = perf_cgroup_from_task(task, ctx);
 685        info = this_cpu_ptr(cgrp->info);
 686        info->timestamp = ctx->timestamp;
 687}
 688
 689static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
 690
 691#define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
 692#define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
 693
 694/*
 695 * reschedule events based on the cgroup constraint of task.
 696 *
 697 * mode SWOUT : schedule out everything
 698 * mode SWIN : schedule in based on cgroup for next
 699 */
 700static void perf_cgroup_switch(struct task_struct *task, int mode)
 701{
 702        struct perf_cpu_context *cpuctx;
 703        struct list_head *list;
 704        unsigned long flags;
 705
 706        /*
 707         * Disable interrupts and preemption to avoid this CPU's
 708         * cgrp_cpuctx_entry to change under us.
 709         */
 710        local_irq_save(flags);
 711
 712        list = this_cpu_ptr(&cgrp_cpuctx_list);
 713        list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
 714                WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
 715
 716                perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 717                perf_pmu_disable(cpuctx->ctx.pmu);
 718
 719                if (mode & PERF_CGROUP_SWOUT) {
 720                        cpu_ctx_sched_out(cpuctx, EVENT_ALL);
 721                        /*
 722                         * must not be done before ctxswout due
 723                         * to event_filter_match() in event_sched_out()
 724                         */
 725                        cpuctx->cgrp = NULL;
 726                }
 727
 728                if (mode & PERF_CGROUP_SWIN) {
 729                        WARN_ON_ONCE(cpuctx->cgrp);
 730                        /*
 731                         * set cgrp before ctxsw in to allow
 732                         * event_filter_match() to not have to pass
 733                         * task around
 734                         * we pass the cpuctx->ctx to perf_cgroup_from_task()
 735                         * because cgorup events are only per-cpu
 736                         */
 737                        cpuctx->cgrp = perf_cgroup_from_task(task,
 738                                                             &cpuctx->ctx);
 739                        cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
 740                }
 741                perf_pmu_enable(cpuctx->ctx.pmu);
 742                perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 743        }
 744
 745        local_irq_restore(flags);
 746}
 747
 748static inline void perf_cgroup_sched_out(struct task_struct *task,
 749                                         struct task_struct *next)
 750{
 751        struct perf_cgroup *cgrp1;
 752        struct perf_cgroup *cgrp2 = NULL;
 753
 754        rcu_read_lock();
 755        /*
 756         * we come here when we know perf_cgroup_events > 0
 757         * we do not need to pass the ctx here because we know
 758         * we are holding the rcu lock
 759         */
 760        cgrp1 = perf_cgroup_from_task(task, NULL);
 761        cgrp2 = perf_cgroup_from_task(next, NULL);
 762
 763        /*
 764         * only schedule out current cgroup events if we know
 765         * that we are switching to a different cgroup. Otherwise,
 766         * do no touch the cgroup events.
 767         */
 768        if (cgrp1 != cgrp2)
 769                perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
 770
 771        rcu_read_unlock();
 772}
 773
 774static inline void perf_cgroup_sched_in(struct task_struct *prev,
 775                                        struct task_struct *task)
 776{
 777        struct perf_cgroup *cgrp1;
 778        struct perf_cgroup *cgrp2 = NULL;
 779
 780        rcu_read_lock();
 781        /*
 782         * we come here when we know perf_cgroup_events > 0
 783         * we do not need to pass the ctx here because we know
 784         * we are holding the rcu lock
 785         */
 786        cgrp1 = perf_cgroup_from_task(task, NULL);
 787        cgrp2 = perf_cgroup_from_task(prev, NULL);
 788
 789        /*
 790         * only need to schedule in cgroup events if we are changing
 791         * cgroup during ctxsw. Cgroup events were not scheduled
 792         * out of ctxsw out if that was not the case.
 793         */
 794        if (cgrp1 != cgrp2)
 795                perf_cgroup_switch(task, PERF_CGROUP_SWIN);
 796
 797        rcu_read_unlock();
 798}
 799
 800static inline int perf_cgroup_connect(int fd, struct perf_event *event,
 801                                      struct perf_event_attr *attr,
 802                                      struct perf_event *group_leader)
 803{
 804        struct perf_cgroup *cgrp;
 805        struct cgroup_subsys_state *css;
 806        struct fd f = fdget(fd);
 807        int ret = 0;
 808
 809        if (!f.file)
 810                return -EBADF;
 811
 812        css = css_tryget_online_from_dir(f.file->f_path.dentry,
 813                                         &perf_event_cgrp_subsys);
 814        if (IS_ERR(css)) {
 815                ret = PTR_ERR(css);
 816                goto out;
 817        }
 818
 819        cgrp = container_of(css, struct perf_cgroup, css);
 820        event->cgrp = cgrp;
 821
 822        /*
 823         * all events in a group must monitor
 824         * the same cgroup because a task belongs
 825         * to only one perf cgroup at a time
 826         */
 827        if (group_leader && group_leader->cgrp != cgrp) {
 828                perf_detach_cgroup(event);
 829                ret = -EINVAL;
 830        }
 831out:
 832        fdput(f);
 833        return ret;
 834}
 835
 836static inline void
 837perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 838{
 839        struct perf_cgroup_info *t;
 840        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 841        event->shadow_ctx_time = now - t->timestamp;
 842}
 843
 844static inline void
 845perf_cgroup_defer_enabled(struct perf_event *event)
 846{
 847        /*
 848         * when the current task's perf cgroup does not match
 849         * the event's, we need to remember to call the
 850         * perf_mark_enable() function the first time a task with
 851         * a matching perf cgroup is scheduled in.
 852         */
 853        if (is_cgroup_event(event) && !perf_cgroup_match(event))
 854                event->cgrp_defer_enabled = 1;
 855}
 856
 857static inline void
 858perf_cgroup_mark_enabled(struct perf_event *event,
 859                         struct perf_event_context *ctx)
 860{
 861        struct perf_event *sub;
 862        u64 tstamp = perf_event_time(event);
 863
 864        if (!event->cgrp_defer_enabled)
 865                return;
 866
 867        event->cgrp_defer_enabled = 0;
 868
 869        event->tstamp_enabled = tstamp - event->total_time_enabled;
 870        list_for_each_entry(sub, &event->sibling_list, group_entry) {
 871                if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
 872                        sub->tstamp_enabled = tstamp - sub->total_time_enabled;
 873                        sub->cgrp_defer_enabled = 0;
 874                }
 875        }
 876}
 877
 878/*
 879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 880 * cleared when last cgroup event is removed.
 881 */
 882static inline void
 883list_update_cgroup_event(struct perf_event *event,
 884                         struct perf_event_context *ctx, bool add)
 885{
 886        struct perf_cpu_context *cpuctx;
 887        struct list_head *cpuctx_entry;
 888
 889        if (!is_cgroup_event(event))
 890                return;
 891
 892        if (add && ctx->nr_cgroups++)
 893                return;
 894        else if (!add && --ctx->nr_cgroups)
 895                return;
 896        /*
 897         * Because cgroup events are always per-cpu events,
 898         * this will always be called from the right CPU.
 899         */
 900        cpuctx = __get_cpu_context(ctx);
 901        cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
 902        /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
 903        if (add) {
 904                list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
 905                if (perf_cgroup_from_task(current, ctx) == event->cgrp)
 906                        cpuctx->cgrp = event->cgrp;
 907        } else {
 908                list_del(cpuctx_entry);
 909                cpuctx->cgrp = NULL;
 910        }
 911}
 912
 913#else /* !CONFIG_CGROUP_PERF */
 914
 915static inline bool
 916perf_cgroup_match(struct perf_event *event)
 917{
 918        return true;
 919}
 920
 921static inline void perf_detach_cgroup(struct perf_event *event)
 922{}
 923
 924static inline int is_cgroup_event(struct perf_event *event)
 925{
 926        return 0;
 927}
 928
 929static inline void update_cgrp_time_from_event(struct perf_event *event)
 930{
 931}
 932
 933static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 934{
 935}
 936
 937static inline void perf_cgroup_sched_out(struct task_struct *task,
 938                                         struct task_struct *next)
 939{
 940}
 941
 942static inline void perf_cgroup_sched_in(struct task_struct *prev,
 943                                        struct task_struct *task)
 944{
 945}
 946
 947static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
 948                                      struct perf_event_attr *attr,
 949                                      struct perf_event *group_leader)
 950{
 951        return -EINVAL;
 952}
 953
 954static inline void
 955perf_cgroup_set_timestamp(struct task_struct *task,
 956                          struct perf_event_context *ctx)
 957{
 958}
 959
 960void
 961perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
 962{
 963}
 964
 965static inline void
 966perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 967{
 968}
 969
 970static inline u64 perf_cgroup_event_time(struct perf_event *event)
 971{
 972        return 0;
 973}
 974
 975static inline void
 976perf_cgroup_defer_enabled(struct perf_event *event)
 977{
 978}
 979
 980static inline void
 981perf_cgroup_mark_enabled(struct perf_event *event,
 982                         struct perf_event_context *ctx)
 983{
 984}
 985
 986static inline void
 987list_update_cgroup_event(struct perf_event *event,
 988                         struct perf_event_context *ctx, bool add)
 989{
 990}
 991
 992#endif
 993
 994/*
 995 * set default to be dependent on timer tick just
 996 * like original code
 997 */
 998#define PERF_CPU_HRTIMER (1000 / HZ)
 999/*
1000 * function must be called with interrupts disabled
1001 */
1002static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003{
1004        struct perf_cpu_context *cpuctx;
1005        int rotations = 0;
1006
1007        WARN_ON(!irqs_disabled());
1008
1009        cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010        rotations = perf_rotate_context(cpuctx);
1011
1012        raw_spin_lock(&cpuctx->hrtimer_lock);
1013        if (rotations)
1014                hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015        else
1016                cpuctx->hrtimer_active = 0;
1017        raw_spin_unlock(&cpuctx->hrtimer_lock);
1018
1019        return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020}
1021
1022static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023{
1024        struct hrtimer *timer = &cpuctx->hrtimer;
1025        struct pmu *pmu = cpuctx->ctx.pmu;
1026        u64 interval;
1027
1028        /* no multiplexing needed for SW PMU */
1029        if (pmu->task_ctx_nr == perf_sw_context)
1030                return;
1031
1032        /*
1033         * check default is sane, if not set then force to
1034         * default interval (1/tick)
1035         */
1036        interval = pmu->hrtimer_interval_ms;
1037        if (interval < 1)
1038                interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039
1040        cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041
1042        raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043        hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044        timer->function = perf_mux_hrtimer_handler;
1045}
1046
1047static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048{
1049        struct hrtimer *timer = &cpuctx->hrtimer;
1050        struct pmu *pmu = cpuctx->ctx.pmu;
1051        unsigned long flags;
1052
1053        /* not for SW PMU */
1054        if (pmu->task_ctx_nr == perf_sw_context)
1055                return 0;
1056
1057        raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058        if (!cpuctx->hrtimer_active) {
1059                cpuctx->hrtimer_active = 1;
1060                hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061                hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062        }
1063        raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064
1065        return 0;
1066}
1067
1068void perf_pmu_disable(struct pmu *pmu)
1069{
1070        int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071        if (!(*count)++)
1072                pmu->pmu_disable(pmu);
1073}
1074
1075void perf_pmu_enable(struct pmu *pmu)
1076{
1077        int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078        if (!--(*count))
1079                pmu->pmu_enable(pmu);
1080}
1081
1082static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083
1084/*
1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086 * perf_event_task_tick() are fully serialized because they're strictly cpu
1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088 * disabled, while perf_event_task_tick is called from IRQ context.
1089 */
1090static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091{
1092        struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093
1094        WARN_ON(!irqs_disabled());
1095
1096        WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098        list_add(&ctx->active_ctx_list, head);
1099}
1100
1101static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102{
1103        WARN_ON(!irqs_disabled());
1104
1105        WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107        list_del_init(&ctx->active_ctx_list);
1108}
1109
1110static void get_ctx(struct perf_event_context *ctx)
1111{
1112        WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113}
1114
1115static void free_ctx(struct rcu_head *head)
1116{
1117        struct perf_event_context *ctx;
1118
1119        ctx = container_of(head, struct perf_event_context, rcu_head);
1120        kfree(ctx->task_ctx_data);
1121        kfree(ctx);
1122}
1123
1124static void put_ctx(struct perf_event_context *ctx)
1125{
1126        if (atomic_dec_and_test(&ctx->refcount)) {
1127                if (ctx->parent_ctx)
1128                        put_ctx(ctx->parent_ctx);
1129                if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130                        put_task_struct(ctx->task);
1131                call_rcu(&ctx->rcu_head, free_ctx);
1132        }
1133}
1134
1135/*
1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137 * perf_pmu_migrate_context() we need some magic.
1138 *
1139 * Those places that change perf_event::ctx will hold both
1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141 *
1142 * Lock ordering is by mutex address. There are two other sites where
1143 * perf_event_context::mutex nests and those are:
1144 *
1145 *  - perf_event_exit_task_context()    [ child , 0 ]
1146 *      perf_event_exit_event()
1147 *        put_event()                   [ parent, 1 ]
1148 *
1149 *  - perf_event_init_context()         [ parent, 0 ]
1150 *      inherit_task_group()
1151 *        inherit_group()
1152 *          inherit_event()
1153 *            perf_event_alloc()
1154 *              perf_init_event()
1155 *                perf_try_init_event() [ child , 1 ]
1156 *
1157 * While it appears there is an obvious deadlock here -- the parent and child
1158 * nesting levels are inverted between the two. This is in fact safe because
1159 * life-time rules separate them. That is an exiting task cannot fork, and a
1160 * spawning task cannot (yet) exit.
1161 *
1162 * But remember that that these are parent<->child context relations, and
1163 * migration does not affect children, therefore these two orderings should not
1164 * interact.
1165 *
1166 * The change in perf_event::ctx does not affect children (as claimed above)
1167 * because the sys_perf_event_open() case will install a new event and break
1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169 * concerned with cpuctx and that doesn't have children.
1170 *
1171 * The places that change perf_event::ctx will issue:
1172 *
1173 *   perf_remove_from_context();
1174 *   synchronize_rcu();
1175 *   perf_install_in_context();
1176 *
1177 * to affect the change. The remove_from_context() + synchronize_rcu() should
1178 * quiesce the event, after which we can install it in the new location. This
1179 * means that only external vectors (perf_fops, prctl) can perturb the event
1180 * while in transit. Therefore all such accessors should also acquire
1181 * perf_event_context::mutex to serialize against this.
1182 *
1183 * However; because event->ctx can change while we're waiting to acquire
1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185 * function.
1186 *
1187 * Lock order:
1188 *    cred_guard_mutex
1189 *      task_struct::perf_event_mutex
1190 *        perf_event_context::mutex
1191 *          perf_event::child_mutex;
1192 *            perf_event_context::lock
1193 *          perf_event::mmap_mutex
1194 *          mmap_sem
1195 */
1196static struct perf_event_context *
1197perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198{
1199        struct perf_event_context *ctx;
1200
1201again:
1202        rcu_read_lock();
1203        ctx = ACCESS_ONCE(event->ctx);
1204        if (!atomic_inc_not_zero(&ctx->refcount)) {
1205                rcu_read_unlock();
1206                goto again;
1207        }
1208        rcu_read_unlock();
1209
1210        mutex_lock_nested(&ctx->mutex, nesting);
1211        if (event->ctx != ctx) {
1212                mutex_unlock(&ctx->mutex);
1213                put_ctx(ctx);
1214                goto again;
1215        }
1216
1217        return ctx;
1218}
1219
1220static inline struct perf_event_context *
1221perf_event_ctx_lock(struct perf_event *event)
1222{
1223        return perf_event_ctx_lock_nested(event, 0);
1224}
1225
1226static void perf_event_ctx_unlock(struct perf_event *event,
1227                                  struct perf_event_context *ctx)
1228{
1229        mutex_unlock(&ctx->mutex);
1230        put_ctx(ctx);
1231}
1232
1233/*
1234 * This must be done under the ctx->lock, such as to serialize against
1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236 * calling scheduler related locks and ctx->lock nests inside those.
1237 */
1238static __must_check struct perf_event_context *
1239unclone_ctx(struct perf_event_context *ctx)
1240{
1241        struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243        lockdep_assert_held(&ctx->lock);
1244
1245        if (parent_ctx)
1246                ctx->parent_ctx = NULL;
1247        ctx->generation++;
1248
1249        return parent_ctx;
1250}
1251
1252static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253{
1254        /*
1255         * only top level events have the pid namespace they were created in
1256         */
1257        if (event->parent)
1258                event = event->parent;
1259
1260        return task_tgid_nr_ns(p, event->ns);
1261}
1262
1263static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264{
1265        /*
1266         * only top level events have the pid namespace they were created in
1267         */
1268        if (event->parent)
1269                event = event->parent;
1270
1271        return task_pid_nr_ns(p, event->ns);
1272}
1273
1274/*
1275 * If we inherit events we want to return the parent event id
1276 * to userspace.
1277 */
1278static u64 primary_event_id(struct perf_event *event)
1279{
1280        u64 id = event->id;
1281
1282        if (event->parent)
1283                id = event->parent->id;
1284
1285        return id;
1286}
1287
1288/*
1289 * Get the perf_event_context for a task and lock it.
1290 *
1291 * This has to cope with with the fact that until it is locked,
1292 * the context could get moved to another task.
1293 */
1294static struct perf_event_context *
1295perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296{
1297        struct perf_event_context *ctx;
1298
1299retry:
1300        /*
1301         * One of the few rules of preemptible RCU is that one cannot do
1302         * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303         * part of the read side critical section was irqs-enabled -- see
1304         * rcu_read_unlock_special().
1305         *
1306         * Since ctx->lock nests under rq->lock we must ensure the entire read
1307         * side critical section has interrupts disabled.
1308         */
1309        local_irq_save(*flags);
1310        rcu_read_lock();
1311        ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312        if (ctx) {
1313                /*
1314                 * If this context is a clone of another, it might
1315                 * get swapped for another underneath us by
1316                 * perf_event_task_sched_out, though the
1317                 * rcu_read_lock() protects us from any context
1318                 * getting freed.  Lock the context and check if it
1319                 * got swapped before we could get the lock, and retry
1320                 * if so.  If we locked the right context, then it
1321                 * can't get swapped on us any more.
1322                 */
1323                raw_spin_lock(&ctx->lock);
1324                if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325                        raw_spin_unlock(&ctx->lock);
1326                        rcu_read_unlock();
1327                        local_irq_restore(*flags);
1328                        goto retry;
1329                }
1330
1331                if (ctx->task == TASK_TOMBSTONE ||
1332                    !atomic_inc_not_zero(&ctx->refcount)) {
1333                        raw_spin_unlock(&ctx->lock);
1334                        ctx = NULL;
1335                } else {
1336                        WARN_ON_ONCE(ctx->task != task);
1337                }
1338        }
1339        rcu_read_unlock();
1340        if (!ctx)
1341                local_irq_restore(*flags);
1342        return ctx;
1343}
1344
1345/*
1346 * Get the context for a task and increment its pin_count so it
1347 * can't get swapped to another task.  This also increments its
1348 * reference count so that the context can't get freed.
1349 */
1350static struct perf_event_context *
1351perf_pin_task_context(struct task_struct *task, int ctxn)
1352{
1353        struct perf_event_context *ctx;
1354        unsigned long flags;
1355
1356        ctx = perf_lock_task_context(task, ctxn, &flags);
1357        if (ctx) {
1358                ++ctx->pin_count;
1359                raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360        }
1361        return ctx;
1362}
1363
1364static void perf_unpin_context(struct perf_event_context *ctx)
1365{
1366        unsigned long flags;
1367
1368        raw_spin_lock_irqsave(&ctx->lock, flags);
1369        --ctx->pin_count;
1370        raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371}
1372
1373/*
1374 * Update the record of the current time in a context.
1375 */
1376static void update_context_time(struct perf_event_context *ctx)
1377{
1378        u64 now = perf_clock();
1379
1380        ctx->time += now - ctx->timestamp;
1381        ctx->timestamp = now;
1382}
1383
1384static u64 perf_event_time(struct perf_event *event)
1385{
1386        struct perf_event_context *ctx = event->ctx;
1387
1388        if (is_cgroup_event(event))
1389                return perf_cgroup_event_time(event);
1390
1391        return ctx ? ctx->time : 0;
1392}
1393
1394/*
1395 * Update the total_time_enabled and total_time_running fields for a event.
1396 */
1397static void update_event_times(struct perf_event *event)
1398{
1399        struct perf_event_context *ctx = event->ctx;
1400        u64 run_end;
1401
1402        lockdep_assert_held(&ctx->lock);
1403
1404        if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405            event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406                return;
1407
1408        /*
1409         * in cgroup mode, time_enabled represents
1410         * the time the event was enabled AND active
1411         * tasks were in the monitored cgroup. This is
1412         * independent of the activity of the context as
1413         * there may be a mix of cgroup and non-cgroup events.
1414         *
1415         * That is why we treat cgroup events differently
1416         * here.
1417         */
1418        if (is_cgroup_event(event))
1419                run_end = perf_cgroup_event_time(event);
1420        else if (ctx->is_active)
1421                run_end = ctx->time;
1422        else
1423                run_end = event->tstamp_stopped;
1424
1425        event->total_time_enabled = run_end - event->tstamp_enabled;
1426
1427        if (event->state == PERF_EVENT_STATE_INACTIVE)
1428                run_end = event->tstamp_stopped;
1429        else
1430                run_end = perf_event_time(event);
1431
1432        event->total_time_running = run_end - event->tstamp_running;
1433
1434}
1435
1436/*
1437 * Update total_time_enabled and total_time_running for all events in a group.
1438 */
1439static void update_group_times(struct perf_event *leader)
1440{
1441        struct perf_event *event;
1442
1443        update_event_times(leader);
1444        list_for_each_entry(event, &leader->sibling_list, group_entry)
1445                update_event_times(event);
1446}
1447
1448static enum event_type_t get_event_type(struct perf_event *event)
1449{
1450        struct perf_event_context *ctx = event->ctx;
1451        enum event_type_t event_type;
1452
1453        lockdep_assert_held(&ctx->lock);
1454
1455        /*
1456         * It's 'group type', really, because if our group leader is
1457         * pinned, so are we.
1458         */
1459        if (event->group_leader != event)
1460                event = event->group_leader;
1461
1462        event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1463        if (!ctx->task)
1464                event_type |= EVENT_CPU;
1465
1466        return event_type;
1467}
1468
1469static struct list_head *
1470ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1471{
1472        if (event->attr.pinned)
1473                return &ctx->pinned_groups;
1474        else
1475                return &ctx->flexible_groups;
1476}
1477
1478/*
1479 * Add a event from the lists for its context.
1480 * Must be called with ctx->mutex and ctx->lock held.
1481 */
1482static void
1483list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1484{
1485        lockdep_assert_held(&ctx->lock);
1486
1487        WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1488        event->attach_state |= PERF_ATTACH_CONTEXT;
1489
1490        /*
1491         * If we're a stand alone event or group leader, we go to the context
1492         * list, group events are kept attached to the group so that
1493         * perf_group_detach can, at all times, locate all siblings.
1494         */
1495        if (event->group_leader == event) {
1496                struct list_head *list;
1497
1498                event->group_caps = event->event_caps;
1499
1500                list = ctx_group_list(event, ctx);
1501                list_add_tail(&event->group_entry, list);
1502        }
1503
1504        list_update_cgroup_event(event, ctx, true);
1505
1506        list_add_rcu(&event->event_entry, &ctx->event_list);
1507        ctx->nr_events++;
1508        if (event->attr.inherit_stat)
1509                ctx->nr_stat++;
1510
1511        ctx->generation++;
1512}
1513
1514/*
1515 * Initialize event state based on the perf_event_attr::disabled.
1516 */
1517static inline void perf_event__state_init(struct perf_event *event)
1518{
1519        event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1520                                              PERF_EVENT_STATE_INACTIVE;
1521}
1522
1523static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1524{
1525        int entry = sizeof(u64); /* value */
1526        int size = 0;
1527        int nr = 1;
1528
1529        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1530                size += sizeof(u64);
1531
1532        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1533                size += sizeof(u64);
1534
1535        if (event->attr.read_format & PERF_FORMAT_ID)
1536                entry += sizeof(u64);
1537
1538        if (event->attr.read_format & PERF_FORMAT_GROUP) {
1539                nr += nr_siblings;
1540                size += sizeof(u64);
1541        }
1542
1543        size += entry * nr;
1544        event->read_size = size;
1545}
1546
1547static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1548{
1549        struct perf_sample_data *data;
1550        u16 size = 0;
1551
1552        if (sample_type & PERF_SAMPLE_IP)
1553                size += sizeof(data->ip);
1554
1555        if (sample_type & PERF_SAMPLE_ADDR)
1556                size += sizeof(data->addr);
1557
1558        if (sample_type & PERF_SAMPLE_PERIOD)
1559                size += sizeof(data->period);
1560
1561        if (sample_type & PERF_SAMPLE_WEIGHT)
1562                size += sizeof(data->weight);
1563
1564        if (sample_type & PERF_SAMPLE_READ)
1565                size += event->read_size;
1566
1567        if (sample_type & PERF_SAMPLE_DATA_SRC)
1568                size += sizeof(data->data_src.val);
1569
1570        if (sample_type & PERF_SAMPLE_TRANSACTION)
1571                size += sizeof(data->txn);
1572
1573        event->header_size = size;
1574}
1575
1576/*
1577 * Called at perf_event creation and when events are attached/detached from a
1578 * group.
1579 */
1580static void perf_event__header_size(struct perf_event *event)
1581{
1582        __perf_event_read_size(event,
1583                               event->group_leader->nr_siblings);
1584        __perf_event_header_size(event, event->attr.sample_type);
1585}
1586
1587static void perf_event__id_header_size(struct perf_event *event)
1588{
1589        struct perf_sample_data *data;
1590        u64 sample_type = event->attr.sample_type;
1591        u16 size = 0;
1592
1593        if (sample_type & PERF_SAMPLE_TID)
1594                size += sizeof(data->tid_entry);
1595
1596        if (sample_type & PERF_SAMPLE_TIME)
1597                size += sizeof(data->time);
1598
1599        if (sample_type & PERF_SAMPLE_IDENTIFIER)
1600                size += sizeof(data->id);
1601
1602        if (sample_type & PERF_SAMPLE_ID)
1603                size += sizeof(data->id);
1604
1605        if (sample_type & PERF_SAMPLE_STREAM_ID)
1606                size += sizeof(data->stream_id);
1607
1608        if (sample_type & PERF_SAMPLE_CPU)
1609                size += sizeof(data->cpu_entry);
1610
1611        event->id_header_size = size;
1612}
1613
1614static bool perf_event_validate_size(struct perf_event *event)
1615{
1616        /*
1617         * The values computed here will be over-written when we actually
1618         * attach the event.
1619         */
1620        __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1621        __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1622        perf_event__id_header_size(event);
1623
1624        /*
1625         * Sum the lot; should not exceed the 64k limit we have on records.
1626         * Conservative limit to allow for callchains and other variable fields.
1627         */
1628        if (event->read_size + event->header_size +
1629            event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1630                return false;
1631
1632        return true;
1633}
1634
1635static void perf_group_attach(struct perf_event *event)
1636{
1637        struct perf_event *group_leader = event->group_leader, *pos;
1638
1639        lockdep_assert_held(&event->ctx->lock);
1640
1641        /*
1642         * We can have double attach due to group movement in perf_event_open.
1643         */
1644        if (event->attach_state & PERF_ATTACH_GROUP)
1645                return;
1646
1647        event->attach_state |= PERF_ATTACH_GROUP;
1648
1649        if (group_leader == event)
1650                return;
1651
1652        WARN_ON_ONCE(group_leader->ctx != event->ctx);
1653
1654        group_leader->group_caps &= event->event_caps;
1655
1656        list_add_tail(&event->group_entry, &group_leader->sibling_list);
1657        group_leader->nr_siblings++;
1658
1659        perf_event__header_size(group_leader);
1660
1661        list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1662                perf_event__header_size(pos);
1663}
1664
1665/*
1666 * Remove a event from the lists for its context.
1667 * Must be called with ctx->mutex and ctx->lock held.
1668 */
1669static void
1670list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1671{
1672        WARN_ON_ONCE(event->ctx != ctx);
1673        lockdep_assert_held(&ctx->lock);
1674
1675        /*
1676         * We can have double detach due to exit/hot-unplug + close.
1677         */
1678        if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1679                return;
1680
1681        event->attach_state &= ~PERF_ATTACH_CONTEXT;
1682
1683        list_update_cgroup_event(event, ctx, false);
1684
1685        ctx->nr_events--;
1686        if (event->attr.inherit_stat)
1687                ctx->nr_stat--;
1688
1689        list_del_rcu(&event->event_entry);
1690
1691        if (event->group_leader == event)
1692                list_del_init(&event->group_entry);
1693
1694        update_group_times(event);
1695
1696        /*
1697         * If event was in error state, then keep it
1698         * that way, otherwise bogus counts will be
1699         * returned on read(). The only way to get out
1700         * of error state is by explicit re-enabling
1701         * of the event
1702         */
1703        if (event->state > PERF_EVENT_STATE_OFF)
1704                event->state = PERF_EVENT_STATE_OFF;
1705
1706        ctx->generation++;
1707}
1708
1709static void perf_group_detach(struct perf_event *event)
1710{
1711        struct perf_event *sibling, *tmp;
1712        struct list_head *list = NULL;
1713
1714        lockdep_assert_held(&event->ctx->lock);
1715
1716        /*
1717         * We can have double detach due to exit/hot-unplug + close.
1718         */
1719        if (!(event->attach_state & PERF_ATTACH_GROUP))
1720                return;
1721
1722        event->attach_state &= ~PERF_ATTACH_GROUP;
1723
1724        /*
1725         * If this is a sibling, remove it from its group.
1726         */
1727        if (event->group_leader != event) {
1728                list_del_init(&event->group_entry);
1729                event->group_leader->nr_siblings--;
1730                goto out;
1731        }
1732
1733        if (!list_empty(&event->group_entry))
1734                list = &event->group_entry;
1735
1736        /*
1737         * If this was a group event with sibling events then
1738         * upgrade the siblings to singleton events by adding them
1739         * to whatever list we are on.
1740         */
1741        list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1742                if (list)
1743                        list_move_tail(&sibling->group_entry, list);
1744                sibling->group_leader = sibling;
1745
1746                /* Inherit group flags from the previous leader */
1747                sibling->group_caps = event->group_caps;
1748
1749                WARN_ON_ONCE(sibling->ctx != event->ctx);
1750        }
1751
1752out:
1753        perf_event__header_size(event->group_leader);
1754
1755        list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1756                perf_event__header_size(tmp);
1757}
1758
1759static bool is_orphaned_event(struct perf_event *event)
1760{
1761        return event->state == PERF_EVENT_STATE_DEAD;
1762}
1763
1764static inline int __pmu_filter_match(struct perf_event *event)
1765{
1766        struct pmu *pmu = event->pmu;
1767        return pmu->filter_match ? pmu->filter_match(event) : 1;
1768}
1769
1770/*
1771 * Check whether we should attempt to schedule an event group based on
1772 * PMU-specific filtering. An event group can consist of HW and SW events,
1773 * potentially with a SW leader, so we must check all the filters, to
1774 * determine whether a group is schedulable:
1775 */
1776static inline int pmu_filter_match(struct perf_event *event)
1777{
1778        struct perf_event *child;
1779
1780        if (!__pmu_filter_match(event))
1781                return 0;
1782
1783        list_for_each_entry(child, &event->sibling_list, group_entry) {
1784                if (!__pmu_filter_match(child))
1785                        return 0;
1786        }
1787
1788        return 1;
1789}
1790
1791static inline int
1792event_filter_match(struct perf_event *event)
1793{
1794        return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1795               perf_cgroup_match(event) && pmu_filter_match(event);
1796}
1797
1798static void
1799event_sched_out(struct perf_event *event,
1800                  struct perf_cpu_context *cpuctx,
1801                  struct perf_event_context *ctx)
1802{
1803        u64 tstamp = perf_event_time(event);
1804        u64 delta;
1805
1806        WARN_ON_ONCE(event->ctx != ctx);
1807        lockdep_assert_held(&ctx->lock);
1808
1809        /*
1810         * An event which could not be activated because of
1811         * filter mismatch still needs to have its timings
1812         * maintained, otherwise bogus information is return
1813         * via read() for time_enabled, time_running:
1814         */
1815        if (event->state == PERF_EVENT_STATE_INACTIVE &&
1816            !event_filter_match(event)) {
1817                delta = tstamp - event->tstamp_stopped;
1818                event->tstamp_running += delta;
1819                event->tstamp_stopped = tstamp;
1820        }
1821
1822        if (event->state != PERF_EVENT_STATE_ACTIVE)
1823                return;
1824
1825        perf_pmu_disable(event->pmu);
1826
1827        event->tstamp_stopped = tstamp;
1828        event->pmu->del(event, 0);
1829        event->oncpu = -1;
1830        event->state = PERF_EVENT_STATE_INACTIVE;
1831        if (event->pending_disable) {
1832                event->pending_disable = 0;
1833                event->state = PERF_EVENT_STATE_OFF;
1834        }
1835
1836        if (!is_software_event(event))
1837                cpuctx->active_oncpu--;
1838        if (!--ctx->nr_active)
1839                perf_event_ctx_deactivate(ctx);
1840        if (event->attr.freq && event->attr.sample_freq)
1841                ctx->nr_freq--;
1842        if (event->attr.exclusive || !cpuctx->active_oncpu)
1843                cpuctx->exclusive = 0;
1844
1845        perf_pmu_enable(event->pmu);
1846}
1847
1848static void
1849group_sched_out(struct perf_event *group_event,
1850                struct perf_cpu_context *cpuctx,
1851                struct perf_event_context *ctx)
1852{
1853        struct perf_event *event;
1854        int state = group_event->state;
1855
1856        perf_pmu_disable(ctx->pmu);
1857
1858        event_sched_out(group_event, cpuctx, ctx);
1859
1860        /*
1861         * Schedule out siblings (if any):
1862         */
1863        list_for_each_entry(event, &group_event->sibling_list, group_entry)
1864                event_sched_out(event, cpuctx, ctx);
1865
1866        perf_pmu_enable(ctx->pmu);
1867
1868        if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1869                cpuctx->exclusive = 0;
1870}
1871
1872#define DETACH_GROUP    0x01UL
1873
1874/*
1875 * Cross CPU call to remove a performance event
1876 *
1877 * We disable the event on the hardware level first. After that we
1878 * remove it from the context list.
1879 */
1880static void
1881__perf_remove_from_context(struct perf_event *event,
1882                           struct perf_cpu_context *cpuctx,
1883                           struct perf_event_context *ctx,
1884                           void *info)
1885{
1886        unsigned long flags = (unsigned long)info;
1887
1888        event_sched_out(event, cpuctx, ctx);
1889        if (flags & DETACH_GROUP)
1890                perf_group_detach(event);
1891        list_del_event(event, ctx);
1892
1893        if (!ctx->nr_events && ctx->is_active) {
1894                ctx->is_active = 0;
1895                if (ctx->task) {
1896                        WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1897                        cpuctx->task_ctx = NULL;
1898                }
1899        }
1900}
1901
1902/*
1903 * Remove the event from a task's (or a CPU's) list of events.
1904 *
1905 * If event->ctx is a cloned context, callers must make sure that
1906 * every task struct that event->ctx->task could possibly point to
1907 * remains valid.  This is OK when called from perf_release since
1908 * that only calls us on the top-level context, which can't be a clone.
1909 * When called from perf_event_exit_task, it's OK because the
1910 * context has been detached from its task.
1911 */
1912static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1913{
1914        struct perf_event_context *ctx = event->ctx;
1915
1916        lockdep_assert_held(&ctx->mutex);
1917
1918        event_function_call(event, __perf_remove_from_context, (void *)flags);
1919
1920        /*
1921         * The above event_function_call() can NO-OP when it hits
1922         * TASK_TOMBSTONE. In that case we must already have been detached
1923         * from the context (by perf_event_exit_event()) but the grouping
1924         * might still be in-tact.
1925         */
1926        WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1927        if ((flags & DETACH_GROUP) &&
1928            (event->attach_state & PERF_ATTACH_GROUP)) {
1929                /*
1930                 * Since in that case we cannot possibly be scheduled, simply
1931                 * detach now.
1932                 */
1933                raw_spin_lock_irq(&ctx->lock);
1934                perf_group_detach(event);
1935                raw_spin_unlock_irq(&ctx->lock);
1936        }
1937}
1938
1939/*
1940 * Cross CPU call to disable a performance event
1941 */
1942static void __perf_event_disable(struct perf_event *event,
1943                                 struct perf_cpu_context *cpuctx,
1944                                 struct perf_event_context *ctx,
1945                                 void *info)
1946{
1947        if (event->state < PERF_EVENT_STATE_INACTIVE)
1948                return;
1949
1950        update_context_time(ctx);
1951        update_cgrp_time_from_event(event);
1952        update_group_times(event);
1953        if (event == event->group_leader)
1954                group_sched_out(event, cpuctx, ctx);
1955        else
1956                event_sched_out(event, cpuctx, ctx);
1957        event->state = PERF_EVENT_STATE_OFF;
1958}
1959
1960/*
1961 * Disable a event.
1962 *
1963 * If event->ctx is a cloned context, callers must make sure that
1964 * every task struct that event->ctx->task could possibly point to
1965 * remains valid.  This condition is satisifed when called through
1966 * perf_event_for_each_child or perf_event_for_each because they
1967 * hold the top-level event's child_mutex, so any descendant that
1968 * goes to exit will block in perf_event_exit_event().
1969 *
1970 * When called from perf_pending_event it's OK because event->ctx
1971 * is the current context on this CPU and preemption is disabled,
1972 * hence we can't get into perf_event_task_sched_out for this context.
1973 */
1974static void _perf_event_disable(struct perf_event *event)
1975{
1976        struct perf_event_context *ctx = event->ctx;
1977
1978        raw_spin_lock_irq(&ctx->lock);
1979        if (event->state <= PERF_EVENT_STATE_OFF) {
1980                raw_spin_unlock_irq(&ctx->lock);
1981                return;
1982        }
1983        raw_spin_unlock_irq(&ctx->lock);
1984
1985        event_function_call(event, __perf_event_disable, NULL);
1986}
1987
1988void perf_event_disable_local(struct perf_event *event)
1989{
1990        event_function_local(event, __perf_event_disable, NULL);
1991}
1992
1993/*
1994 * Strictly speaking kernel users cannot create groups and therefore this
1995 * interface does not need the perf_event_ctx_lock() magic.
1996 */
1997void perf_event_disable(struct perf_event *event)
1998{
1999        struct perf_event_context *ctx;
2000
2001        ctx = perf_event_ctx_lock(event);
2002        _perf_event_disable(event);
2003        perf_event_ctx_unlock(event, ctx);
2004}
2005EXPORT_SYMBOL_GPL(perf_event_disable);
2006
2007void perf_event_disable_inatomic(struct perf_event *event)
2008{
2009        event->pending_disable = 1;
2010        irq_work_queue(&event->pending);
2011}
2012
2013static void perf_set_shadow_time(struct perf_event *event,
2014                                 struct perf_event_context *ctx,
2015                                 u64 tstamp)
2016{
2017        /*
2018         * use the correct time source for the time snapshot
2019         *
2020         * We could get by without this by leveraging the
2021         * fact that to get to this function, the caller
2022         * has most likely already called update_context_time()
2023         * and update_cgrp_time_xx() and thus both timestamp
2024         * are identical (or very close). Given that tstamp is,
2025         * already adjusted for cgroup, we could say that:
2026         *    tstamp - ctx->timestamp
2027         * is equivalent to
2028         *    tstamp - cgrp->timestamp.
2029         *
2030         * Then, in perf_output_read(), the calculation would
2031         * work with no changes because:
2032         * - event is guaranteed scheduled in
2033         * - no scheduled out in between
2034         * - thus the timestamp would be the same
2035         *
2036         * But this is a bit hairy.
2037         *
2038         * So instead, we have an explicit cgroup call to remain
2039         * within the time time source all along. We believe it
2040         * is cleaner and simpler to understand.
2041         */
2042        if (is_cgroup_event(event))
2043                perf_cgroup_set_shadow_time(event, tstamp);
2044        else
2045                event->shadow_ctx_time = tstamp - ctx->timestamp;
2046}
2047
2048#define MAX_INTERRUPTS (~0ULL)
2049
2050static void perf_log_throttle(struct perf_event *event, int enable);
2051static void perf_log_itrace_start(struct perf_event *event);
2052
2053static int
2054event_sched_in(struct perf_event *event,
2055                 struct perf_cpu_context *cpuctx,
2056                 struct perf_event_context *ctx)
2057{
2058        u64 tstamp = perf_event_time(event);
2059        int ret = 0;
2060
2061        lockdep_assert_held(&ctx->lock);
2062
2063        if (event->state <= PERF_EVENT_STATE_OFF)
2064                return 0;
2065
2066        WRITE_ONCE(event->oncpu, smp_processor_id());
2067        /*
2068         * Order event::oncpu write to happen before the ACTIVE state
2069         * is visible.
2070         */
2071        smp_wmb();
2072        WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2073
2074        /*
2075         * Unthrottle events, since we scheduled we might have missed several
2076         * ticks already, also for a heavily scheduling task there is little
2077         * guarantee it'll get a tick in a timely manner.
2078         */
2079        if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2080                perf_log_throttle(event, 1);
2081                event->hw.interrupts = 0;
2082        }
2083
2084        /*
2085         * The new state must be visible before we turn it on in the hardware:
2086         */
2087        smp_wmb();
2088
2089        perf_pmu_disable(event->pmu);
2090
2091        perf_set_shadow_time(event, ctx, tstamp);
2092
2093        perf_log_itrace_start(event);
2094
2095        if (event->pmu->add(event, PERF_EF_START)) {
2096                event->state = PERF_EVENT_STATE_INACTIVE;
2097                event->oncpu = -1;
2098                ret = -EAGAIN;
2099                goto out;
2100        }
2101
2102        event->tstamp_running += tstamp - event->tstamp_stopped;
2103
2104        if (!is_software_event(event))
2105                cpuctx->active_oncpu++;
2106        if (!ctx->nr_active++)
2107                perf_event_ctx_activate(ctx);
2108        if (event->attr.freq && event->attr.sample_freq)
2109                ctx->nr_freq++;
2110
2111        if (event->attr.exclusive)
2112                cpuctx->exclusive = 1;
2113
2114out:
2115        perf_pmu_enable(event->pmu);
2116
2117        return ret;
2118}
2119
2120static int
2121group_sched_in(struct perf_event *group_event,
2122               struct perf_cpu_context *cpuctx,
2123               struct perf_event_context *ctx)
2124{
2125        struct perf_event *event, *partial_group = NULL;
2126        struct pmu *pmu = ctx->pmu;
2127        u64 now = ctx->time;
2128        bool simulate = false;
2129
2130        if (group_event->state == PERF_EVENT_STATE_OFF)
2131                return 0;
2132
2133        pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2134
2135        if (event_sched_in(group_event, cpuctx, ctx)) {
2136                pmu->cancel_txn(pmu);
2137                perf_mux_hrtimer_restart(cpuctx);
2138                return -EAGAIN;
2139        }
2140
2141        /*
2142         * Schedule in siblings as one group (if any):
2143         */
2144        list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2145                if (event_sched_in(event, cpuctx, ctx)) {
2146                        partial_group = event;
2147                        goto group_error;
2148                }
2149        }
2150
2151        if (!pmu->commit_txn(pmu))
2152                return 0;
2153
2154group_error:
2155        /*
2156         * Groups can be scheduled in as one unit only, so undo any
2157         * partial group before returning:
2158         * The events up to the failed event are scheduled out normally,
2159         * tstamp_stopped will be updated.
2160         *
2161         * The failed events and the remaining siblings need to have
2162         * their timings updated as if they had gone thru event_sched_in()
2163         * and event_sched_out(). This is required to get consistent timings
2164         * across the group. This also takes care of the case where the group
2165         * could never be scheduled by ensuring tstamp_stopped is set to mark
2166         * the time the event was actually stopped, such that time delta
2167         * calculation in update_event_times() is correct.
2168         */
2169        list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2170                if (event == partial_group)
2171                        simulate = true;
2172
2173                if (simulate) {
2174                        event->tstamp_running += now - event->tstamp_stopped;
2175                        event->tstamp_stopped = now;
2176                } else {
2177                        event_sched_out(event, cpuctx, ctx);
2178                }
2179        }
2180        event_sched_out(group_event, cpuctx, ctx);
2181
2182        pmu->cancel_txn(pmu);
2183
2184        perf_mux_hrtimer_restart(cpuctx);
2185
2186        return -EAGAIN;
2187}
2188
2189/*
2190 * Work out whether we can put this event group on the CPU now.
2191 */
2192static int group_can_go_on(struct perf_event *event,
2193                           struct perf_cpu_context *cpuctx,
2194                           int can_add_hw)
2195{
2196        /*
2197         * Groups consisting entirely of software events can always go on.
2198         */
2199        if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2200                return 1;
2201        /*
2202         * If an exclusive group is already on, no other hardware
2203         * events can go on.
2204         */
2205        if (cpuctx->exclusive)
2206                return 0;
2207        /*
2208         * If this group is exclusive and there are already
2209         * events on the CPU, it can't go on.
2210         */
2211        if (event->attr.exclusive && cpuctx->active_oncpu)
2212                return 0;
2213        /*
2214         * Otherwise, try to add it if all previous groups were able
2215         * to go on.
2216         */
2217        return can_add_hw;
2218}
2219
2220/*
2221 * Complement to update_event_times(). This computes the tstamp_* values to
2222 * continue 'enabled' state from @now, and effectively discards the time
2223 * between the prior tstamp_stopped and now (as we were in the OFF state, or
2224 * just switched (context) time base).
2225 *
2226 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2227 * cannot have been scheduled in yet. And going into INACTIVE state means
2228 * '@event->tstamp_stopped = @now'.
2229 *
2230 * Thus given the rules of update_event_times():
2231 *
2232 *   total_time_enabled = tstamp_stopped - tstamp_enabled
2233 *   total_time_running = tstamp_stopped - tstamp_running
2234 *
2235 * We can insert 'tstamp_stopped == now' and reverse them to compute new
2236 * tstamp_* values.
2237 */
2238static void __perf_event_enable_time(struct perf_event *event, u64 now)
2239{
2240        WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2241
2242        event->tstamp_stopped = now;
2243        event->tstamp_enabled = now - event->total_time_enabled;
2244        event->tstamp_running = now - event->total_time_running;
2245}
2246
2247static void add_event_to_ctx(struct perf_event *event,
2248                               struct perf_event_context *ctx)
2249{
2250        u64 tstamp = perf_event_time(event);
2251
2252        list_add_event(event, ctx);
2253        perf_group_attach(event);
2254        /*
2255         * We can be called with event->state == STATE_OFF when we create with
2256         * .disabled = 1. In that case the IOC_ENABLE will call this function.
2257         */
2258        if (event->state == PERF_EVENT_STATE_INACTIVE)
2259                __perf_event_enable_time(event, tstamp);
2260}
2261
2262static void ctx_sched_out(struct perf_event_context *ctx,
2263                          struct perf_cpu_context *cpuctx,
2264                          enum event_type_t event_type);
2265static void
2266ctx_sched_in(struct perf_event_context *ctx,
2267             struct perf_cpu_context *cpuctx,
2268             enum event_type_t event_type,
2269             struct task_struct *task);
2270
2271static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2272                               struct perf_event_context *ctx,
2273                               enum event_type_t event_type)
2274{
2275        if (!cpuctx->task_ctx)
2276                return;
2277
2278        if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2279                return;
2280
2281        ctx_sched_out(ctx, cpuctx, event_type);
2282}
2283
2284static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2285                                struct perf_event_context *ctx,
2286                                struct task_struct *task)
2287{
2288        cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2289        if (ctx)
2290                ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2291        cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2292        if (ctx)
2293                ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2294}
2295
2296/*
2297 * We want to maintain the following priority of scheduling:
2298 *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2299 *  - task pinned (EVENT_PINNED)
2300 *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2301 *  - task flexible (EVENT_FLEXIBLE).
2302 *
2303 * In order to avoid unscheduling and scheduling back in everything every
2304 * time an event is added, only do it for the groups of equal priority and
2305 * below.
2306 *
2307 * This can be called after a batch operation on task events, in which case
2308 * event_type is a bit mask of the types of events involved. For CPU events,
2309 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2310 */
2311static void ctx_resched(struct perf_cpu_context *cpuctx,
2312                        struct perf_event_context *task_ctx,
2313                        enum event_type_t event_type)
2314{
2315        enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2316        bool cpu_event = !!(event_type & EVENT_CPU);
2317
2318        /*
2319         * If pinned groups are involved, flexible groups also need to be
2320         * scheduled out.
2321         */
2322        if (event_type & EVENT_PINNED)
2323                event_type |= EVENT_FLEXIBLE;
2324
2325        perf_pmu_disable(cpuctx->ctx.pmu);
2326        if (task_ctx)
2327                task_ctx_sched_out(cpuctx, task_ctx, event_type);
2328
2329        /*
2330         * Decide which cpu ctx groups to schedule out based on the types
2331         * of events that caused rescheduling:
2332         *  - EVENT_CPU: schedule out corresponding groups;
2333         *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2334         *  - otherwise, do nothing more.
2335         */
2336        if (cpu_event)
2337                cpu_ctx_sched_out(cpuctx, ctx_event_type);
2338        else if (ctx_event_type & EVENT_PINNED)
2339                cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2340
2341        perf_event_sched_in(cpuctx, task_ctx, current);
2342        perf_pmu_enable(cpuctx->ctx.pmu);
2343}
2344
2345/*
2346 * Cross CPU call to install and enable a performance event
2347 *
2348 * Very similar to remote_function() + event_function() but cannot assume that
2349 * things like ctx->is_active and cpuctx->task_ctx are set.
2350 */
2351static int  __perf_install_in_context(void *info)
2352{
2353        struct perf_event *event = info;
2354        struct perf_event_context *ctx = event->ctx;
2355        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2356        struct perf_event_context *task_ctx = cpuctx->task_ctx;
2357        bool reprogram = true;
2358        int ret = 0;
2359
2360        raw_spin_lock(&cpuctx->ctx.lock);
2361        if (ctx->task) {
2362                raw_spin_lock(&ctx->lock);
2363                task_ctx = ctx;
2364
2365                reprogram = (ctx->task == current);
2366
2367                /*
2368                 * If the task is running, it must be running on this CPU,
2369                 * otherwise we cannot reprogram things.
2370                 *
2371                 * If its not running, we don't care, ctx->lock will
2372                 * serialize against it becoming runnable.
2373                 */
2374                if (task_curr(ctx->task) && !reprogram) {
2375                        ret = -ESRCH;
2376                        goto unlock;
2377                }
2378
2379                WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2380        } else if (task_ctx) {
2381                raw_spin_lock(&task_ctx->lock);
2382        }
2383
2384        if (reprogram) {
2385                ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2386                add_event_to_ctx(event, ctx);
2387                ctx_resched(cpuctx, task_ctx, get_event_type(event));
2388        } else {
2389                add_event_to_ctx(event, ctx);
2390        }
2391
2392unlock:
2393        perf_ctx_unlock(cpuctx, task_ctx);
2394
2395        return ret;
2396}
2397
2398/*
2399 * Attach a performance event to a context.
2400 *
2401 * Very similar to event_function_call, see comment there.
2402 */
2403static void
2404perf_install_in_context(struct perf_event_context *ctx,
2405                        struct perf_event *event,
2406                        int cpu)
2407{
2408        struct task_struct *task = READ_ONCE(ctx->task);
2409
2410        lockdep_assert_held(&ctx->mutex);
2411
2412        if (event->cpu != -1)
2413                event->cpu = cpu;
2414
2415        /*
2416         * Ensures that if we can observe event->ctx, both the event and ctx
2417         * will be 'complete'. See perf_iterate_sb_cpu().
2418         */
2419        smp_store_release(&event->ctx, ctx);
2420
2421        if (!task) {
2422                cpu_function_call(cpu, __perf_install_in_context, event);
2423                return;
2424        }
2425
2426        /*
2427         * Should not happen, we validate the ctx is still alive before calling.
2428         */
2429        if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2430                return;
2431
2432        /*
2433         * Installing events is tricky because we cannot rely on ctx->is_active
2434         * to be set in case this is the nr_events 0 -> 1 transition.
2435         *
2436         * Instead we use task_curr(), which tells us if the task is running.
2437         * However, since we use task_curr() outside of rq::lock, we can race
2438         * against the actual state. This means the result can be wrong.
2439         *
2440         * If we get a false positive, we retry, this is harmless.
2441         *
2442         * If we get a false negative, things are complicated. If we are after
2443         * perf_event_context_sched_in() ctx::lock will serialize us, and the
2444         * value must be correct. If we're before, it doesn't matter since
2445         * perf_event_context_sched_in() will program the counter.
2446         *
2447         * However, this hinges on the remote context switch having observed
2448         * our task->perf_event_ctxp[] store, such that it will in fact take
2449         * ctx::lock in perf_event_context_sched_in().
2450         *
2451         * We do this by task_function_call(), if the IPI fails to hit the task
2452         * we know any future context switch of task must see the
2453         * perf_event_ctpx[] store.
2454         */
2455
2456        /*
2457         * This smp_mb() orders the task->perf_event_ctxp[] store with the
2458         * task_cpu() load, such that if the IPI then does not find the task
2459         * running, a future context switch of that task must observe the
2460         * store.
2461         */
2462        smp_mb();
2463again:
2464        if (!task_function_call(task, __perf_install_in_context, event))
2465                return;
2466
2467        raw_spin_lock_irq(&ctx->lock);
2468        task = ctx->task;
2469        if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2470                /*
2471                 * Cannot happen because we already checked above (which also
2472                 * cannot happen), and we hold ctx->mutex, which serializes us
2473                 * against perf_event_exit_task_context().
2474                 */
2475                raw_spin_unlock_irq(&ctx->lock);
2476                return;
2477        }
2478        /*
2479         * If the task is not running, ctx->lock will avoid it becoming so,
2480         * thus we can safely install the event.
2481         */
2482        if (task_curr(task)) {
2483                raw_spin_unlock_irq(&ctx->lock);
2484                goto again;
2485        }
2486        add_event_to_ctx(event, ctx);
2487        raw_spin_unlock_irq(&ctx->lock);
2488}
2489
2490/*
2491 * Put a event into inactive state and update time fields.
2492 * Enabling the leader of a group effectively enables all
2493 * the group members that aren't explicitly disabled, so we
2494 * have to update their ->tstamp_enabled also.
2495 * Note: this works for group members as well as group leaders
2496 * since the non-leader members' sibling_lists will be empty.
2497 */
2498static void __perf_event_mark_enabled(struct perf_event *event)
2499{
2500        struct perf_event *sub;
2501        u64 tstamp = perf_event_time(event);
2502
2503        event->state = PERF_EVENT_STATE_INACTIVE;
2504        __perf_event_enable_time(event, tstamp);
2505        list_for_each_entry(sub, &event->sibling_list, group_entry) {
2506                /* XXX should not be > INACTIVE if event isn't */
2507                if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2508                        __perf_event_enable_time(sub, tstamp);
2509        }
2510}
2511
2512/*
2513 * Cross CPU call to enable a performance event
2514 */
2515static void __perf_event_enable(struct perf_event *event,
2516                                struct perf_cpu_context *cpuctx,
2517                                struct perf_event_context *ctx,
2518                                void *info)
2519{
2520        struct perf_event *leader = event->group_leader;
2521        struct perf_event_context *task_ctx;
2522
2523        if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2524            event->state <= PERF_EVENT_STATE_ERROR)
2525                return;
2526
2527        if (ctx->is_active)
2528                ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2529
2530        __perf_event_mark_enabled(event);
2531
2532        if (!ctx->is_active)
2533                return;
2534
2535        if (!event_filter_match(event)) {
2536                if (is_cgroup_event(event))
2537                        perf_cgroup_defer_enabled(event);
2538                ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2539                return;
2540        }
2541
2542        /*
2543         * If the event is in a group and isn't the group leader,
2544         * then don't put it on unless the group is on.
2545         */
2546        if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2547                ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2548                return;
2549        }
2550
2551        task_ctx = cpuctx->task_ctx;
2552        if (ctx->task)
2553                WARN_ON_ONCE(task_ctx != ctx);
2554
2555        ctx_resched(cpuctx, task_ctx, get_event_type(event));
2556}
2557
2558/*
2559 * Enable a event.
2560 *
2561 * If event->ctx is a cloned context, callers must make sure that
2562 * every task struct that event->ctx->task could possibly point to
2563 * remains valid.  This condition is satisfied when called through
2564 * perf_event_for_each_child or perf_event_for_each as described
2565 * for perf_event_disable.
2566 */
2567static void _perf_event_enable(struct perf_event *event)
2568{
2569        struct perf_event_context *ctx = event->ctx;
2570
2571        raw_spin_lock_irq(&ctx->lock);
2572        if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2573            event->state <  PERF_EVENT_STATE_ERROR) {
2574                raw_spin_unlock_irq(&ctx->lock);
2575                return;
2576        }
2577
2578        /*
2579         * If the event is in error state, clear that first.
2580         *
2581         * That way, if we see the event in error state below, we know that it
2582         * has gone back into error state, as distinct from the task having
2583         * been scheduled away before the cross-call arrived.
2584         */
2585        if (event->state == PERF_EVENT_STATE_ERROR)
2586                event->state = PERF_EVENT_STATE_OFF;
2587        raw_spin_unlock_irq(&ctx->lock);
2588
2589        event_function_call(event, __perf_event_enable, NULL);
2590}
2591
2592/*
2593 * See perf_event_disable();
2594 */
2595void perf_event_enable(struct perf_event *event)
2596{
2597        struct perf_event_context *ctx;
2598
2599        ctx = perf_event_ctx_lock(event);
2600        _perf_event_enable(event);
2601        perf_event_ctx_unlock(event, ctx);
2602}
2603EXPORT_SYMBOL_GPL(perf_event_enable);
2604
2605struct stop_event_data {
2606        struct perf_event       *event;
2607        unsigned int            restart;
2608};
2609
2610static int __perf_event_stop(void *info)
2611{
2612        struct stop_event_data *sd = info;
2613        struct perf_event *event = sd->event;
2614
2615        /* if it's already INACTIVE, do nothing */
2616        if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2617                return 0;
2618
2619        /* matches smp_wmb() in event_sched_in() */
2620        smp_rmb();
2621
2622        /*
2623         * There is a window with interrupts enabled before we get here,
2624         * so we need to check again lest we try to stop another CPU's event.
2625         */
2626        if (READ_ONCE(event->oncpu) != smp_processor_id())
2627                return -EAGAIN;
2628
2629        event->pmu->stop(event, PERF_EF_UPDATE);
2630
2631        /*
2632         * May race with the actual stop (through perf_pmu_output_stop()),
2633         * but it is only used for events with AUX ring buffer, and such
2634         * events will refuse to restart because of rb::aux_mmap_count==0,
2635         * see comments in perf_aux_output_begin().
2636         *
2637         * Since this is happening on a event-local CPU, no trace is lost
2638         * while restarting.
2639         */
2640        if (sd->restart)
2641                event->pmu->start(event, 0);
2642
2643        return 0;
2644}
2645
2646static int perf_event_stop(struct perf_event *event, int restart)
2647{
2648        struct stop_event_data sd = {
2649                .event          = event,
2650                .restart        = restart,
2651        };
2652        int ret = 0;
2653
2654        do {
2655                if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2656                        return 0;
2657
2658                /* matches smp_wmb() in event_sched_in() */
2659                smp_rmb();
2660
2661                /*
2662                 * We only want to restart ACTIVE events, so if the event goes
2663                 * inactive here (event->oncpu==-1), there's nothing more to do;
2664                 * fall through with ret==-ENXIO.
2665                 */
2666                ret = cpu_function_call(READ_ONCE(event->oncpu),
2667                                        __perf_event_stop, &sd);
2668        } while (ret == -EAGAIN);
2669
2670        return ret;
2671}
2672
2673/*
2674 * In order to contain the amount of racy and tricky in the address filter
2675 * configuration management, it is a two part process:
2676 *
2677 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2678 *      we update the addresses of corresponding vmas in
2679 *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2680 * (p2) when an event is scheduled in (pmu::add), it calls
2681 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2682 *      if the generation has changed since the previous call.
2683 *
2684 * If (p1) happens while the event is active, we restart it to force (p2).
2685 *
2686 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2687 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2688 *     ioctl;
2689 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2690 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2691 *     for reading;
2692 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2693 *     of exec.
2694 */
2695void perf_event_addr_filters_sync(struct perf_event *event)
2696{
2697        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2698
2699        if (!has_addr_filter(event))
2700                return;
2701
2702        raw_spin_lock(&ifh->lock);
2703        if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2704                event->pmu->addr_filters_sync(event);
2705                event->hw.addr_filters_gen = event->addr_filters_gen;
2706        }
2707        raw_spin_unlock(&ifh->lock);
2708}
2709EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2710
2711static int _perf_event_refresh(struct perf_event *event, int refresh)
2712{
2713        /*
2714         * not supported on inherited events
2715         */
2716        if (event->attr.inherit || !is_sampling_event(event))
2717                return -EINVAL;
2718
2719        atomic_add(refresh, &event->event_limit);
2720        _perf_event_enable(event);
2721
2722        return 0;
2723}
2724
2725/*
2726 * See perf_event_disable()
2727 */
2728int perf_event_refresh(struct perf_event *event, int refresh)
2729{
2730        struct perf_event_context *ctx;
2731        int ret;
2732
2733        ctx = perf_event_ctx_lock(event);
2734        ret = _perf_event_refresh(event, refresh);
2735        perf_event_ctx_unlock(event, ctx);
2736
2737        return ret;
2738}
2739EXPORT_SYMBOL_GPL(perf_event_refresh);
2740
2741static void ctx_sched_out(struct perf_event_context *ctx,
2742                          struct perf_cpu_context *cpuctx,
2743                          enum event_type_t event_type)
2744{
2745        int is_active = ctx->is_active;
2746        struct perf_event *event;
2747
2748        lockdep_assert_held(&ctx->lock);
2749
2750        if (likely(!ctx->nr_events)) {
2751                /*
2752                 * See __perf_remove_from_context().
2753                 */
2754                WARN_ON_ONCE(ctx->is_active);
2755                if (ctx->task)
2756                        WARN_ON_ONCE(cpuctx->task_ctx);
2757                return;
2758        }
2759
2760        ctx->is_active &= ~event_type;
2761        if (!(ctx->is_active & EVENT_ALL))
2762                ctx->is_active = 0;
2763
2764        if (ctx->task) {
2765                WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2766                if (!ctx->is_active)
2767                        cpuctx->task_ctx = NULL;
2768        }
2769
2770        /*
2771         * Always update time if it was set; not only when it changes.
2772         * Otherwise we can 'forget' to update time for any but the last
2773         * context we sched out. For example:
2774         *
2775         *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2776         *   ctx_sched_out(.event_type = EVENT_PINNED)
2777         *
2778         * would only update time for the pinned events.
2779         */
2780        if (is_active & EVENT_TIME) {
2781                /* update (and stop) ctx time */
2782                update_context_time(ctx);
2783                update_cgrp_time_from_cpuctx(cpuctx);
2784        }
2785
2786        is_active ^= ctx->is_active; /* changed bits */
2787
2788        if (!ctx->nr_active || !(is_active & EVENT_ALL))
2789                return;
2790
2791        perf_pmu_disable(ctx->pmu);
2792        if (is_active & EVENT_PINNED) {
2793                list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2794                        group_sched_out(event, cpuctx, ctx);
2795        }
2796
2797        if (is_active & EVENT_FLEXIBLE) {
2798                list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2799                        group_sched_out(event, cpuctx, ctx);
2800        }
2801        perf_pmu_enable(ctx->pmu);
2802}
2803
2804/*
2805 * Test whether two contexts are equivalent, i.e. whether they have both been
2806 * cloned from the same version of the same context.
2807 *
2808 * Equivalence is measured using a generation number in the context that is
2809 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2810 * and list_del_event().
2811 */
2812static int context_equiv(struct perf_event_context *ctx1,
2813                         struct perf_event_context *ctx2)
2814{
2815        lockdep_assert_held(&ctx1->lock);
2816        lockdep_assert_held(&ctx2->lock);
2817
2818        /* Pinning disables the swap optimization */
2819        if (ctx1->pin_count || ctx2->pin_count)
2820                return 0;
2821
2822        /* If ctx1 is the parent of ctx2 */
2823        if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2824                return 1;
2825
2826        /* If ctx2 is the parent of ctx1 */
2827        if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2828                return 1;
2829
2830        /*
2831         * If ctx1 and ctx2 have the same parent; we flatten the parent
2832         * hierarchy, see perf_event_init_context().
2833         */
2834        if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2835                        ctx1->parent_gen == ctx2->parent_gen)
2836                return 1;
2837
2838        /* Unmatched */
2839        return 0;
2840}
2841
2842static void __perf_event_sync_stat(struct perf_event *event,
2843                                     struct perf_event *next_event)
2844{
2845        u64 value;
2846
2847        if (!event->attr.inherit_stat)
2848                return;
2849
2850        /*
2851         * Update the event value, we cannot use perf_event_read()
2852         * because we're in the middle of a context switch and have IRQs
2853         * disabled, which upsets smp_call_function_single(), however
2854         * we know the event must be on the current CPU, therefore we
2855         * don't need to use it.
2856         */
2857        switch (event->state) {
2858        case PERF_EVENT_STATE_ACTIVE:
2859                event->pmu->read(event);
2860                /* fall-through */
2861
2862        case PERF_EVENT_STATE_INACTIVE:
2863                update_event_times(event);
2864                break;
2865
2866        default:
2867                break;
2868        }
2869
2870        /*
2871         * In order to keep per-task stats reliable we need to flip the event
2872         * values when we flip the contexts.
2873         */
2874        value = local64_read(&next_event->count);
2875        value = local64_xchg(&event->count, value);
2876        local64_set(&next_event->count, value);
2877
2878        swap(event->total_time_enabled, next_event->total_time_enabled);
2879        swap(event->total_time_running, next_event->total_time_running);
2880
2881        /*
2882         * Since we swizzled the values, update the user visible data too.
2883         */
2884        perf_event_update_userpage(event);
2885        perf_event_update_userpage(next_event);
2886}
2887
2888static void perf_event_sync_stat(struct perf_event_context *ctx,
2889                                   struct perf_event_context *next_ctx)
2890{
2891        struct perf_event *event, *next_event;
2892
2893        if (!ctx->nr_stat)
2894                return;
2895
2896        update_context_time(ctx);
2897
2898        event = list_first_entry(&ctx->event_list,
2899                                   struct perf_event, event_entry);
2900
2901        next_event = list_first_entry(&next_ctx->event_list,
2902                                        struct perf_event, event_entry);
2903
2904        while (&event->event_entry != &ctx->event_list &&
2905               &next_event->event_entry != &next_ctx->event_list) {
2906
2907                __perf_event_sync_stat(event, next_event);
2908
2909                event = list_next_entry(event, event_entry);
2910                next_event = list_next_entry(next_event, event_entry);
2911        }
2912}
2913
2914static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2915                                         struct task_struct *next)
2916{
2917        struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2918        struct perf_event_context *next_ctx;
2919        struct perf_event_context *parent, *next_parent;
2920        struct perf_cpu_context *cpuctx;
2921        int do_switch = 1;
2922
2923        if (likely(!ctx))
2924                return;
2925
2926        cpuctx = __get_cpu_context(ctx);
2927        if (!cpuctx->task_ctx)
2928                return;
2929
2930        rcu_read_lock();
2931        next_ctx = next->perf_event_ctxp[ctxn];
2932        if (!next_ctx)
2933                goto unlock;
2934
2935        parent = rcu_dereference(ctx->parent_ctx);
2936        next_parent = rcu_dereference(next_ctx->parent_ctx);
2937
2938        /* If neither context have a parent context; they cannot be clones. */
2939        if (!parent && !next_parent)
2940                goto unlock;
2941
2942        if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2943                /*
2944                 * Looks like the two contexts are clones, so we might be
2945                 * able to optimize the context switch.  We lock both
2946                 * contexts and check that they are clones under the
2947                 * lock (including re-checking that neither has been
2948                 * uncloned in the meantime).  It doesn't matter which
2949                 * order we take the locks because no other cpu could
2950                 * be trying to lock both of these tasks.
2951                 */
2952                raw_spin_lock(&ctx->lock);
2953                raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2954                if (context_equiv(ctx, next_ctx)) {
2955                        WRITE_ONCE(ctx->task, next);
2956                        WRITE_ONCE(next_ctx->task, task);
2957
2958                        swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2959
2960                        /*
2961                         * RCU_INIT_POINTER here is safe because we've not
2962                         * modified the ctx and the above modification of
2963                         * ctx->task and ctx->task_ctx_data are immaterial
2964                         * since those values are always verified under
2965                         * ctx->lock which we're now holding.
2966                         */
2967                        RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2968                        RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2969
2970                        do_switch = 0;
2971
2972                        perf_event_sync_stat(ctx, next_ctx);
2973                }
2974                raw_spin_unlock(&next_ctx->lock);
2975                raw_spin_unlock(&ctx->lock);
2976        }
2977unlock:
2978        rcu_read_unlock();
2979
2980        if (do_switch) {
2981                raw_spin_lock(&ctx->lock);
2982                task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2983                raw_spin_unlock(&ctx->lock);
2984        }
2985}
2986
2987static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2988
2989void perf_sched_cb_dec(struct pmu *pmu)
2990{
2991        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2992
2993        this_cpu_dec(perf_sched_cb_usages);
2994
2995        if (!--cpuctx->sched_cb_usage)
2996                list_del(&cpuctx->sched_cb_entry);
2997}
2998
2999
3000void perf_sched_cb_inc(struct pmu *pmu)
3001{
3002        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3003
3004        if (!cpuctx->sched_cb_usage++)
3005                list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3006
3007        this_cpu_inc(perf_sched_cb_usages);
3008}
3009
3010/*
3011 * This function provides the context switch callback to the lower code
3012 * layer. It is invoked ONLY when the context switch callback is enabled.
3013 *
3014 * This callback is relevant even to per-cpu events; for example multi event
3015 * PEBS requires this to provide PID/TID information. This requires we flush
3016 * all queued PEBS records before we context switch to a new task.
3017 */
3018static void perf_pmu_sched_task(struct task_struct *prev,
3019                                struct task_struct *next,
3020                                bool sched_in)
3021{
3022        struct perf_cpu_context *cpuctx;
3023        struct pmu *pmu;
3024
3025        if (prev == next)
3026                return;
3027
3028        list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3029                pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3030
3031                if (WARN_ON_ONCE(!pmu->sched_task))
3032                        continue;
3033
3034                perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3035                perf_pmu_disable(pmu);
3036
3037                pmu->sched_task(cpuctx->task_ctx, sched_in);
3038
3039                perf_pmu_enable(pmu);
3040                perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3041        }
3042}
3043
3044static void perf_event_switch(struct task_struct *task,
3045                              struct task_struct *next_prev, bool sched_in);
3046
3047#define for_each_task_context_nr(ctxn)                                  \
3048        for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3049
3050/*
3051 * Called from scheduler to remove the events of the current task,
3052 * with interrupts disabled.
3053 *
3054 * We stop each event and update the event value in event->count.
3055 *
3056 * This does not protect us against NMI, but disable()
3057 * sets the disabled bit in the control field of event _before_
3058 * accessing the event control register. If a NMI hits, then it will
3059 * not restart the event.
3060 */
3061void __perf_event_task_sched_out(struct task_struct *task,
3062                                 struct task_struct *next)
3063{
3064        int ctxn;
3065
3066        if (__this_cpu_read(perf_sched_cb_usages))
3067                perf_pmu_sched_task(task, next, false);
3068
3069        if (atomic_read(&nr_switch_events))
3070                perf_event_switch(task, next, false);
3071
3072        for_each_task_context_nr(ctxn)
3073                perf_event_context_sched_out(task, ctxn, next);
3074
3075        /*
3076         * if cgroup events exist on this CPU, then we need
3077         * to check if we have to switch out PMU state.
3078         * cgroup event are system-wide mode only
3079         */
3080        if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3081                perf_cgroup_sched_out(task, next);
3082}
3083
3084/*
3085 * Called with IRQs disabled
3086 */
3087static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3088                              enum event_type_t event_type)
3089{
3090        ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3091}
3092
3093static void
3094ctx_pinned_sched_in(struct perf_event_context *ctx,
3095                    struct perf_cpu_context *cpuctx)
3096{
3097        struct perf_event *event;
3098
3099        list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3100                if (event->state <= PERF_EVENT_STATE_OFF)
3101                        continue;
3102                if (!event_filter_match(event))
3103                        continue;
3104
3105                /* may need to reset tstamp_enabled */
3106                if (is_cgroup_event(event))
3107                        perf_cgroup_mark_enabled(event, ctx);
3108
3109                if (group_can_go_on(event, cpuctx, 1))
3110                        group_sched_in(event, cpuctx, ctx);
3111
3112                /*
3113                 * If this pinned group hasn't been scheduled,
3114                 * put it in error state.
3115                 */
3116                if (event->state == PERF_EVENT_STATE_INACTIVE) {
3117                        update_group_times(event);
3118                        event->state = PERF_EVENT_STATE_ERROR;
3119                }
3120        }
3121}
3122
3123static void
3124ctx_flexible_sched_in(struct perf_event_context *ctx,
3125                      struct perf_cpu_context *cpuctx)
3126{
3127        struct perf_event *event;
3128        int can_add_hw = 1;
3129
3130        list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3131                /* Ignore events in OFF or ERROR state */
3132                if (event->state <= PERF_EVENT_STATE_OFF)
3133                        continue;
3134                /*
3135                 * Listen to the 'cpu' scheduling filter constraint
3136                 * of events:
3137                 */
3138                if (!event_filter_match(event))
3139                        continue;
3140
3141                /* may need to reset tstamp_enabled */
3142                if (is_cgroup_event(event))
3143                        perf_cgroup_mark_enabled(event, ctx);
3144
3145                if (group_can_go_on(event, cpuctx, can_add_hw)) {
3146                        if (group_sched_in(event, cpuctx, ctx))
3147                                can_add_hw = 0;
3148                }
3149        }
3150}
3151
3152static void
3153ctx_sched_in(struct perf_event_context *ctx,
3154             struct perf_cpu_context *cpuctx,
3155             enum event_type_t event_type,
3156             struct task_struct *task)
3157{
3158        int is_active = ctx->is_active;
3159        u64 now;
3160
3161        lockdep_assert_held(&ctx->lock);
3162
3163        if (likely(!ctx->nr_events))
3164                return;
3165
3166        ctx->is_active |= (event_type | EVENT_TIME);
3167        if (ctx->task) {
3168                if (!is_active)
3169                        cpuctx->task_ctx = ctx;
3170                else
3171                        WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3172        }
3173
3174        is_active ^= ctx->is_active; /* changed bits */
3175
3176        if (is_active & EVENT_TIME) {
3177                /* start ctx time */
3178                now = perf_clock();
3179                ctx->timestamp = now;
3180                perf_cgroup_set_timestamp(task, ctx);
3181        }
3182
3183        /*
3184         * First go through the list and put on any pinned groups
3185         * in order to give them the best chance of going on.
3186         */
3187        if (is_active & EVENT_PINNED)
3188                ctx_pinned_sched_in(ctx, cpuctx);
3189
3190        /* Then walk through the lower prio flexible groups */
3191        if (is_active & EVENT_FLEXIBLE)
3192                ctx_flexible_sched_in(ctx, cpuctx);
3193}
3194
3195static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3196                             enum event_type_t event_type,
3197                             struct task_struct *task)
3198{
3199        struct perf_event_context *ctx = &cpuctx->ctx;
3200
3201        ctx_sched_in(ctx, cpuctx, event_type, task);
3202}
3203
3204static void perf_event_context_sched_in(struct perf_event_context *ctx,
3205                                        struct task_struct *task)
3206{
3207        struct perf_cpu_context *cpuctx;
3208
3209        cpuctx = __get_cpu_context(ctx);
3210        if (cpuctx->task_ctx == ctx)
3211                return;
3212
3213        perf_ctx_lock(cpuctx, ctx);
3214        perf_pmu_disable(ctx->pmu);
3215        /*
3216         * We want to keep the following priority order:
3217         * cpu pinned (that don't need to move), task pinned,
3218         * cpu flexible, task flexible.
3219         *
3220         * However, if task's ctx is not carrying any pinned
3221         * events, no need to flip the cpuctx's events around.
3222         */
3223        if (!list_empty(&ctx->pinned_groups))
3224                cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3225        perf_event_sched_in(cpuctx, ctx, task);
3226        perf_pmu_enable(ctx->pmu);
3227        perf_ctx_unlock(cpuctx, ctx);
3228}
3229
3230/*
3231 * Called from scheduler to add the events of the current task
3232 * with interrupts disabled.
3233 *
3234 * We restore the event value and then enable it.
3235 *
3236 * This does not protect us against NMI, but enable()
3237 * sets the enabled bit in the control field of event _before_
3238 * accessing the event control register. If a NMI hits, then it will
3239 * keep the event running.
3240 */
3241void __perf_event_task_sched_in(struct task_struct *prev,
3242                                struct task_struct *task)
3243{
3244        struct perf_event_context *ctx;
3245        int ctxn;
3246
3247        /*
3248         * If cgroup events exist on this CPU, then we need to check if we have
3249         * to switch in PMU state; cgroup event are system-wide mode only.
3250         *
3251         * Since cgroup events are CPU events, we must schedule these in before
3252         * we schedule in the task events.
3253         */
3254        if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3255                perf_cgroup_sched_in(prev, task);
3256
3257        for_each_task_context_nr(ctxn) {
3258                ctx = task->perf_event_ctxp[ctxn];
3259                if (likely(!ctx))
3260                        continue;
3261
3262                perf_event_context_sched_in(ctx, task);
3263        }
3264
3265        if (atomic_read(&nr_switch_events))
3266                perf_event_switch(task, prev, true);
3267
3268        if (__this_cpu_read(perf_sched_cb_usages))
3269                perf_pmu_sched_task(prev, task, true);
3270}
3271
3272static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3273{
3274        u64 frequency = event->attr.sample_freq;
3275        u64 sec = NSEC_PER_SEC;
3276        u64 divisor, dividend;
3277
3278        int count_fls, nsec_fls, frequency_fls, sec_fls;
3279
3280        count_fls = fls64(count);
3281        nsec_fls = fls64(nsec);
3282        frequency_fls = fls64(frequency);
3283        sec_fls = 30;
3284
3285        /*
3286         * We got @count in @nsec, with a target of sample_freq HZ
3287         * the target period becomes:
3288         *
3289         *             @count * 10^9
3290         * period = -------------------
3291         *          @nsec * sample_freq
3292         *
3293         */
3294
3295        /*
3296         * Reduce accuracy by one bit such that @a and @b converge
3297         * to a similar magnitude.
3298         */
3299#define REDUCE_FLS(a, b)                \
3300do {                                    \
3301        if (a##_fls > b##_fls) {        \
3302                a >>= 1;                \
3303                a##_fls--;              \
3304        } else {                        \
3305                b >>= 1;                \
3306                b##_fls--;              \
3307        }                               \
3308} while (0)
3309
3310        /*
3311         * Reduce accuracy until either term fits in a u64, then proceed with
3312         * the other, so that finally we can do a u64/u64 division.
3313         */
3314        while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3315                REDUCE_FLS(nsec, frequency);
3316                REDUCE_FLS(sec, count);
3317        }
3318
3319        if (count_fls + sec_fls > 64) {
3320                divisor = nsec * frequency;
3321
3322                while (count_fls + sec_fls > 64) {
3323                        REDUCE_FLS(count, sec);
3324                        divisor >>= 1;
3325                }
3326
3327                dividend = count * sec;
3328        } else {
3329                dividend = count * sec;
3330
3331                while (nsec_fls + frequency_fls > 64) {
3332                        REDUCE_FLS(nsec, frequency);
3333                        dividend >>= 1;
3334                }
3335
3336                divisor = nsec * frequency;
3337        }
3338
3339        if (!divisor)
3340                return dividend;
3341
3342        return div64_u64(dividend, divisor);
3343}
3344
3345static DEFINE_PER_CPU(int, perf_throttled_count);
3346static DEFINE_PER_CPU(u64, perf_throttled_seq);
3347
3348static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3349{
3350        struct hw_perf_event *hwc = &event->hw;
3351        s64 period, sample_period;
3352        s64 delta;
3353
3354        period = perf_calculate_period(event, nsec, count);
3355
3356        delta = (s64)(period - hwc->sample_period);
3357        delta = (delta + 7) / 8; /* low pass filter */
3358
3359        sample_period = hwc->sample_period + delta;
3360
3361        if (!sample_period)
3362                sample_period = 1;
3363
3364        hwc->sample_period = sample_period;
3365
3366        if (local64_read(&hwc->period_left) > 8*sample_period) {
3367                if (disable)
3368                        event->pmu->stop(event, PERF_EF_UPDATE);
3369
3370                local64_set(&hwc->period_left, 0);
3371
3372                if (disable)
3373                        event->pmu->start(event, PERF_EF_RELOAD);
3374        }
3375}
3376
3377/*
3378 * combine freq adjustment with unthrottling to avoid two passes over the
3379 * events. At the same time, make sure, having freq events does not change
3380 * the rate of unthrottling as that would introduce bias.
3381 */
3382static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3383                                           int needs_unthr)
3384{
3385        struct perf_event *event;
3386        struct hw_perf_event *hwc;
3387        u64 now, period = TICK_NSEC;
3388        s64 delta;
3389
3390        /*
3391         * only need to iterate over all events iff:
3392         * - context have events in frequency mode (needs freq adjust)
3393         * - there are events to unthrottle on this cpu
3394         */
3395        if (!(ctx->nr_freq || needs_unthr))
3396                return;
3397
3398        raw_spin_lock(&ctx->lock);
3399        perf_pmu_disable(ctx->pmu);
3400
3401        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3402                if (event->state != PERF_EVENT_STATE_ACTIVE)
3403                        continue;
3404
3405                if (!event_filter_match(event))
3406                        continue;
3407
3408                perf_pmu_disable(event->pmu);
3409
3410                hwc = &event->hw;
3411
3412                if (hwc->interrupts == MAX_INTERRUPTS) {
3413                        hwc->interrupts = 0;
3414                        perf_log_throttle(event, 1);
3415                        event->pmu->start(event, 0);
3416                }
3417
3418                if (!event->attr.freq || !event->attr.sample_freq)
3419                        goto next;
3420
3421                /*
3422                 * stop the event and update event->count
3423                 */
3424                event->pmu->stop(event, PERF_EF_UPDATE);
3425
3426                now = local64_read(&event->count);
3427                delta = now - hwc->freq_count_stamp;
3428                hwc->freq_count_stamp = now;
3429
3430                /*
3431                 * restart the event
3432                 * reload only if value has changed
3433                 * we have stopped the event so tell that
3434                 * to perf_adjust_period() to avoid stopping it
3435                 * twice.
3436                 */
3437                if (delta > 0)
3438                        perf_adjust_period(event, period, delta, false);
3439
3440                event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3441        next:
3442                perf_pmu_enable(event->pmu);
3443        }
3444
3445        perf_pmu_enable(ctx->pmu);
3446        raw_spin_unlock(&ctx->lock);
3447}
3448
3449/*
3450 * Round-robin a context's events:
3451 */
3452static void rotate_ctx(struct perf_event_context *ctx)
3453{
3454        /*
3455         * Rotate the first entry last of non-pinned groups. Rotation might be
3456         * disabled by the inheritance code.
3457         */
3458        if (!ctx->rotate_disable)
3459                list_rotate_left(&ctx->flexible_groups);
3460}
3461
3462static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3463{
3464        struct perf_event_context *ctx = NULL;
3465        int rotate = 0;
3466
3467        if (cpuctx->ctx.nr_events) {
3468                if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3469                        rotate = 1;
3470        }
3471
3472        ctx = cpuctx->task_ctx;
3473        if (ctx && ctx->nr_events) {
3474                if (ctx->nr_events != ctx->nr_active)
3475                        rotate = 1;
3476        }
3477
3478        if (!rotate)
3479                goto done;
3480
3481        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3482        perf_pmu_disable(cpuctx->ctx.pmu);
3483
3484        cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3485        if (ctx)
3486                ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3487
3488        rotate_ctx(&cpuctx->ctx);
3489        if (ctx)
3490                rotate_ctx(ctx);
3491
3492        perf_event_sched_in(cpuctx, ctx, current);
3493
3494        perf_pmu_enable(cpuctx->ctx.pmu);
3495        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3496done:
3497
3498        return rotate;
3499}
3500
3501void perf_event_task_tick(void)
3502{
3503        struct list_head *head = this_cpu_ptr(&active_ctx_list);
3504        struct perf_event_context *ctx, *tmp;
3505        int throttled;
3506
3507        WARN_ON(!irqs_disabled());
3508
3509        __this_cpu_inc(perf_throttled_seq);
3510        throttled = __this_cpu_xchg(perf_throttled_count, 0);
3511        tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3512
3513        list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3514                perf_adjust_freq_unthr_context(ctx, throttled);
3515}
3516
3517static int event_enable_on_exec(struct perf_event *event,
3518                                struct perf_event_context *ctx)
3519{
3520        if (!event->attr.enable_on_exec)
3521                return 0;
3522
3523        event->attr.enable_on_exec = 0;
3524        if (event->state >= PERF_EVENT_STATE_INACTIVE)
3525                return 0;
3526
3527        __perf_event_mark_enabled(event);
3528
3529        return 1;
3530}
3531
3532/*
3533 * Enable all of a task's events that have been marked enable-on-exec.
3534 * This expects task == current.
3535 */
3536static void perf_event_enable_on_exec(int ctxn)
3537{
3538        struct perf_event_context *ctx, *clone_ctx = NULL;
3539        enum event_type_t event_type = 0;
3540        struct perf_cpu_context *cpuctx;
3541        struct perf_event *event;
3542        unsigned long flags;
3543        int enabled = 0;
3544
3545        local_irq_save(flags);
3546        ctx = current->perf_event_ctxp[ctxn];
3547        if (!ctx || !ctx->nr_events)
3548                goto out;
3549
3550        cpuctx = __get_cpu_context(ctx);
3551        perf_ctx_lock(cpuctx, ctx);
3552        ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3553        list_for_each_entry(event, &ctx->event_list, event_entry) {
3554                enabled |= event_enable_on_exec(event, ctx);
3555                event_type |= get_event_type(event);
3556        }
3557
3558        /*
3559         * Unclone and reschedule this context if we enabled any event.
3560         */
3561        if (enabled) {
3562                clone_ctx = unclone_ctx(ctx);
3563                ctx_resched(cpuctx, ctx, event_type);
3564        } else {
3565                ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3566        }
3567        perf_ctx_unlock(cpuctx, ctx);
3568
3569out:
3570        local_irq_restore(flags);
3571
3572        if (clone_ctx)
3573                put_ctx(clone_ctx);
3574}
3575
3576struct perf_read_data {
3577        struct perf_event *event;
3578        bool group;
3579        int ret;
3580};
3581
3582static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3583{
3584        u16 local_pkg, event_pkg;
3585
3586        if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3587                int local_cpu = smp_processor_id();
3588
3589                event_pkg = topology_physical_package_id(event_cpu);
3590                local_pkg = topology_physical_package_id(local_cpu);
3591
3592                if (event_pkg == local_pkg)
3593                        return local_cpu;
3594        }
3595
3596        return event_cpu;
3597}
3598
3599/*
3600 * Cross CPU call to read the hardware event
3601 */
3602static void __perf_event_read(void *info)
3603{
3604        struct perf_read_data *data = info;
3605        struct perf_event *sub, *event = data->event;
3606        struct perf_event_context *ctx = event->ctx;
3607        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3608        struct pmu *pmu = event->pmu;
3609
3610        /*
3611         * If this is a task context, we need to check whether it is
3612         * the current task context of this cpu.  If not it has been
3613         * scheduled out before the smp call arrived.  In that case
3614         * event->count would have been updated to a recent sample
3615         * when the event was scheduled out.
3616         */
3617        if (ctx->task && cpuctx->task_ctx != ctx)
3618                return;
3619
3620        raw_spin_lock(&ctx->lock);
3621        if (ctx->is_active) {
3622                update_context_time(ctx);
3623                update_cgrp_time_from_event(event);
3624        }
3625
3626        update_event_times(event);
3627        if (event->state != PERF_EVENT_STATE_ACTIVE)
3628                goto unlock;
3629
3630        if (!data->group) {
3631                pmu->read(event);
3632                data->ret = 0;
3633                goto unlock;
3634        }
3635
3636        pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3637
3638        pmu->read(event);
3639
3640        list_for_each_entry(sub, &event->sibling_list, group_entry) {
3641                update_event_times(sub);
3642                if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3643                        /*
3644                         * Use sibling's PMU rather than @event's since
3645                         * sibling could be on different (eg: software) PMU.
3646                         */
3647                        sub->pmu->read(sub);
3648                }
3649        }
3650
3651        data->ret = pmu->commit_txn(pmu);
3652
3653unlock:
3654        raw_spin_unlock(&ctx->lock);
3655}
3656
3657static inline u64 perf_event_count(struct perf_event *event)
3658{
3659        if (event->pmu->count)
3660                return event->pmu->count(event);
3661
3662        return __perf_event_count(event);
3663}
3664
3665/*
3666 * NMI-safe method to read a local event, that is an event that
3667 * is:
3668 *   - either for the current task, or for this CPU
3669 *   - does not have inherit set, for inherited task events
3670 *     will not be local and we cannot read them atomically
3671 *   - must not have a pmu::count method
3672 */
3673int perf_event_read_local(struct perf_event *event, u64 *value)
3674{
3675        unsigned long flags;
3676        int ret = 0;
3677
3678        /*
3679         * Disabling interrupts avoids all counter scheduling (context
3680         * switches, timer based rotation and IPIs).
3681         */
3682        local_irq_save(flags);
3683
3684        /*
3685         * It must not be an event with inherit set, we cannot read
3686         * all child counters from atomic context.
3687         */
3688        if (event->attr.inherit) {
3689                ret = -EOPNOTSUPP;
3690                goto out;
3691        }
3692
3693        /*
3694         * It must not have a pmu::count method, those are not
3695         * NMI safe.
3696         */
3697        if (event->pmu->count) {
3698                ret = -EOPNOTSUPP;
3699                goto out;
3700        }
3701
3702        /* If this is a per-task event, it must be for current */
3703        if ((event->attach_state & PERF_ATTACH_TASK) &&
3704            event->hw.target != current) {
3705                ret = -EINVAL;
3706                goto out;
3707        }
3708
3709        /* If this is a per-CPU event, it must be for this CPU */
3710        if (!(event->attach_state & PERF_ATTACH_TASK) &&
3711            event->cpu != smp_processor_id()) {
3712                ret = -EINVAL;
3713                goto out;
3714        }
3715
3716        /*
3717         * If the event is currently on this CPU, its either a per-task event,
3718         * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3719         * oncpu == -1).
3720         */
3721        if (event->oncpu == smp_processor_id())
3722                event->pmu->read(event);
3723
3724        *value = local64_read(&event->count);
3725out:
3726        local_irq_restore(flags);
3727
3728        return ret;
3729}
3730
3731static int perf_event_read(struct perf_event *event, bool group)
3732{
3733        int event_cpu, ret = 0;
3734
3735        /*
3736         * If event is enabled and currently active on a CPU, update the
3737         * value in the event structure:
3738         */
3739        if (event->state == PERF_EVENT_STATE_ACTIVE) {
3740                struct perf_read_data data = {
3741                        .event = event,
3742                        .group = group,
3743                        .ret = 0,
3744                };
3745
3746                event_cpu = READ_ONCE(event->oncpu);
3747                if ((unsigned)event_cpu >= nr_cpu_ids)
3748                        return 0;
3749
3750                preempt_disable();
3751                event_cpu = __perf_event_read_cpu(event, event_cpu);
3752
3753                /*
3754                 * Purposely ignore the smp_call_function_single() return
3755                 * value.
3756                 *
3757                 * If event_cpu isn't a valid CPU it means the event got
3758                 * scheduled out and that will have updated the event count.
3759                 *
3760                 * Therefore, either way, we'll have an up-to-date event count
3761                 * after this.
3762                 */
3763                (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3764                preempt_enable();
3765                ret = data.ret;
3766        } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3767                struct perf_event_context *ctx = event->ctx;
3768                unsigned long flags;
3769
3770                raw_spin_lock_irqsave(&ctx->lock, flags);
3771                /*
3772                 * may read while context is not active
3773                 * (e.g., thread is blocked), in that case
3774                 * we cannot update context time
3775                 */
3776                if (ctx->is_active) {
3777                        update_context_time(ctx);
3778                        update_cgrp_time_from_event(event);
3779                }
3780                if (group)
3781                        update_group_times(event);
3782                else
3783                        update_event_times(event);
3784                raw_spin_unlock_irqrestore(&ctx->lock, flags);
3785        }
3786
3787        return ret;
3788}
3789
3790/*
3791 * Initialize the perf_event context in a task_struct:
3792 */
3793static void __perf_event_init_context(struct perf_event_context *ctx)
3794{
3795        raw_spin_lock_init(&ctx->lock);
3796        mutex_init(&ctx->mutex);
3797        INIT_LIST_HEAD(&ctx->active_ctx_list);
3798        INIT_LIST_HEAD(&ctx->pinned_groups);
3799        INIT_LIST_HEAD(&ctx->flexible_groups);
3800        INIT_LIST_HEAD(&ctx->event_list);
3801        atomic_set(&ctx->refcount, 1);
3802}
3803
3804static struct perf_event_context *
3805alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3806{
3807        struct perf_event_context *ctx;
3808
3809        ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3810        if (!ctx)
3811                return NULL;
3812
3813        __perf_event_init_context(ctx);
3814        if (task) {
3815                ctx->task = task;
3816                get_task_struct(task);
3817        }
3818        ctx->pmu = pmu;
3819
3820        return ctx;
3821}
3822
3823static struct task_struct *
3824find_lively_task_by_vpid(pid_t vpid)
3825{
3826        struct task_struct *task;
3827
3828        rcu_read_lock();
3829        if (!vpid)
3830                task = current;
3831        else
3832                task = find_task_by_vpid(vpid);
3833        if (task)
3834                get_task_struct(task);
3835        rcu_read_unlock();
3836
3837        if (!task)
3838                return ERR_PTR(-ESRCH);
3839
3840        return task;
3841}
3842
3843/*
3844 * Returns a matching context with refcount and pincount.
3845 */
3846static struct perf_event_context *
3847find_get_context(struct pmu *pmu, struct task_struct *task,
3848                struct perf_event *event)
3849{
3850        struct perf_event_context *ctx, *clone_ctx = NULL;
3851        struct perf_cpu_context *cpuctx;
3852        void *task_ctx_data = NULL;
3853        unsigned long flags;
3854        int ctxn, err;
3855        int cpu = event->cpu;
3856
3857        if (!task) {
3858                /* Must be root to operate on a CPU event: */
3859                if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3860                        return ERR_PTR(-EACCES);
3861
3862                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3863                ctx = &cpuctx->ctx;
3864                get_ctx(ctx);
3865                ++ctx->pin_count;
3866
3867                return ctx;
3868        }
3869
3870        err = -EINVAL;
3871        ctxn = pmu->task_ctx_nr;
3872        if (ctxn < 0)
3873                goto errout;
3874
3875        if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3876                task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3877                if (!task_ctx_data) {
3878                        err = -ENOMEM;
3879                        goto errout;
3880                }
3881        }
3882
3883retry:
3884        ctx = perf_lock_task_context(task, ctxn, &flags);
3885        if (ctx) {
3886                clone_ctx = unclone_ctx(ctx);
3887                ++ctx->pin_count;
3888
3889                if (task_ctx_data && !ctx->task_ctx_data) {
3890                        ctx->task_ctx_data = task_ctx_data;
3891                        task_ctx_data = NULL;
3892                }
3893                raw_spin_unlock_irqrestore(&ctx->lock, flags);
3894
3895                if (clone_ctx)
3896                        put_ctx(clone_ctx);
3897        } else {
3898                ctx = alloc_perf_context(pmu, task);
3899                err = -ENOMEM;
3900                if (!ctx)
3901                        goto errout;
3902
3903                if (task_ctx_data) {
3904                        ctx->task_ctx_data = task_ctx_data;
3905                        task_ctx_data = NULL;
3906                }
3907
3908                err = 0;
3909                mutex_lock(&task->perf_event_mutex);
3910                /*
3911                 * If it has already passed perf_event_exit_task().
3912                 * we must see PF_EXITING, it takes this mutex too.
3913                 */
3914                if (task->flags & PF_EXITING)
3915                        err = -ESRCH;
3916                else if (task->perf_event_ctxp[ctxn])
3917                        err = -EAGAIN;
3918                else {
3919                        get_ctx(ctx);
3920                        ++ctx->pin_count;
3921                        rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3922                }
3923                mutex_unlock(&task->perf_event_mutex);
3924
3925                if (unlikely(err)) {
3926                        put_ctx(ctx);
3927
3928                        if (err == -EAGAIN)
3929                                goto retry;
3930                        goto errout;
3931                }
3932        }
3933
3934        kfree(task_ctx_data);
3935        return ctx;
3936
3937errout:
3938        kfree(task_ctx_data);
3939        return ERR_PTR(err);
3940}
3941
3942static void perf_event_free_filter(struct perf_event *event);
3943static void perf_event_free_bpf_prog(struct perf_event *event);
3944
3945static void free_event_rcu(struct rcu_head *head)
3946{
3947        struct perf_event *event;
3948
3949        event = container_of(head, struct perf_event, rcu_head);
3950        if (event->ns)
3951                put_pid_ns(event->ns);
3952        perf_event_free_filter(event);
3953        kfree(event);
3954}
3955
3956static void ring_buffer_attach(struct perf_event *event,
3957                               struct ring_buffer *rb);
3958
3959static void detach_sb_event(struct perf_event *event)
3960{
3961        struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3962
3963        raw_spin_lock(&pel->lock);
3964        list_del_rcu(&event->sb_list);
3965        raw_spin_unlock(&pel->lock);
3966}
3967
3968static bool is_sb_event(struct perf_event *event)
3969{
3970        struct perf_event_attr *attr = &event->attr;
3971
3972        if (event->parent)
3973                return false;
3974
3975        if (event->attach_state & PERF_ATTACH_TASK)
3976                return false;
3977
3978        if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3979            attr->comm || attr->comm_exec ||
3980            attr->task ||
3981            attr->context_switch)
3982                return true;
3983        return false;
3984}
3985
3986static void unaccount_pmu_sb_event(struct perf_event *event)
3987{
3988        if (is_sb_event(event))
3989                detach_sb_event(event);
3990}
3991
3992static void unaccount_event_cpu(struct perf_event *event, int cpu)
3993{
3994        if (event->parent)
3995                return;
3996
3997        if (is_cgroup_event(event))
3998                atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3999}
4000
4001#ifdef CONFIG_NO_HZ_FULL
4002static DEFINE_SPINLOCK(nr_freq_lock);
4003#endif
4004
4005static void unaccount_freq_event_nohz(void)
4006{
4007#ifdef CONFIG_NO_HZ_FULL
4008        spin_lock(&nr_freq_lock);
4009        if (atomic_dec_and_test(&nr_freq_events))
4010                tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4011        spin_unlock(&nr_freq_lock);
4012#endif
4013}
4014
4015static void unaccount_freq_event(void)
4016{
4017        if (tick_nohz_full_enabled())
4018                unaccount_freq_event_nohz();
4019        else
4020                atomic_dec(&nr_freq_events);
4021}
4022
4023static void unaccount_event(struct perf_event *event)
4024{
4025        bool dec = false;
4026
4027        if (event->parent)
4028                return;
4029
4030        if (event->attach_state & PERF_ATTACH_TASK)
4031                dec = true;
4032        if (event->attr.mmap || event->attr.mmap_data)
4033                atomic_dec(&nr_mmap_events);
4034        if (event->attr.comm)
4035                atomic_dec(&nr_comm_events);
4036        if (event->attr.namespaces)
4037                atomic_dec(&nr_namespaces_events);
4038        if (event->attr.task)
4039                atomic_dec(&nr_task_events);
4040        if (event->attr.freq)
4041                unaccount_freq_event();
4042        if (event->attr.context_switch) {
4043                dec = true;
4044                atomic_dec(&nr_switch_events);
4045        }
4046        if (is_cgroup_event(event))
4047                dec = true;
4048        if (has_branch_stack(event))
4049                dec = true;
4050
4051        if (dec) {
4052                if (!atomic_add_unless(&perf_sched_count, -1, 1))
4053                        schedule_delayed_work(&perf_sched_work, HZ);
4054        }
4055
4056        unaccount_event_cpu(event, event->cpu);
4057
4058        unaccount_pmu_sb_event(event);
4059}
4060
4061static void perf_sched_delayed(struct work_struct *work)
4062{
4063        mutex_lock(&perf_sched_mutex);
4064        if (atomic_dec_and_test(&perf_sched_count))
4065                static_branch_disable(&perf_sched_events);
4066        mutex_unlock(&perf_sched_mutex);
4067}
4068
4069/*
4070 * The following implement mutual exclusion of events on "exclusive" pmus
4071 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4072 * at a time, so we disallow creating events that might conflict, namely:
4073 *
4074 *  1) cpu-wide events in the presence of per-task events,
4075 *  2) per-task events in the presence of cpu-wide events,
4076 *  3) two matching events on the same context.
4077 *
4078 * The former two cases are handled in the allocation path (perf_event_alloc(),
4079 * _free_event()), the latter -- before the first perf_install_in_context().
4080 */
4081static int exclusive_event_init(struct perf_event *event)
4082{
4083        struct pmu *pmu = event->pmu;
4084
4085        if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4086                return 0;
4087
4088        /*
4089         * Prevent co-existence of per-task and cpu-wide events on the
4090         * same exclusive pmu.
4091         *
4092         * Negative pmu::exclusive_cnt means there are cpu-wide
4093         * events on this "exclusive" pmu, positive means there are
4094         * per-task events.
4095         *
4096         * Since this is called in perf_event_alloc() path, event::ctx
4097         * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4098         * to mean "per-task event", because unlike other attach states it
4099         * never gets cleared.
4100         */
4101        if (event->attach_state & PERF_ATTACH_TASK) {
4102                if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4103                        return -EBUSY;
4104        } else {
4105                if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4106                        return -EBUSY;
4107        }
4108
4109        return 0;
4110}
4111
4112static void exclusive_event_destroy(struct perf_event *event)
4113{
4114        struct pmu *pmu = event->pmu;
4115
4116        if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4117                return;
4118
4119        /* see comment in exclusive_event_init() */
4120        if (event->attach_state & PERF_ATTACH_TASK)
4121                atomic_dec(&pmu->exclusive_cnt);
4122        else
4123                atomic_inc(&pmu->exclusive_cnt);
4124}
4125
4126static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4127{
4128        if ((e1->pmu == e2->pmu) &&
4129            (e1->cpu == e2->cpu ||
4130             e1->cpu == -1 ||
4131             e2->cpu == -1))
4132                return true;
4133        return false;
4134}
4135
4136/* Called under the same ctx::mutex as perf_install_in_context() */
4137static bool exclusive_event_installable(struct perf_event *event,
4138                                        struct perf_event_context *ctx)
4139{
4140        struct perf_event *iter_event;
4141        struct pmu *pmu = event->pmu;
4142
4143        if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4144                return true;
4145
4146        list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4147                if (exclusive_event_match(iter_event, event))
4148                        return false;
4149        }
4150
4151        return true;
4152}
4153
4154static void perf_addr_filters_splice(struct perf_event *event,
4155                                       struct list_head *head);
4156
4157static void _free_event(struct perf_event *event)
4158{
4159        irq_work_sync(&event->pending);
4160
4161        unaccount_event(event);
4162
4163        if (event->rb) {
4164                /*
4165                 * Can happen when we close an event with re-directed output.
4166                 *
4167                 * Since we have a 0 refcount, perf_mmap_close() will skip
4168                 * over us; possibly making our ring_buffer_put() the last.
4169                 */
4170                mutex_lock(&event->mmap_mutex);
4171                ring_buffer_attach(event, NULL);
4172                mutex_unlock(&event->mmap_mutex);
4173        }
4174
4175        if (is_cgroup_event(event))
4176                perf_detach_cgroup(event);
4177
4178        if (!event->parent) {
4179                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4180                        put_callchain_buffers();
4181        }
4182
4183        perf_event_free_bpf_prog(event);
4184        perf_addr_filters_splice(event, NULL);
4185        kfree(event->addr_filters_offs);
4186
4187        if (event->destroy)
4188                event->destroy(event);
4189
4190        if (event->ctx)
4191                put_ctx(event->ctx);
4192
4193        exclusive_event_destroy(event);
4194        module_put(event->pmu->module);
4195
4196        call_rcu(&event->rcu_head, free_event_rcu);
4197}
4198
4199/*
4200 * Used to free events which have a known refcount of 1, such as in error paths
4201 * where the event isn't exposed yet and inherited events.
4202 */
4203static void free_event(struct perf_event *event)
4204{
4205        if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4206                                "unexpected event refcount: %ld; ptr=%p\n",
4207                                atomic_long_read(&event->refcount), event)) {
4208                /* leak to avoid use-after-free */
4209                return;
4210        }
4211
4212        _free_event(event);
4213}
4214
4215/*
4216 * Remove user event from the owner task.
4217 */
4218static void perf_remove_from_owner(struct perf_event *event)
4219{
4220        struct task_struct *owner;
4221
4222        rcu_read_lock();
4223        /*
4224         * Matches the smp_store_release() in perf_event_exit_task(). If we
4225         * observe !owner it means the list deletion is complete and we can
4226         * indeed free this event, otherwise we need to serialize on
4227         * owner->perf_event_mutex.
4228         */
4229        owner = lockless_dereference(event->owner);
4230        if (owner) {
4231                /*
4232                 * Since delayed_put_task_struct() also drops the last
4233                 * task reference we can safely take a new reference
4234                 * while holding the rcu_read_lock().
4235                 */
4236                get_task_struct(owner);
4237        }
4238        rcu_read_unlock();
4239
4240        if (owner) {
4241                /*
4242                 * If we're here through perf_event_exit_task() we're already
4243                 * holding ctx->mutex which would be an inversion wrt. the
4244                 * normal lock order.
4245                 *
4246                 * However we can safely take this lock because its the child
4247                 * ctx->mutex.
4248                 */
4249                mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4250
4251                /*
4252                 * We have to re-check the event->owner field, if it is cleared
4253                 * we raced with perf_event_exit_task(), acquiring the mutex
4254                 * ensured they're done, and we can proceed with freeing the
4255                 * event.
4256                 */
4257                if (event->owner) {
4258                        list_del_init(&event->owner_entry);
4259                        smp_store_release(&event->owner, NULL);
4260                }
4261                mutex_unlock(&owner->perf_event_mutex);
4262                put_task_struct(owner);
4263        }
4264}
4265
4266static void put_event(struct perf_event *event)
4267{
4268        if (!atomic_long_dec_and_test(&event->refcount))
4269                return;
4270
4271        _free_event(event);
4272}
4273
4274/*
4275 * Kill an event dead; while event:refcount will preserve the event
4276 * object, it will not preserve its functionality. Once the last 'user'
4277 * gives up the object, we'll destroy the thing.
4278 */
4279int perf_event_release_kernel(struct perf_event *event)
4280{
4281        struct perf_event_context *ctx = event->ctx;
4282        struct perf_event *child, *tmp;
4283
4284        /*
4285         * If we got here through err_file: fput(event_file); we will not have
4286         * attached to a context yet.
4287         */
4288        if (!ctx) {
4289                WARN_ON_ONCE(event->attach_state &
4290                                (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4291                goto no_ctx;
4292        }
4293
4294        if (!is_kernel_event(event))
4295                perf_remove_from_owner(event);
4296
4297        ctx = perf_event_ctx_lock(event);
4298        WARN_ON_ONCE(ctx->parent_ctx);
4299        perf_remove_from_context(event, DETACH_GROUP);
4300
4301        raw_spin_lock_irq(&ctx->lock);
4302        /*
4303         * Mark this event as STATE_DEAD, there is no external reference to it
4304         * anymore.
4305         *
4306         * Anybody acquiring event->child_mutex after the below loop _must_
4307         * also see this, most importantly inherit_event() which will avoid
4308         * placing more children on the list.
4309         *
4310         * Thus this guarantees that we will in fact observe and kill _ALL_
4311         * child events.
4312         */
4313        event->state = PERF_EVENT_STATE_DEAD;
4314        raw_spin_unlock_irq(&ctx->lock);
4315
4316        perf_event_ctx_unlock(event, ctx);
4317
4318again:
4319        mutex_lock(&event->child_mutex);
4320        list_for_each_entry(child, &event->child_list, child_list) {
4321
4322                /*
4323                 * Cannot change, child events are not migrated, see the
4324                 * comment with perf_event_ctx_lock_nested().
4325                 */
4326                ctx = lockless_dereference(child->ctx);
4327                /*
4328                 * Since child_mutex nests inside ctx::mutex, we must jump
4329                 * through hoops. We start by grabbing a reference on the ctx.
4330                 *
4331                 * Since the event cannot get freed while we hold the
4332                 * child_mutex, the context must also exist and have a !0
4333                 * reference count.
4334                 */
4335                get_ctx(ctx);
4336
4337                /*
4338                 * Now that we have a ctx ref, we can drop child_mutex, and
4339                 * acquire ctx::mutex without fear of it going away. Then we
4340                 * can re-acquire child_mutex.
4341                 */
4342                mutex_unlock(&event->child_mutex);
4343                mutex_lock(&ctx->mutex);
4344                mutex_lock(&event->child_mutex);
4345
4346                /*
4347                 * Now that we hold ctx::mutex and child_mutex, revalidate our
4348                 * state, if child is still the first entry, it didn't get freed
4349                 * and we can continue doing so.
4350                 */
4351                tmp = list_first_entry_or_null(&event->child_list,
4352                                               struct perf_event, child_list);
4353                if (tmp == child) {
4354                        perf_remove_from_context(child, DETACH_GROUP);
4355                        list_del(&child->child_list);
4356                        free_event(child);
4357                        /*
4358                         * This matches the refcount bump in inherit_event();
4359                         * this can't be the last reference.
4360                         */
4361                        put_event(event);
4362                }
4363
4364                mutex_unlock(&event->child_mutex);
4365                mutex_unlock(&ctx->mutex);
4366                put_ctx(ctx);
4367                goto again;
4368        }
4369        mutex_unlock(&event->child_mutex);
4370
4371no_ctx:
4372        put_event(event); /* Must be the 'last' reference */
4373        return 0;
4374}
4375EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4376
4377/*
4378 * Called when the last reference to the file is gone.
4379 */
4380static int perf_release(struct inode *inode, struct file *file)
4381{
4382        perf_event_release_kernel(file->private_data);
4383        return 0;
4384}
4385
4386u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4387{
4388        struct perf_event *child;
4389        u64 total = 0;
4390
4391        *enabled = 0;
4392        *running = 0;
4393
4394        mutex_lock(&event->child_mutex);
4395
4396        (void)perf_event_read(event, false);
4397        total += perf_event_count(event);
4398
4399        *enabled += event->total_time_enabled +
4400                        atomic64_read(&event->child_total_time_enabled);
4401        *running += event->total_time_running +
4402                        atomic64_read(&event->child_total_time_running);
4403
4404        list_for_each_entry(child, &event->child_list, child_list) {
4405                (void)perf_event_read(child, false);
4406                total += perf_event_count(child);
4407                *enabled += child->total_time_enabled;
4408                *running += child->total_time_running;
4409        }
4410        mutex_unlock(&event->child_mutex);
4411
4412        return total;
4413}
4414EXPORT_SYMBOL_GPL(perf_event_read_value);
4415
4416static int __perf_read_group_add(struct perf_event *leader,
4417                                        u64 read_format, u64 *values)
4418{
4419        struct perf_event_context *ctx = leader->ctx;
4420        struct perf_event *sub;
4421        unsigned long flags;
4422        int n = 1; /* skip @nr */
4423        int ret;
4424
4425        ret = perf_event_read(leader, true);
4426        if (ret)
4427                return ret;
4428
4429        /*
4430         * Since we co-schedule groups, {enabled,running} times of siblings
4431         * will be identical to those of the leader, so we only publish one
4432         * set.
4433         */
4434        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4435                values[n++] += leader->total_time_enabled +
4436                        atomic64_read(&leader->child_total_time_enabled);
4437        }
4438
4439        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4440                values[n++] += leader->total_time_running +
4441                        atomic64_read(&leader->child_total_time_running);
4442        }
4443
4444        /*
4445         * Write {count,id} tuples for every sibling.
4446         */
4447        values[n++] += perf_event_count(leader);
4448        if (read_format & PERF_FORMAT_ID)
4449                values[n++] = primary_event_id(leader);
4450
4451        raw_spin_lock_irqsave(&ctx->lock, flags);
4452
4453        list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4454                values[n++] += perf_event_count(sub);
4455                if (read_format & PERF_FORMAT_ID)
4456                        values[n++] = primary_event_id(sub);
4457        }
4458
4459        raw_spin_unlock_irqrestore(&ctx->lock, flags);
4460        return 0;
4461}
4462
4463static int perf_read_group(struct perf_event *event,
4464                                   u64 read_format, char __user *buf)
4465{
4466        struct perf_event *leader = event->group_leader, *child;
4467        struct perf_event_context *ctx = leader->ctx;
4468        int ret;
4469        u64 *values;
4470
4471        lockdep_assert_held(&ctx->mutex);
4472
4473        values = kzalloc(event->read_size, GFP_KERNEL);
4474        if (!values)
4475                return -ENOMEM;
4476
4477        values[0] = 1 + leader->nr_siblings;
4478
4479        /*
4480         * By locking the child_mutex of the leader we effectively
4481         * lock the child list of all siblings.. XXX explain how.
4482         */
4483        mutex_lock(&leader->child_mutex);
4484
4485        ret = __perf_read_group_add(leader, read_format, values);
4486        if (ret)
4487                goto unlock;
4488
4489        list_for_each_entry(child, &leader->child_list, child_list) {
4490                ret = __perf_read_group_add(child, read_format, values);
4491                if (ret)
4492                        goto unlock;
4493        }
4494
4495        mutex_unlock(&leader->child_mutex);
4496
4497        ret = event->read_size;
4498        if (copy_to_user(buf, values, event->read_size))
4499                ret = -EFAULT;
4500        goto out;
4501
4502unlock:
4503        mutex_unlock(&leader->child_mutex);
4504out:
4505        kfree(values);
4506        return ret;
4507}
4508
4509static int perf_read_one(struct perf_event *event,
4510                                 u64 read_format, char __user *buf)
4511{
4512        u64 enabled, running;
4513        u64 values[4];
4514        int n = 0;
4515
4516        values[n++] = perf_event_read_value(event, &enabled, &running);
4517        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4518                values[n++] = enabled;
4519        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4520                values[n++] = running;
4521        if (read_format & PERF_FORMAT_ID)
4522                values[n++] = primary_event_id(event);
4523
4524        if (copy_to_user(buf, values, n * sizeof(u64)))
4525                return -EFAULT;
4526
4527        return n * sizeof(u64);
4528}
4529
4530static bool is_event_hup(struct perf_event *event)
4531{
4532        bool no_children;
4533
4534        if (event->state > PERF_EVENT_STATE_EXIT)
4535                return false;
4536
4537        mutex_lock(&event->child_mutex);
4538        no_children = list_empty(&event->child_list);
4539        mutex_unlock(&event->child_mutex);
4540        return no_children;
4541}
4542
4543/*
4544 * Read the performance event - simple non blocking version for now
4545 */
4546static ssize_t
4547__perf_read(struct perf_event *event, char __user *buf, size_t count)
4548{
4549        u64 read_format = event->attr.read_format;
4550        int ret;
4551
4552        /*
4553         * Return end-of-file for a read on a event that is in
4554         * error state (i.e. because it was pinned but it couldn't be
4555         * scheduled on to the CPU at some point).
4556         */
4557        if (event->state == PERF_EVENT_STATE_ERROR)
4558                return 0;
4559
4560        if (count < event->read_size)
4561                return -ENOSPC;
4562
4563        WARN_ON_ONCE(event->ctx->parent_ctx);
4564        if (read_format & PERF_FORMAT_GROUP)
4565                ret = perf_read_group(event, read_format, buf);
4566        else
4567                ret = perf_read_one(event, read_format, buf);
4568
4569        return ret;
4570}
4571
4572static ssize_t
4573perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4574{
4575        struct perf_event *event = file->private_data;
4576        struct perf_event_context *ctx;
4577        int ret;
4578
4579        ctx = perf_event_ctx_lock(event);
4580        ret = __perf_read(event, buf, count);
4581        perf_event_ctx_unlock(event, ctx);
4582
4583        return ret;
4584}
4585
4586static unsigned int perf_poll(struct file *file, poll_table *wait)
4587{
4588        struct perf_event *event = file->private_data;
4589        struct ring_buffer *rb;
4590        unsigned int events = POLLHUP;
4591
4592        poll_wait(file, &event->waitq, wait);
4593
4594        if (is_event_hup(event))
4595                return events;
4596
4597        /*
4598         * Pin the event->rb by taking event->mmap_mutex; otherwise
4599         * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4600         */
4601        mutex_lock(&event->mmap_mutex);
4602        rb = event->rb;
4603        if (rb)
4604                events = atomic_xchg(&rb->poll, 0);
4605        mutex_unlock(&event->mmap_mutex);
4606        return events;
4607}
4608
4609static void _perf_event_reset(struct perf_event *event)
4610{
4611        (void)perf_event_read(event, false);
4612        local64_set(&event->count, 0);
4613        perf_event_update_userpage(event);
4614}
4615
4616/*
4617 * Holding the top-level event's child_mutex means that any
4618 * descendant process that has inherited this event will block
4619 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4620 * task existence requirements of perf_event_enable/disable.
4621 */
4622static void perf_event_for_each_child(struct perf_event *event,
4623                                        void (*func)(struct perf_event *))
4624{
4625        struct perf_event *child;
4626
4627        WARN_ON_ONCE(event->ctx->parent_ctx);
4628
4629        mutex_lock(&event->child_mutex);
4630        func(event);
4631        list_for_each_entry(child, &event->child_list, child_list)
4632                func(child);
4633        mutex_unlock(&event->child_mutex);
4634}
4635
4636static void perf_event_for_each(struct perf_event *event,
4637                                  void (*func)(struct perf_event *))
4638{
4639        struct perf_event_context *ctx = event->ctx;
4640        struct perf_event *sibling;
4641
4642        lockdep_assert_held(&ctx->mutex);
4643
4644        event = event->group_leader;
4645
4646        perf_event_for_each_child(event, func);
4647        list_for_each_entry(sibling, &event->sibling_list, group_entry)
4648                perf_event_for_each_child(sibling, func);
4649}
4650
4651static void __perf_event_period(struct perf_event *event,
4652                                struct perf_cpu_context *cpuctx,
4653                                struct perf_event_context *ctx,
4654                                void *info)
4655{
4656        u64 value = *((u64 *)info);
4657        bool active;
4658
4659        if (event->attr.freq) {
4660                event->attr.sample_freq = value;
4661        } else {
4662                event->attr.sample_period = value;
4663                event->hw.sample_period = value;
4664        }
4665
4666        active = (event->state == PERF_EVENT_STATE_ACTIVE);
4667        if (active) {
4668                perf_pmu_disable(ctx->pmu);
4669                /*
4670                 * We could be throttled; unthrottle now to avoid the tick
4671                 * trying to unthrottle while we already re-started the event.
4672                 */
4673                if (event->hw.interrupts == MAX_INTERRUPTS) {
4674                        event->hw.interrupts = 0;
4675                        perf_log_throttle(event, 1);
4676                }
4677                event->pmu->stop(event, PERF_EF_UPDATE);
4678        }
4679
4680        local64_set(&event->hw.period_left, 0);
4681
4682        if (active) {
4683                event->pmu->start(event, PERF_EF_RELOAD);
4684                perf_pmu_enable(ctx->pmu);
4685        }
4686}
4687
4688static int perf_event_period(struct perf_event *event, u64 __user *arg)
4689{
4690        u64 value;
4691
4692        if (!is_sampling_event(event))
4693                return -EINVAL;
4694
4695        if (copy_from_user(&value, arg, sizeof(value)))
4696                return -EFAULT;
4697
4698        if (!value)
4699                return -EINVAL;
4700
4701        if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4702                return -EINVAL;
4703
4704        event_function_call(event, __perf_event_period, &value);
4705
4706        return 0;
4707}
4708
4709static const struct file_operations perf_fops;
4710
4711static inline int perf_fget_light(int fd, struct fd *p)
4712{
4713        struct fd f = fdget(fd);
4714        if (!f.file)
4715                return -EBADF;
4716
4717        if (f.file->f_op != &perf_fops) {
4718                fdput(f);
4719                return -EBADF;
4720        }
4721        *p = f;
4722        return 0;
4723}
4724
4725static int perf_event_set_output(struct perf_event *event,
4726                                 struct perf_event *output_event);
4727static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4728static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4729
4730static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4731{
4732        void (*func)(struct perf_event *);
4733        u32 flags = arg;
4734
4735        switch (cmd) {
4736        case PERF_EVENT_IOC_ENABLE:
4737                func = _perf_event_enable;
4738                break;
4739        case PERF_EVENT_IOC_DISABLE:
4740                func = _perf_event_disable;
4741                break;
4742        case PERF_EVENT_IOC_RESET:
4743                func = _perf_event_reset;
4744                break;
4745
4746        case PERF_EVENT_IOC_REFRESH:
4747                return _perf_event_refresh(event, arg);
4748
4749        case PERF_EVENT_IOC_PERIOD:
4750                return perf_event_period(event, (u64 __user *)arg);
4751
4752        case PERF_EVENT_IOC_ID:
4753        {
4754                u64 id = primary_event_id(event);
4755
4756                if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4757                        return -EFAULT;
4758                return 0;
4759        }
4760
4761        case PERF_EVENT_IOC_SET_OUTPUT:
4762        {
4763                int ret;
4764                if (arg != -1) {
4765                        struct perf_event *output_event;
4766                        struct fd output;
4767                        ret = perf_fget_light(arg, &output);
4768                        if (ret)
4769                                return ret;
4770                        output_event = output.file->private_data;
4771                        ret = perf_event_set_output(event, output_event);
4772                        fdput(output);
4773                } else {
4774                        ret = perf_event_set_output(event, NULL);
4775                }
4776                return ret;
4777        }
4778
4779        case PERF_EVENT_IOC_SET_FILTER:
4780                return perf_event_set_filter(event, (void __user *)arg);
4781
4782        case PERF_EVENT_IOC_SET_BPF:
4783                return perf_event_set_bpf_prog(event, arg);
4784
4785        case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4786                struct ring_buffer *rb;
4787
4788                rcu_read_lock();
4789                rb = rcu_dereference(event->rb);
4790                if (!rb || !rb->nr_pages) {
4791                        rcu_read_unlock();
4792                        return -EINVAL;
4793                }
4794                rb_toggle_paused(rb, !!arg);
4795                rcu_read_unlock();
4796                return 0;
4797        }
4798        default:
4799                return -ENOTTY;
4800        }
4801
4802        if (flags & PERF_IOC_FLAG_GROUP)
4803                perf_event_for_each(event, func);
4804        else
4805                perf_event_for_each_child(event, func);
4806
4807        return 0;
4808}
4809
4810static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4811{
4812        struct perf_event *event = file->private_data;
4813        struct perf_event_context *ctx;
4814        long ret;
4815
4816        ctx = perf_event_ctx_lock(event);
4817        ret = _perf_ioctl(event, cmd, arg);
4818        perf_event_ctx_unlock(event, ctx);
4819
4820        return ret;
4821}
4822
4823#ifdef CONFIG_COMPAT
4824static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4825                                unsigned long arg)
4826{
4827        switch (_IOC_NR(cmd)) {
4828        case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4829        case _IOC_NR(PERF_EVENT_IOC_ID):
4830                /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4831                if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4832                        cmd &= ~IOCSIZE_MASK;
4833                        cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4834                }
4835                break;
4836        }
4837        return perf_ioctl(file, cmd, arg);
4838}
4839#else
4840# define perf_compat_ioctl NULL
4841#endif
4842
4843int perf_event_task_enable(void)
4844{
4845        struct perf_event_context *ctx;
4846        struct perf_event *event;
4847
4848        mutex_lock(&current->perf_event_mutex);
4849        list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4850                ctx = perf_event_ctx_lock(event);
4851                perf_event_for_each_child(event, _perf_event_enable);
4852                perf_event_ctx_unlock(event, ctx);
4853        }
4854        mutex_unlock(&current->perf_event_mutex);
4855
4856        return 0;
4857}
4858
4859int perf_event_task_disable(void)
4860{
4861        struct perf_event_context *ctx;
4862        struct perf_event *event;
4863
4864        mutex_lock(&current->perf_event_mutex);
4865        list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4866                ctx = perf_event_ctx_lock(event);
4867                perf_event_for_each_child(event, _perf_event_disable);
4868                perf_event_ctx_unlock(event, ctx);
4869        }
4870        mutex_unlock(&current->perf_event_mutex);
4871
4872        return 0;
4873}
4874
4875static int perf_event_index(struct perf_event *event)
4876{
4877        if (event->hw.state & PERF_HES_STOPPED)
4878                return 0;
4879
4880        if (event->state != PERF_EVENT_STATE_ACTIVE)
4881                return 0;
4882
4883        return event->pmu->event_idx(event);
4884}
4885
4886static void calc_timer_values(struct perf_event *event,
4887                                u64 *now,
4888                                u64 *enabled,
4889                                u64 *running)
4890{
4891        u64 ctx_time;
4892
4893        *now = perf_clock();
4894        ctx_time = event->shadow_ctx_time + *now;
4895        *enabled = ctx_time - event->tstamp_enabled;
4896        *running = ctx_time - event->tstamp_running;
4897}
4898
4899static void perf_event_init_userpage(struct perf_event *event)
4900{
4901        struct perf_event_mmap_page *userpg;
4902        struct ring_buffer *rb;
4903
4904        rcu_read_lock();
4905        rb = rcu_dereference(event->rb);
4906        if (!rb)
4907                goto unlock;
4908
4909        userpg = rb->user_page;
4910
4911        /* Allow new userspace to detect that bit 0 is deprecated */
4912        userpg->cap_bit0_is_deprecated = 1;
4913        userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4914        userpg->data_offset = PAGE_SIZE;
4915        userpg->data_size = perf_data_size(rb);
4916
4917unlock:
4918        rcu_read_unlock();
4919}
4920
4921void __weak arch_perf_update_userpage(
4922        struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4923{
4924}
4925
4926/*
4927 * Callers need to ensure there can be no nesting of this function, otherwise
4928 * the seqlock logic goes bad. We can not serialize this because the arch
4929 * code calls this from NMI context.
4930 */
4931void perf_event_update_userpage(struct perf_event *event)
4932{
4933        struct perf_event_mmap_page *userpg;
4934        struct ring_buffer *rb;
4935        u64 enabled, running, now;
4936
4937        rcu_read_lock();
4938        rb = rcu_dereference(event->rb);
4939        if (!rb)
4940                goto unlock;
4941
4942        /*
4943         * compute total_time_enabled, total_time_running
4944         * based on snapshot values taken when the event
4945         * was last scheduled in.
4946         *
4947         * we cannot simply called update_context_time()
4948         * because of locking issue as we can be called in
4949         * NMI context
4950         */
4951        calc_timer_values(event, &now, &enabled, &running);
4952
4953        userpg = rb->user_page;
4954        /*
4955         * Disable preemption so as to not let the corresponding user-space
4956         * spin too long if we get preempted.
4957         */
4958        preempt_disable();
4959        ++userpg->lock;
4960        barrier();
4961        userpg->index = perf_event_index(event);
4962        userpg->offset = perf_event_count(event);
4963        if (userpg->index)
4964                userpg->offset -= local64_read(&event->hw.prev_count);
4965
4966        userpg->time_enabled = enabled +
4967                        atomic64_read(&event->child_total_time_enabled);
4968
4969        userpg->time_running = running +
4970                        atomic64_read(&event->child_total_time_running);
4971
4972        arch_perf_update_userpage(event, userpg, now);
4973
4974        barrier();
4975        ++userpg->lock;
4976        preempt_enable();
4977unlock:
4978        rcu_read_unlock();
4979}
4980
4981static int perf_mmap_fault(struct vm_fault *vmf)
4982{
4983        struct perf_event *event = vmf->vma->vm_file->private_data;
4984        struct ring_buffer *rb;
4985        int ret = VM_FAULT_SIGBUS;
4986
4987        if (vmf->flags & FAULT_FLAG_MKWRITE) {
4988                if (vmf->pgoff == 0)
4989                        ret = 0;
4990                return ret;
4991        }
4992
4993        rcu_read_lock();
4994        rb = rcu_dereference(event->rb);
4995        if (!rb)
4996                goto unlock;
4997
4998        if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4999                goto unlock;
5000
5001        vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5002        if (!vmf->page)
5003                goto unlock;
5004
5005        get_page(vmf->page);
5006        vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5007        vmf->page->index   = vmf->pgoff;
5008
5009        ret = 0;
5010unlock:
5011        rcu_read_unlock();
5012
5013        return ret;
5014}
5015
5016static void ring_buffer_attach(struct perf_event *event,
5017                               struct ring_buffer *rb)
5018{
5019        struct ring_buffer *old_rb = NULL;
5020        unsigned long flags;
5021
5022        if (event->rb) {
5023                /*
5024                 * Should be impossible, we set this when removing
5025                 * event->rb_entry and wait/clear when adding event->rb_entry.
5026                 */
5027                WARN_ON_ONCE(event->rcu_pending);
5028
5029                old_rb = event->rb;
5030                spin_lock_irqsave(&old_rb->event_lock, flags);
5031                list_del_rcu(&event->rb_entry);
5032                spin_unlock_irqrestore(&old_rb->event_lock, flags);
5033
5034                event->rcu_batches = get_state_synchronize_rcu();
5035                event->rcu_pending = 1;
5036        }
5037
5038        if (rb) {
5039                if (event->rcu_pending) {
5040                        cond_synchronize_rcu(event->rcu_batches);
5041                        event->rcu_pending = 0;
5042                }
5043
5044                spin_lock_irqsave(&rb->event_lock, flags);
5045                list_add_rcu(&event->rb_entry, &rb->event_list);
5046                spin_unlock_irqrestore(&rb->event_lock, flags);
5047        }
5048
5049        /*
5050         * Avoid racing with perf_mmap_close(AUX): stop the event
5051         * before swizzling the event::rb pointer; if it's getting
5052         * unmapped, its aux_mmap_count will be 0 and it won't
5053         * restart. See the comment in __perf_pmu_output_stop().
5054         *
5055         * Data will inevitably be lost when set_output is done in
5056         * mid-air, but then again, whoever does it like this is
5057         * not in for the data anyway.
5058         */
5059        if (has_aux(event))
5060                perf_event_stop(event, 0);
5061
5062        rcu_assign_pointer(event->rb, rb);
5063
5064        if (old_rb) {
5065                ring_buffer_put(old_rb);
5066                /*
5067                 * Since we detached before setting the new rb, so that we
5068                 * could attach the new rb, we could have missed a wakeup.
5069                 * Provide it now.
5070                 */
5071                wake_up_all(&event->waitq);
5072        }
5073}
5074
5075static void ring_buffer_wakeup(struct perf_event *event)
5076{
5077        struct ring_buffer *rb;
5078
5079        rcu_read_lock();
5080        rb = rcu_dereference(event->rb);
5081        if (rb) {
5082                list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5083                        wake_up_all(&event->waitq);
5084        }
5085        rcu_read_unlock();
5086}
5087
5088struct ring_buffer *ring_buffer_get(struct perf_event *event)
5089{
5090        struct ring_buffer *rb;
5091
5092        rcu_read_lock();
5093        rb = rcu_dereference(event->rb);
5094        if (rb) {
5095                if (!atomic_inc_not_zero(&rb->refcount))
5096                        rb = NULL;
5097        }
5098        rcu_read_unlock();
5099
5100        return rb;
5101}
5102
5103void ring_buffer_put(struct ring_buffer *rb)
5104{
5105        if (!atomic_dec_and_test(&rb->refcount))
5106                return;
5107
5108        WARN_ON_ONCE(!list_empty(&rb->event_list));
5109
5110        call_rcu(&rb->rcu_head, rb_free_rcu);
5111}
5112
5113static void perf_mmap_open(struct vm_area_struct *vma)
5114{
5115        struct perf_event *event = vma->vm_file->private_data;
5116
5117        atomic_inc(&event->mmap_count);
5118        atomic_inc(&event->rb->mmap_count);
5119
5120        if (vma->vm_pgoff)
5121                atomic_inc(&event->rb->aux_mmap_count);
5122
5123        if (event->pmu->event_mapped)
5124                event->pmu->event_mapped(event, vma->vm_mm);
5125}
5126
5127static void perf_pmu_output_stop(struct perf_event *event);
5128
5129/*
5130 * A buffer can be mmap()ed multiple times; either directly through the same
5131 * event, or through other events by use of perf_event_set_output().
5132 *
5133 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5134 * the buffer here, where we still have a VM context. This means we need
5135 * to detach all events redirecting to us.
5136 */
5137static void perf_mmap_close(struct vm_area_struct *vma)
5138{
5139        struct perf_event *event = vma->vm_file->private_data;
5140
5141        struct ring_buffer *rb = ring_buffer_get(event);
5142        struct user_struct *mmap_user = rb->mmap_user;
5143        int mmap_locked = rb->mmap_locked;
5144        unsigned long size = perf_data_size(rb);
5145
5146        if (event->pmu->event_unmapped)
5147                event->pmu->event_unmapped(event, vma->vm_mm);
5148
5149        /*
5150         * rb->aux_mmap_count will always drop before rb->mmap_count and
5151         * event->mmap_count, so it is ok to use event->mmap_mutex to
5152         * serialize with perf_mmap here.
5153         */
5154        if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5155            atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5156                /*
5157                 * Stop all AUX events that are writing to this buffer,
5158                 * so that we can free its AUX pages and corresponding PMU
5159                 * data. Note that after rb::aux_mmap_count dropped to zero,
5160                 * they won't start any more (see perf_aux_output_begin()).
5161                 */
5162                perf_pmu_output_stop(event);
5163
5164                /* now it's safe to free the pages */
5165                atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5166                vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5167
5168                /* this has to be the last one */
5169                rb_free_aux(rb);
5170                WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5171
5172                mutex_unlock(&event->mmap_mutex);
5173        }
5174
5175        atomic_dec(&rb->mmap_count);
5176
5177        if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5178                goto out_put;
5179
5180        ring_buffer_attach(event, NULL);
5181        mutex_unlock(&event->mmap_mutex);
5182
5183        /* If there's still other mmap()s of this buffer, we're done. */
5184        if (atomic_read(&rb->mmap_count))
5185                goto out_put;
5186
5187        /*
5188         * No other mmap()s, detach from all other events that might redirect
5189         * into the now unreachable buffer. Somewhat complicated by the
5190         * fact that rb::event_lock otherwise nests inside mmap_mutex.
5191         */
5192again:
5193        rcu_read_lock();
5194        list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5195                if (!atomic_long_inc_not_zero(&event->refcount)) {
5196                        /*
5197                         * This event is en-route to free_event() which will
5198                         * detach it and remove it from the list.
5199                         */
5200                        continue;
5201                }
5202                rcu_read_unlock();
5203
5204                mutex_lock(&event->mmap_mutex);
5205                /*
5206                 * Check we didn't race with perf_event_set_output() which can
5207                 * swizzle the rb from under us while we were waiting to
5208                 * acquire mmap_mutex.
5209                 *
5210                 * If we find a different rb; ignore this event, a next
5211                 * iteration will no longer find it on the list. We have to
5212                 * still restart the iteration to make sure we're not now
5213                 * iterating the wrong list.
5214                 */
5215                if (event->rb == rb)
5216                        ring_buffer_attach(event, NULL);
5217
5218                mutex_unlock(&event->mmap_mutex);
5219                put_event(event);
5220
5221                /*
5222                 * Restart the iteration; either we're on the wrong list or
5223                 * destroyed its integrity by doing a deletion.
5224                 */
5225                goto again;
5226        }
5227        rcu_read_unlock();
5228
5229        /*
5230         * It could be there's still a few 0-ref events on the list; they'll
5231         * get cleaned up by free_event() -- they'll also still have their
5232         * ref on the rb and will free it whenever they are done with it.
5233         *
5234         * Aside from that, this buffer is 'fully' detached and unmapped,
5235         * undo the VM accounting.
5236         */
5237
5238        atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5239        vma->vm_mm->pinned_vm -= mmap_locked;
5240        free_uid(mmap_user);
5241
5242out_put:
5243        ring_buffer_put(rb); /* could be last */
5244}
5245
5246static const struct vm_operations_struct perf_mmap_vmops = {
5247        .open           = perf_mmap_open,
5248        .close          = perf_mmap_close, /* non mergable */
5249        .fault          = perf_mmap_fault,
5250        .page_mkwrite   = perf_mmap_fault,
5251};
5252
5253static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5254{
5255        struct perf_event *event = file->private_data;
5256        unsigned long user_locked, user_lock_limit;
5257        struct user_struct *user = current_user();
5258        unsigned long locked, lock_limit;
5259        struct ring_buffer *rb = NULL;
5260        unsigned long vma_size;
5261        unsigned long nr_pages;
5262        long user_extra = 0, extra = 0;
5263        int ret = 0, flags = 0;
5264
5265        /*
5266         * Don't allow mmap() of inherited per-task counters. This would
5267         * create a performance issue due to all children writing to the
5268         * same rb.
5269         */
5270        if (event->cpu == -1 && event->attr.inherit)
5271                return -EINVAL;
5272
5273        if (!(vma->vm_flags & VM_SHARED))
5274                return -EINVAL;
5275
5276        vma_size = vma->vm_end - vma->vm_start;
5277
5278        if (vma->vm_pgoff == 0) {
5279                nr_pages = (vma_size / PAGE_SIZE) - 1;
5280        } else {
5281                /*
5282                 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5283                 * mapped, all subsequent mappings should have the same size
5284                 * and offset. Must be above the normal perf buffer.
5285                 */
5286                u64 aux_offset, aux_size;
5287
5288                if (!event->rb)
5289                        return -EINVAL;
5290
5291                nr_pages = vma_size / PAGE_SIZE;
5292
5293                mutex_lock(&event->mmap_mutex);
5294                ret = -EINVAL;
5295
5296                rb = event->rb;
5297                if (!rb)
5298                        goto aux_unlock;
5299
5300                aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5301                aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5302
5303                if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5304                        goto aux_unlock;
5305
5306                if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5307                        goto aux_unlock;
5308
5309                /* already mapped with a different offset */
5310                if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5311                        goto aux_unlock;
5312
5313                if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5314                        goto aux_unlock;
5315
5316                /* already mapped with a different size */
5317                if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5318                        goto aux_unlock;
5319
5320                if (!is_power_of_2(nr_pages))
5321                        goto aux_unlock;
5322
5323                if (!atomic_inc_not_zero(&rb->mmap_count))
5324                        goto aux_unlock;
5325
5326                if (rb_has_aux(rb)) {
5327                        atomic_inc(&rb->aux_mmap_count);
5328                        ret = 0;
5329                        goto unlock;
5330                }
5331
5332                atomic_set(&rb->aux_mmap_count, 1);
5333                user_extra = nr_pages;
5334
5335                goto accounting;
5336        }
5337
5338        /*
5339         * If we have rb pages ensure they're a power-of-two number, so we
5340         * can do bitmasks instead of modulo.
5341         */
5342        if (nr_pages != 0 && !is_power_of_2(nr_pages))
5343                return -EINVAL;
5344
5345        if (vma_size != PAGE_SIZE * (1 + nr_pages))
5346                return -EINVAL;
5347
5348        WARN_ON_ONCE(event->ctx->parent_ctx);
5349again:
5350        mutex_lock(&event->mmap_mutex);
5351        if (event->rb) {
5352                if (event->rb->nr_pages != nr_pages) {
5353                        ret = -EINVAL;
5354                        goto unlock;
5355                }
5356
5357                if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5358                        /*
5359                         * Raced against perf_mmap_close() through
5360                         * perf_event_set_output(). Try again, hope for better
5361                         * luck.
5362                         */
5363                        mutex_unlock(&event->mmap_mutex);
5364                        goto again;
5365                }
5366
5367                goto unlock;
5368        }
5369
5370        user_extra = nr_pages + 1;
5371
5372accounting:
5373        user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5374
5375        /*
5376         * Increase the limit linearly with more CPUs:
5377         */
5378        user_lock_limit *= num_online_cpus();
5379
5380        user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5381
5382        if (user_locked > user_lock_limit)
5383                extra = user_locked - user_lock_limit;
5384
5385        lock_limit = rlimit(RLIMIT_MEMLOCK);
5386        lock_limit >>= PAGE_SHIFT;
5387        locked = vma->vm_mm->pinned_vm + extra;
5388
5389        if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5390                !capable(CAP_IPC_LOCK)) {
5391                ret = -EPERM;
5392                goto unlock;
5393        }
5394
5395        WARN_ON(!rb && event->rb);
5396
5397        if (vma->vm_flags & VM_WRITE)
5398                flags |= RING_BUFFER_WRITABLE;
5399
5400        if (!rb) {
5401                rb = rb_alloc(nr_pages,
5402                              event->attr.watermark ? event->attr.wakeup_watermark : 0,
5403                              event->cpu, flags);
5404
5405                if (!rb) {
5406                        ret = -ENOMEM;
5407                        goto unlock;
5408                }
5409
5410                atomic_set(&rb->mmap_count, 1);
5411                rb->mmap_user = get_current_user();
5412                rb->mmap_locked = extra;
5413
5414                ring_buffer_attach(event, rb);
5415
5416                perf_event_init_userpage(event);
5417                perf_event_update_userpage(event);
5418        } else {
5419                ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5420                                   event->attr.aux_watermark, flags);
5421                if (!ret)
5422                        rb->aux_mmap_locked = extra;
5423        }
5424
5425unlock:
5426        if (!ret) {
5427                atomic_long_add(user_extra, &user->locked_vm);
5428                vma->vm_mm->pinned_vm += extra;
5429
5430                atomic_inc(&event->mmap_count);
5431        } else if (rb) {
5432                atomic_dec(&rb->mmap_count);
5433        }
5434aux_unlock:
5435        mutex_unlock(&event->mmap_mutex);
5436
5437        /*
5438         * Since pinned accounting is per vm we cannot allow fork() to copy our
5439         * vma.
5440         */
5441        vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5442        vma->vm_ops = &perf_mmap_vmops;
5443
5444        if (event->pmu->event_mapped)
5445                event->pmu->event_mapped(event, vma->vm_mm);
5446
5447        return ret;
5448}
5449
5450static int perf_fasync(int fd, struct file *filp, int on)
5451{
5452        struct inode *inode = file_inode(filp);
5453        struct perf_event *event = filp->private_data;
5454        int retval;
5455
5456        inode_lock(inode);
5457        retval = fasync_helper(fd, filp, on, &event->fasync);
5458        inode_unlock(inode);
5459
5460        if (retval < 0)
5461                return retval;
5462
5463        return 0;
5464}
5465
5466static const struct file_operations perf_fops = {
5467        .llseek                 = no_llseek,
5468        .release                = perf_release,
5469        .read                   = perf_read,
5470        .poll                   = perf_poll,
5471        .unlocked_ioctl         = perf_ioctl,
5472        .compat_ioctl           = perf_compat_ioctl,
5473        .mmap                   = perf_mmap,
5474        .fasync                 = perf_fasync,
5475};
5476
5477/*
5478 * Perf event wakeup
5479 *
5480 * If there's data, ensure we set the poll() state and publish everything
5481 * to user-space before waking everybody up.
5482 */
5483
5484static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5485{
5486        /* only the parent has fasync state */
5487        if (event->parent)
5488                event = event->parent;
5489        return &event->fasync;
5490}
5491
5492void perf_event_wakeup(struct perf_event *event)
5493{
5494        ring_buffer_wakeup(event);
5495
5496        if (event->pending_kill) {
5497                kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5498                event->pending_kill = 0;
5499        }
5500}
5501
5502static void perf_pending_event(struct irq_work *entry)
5503{
5504        struct perf_event *event = container_of(entry,
5505                        struct perf_event, pending);
5506        int rctx;
5507
5508        rctx = perf_swevent_get_recursion_context();
5509        /*
5510         * If we 'fail' here, that's OK, it means recursion is already disabled
5511         * and we won't recurse 'further'.
5512         */
5513
5514        if (event->pending_disable) {
5515                event->pending_disable = 0;
5516                perf_event_disable_local(event);
5517        }
5518
5519        if (event->pending_wakeup) {
5520                event->pending_wakeup = 0;
5521                perf_event_wakeup(event);
5522        }
5523
5524        if (rctx >= 0)
5525                perf_swevent_put_recursion_context(rctx);
5526}
5527
5528/*
5529 * We assume there is only KVM supporting the callbacks.
5530 * Later on, we might change it to a list if there is
5531 * another virtualization implementation supporting the callbacks.
5532 */
5533struct perf_guest_info_callbacks *perf_guest_cbs;
5534
5535int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5536{
5537        perf_guest_cbs = cbs;
5538        return 0;
5539}
5540EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5541
5542int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5543{
5544        perf_guest_cbs = NULL;
5545        return 0;
5546}
5547EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5548
5549static void
5550perf_output_sample_regs(struct perf_output_handle *handle,
5551                        struct pt_regs *regs, u64 mask)
5552{
5553        int bit;
5554        DECLARE_BITMAP(_mask, 64);
5555
5556        bitmap_from_u64(_mask, mask);
5557        for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5558                u64 val;
5559
5560                val = perf_reg_value(regs, bit);
5561                perf_output_put(handle, val);
5562        }
5563}
5564
5565static void perf_sample_regs_user(struct perf_regs *regs_user,
5566                                  struct pt_regs *regs,
5567                                  struct pt_regs *regs_user_copy)
5568{
5569        if (user_mode(regs)) {
5570                regs_user->abi = perf_reg_abi(current);
5571                regs_user->regs = regs;
5572        } else if (current->mm) {
5573                perf_get_regs_user(regs_user, regs, regs_user_copy);
5574        } else {
5575                regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5576                regs_user->regs = NULL;
5577        }
5578}
5579
5580static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5581                                  struct pt_regs *regs)
5582{
5583        regs_intr->regs = regs;
5584        regs_intr->abi  = perf_reg_abi(current);
5585}
5586
5587
5588/*
5589 * Get remaining task size from user stack pointer.
5590 *
5591 * It'd be better to take stack vma map and limit this more
5592 * precisly, but there's no way to get it safely under interrupt,
5593 * so using TASK_SIZE as limit.
5594 */
5595static u64 perf_ustack_task_size(struct pt_regs *regs)
5596{
5597        unsigned long addr = perf_user_stack_pointer(regs);
5598
5599        if (!addr || addr >= TASK_SIZE)
5600                return 0;
5601
5602        return TASK_SIZE - addr;
5603}
5604
5605static u16
5606perf_sample_ustack_size(u16 stack_size, u16 header_size,
5607                        struct pt_regs *regs)
5608{
5609        u64 task_size;
5610
5611        /* No regs, no stack pointer, no dump. */
5612        if (!regs)
5613                return 0;
5614
5615        /*
5616         * Check if we fit in with the requested stack size into the:
5617         * - TASK_SIZE
5618         *   If we don't, we limit the size to the TASK_SIZE.
5619         *
5620         * - remaining sample size
5621         *   If we don't, we customize the stack size to
5622         *   fit in to the remaining sample size.
5623         */
5624
5625        task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5626        stack_size = min(stack_size, (u16) task_size);
5627
5628        /* Current header size plus static size and dynamic size. */
5629        header_size += 2 * sizeof(u64);
5630
5631        /* Do we fit in with the current stack dump size? */
5632        if ((u16) (header_size + stack_size) < header_size) {
5633                /*
5634                 * If we overflow the maximum size for the sample,
5635                 * we customize the stack dump size to fit in.
5636                 */
5637                stack_size = USHRT_MAX - header_size - sizeof(u64);
5638                stack_size = round_up(stack_size, sizeof(u64));
5639        }
5640
5641        return stack_size;
5642}
5643
5644static void
5645perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5646                          struct pt_regs *regs)
5647{
5648        /* Case of a kernel thread, nothing to dump */
5649        if (!regs) {
5650                u64 size = 0;
5651                perf_output_put(handle, size);
5652        } else {
5653                unsigned long sp;
5654                unsigned int rem;
5655                u64 dyn_size;
5656
5657                /*
5658                 * We dump:
5659                 * static size
5660                 *   - the size requested by user or the best one we can fit
5661                 *     in to the sample max size
5662                 * data
5663                 *   - user stack dump data
5664                 * dynamic size
5665                 *   - the actual dumped size
5666                 */
5667
5668                /* Static size. */
5669                perf_output_put(handle, dump_size);
5670
5671                /* Data. */
5672                sp = perf_user_stack_pointer(regs);
5673                rem = __output_copy_user(handle, (void *) sp, dump_size);
5674                dyn_size = dump_size - rem;
5675
5676                perf_output_skip(handle, rem);
5677
5678                /* Dynamic size. */
5679                perf_output_put(handle, dyn_size);
5680        }
5681}
5682
5683static void __perf_event_header__init_id(struct perf_event_header *header,
5684                                         struct perf_sample_data *data,
5685                                         struct perf_event *event)
5686{
5687        u64 sample_type = event->attr.sample_type;
5688
5689        data->type = sample_type;
5690        header->size += event->id_header_size;
5691
5692        if (sample_type & PERF_SAMPLE_TID) {
5693                /* namespace issues */
5694                data->tid_entry.pid = perf_event_pid(event, current);
5695                data->tid_entry.tid = perf_event_tid(event, current);
5696        }
5697
5698        if (sample_type & PERF_SAMPLE_TIME)
5699                data->time = perf_event_clock(event);
5700
5701        if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5702                data->id = primary_event_id(event);
5703
5704        if (sample_type & PERF_SAMPLE_STREAM_ID)
5705                data->stream_id = event->id;
5706
5707        if (sample_type & PERF_SAMPLE_CPU) {
5708                data->cpu_entry.cpu      = raw_smp_processor_id();
5709                data->cpu_entry.reserved = 0;
5710        }
5711}
5712
5713void perf_event_header__init_id(struct perf_event_header *header,
5714                                struct perf_sample_data *data,
5715                                struct perf_event *event)
5716{
5717        if (event->attr.sample_id_all)
5718                __perf_event_header__init_id(header, data, event);
5719}
5720
5721static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5722                                           struct perf_sample_data *data)
5723{
5724        u64 sample_type = data->type;
5725
5726        if (sample_type & PERF_SAMPLE_TID)
5727                perf_output_put(handle, data->tid_entry);
5728
5729        if (sample_type & PERF_SAMPLE_TIME)
5730                perf_output_put(handle, data->time);
5731
5732        if (sample_type & PERF_SAMPLE_ID)
5733                perf_output_put(handle, data->id);
5734
5735        if (sample_type & PERF_SAMPLE_STREAM_ID)
5736                perf_output_put(handle, data->stream_id);
5737
5738        if (sample_type & PERF_SAMPLE_CPU)
5739                perf_output_put(handle, data->cpu_entry);
5740
5741        if (sample_type & PERF_SAMPLE_IDENTIFIER)
5742                perf_output_put(handle, data->id);
5743}
5744
5745void perf_event__output_id_sample(struct perf_event *event,
5746                                  struct perf_output_handle *handle,
5747                                  struct perf_sample_data *sample)
5748{
5749        if (event->attr.sample_id_all)
5750                __perf_event__output_id_sample(handle, sample);
5751}
5752
5753static void perf_output_read_one(struct perf_output_handle *handle,
5754                                 struct perf_event *event,
5755                                 u64 enabled, u64 running)
5756{
5757        u64 read_format = event->attr.read_format;
5758        u64 values[4];
5759        int n = 0;
5760
5761        values[n++] = perf_event_count(event);
5762        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5763                values[n++] = enabled +
5764                        atomic64_read(&event->child_total_time_enabled);
5765        }
5766        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5767                values[n++] = running +
5768                        atomic64_read(&event->child_total_time_running);
5769        }
5770        if (read_format & PERF_FORMAT_ID)
5771                values[n++] = primary_event_id(event);
5772
5773        __output_copy(handle, values, n * sizeof(u64));
5774}
5775
5776static void perf_output_read_group(struct perf_output_handle *handle,
5777                            struct perf_event *event,
5778                            u64 enabled, u64 running)
5779{
5780        struct perf_event *leader = event->group_leader, *sub;
5781        u64 read_format = event->attr.read_format;
5782        u64 values[5];
5783        int n = 0;
5784
5785        values[n++] = 1 + leader->nr_siblings;
5786
5787        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5788                values[n++] = enabled;
5789
5790        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5791                values[n++] = running;
5792
5793        if (leader != event)
5794                leader->pmu->read(leader);
5795
5796        values[n++] = perf_event_count(leader);
5797        if (read_format & PERF_FORMAT_ID)
5798                values[n++] = primary_event_id(leader);
5799
5800        __output_copy(handle, values, n * sizeof(u64));
5801
5802        list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5803                n = 0;
5804
5805                if ((sub != event) &&
5806                    (sub->state == PERF_EVENT_STATE_ACTIVE))
5807                        sub->pmu->read(sub);
5808
5809                values[n++] = perf_event_count(sub);
5810                if (read_format & PERF_FORMAT_ID)
5811                        values[n++] = primary_event_id(sub);
5812
5813                __output_copy(handle, values, n * sizeof(u64));
5814        }
5815}
5816
5817#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5818                                 PERF_FORMAT_TOTAL_TIME_RUNNING)
5819
5820/*
5821 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5822 *
5823 * The problem is that its both hard and excessively expensive to iterate the
5824 * child list, not to mention that its impossible to IPI the children running
5825 * on another CPU, from interrupt/NMI context.
5826 */
5827static void perf_output_read(struct perf_output_handle *handle,
5828                             struct perf_event *event)
5829{
5830        u64 enabled = 0, running = 0, now;
5831        u64 read_format = event->attr.read_format;
5832
5833        /*
5834         * compute total_time_enabled, total_time_running
5835         * based on snapshot values taken when the event
5836         * was last scheduled in.
5837         *
5838         * we cannot simply called update_context_time()
5839         * because of locking issue as we are called in
5840         * NMI context
5841         */
5842        if (read_format & PERF_FORMAT_TOTAL_TIMES)
5843                calc_timer_values(event, &now, &enabled, &running);
5844
5845        if (event->attr.read_format & PERF_FORMAT_GROUP)
5846                perf_output_read_group(handle, event, enabled, running);
5847        else
5848                perf_output_read_one(handle, event, enabled, running);
5849}
5850
5851void perf_output_sample(struct perf_output_handle *handle,
5852                        struct perf_event_header *header,
5853                        struct perf_sample_data *data,
5854                        struct perf_event *event)
5855{
5856        u64 sample_type = data->type;
5857
5858        perf_output_put(handle, *header);
5859
5860        if (sample_type & PERF_SAMPLE_IDENTIFIER)
5861                perf_output_put(handle, data->id);
5862
5863        if (sample_type & PERF_SAMPLE_IP)
5864                perf_output_put(handle, data->ip);
5865
5866        if (sample_type & PERF_SAMPLE_TID)
5867                perf_output_put(handle, data->tid_entry);
5868
5869        if (sample_type & PERF_SAMPLE_TIME)
5870                perf_output_put(handle, data->time);
5871
5872        if (sample_type & PERF_SAMPLE_ADDR)
5873                perf_output_put(handle, data->addr);
5874
5875        if (sample_type & PERF_SAMPLE_ID)
5876                perf_output_put(handle, data->id);
5877
5878        if (sample_type & PERF_SAMPLE_STREAM_ID)
5879                perf_output_put(handle, data->stream_id);
5880
5881        if (sample_type & PERF_SAMPLE_CPU)
5882                perf_output_put(handle, data->cpu_entry);
5883
5884        if (sample_type & PERF_SAMPLE_PERIOD)
5885                perf_output_put(handle, data->period);
5886
5887        if (sample_type & PERF_SAMPLE_READ)
5888                perf_output_read(handle, event);
5889
5890        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5891                if (data->callchain) {
5892                        int size = 1;
5893
5894                        if (data->callchain)
5895                                size += data->callchain->nr;
5896
5897                        size *= sizeof(u64);
5898
5899                        __output_copy(handle, data->callchain, size);
5900                } else {
5901                        u64 nr = 0;
5902                        perf_output_put(handle, nr);
5903                }
5904        }
5905
5906        if (sample_type & PERF_SAMPLE_RAW) {
5907                struct perf_raw_record *raw = data->raw;
5908
5909                if (raw) {
5910                        struct perf_raw_frag *frag = &raw->frag;
5911
5912                        perf_output_put(handle, raw->size);
5913                        do {
5914                                if (frag->copy) {
5915                                        __output_custom(handle, frag->copy,
5916                                                        frag->data, frag->size);
5917                                } else {
5918                                        __output_copy(handle, frag->data,
5919                                                      frag->size);
5920                                }
5921                                if (perf_raw_frag_last(frag))
5922                                        break;
5923                                frag = frag->next;
5924                        } while (1);
5925                        if (frag->pad)
5926                                __output_skip(handle, NULL, frag->pad);
5927                } else {
5928                        struct {
5929                                u32     size;
5930                                u32     data;
5931                        } raw = {
5932                                .size = sizeof(u32),
5933                                .data = 0,
5934                        };
5935                        perf_output_put(handle, raw);
5936                }
5937        }
5938
5939        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5940                if (data->br_stack) {
5941                        size_t size;
5942
5943                        size = data->br_stack->nr
5944                             * sizeof(struct perf_branch_entry);
5945
5946                        perf_output_put(handle, data->br_stack->nr);
5947                        perf_output_copy(handle, data->br_stack->entries, size);
5948                } else {
5949                        /*
5950                         * we always store at least the value of nr
5951                         */
5952                        u64 nr = 0;
5953                        perf_output_put(handle, nr);
5954                }
5955        }
5956
5957        if (sample_type & PERF_SAMPLE_REGS_USER) {
5958                u64 abi = data->regs_user.abi;
5959
5960                /*
5961                 * If there are no regs to dump, notice it through
5962                 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5963                 */
5964                perf_output_put(handle, abi);
5965
5966                if (abi) {
5967                        u64 mask = event->attr.sample_regs_user;
5968                        perf_output_sample_regs(handle,
5969                                                data->regs_user.regs,
5970                                                mask);
5971                }
5972        }
5973
5974        if (sample_type & PERF_SAMPLE_STACK_USER) {
5975                perf_output_sample_ustack(handle,
5976                                          data->stack_user_size,
5977                                          data->regs_user.regs);
5978        }
5979
5980        if (sample_type & PERF_SAMPLE_WEIGHT)
5981                perf_output_put(handle, data->weight);
5982
5983        if (sample_type & PERF_SAMPLE_DATA_SRC)
5984                perf_output_put(handle, data->data_src.val);
5985
5986        if (sample_type & PERF_SAMPLE_TRANSACTION)
5987                perf_output_put(handle, data->txn);
5988
5989        if (sample_type & PERF_SAMPLE_REGS_INTR) {
5990                u64 abi = data->regs_intr.abi;
5991                /*
5992                 * If there are no regs to dump, notice it through
5993                 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5994                 */
5995                perf_output_put(handle, abi);
5996
5997                if (abi) {
5998                        u64 mask = event->attr.sample_regs_intr;
5999
6000                        perf_output_sample_regs(handle,
6001                                                data->regs_intr.regs,
6002                                                mask);
6003                }
6004        }
6005
6006        if (!event->attr.watermark) {
6007                int wakeup_events = event->attr.wakeup_events;
6008
6009                if (wakeup_events) {
6010                        struct ring_buffer *rb = handle->rb;
6011                        int events = local_inc_return(&rb->events);
6012
6013                        if (events >= wakeup_events) {
6014                                local_sub(wakeup_events, &rb->events);
6015                                local_inc(&rb->wakeup);
6016                        }
6017                }
6018        }
6019}
6020
6021void perf_prepare_sample(struct perf_event_header *header,
6022                         struct perf_sample_data *data,
6023                         struct perf_event *event,
6024                         struct pt_regs *regs)
6025{
6026        u64 sample_type = event->attr.sample_type;
6027
6028        header->type = PERF_RECORD_SAMPLE;
6029        header->size = sizeof(*header) + event->header_size;
6030
6031        header->misc = 0;
6032        header->misc |= perf_misc_flags(regs);
6033
6034        __perf_event_header__init_id(header, data, event);
6035
6036        if (sample_type & PERF_SAMPLE_IP)
6037                data->ip = perf_instruction_pointer(regs);
6038
6039        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6040                int size = 1;
6041
6042                data->callchain = perf_callchain(event, regs);
6043
6044                if (data->callchain)
6045                        size += data->callchain->nr;
6046
6047                header->size += size * sizeof(u64);
6048        }
6049
6050        if (sample_type & PERF_SAMPLE_RAW) {
6051                struct perf_raw_record *raw = data->raw;
6052                int size;
6053
6054                if (raw) {
6055                        struct perf_raw_frag *frag = &raw->frag;
6056                        u32 sum = 0;
6057
6058                        do {
6059                                sum += frag->size;
6060                                if (perf_raw_frag_last(frag))
6061                                        break;
6062                                frag = frag->next;
6063                        } while (1);
6064
6065                        size = round_up(sum + sizeof(u32), sizeof(u64));
6066                        raw->size = size - sizeof(u32);
6067                        frag->pad = raw->size - sum;
6068                } else {
6069                        size = sizeof(u64);
6070                }
6071
6072                header->size += size;
6073        }
6074
6075        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6076                int size = sizeof(u64); /* nr */
6077                if (data->br_stack) {
6078                        size += data->br_stack->nr
6079                              * sizeof(struct perf_branch_entry);
6080                }
6081                header->size += size;
6082        }
6083
6084        if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6085                perf_sample_regs_user(&data->regs_user, regs,
6086                                      &data->regs_user_copy);
6087
6088        if (sample_type & PERF_SAMPLE_REGS_USER) {
6089                /* regs dump ABI info */
6090                int size = sizeof(u64);
6091
6092                if (data->regs_user.regs) {
6093                        u64 mask = event->attr.sample_regs_user;
6094                        size += hweight64(mask) * sizeof(u64);
6095                }
6096
6097                header->size += size;
6098        }
6099
6100        if (sample_type & PERF_SAMPLE_STACK_USER) {
6101                /*
6102                 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6103                 * processed as the last one or have additional check added
6104                 * in case new sample type is added, because we could eat
6105                 * up the rest of the sample size.
6106                 */
6107                u16 stack_size = event->attr.sample_stack_user;
6108                u16 size = sizeof(u64);
6109
6110                stack_size = perf_sample_ustack_size(stack_size, header->size,
6111                                                     data->regs_user.regs);
6112
6113                /*
6114                 * If there is something to dump, add space for the dump
6115                 * itself and for the field that tells the dynamic size,
6116                 * which is how many have been actually dumped.
6117                 */
6118                if (stack_size)
6119                        size += sizeof(u64) + stack_size;
6120
6121                data->stack_user_size = stack_size;
6122                header->size += size;
6123        }
6124
6125        if (sample_type & PERF_SAMPLE_REGS_INTR) {
6126                /* regs dump ABI info */
6127                int size = sizeof(u64);
6128
6129                perf_sample_regs_intr(&data->regs_intr, regs);
6130
6131                if (data->regs_intr.regs) {
6132                        u64 mask = event->attr.sample_regs_intr;
6133
6134                        size += hweight64(mask) * sizeof(u64);
6135                }
6136
6137                header->size += size;
6138        }
6139}
6140
6141static void __always_inline
6142__perf_event_output(struct perf_event *event,
6143                    struct perf_sample_data *data,
6144                    struct pt_regs *regs,
6145                    int (*output_begin)(struct perf_output_handle *,
6146                                        struct perf_event *,
6147                                        unsigned int))
6148{
6149        struct perf_output_handle handle;
6150        struct perf_event_header header;
6151
6152        /* protect the callchain buffers */
6153        rcu_read_lock();
6154
6155        perf_prepare_sample(&header, data, event, regs);
6156
6157        if (output_begin(&handle, event, header.size))
6158                goto exit;
6159
6160        perf_output_sample(&handle, &header, data, event);
6161
6162        perf_output_end(&handle);
6163
6164exit:
6165        rcu_read_unlock();
6166}
6167
6168void
6169perf_event_output_forward(struct perf_event *event,
6170                         struct perf_sample_data *data,
6171                         struct pt_regs *regs)
6172{
6173        __perf_event_output(event, data, regs, perf_output_begin_forward);
6174}
6175
6176void
6177perf_event_output_backward(struct perf_event *event,
6178                           struct perf_sample_data *data,
6179                           struct pt_regs *regs)
6180{
6181        __perf_event_output(event, data, regs, perf_output_begin_backward);
6182}
6183
6184void
6185perf_event_output(struct perf_event *event,
6186                  struct perf_sample_data *data,
6187                  struct pt_regs *regs)
6188{
6189        __perf_event_output(event, data, regs, perf_output_begin);
6190}
6191
6192/*
6193 * read event_id
6194 */
6195
6196struct perf_read_event {
6197        struct perf_event_header        header;
6198
6199        u32                             pid;
6200        u32                             tid;
6201};
6202
6203static void
6204perf_event_read_event(struct perf_event *event,
6205                        struct task_struct *task)
6206{
6207        struct perf_output_handle handle;
6208        struct perf_sample_data sample;
6209        struct perf_read_event read_event = {
6210                .header = {
6211                        .type = PERF_RECORD_READ,
6212                        .misc = 0,
6213                        .size = sizeof(read_event) + event->read_size,
6214                },
6215                .pid = perf_event_pid(event, task),
6216                .tid = perf_event_tid(event, task),
6217        };
6218        int ret;
6219
6220        perf_event_header__init_id(&read_event.header, &sample, event);
6221        ret = perf_output_begin(&handle, event, read_event.header.size);
6222        if (ret)
6223                return;
6224
6225        perf_output_put(&handle, read_event);
6226        perf_output_read(&handle, event);
6227        perf_event__output_id_sample(event, &handle, &sample);
6228
6229        perf_output_end(&handle);
6230}
6231
6232typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6233
6234static void
6235perf_iterate_ctx(struct perf_event_context *ctx,
6236                   perf_iterate_f output,
6237                   void *data, bool all)
6238{
6239        struct perf_event *event;
6240
6241        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6242                if (!all) {
6243                        if (event->state < PERF_EVENT_STATE_INACTIVE)
6244                                continue;
6245                        if (!event_filter_match(event))
6246                                continue;
6247                }
6248
6249                output(event, data);
6250        }
6251}
6252
6253static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6254{
6255        struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6256        struct perf_event *event;
6257
6258        list_for_each_entry_rcu(event, &pel->list, sb_list) {
6259                /*
6260                 * Skip events that are not fully formed yet; ensure that
6261                 * if we observe event->ctx, both event and ctx will be
6262                 * complete enough. See perf_install_in_context().
6263                 */
6264                if (!smp_load_acquire(&event->ctx))
6265                        continue;
6266
6267                if (event->state < PERF_EVENT_STATE_INACTIVE)
6268                        continue;
6269                if (!event_filter_match(event))
6270                        continue;
6271                output(event, data);
6272        }
6273}
6274
6275/*
6276 * Iterate all events that need to receive side-band events.
6277 *
6278 * For new callers; ensure that account_pmu_sb_event() includes
6279 * your event, otherwise it might not get delivered.
6280 */
6281static void
6282perf_iterate_sb(perf_iterate_f output, void *data,
6283               struct perf_event_context *task_ctx)
6284{
6285        struct perf_event_context *ctx;
6286        int ctxn;
6287
6288        rcu_read_lock();
6289        preempt_disable();
6290
6291        /*
6292         * If we have task_ctx != NULL we only notify the task context itself.
6293         * The task_ctx is set only for EXIT events before releasing task
6294         * context.
6295         */
6296        if (task_ctx) {
6297                perf_iterate_ctx(task_ctx, output, data, false);
6298                goto done;
6299        }
6300
6301        perf_iterate_sb_cpu(output, data);
6302
6303        for_each_task_context_nr(ctxn) {
6304                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6305                if (ctx)
6306                        perf_iterate_ctx(ctx, output, data, false);
6307        }
6308done:
6309        preempt_enable();
6310        rcu_read_unlock();
6311}
6312
6313/*
6314 * Clear all file-based filters at exec, they'll have to be
6315 * re-instated when/if these objects are mmapped again.
6316 */
6317static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6318{
6319        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6320        struct perf_addr_filter *filter;
6321        unsigned int restart = 0, count = 0;
6322        unsigned long flags;
6323
6324        if (!has_addr_filter(event))
6325                return;
6326
6327        raw_spin_lock_irqsave(&ifh->lock, flags);
6328        list_for_each_entry(filter, &ifh->list, entry) {
6329                if (filter->inode) {
6330                        event->addr_filters_offs[count] = 0;
6331                        restart++;
6332                }
6333
6334                count++;
6335        }
6336
6337        if (restart)
6338                event->addr_filters_gen++;
6339        raw_spin_unlock_irqrestore(&ifh->lock, flags);
6340
6341        if (restart)
6342                perf_event_stop(event, 1);
6343}
6344
6345void perf_event_exec(void)
6346{
6347        struct perf_event_context *ctx;
6348        int ctxn;
6349
6350        rcu_read_lock();
6351        for_each_task_context_nr(ctxn) {
6352                ctx = current->perf_event_ctxp[ctxn];
6353                if (!ctx)
6354                        continue;
6355
6356                perf_event_enable_on_exec(ctxn);
6357
6358                perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6359                                   true);
6360        }
6361        rcu_read_unlock();
6362}
6363
6364struct remote_output {
6365        struct ring_buffer      *rb;
6366        int                     err;
6367};
6368
6369static void __perf_event_output_stop(struct perf_event *event, void *data)
6370{
6371        struct perf_event *parent = event->parent;
6372        struct remote_output *ro = data;
6373        struct ring_buffer *rb = ro->rb;
6374        struct stop_event_data sd = {
6375                .event  = event,
6376        };
6377
6378        if (!has_aux(event))
6379                return;
6380
6381        if (!parent)
6382                parent = event;
6383
6384        /*
6385         * In case of inheritance, it will be the parent that links to the
6386         * ring-buffer, but it will be the child that's actually using it.
6387         *
6388         * We are using event::rb to determine if the event should be stopped,
6389         * however this may race with ring_buffer_attach() (through set_output),
6390         * which will make us skip the event that actually needs to be stopped.
6391         * So ring_buffer_attach() has to stop an aux event before re-assigning
6392         * its rb pointer.
6393         */
6394        if (rcu_dereference(parent->rb) == rb)
6395                ro->err = __perf_event_stop(&sd);
6396}
6397
6398static int __perf_pmu_output_stop(void *info)
6399{
6400        struct perf_event *event = info;
6401        struct pmu *pmu = event->pmu;
6402        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6403        struct remote_output ro = {
6404                .rb     = event->rb,
6405        };
6406
6407        rcu_read_lock();
6408        perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6409        if (cpuctx->task_ctx)
6410                perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6411                                   &ro, false);
6412        rcu_read_unlock();
6413
6414        return ro.err;
6415}
6416
6417static void perf_pmu_output_stop(struct perf_event *event)
6418{
6419        struct perf_event *iter;
6420        int err, cpu;
6421
6422restart:
6423        rcu_read_lock();
6424        list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6425                /*
6426                 * For per-CPU events, we need to make sure that neither they
6427                 * nor their children are running; for cpu==-1 events it's
6428                 * sufficient to stop the event itself if it's active, since
6429                 * it can't have children.
6430                 */
6431                cpu = iter->cpu;
6432                if (cpu == -1)
6433                        cpu = READ_ONCE(iter->oncpu);
6434
6435                if (cpu == -1)
6436                        continue;
6437
6438                err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6439                if (err == -EAGAIN) {
6440                        rcu_read_unlock();
6441                        goto restart;
6442                }
6443        }
6444        rcu_read_unlock();
6445}
6446
6447/*
6448 * task tracking -- fork/exit
6449 *
6450 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6451 */
6452
6453struct perf_task_event {
6454        struct task_struct              *task;
6455        struct perf_event_context       *task_ctx;
6456
6457        struct {
6458                struct perf_event_header        header;
6459
6460                u32                             pid;
6461                u32                             ppid;
6462                u32                             tid;
6463                u32                             ptid;
6464                u64                             time;
6465        } event_id;
6466};
6467
6468static int perf_event_task_match(struct perf_event *event)
6469{
6470        return event->attr.comm  || event->attr.mmap ||
6471               event->attr.mmap2 || event->attr.mmap_data ||
6472               event->attr.task;
6473}
6474
6475static void perf_event_task_output(struct perf_event *event,
6476                                   void *data)
6477{
6478        struct perf_task_event *task_event = data;
6479        struct perf_output_handle handle;
6480        struct perf_sample_data sample;
6481        struct task_struct *task = task_event->task;
6482        int ret, size = task_event->event_id.header.size;
6483
6484        if (!perf_event_task_match(event))
6485                return;
6486
6487        perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6488
6489        ret = perf_output_begin(&handle, event,
6490                                task_event->event_id.header.size);
6491        if (ret)
6492                goto out;
6493
6494        task_event->event_id.pid = perf_event_pid(event, task);
6495        task_event->event_id.ppid = perf_event_pid(event, current);
6496
6497        task_event->event_id.tid = perf_event_tid(event, task);
6498        task_event->event_id.ptid = perf_event_tid(event, current);
6499
6500        task_event->event_id.time = perf_event_clock(event);
6501
6502        perf_output_put(&handle, task_event->event_id);
6503
6504        perf_event__output_id_sample(event, &handle, &sample);
6505
6506        perf_output_end(&handle);
6507out:
6508        task_event->event_id.header.size = size;
6509}
6510
6511static void perf_event_task(struct task_struct *task,
6512                              struct perf_event_context *task_ctx,
6513                              int new)
6514{
6515        struct perf_task_event task_event;
6516
6517        if (!atomic_read(&nr_comm_events) &&
6518            !atomic_read(&nr_mmap_events) &&
6519            !atomic_read(&nr_task_events))
6520                return;
6521
6522        task_event = (struct perf_task_event){
6523                .task     = task,
6524                .task_ctx = task_ctx,
6525                .event_id    = {
6526                        .header = {
6527                                .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6528                                .misc = 0,
6529                                .size = sizeof(task_event.event_id),
6530                        },
6531                        /* .pid  */
6532                        /* .ppid */
6533                        /* .tid  */
6534                        /* .ptid */
6535                        /* .time */
6536                },
6537        };
6538
6539        perf_iterate_sb(perf_event_task_output,
6540                       &task_event,
6541                       task_ctx);
6542}
6543
6544void perf_event_fork(struct task_struct *task)
6545{
6546        perf_event_task(task, NULL, 1);
6547        perf_event_namespaces(task);
6548}
6549
6550/*
6551 * comm tracking
6552 */
6553
6554struct perf_comm_event {
6555        struct task_struct      *task;
6556        char                    *comm;
6557        int                     comm_size;
6558
6559        struct {
6560                struct perf_event_header        header;
6561
6562                u32                             pid;
6563                u32                             tid;
6564        } event_id;
6565};
6566
6567static int perf_event_comm_match(struct perf_event *event)
6568{
6569        return event->attr.comm;
6570}
6571
6572static void perf_event_comm_output(struct perf_event *event,
6573                                   void *data)
6574{
6575        struct perf_comm_event *comm_event = data;
6576        struct perf_output_handle handle;
6577        struct perf_sample_data sample;
6578        int size = comm_event->event_id.header.size;
6579        int ret;
6580
6581        if (!perf_event_comm_match(event))
6582                return;
6583
6584        perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6585        ret = perf_output_begin(&handle, event,
6586                                comm_event->event_id.header.size);
6587
6588        if (ret)
6589                goto out;
6590
6591        comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6592        comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6593
6594        perf_output_put(&handle, comm_event->event_id);
6595        __output_copy(&handle, comm_event->comm,
6596                                   comm_event->comm_size);
6597
6598        perf_event__output_id_sample(event, &handle, &sample);
6599
6600        perf_output_end(&handle);
6601out:
6602        comm_event->event_id.header.size = size;
6603}
6604
6605static void perf_event_comm_event(struct perf_comm_event *comm_event)
6606{
6607        char comm[TASK_COMM_LEN];
6608        unsigned int size;
6609
6610        memset(comm, 0, sizeof(comm));
6611        strlcpy(comm, comm_event->task->comm, sizeof(comm));
6612        size = ALIGN(strlen(comm)+1, sizeof(u64));
6613
6614        comm_event->comm = comm;
6615        comm_event->comm_size = size;
6616
6617        comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6618
6619        perf_iterate_sb(perf_event_comm_output,
6620                       comm_event,
6621                       NULL);
6622}
6623
6624void perf_event_comm(struct task_struct *task, bool exec)
6625{
6626        struct perf_comm_event comm_event;
6627
6628        if (!atomic_read(&nr_comm_events))
6629                return;
6630
6631        comm_event = (struct perf_comm_event){
6632                .task   = task,
6633                /* .comm      */
6634                /* .comm_size */
6635                .event_id  = {
6636                        .header = {
6637                                .type = PERF_RECORD_COMM,
6638                                .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6639                                /* .size */
6640                        },
6641                        /* .pid */
6642                        /* .tid */
6643                },
6644        };
6645
6646        perf_event_comm_event(&comm_event);
6647}
6648
6649/*
6650 * namespaces tracking
6651 */
6652
6653struct perf_namespaces_event {
6654        struct task_struct              *task;
6655
6656        struct {
6657                struct perf_event_header        header;
6658
6659                u32                             pid;
6660                u32                             tid;
6661                u64                             nr_namespaces;
6662                struct perf_ns_link_info        link_info[NR_NAMESPACES];
6663        } event_id;
6664};
6665
6666static int perf_event_namespaces_match(struct perf_event *event)
6667{
6668        return event->attr.namespaces;
6669}
6670
6671static void perf_event_namespaces_output(struct perf_event *event,
6672                                         void *data)
6673{
6674        struct perf_namespaces_event *namespaces_event = data;
6675        struct perf_output_handle handle;
6676        struct perf_sample_data sample;
6677        int ret;
6678
6679        if (!perf_event_namespaces_match(event))
6680                return;
6681
6682        perf_event_header__init_id(&namespaces_event->event_id.header,
6683                                   &sample, event);
6684        ret = perf_output_begin(&handle, event,
6685                                namespaces_event->event_id.header.size);
6686        if (ret)
6687                return;
6688
6689        namespaces_event->event_id.pid = perf_event_pid(event,
6690                                                        namespaces_event->task);
6691        namespaces_event->event_id.tid = perf_event_tid(event,
6692                                                        namespaces_event->task);
6693
6694        perf_output_put(&handle, namespaces_event->event_id);
6695
6696        perf_event__output_id_sample(event, &handle, &sample);
6697
6698        perf_output_end(&handle);
6699}
6700
6701static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6702                                   struct task_struct *task,
6703                                   const struct proc_ns_operations *ns_ops)
6704{
6705        struct path ns_path;
6706        struct inode *ns_inode;
6707        void *error;
6708
6709        error = ns_get_path(&ns_path, task, ns_ops);
6710        if (!error) {
6711                ns_inode = ns_path.dentry->d_inode;
6712                ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6713                ns_link_info->ino = ns_inode->i_ino;
6714        }
6715}
6716
6717void perf_event_namespaces(struct task_struct *task)
6718{
6719        struct perf_namespaces_event namespaces_event;
6720        struct perf_ns_link_info *ns_link_info;
6721
6722        if (!atomic_read(&nr_namespaces_events))
6723                return;
6724
6725        namespaces_event = (struct perf_namespaces_event){
6726                .task   = task,
6727                .event_id  = {
6728                        .header = {
6729                                .type = PERF_RECORD_NAMESPACES,
6730                                .misc = 0,
6731                                .size = sizeof(namespaces_event.event_id),
6732                        },
6733                        /* .pid */
6734                        /* .tid */
6735                        .nr_namespaces = NR_NAMESPACES,
6736                        /* .link_info[NR_NAMESPACES] */
6737                },
6738        };
6739
6740        ns_link_info = namespaces_event.event_id.link_info;
6741
6742        perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6743                               task, &mntns_operations);
6744
6745#ifdef CONFIG_USER_NS
6746        perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6747                               task, &userns_operations);
6748#endif
6749#ifdef CONFIG_NET_NS
6750        perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6751                               task, &netns_operations);
6752#endif
6753#ifdef CONFIG_UTS_NS
6754        perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6755                               task, &utsns_operations);
6756#endif
6757#ifdef CONFIG_IPC_NS
6758        perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6759                               task, &ipcns_operations);
6760#endif
6761#ifdef CONFIG_PID_NS
6762        perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6763                               task, &pidns_operations);
6764#endif
6765#ifdef CONFIG_CGROUPS
6766        perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6767                               task, &cgroupns_operations);
6768#endif
6769
6770        perf_iterate_sb(perf_event_namespaces_output,
6771                        &namespaces_event,
6772                        NULL);
6773}
6774
6775/*
6776 * mmap tracking
6777 */
6778
6779struct perf_mmap_event {
6780        struct vm_area_struct   *vma;
6781
6782        const char              *file_name;
6783        int                     file_size;
6784        int                     maj, min;
6785        u64                     ino;
6786        u64                     ino_generation;
6787        u32                     prot, flags;
6788
6789        struct {
6790                struct perf_event_header        header;
6791
6792                u32                             pid;
6793                u32                             tid;
6794                u64                             start;
6795                u64                             len;
6796                u64                             pgoff;
6797        } event_id;
6798};
6799
6800static int perf_event_mmap_match(struct perf_event *event,
6801                                 void *data)
6802{
6803        struct perf_mmap_event *mmap_event = data;
6804        struct vm_area_struct *vma = mmap_event->vma;
6805        int executable = vma->vm_flags & VM_EXEC;
6806
6807        return (!executable && event->attr.mmap_data) ||
6808               (executable && (event->attr.mmap || event->attr.mmap2));
6809}
6810
6811static void perf_event_mmap_output(struct perf_event *event,
6812                                   void *data)
6813{
6814        struct perf_mmap_event *mmap_event = data;
6815        struct perf_output_handle handle;
6816        struct perf_sample_data sample;
6817        int size = mmap_event->event_id.header.size;
6818        int ret;
6819
6820        if (!perf_event_mmap_match(event, data))
6821                return;
6822
6823        if (event->attr.mmap2) {
6824                mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6825                mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6826                mmap_event->event_id.header.size += sizeof(mmap_event->min);
6827                mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6828                mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6829                mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6830                mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6831        }
6832
6833        perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6834        ret = perf_output_begin(&handle, event,
6835                                mmap_event->event_id.header.size);
6836        if (ret)
6837                goto out;
6838
6839        mmap_event->event_id.pid = perf_event_pid(event, current);
6840        mmap_event->event_id.tid = perf_event_tid(event, current);
6841
6842        perf_output_put(&handle, mmap_event->event_id);
6843
6844        if (event->attr.mmap2) {
6845                perf_output_put(&handle, mmap_event->maj);
6846                perf_output_put(&handle, mmap_event->min);
6847                perf_output_put(&handle, mmap_event->ino);
6848                perf_output_put(&handle, mmap_event->ino_generation);
6849                perf_output_put(&handle, mmap_event->prot);
6850                perf_output_put(&handle, mmap_event->flags);
6851        }
6852
6853        __output_copy(&handle, mmap_event->file_name,
6854                                   mmap_event->file_size);
6855
6856        perf_event__output_id_sample(event, &handle, &sample);
6857
6858        perf_output_end(&handle);
6859out:
6860        mmap_event->event_id.header.size = size;
6861}
6862
6863static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6864{
6865        struct vm_area_struct *vma = mmap_event->vma;
6866        struct file *file = vma->vm_file;
6867        int maj = 0, min = 0;
6868        u64 ino = 0, gen = 0;
6869        u32 prot = 0, flags = 0;
6870        unsigned int size;
6871        char tmp[16];
6872        char *buf = NULL;
6873        char *name;
6874
6875        if (vma->vm_flags & VM_READ)
6876                prot |= PROT_READ;
6877        if (vma->vm_flags & VM_WRITE)
6878                prot |= PROT_WRITE;
6879        if (vma->vm_flags & VM_EXEC)
6880                prot |= PROT_EXEC;
6881
6882        if (vma->vm_flags & VM_MAYSHARE)
6883                flags = MAP_SHARED;
6884        else
6885                flags = MAP_PRIVATE;
6886
6887        if (vma->vm_flags & VM_DENYWRITE)
6888                flags |= MAP_DENYWRITE;
6889        if (vma->vm_flags & VM_MAYEXEC)
6890                flags |= MAP_EXECUTABLE;
6891        if (vma->vm_flags & VM_LOCKED)
6892                flags |= MAP_LOCKED;
6893        if (vma->vm_flags & VM_HUGETLB)
6894                flags |= MAP_HUGETLB;
6895
6896        if (file) {
6897                struct inode *inode;
6898                dev_t dev;
6899
6900                buf = kmalloc(PATH_MAX, GFP_KERNEL);
6901                if (!buf) {
6902                        name = "//enomem";
6903                        goto cpy_name;
6904                }
6905                /*
6906                 * d_path() works from the end of the rb backwards, so we
6907                 * need to add enough zero bytes after the string to handle
6908                 * the 64bit alignment we do later.
6909                 */
6910                name = file_path(file, buf, PATH_MAX - sizeof(u64));
6911                if (IS_ERR(name)) {
6912                        name = "//toolong";
6913                        goto cpy_name;
6914                }
6915                inode = file_inode(vma->vm_file);
6916                dev = inode->i_sb->s_dev;
6917                ino = inode->i_ino;
6918                gen = inode->i_generation;
6919                maj = MAJOR(dev);
6920                min = MINOR(dev);
6921
6922                goto got_name;
6923        } else {
6924                if (vma->vm_ops && vma->vm_ops->name) {
6925                        name = (char *) vma->vm_ops->name(vma);
6926                        if (name)
6927                                goto cpy_name;
6928                }
6929
6930                name = (char *)arch_vma_name(vma);
6931                if (name)
6932                        goto cpy_name;
6933
6934                if (vma->vm_start <= vma->vm_mm->start_brk &&
6935                                vma->vm_end >= vma->vm_mm->brk) {
6936                        name = "[heap]";
6937                        goto cpy_name;
6938                }
6939                if (vma->vm_start <= vma->vm_mm->start_stack &&
6940                                vma->vm_end >= vma->vm_mm->start_stack) {
6941                        name = "[stack]";
6942                        goto cpy_name;
6943                }
6944
6945                name = "//anon";
6946                goto cpy_name;
6947        }
6948
6949cpy_name:
6950        strlcpy(tmp, name, sizeof(tmp));
6951        name = tmp;
6952got_name:
6953        /*
6954         * Since our buffer works in 8 byte units we need to align our string
6955         * size to a multiple of 8. However, we must guarantee the tail end is
6956         * zero'd out to avoid leaking random bits to userspace.
6957         */
6958        size = strlen(name)+1;
6959        while (!IS_ALIGNED(size, sizeof(u64)))
6960                name[size++] = '\0';
6961
6962        mmap_event->file_name = name;
6963        mmap_event->file_size = size;
6964        mmap_event->maj = maj;
6965        mmap_event->min = min;
6966        mmap_event->ino = ino;
6967        mmap_event->ino_generation = gen;
6968        mmap_event->prot = prot;
6969        mmap_event->flags = flags;
6970
6971        if (!(vma->vm_flags & VM_EXEC))
6972                mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6973
6974        mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6975
6976        perf_iterate_sb(perf_event_mmap_output,
6977                       mmap_event,
6978                       NULL);
6979
6980        kfree(buf);
6981}
6982
6983/*
6984 * Check whether inode and address range match filter criteria.
6985 */
6986static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6987                                     struct file *file, unsigned long offset,
6988                                     unsigned long size)
6989{
6990        if (filter->inode != file_inode(file))
6991                return false;
6992
6993        if (filter->offset > offset + size)
6994                return false;
6995
6996        if (filter->offset + filter->size < offset)
6997                return false;
6998
6999        return true;
7000}
7001
7002static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7003{
7004        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7005        struct vm_area_struct *vma = data;
7006        unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7007        struct file *file = vma->vm_file;
7008        struct perf_addr_filter *filter;
7009        unsigned int restart = 0, count = 0;
7010
7011        if (!has_addr_filter(event))
7012                return;
7013
7014        if (!file)
7015                return;
7016
7017        raw_spin_lock_irqsave(&ifh->lock, flags);
7018        list_for_each_entry(filter, &ifh->list, entry) {
7019                if (perf_addr_filter_match(filter, file, off,
7020                                             vma->vm_end - vma->vm_start)) {
7021                        event->addr_filters_offs[count] = vma->vm_start;
7022                        restart++;
7023                }
7024
7025                count++;
7026        }
7027
7028        if (restart)
7029                event->addr_filters_gen++;
7030        raw_spin_unlock_irqrestore(&ifh->lock, flags);
7031
7032        if (restart)
7033                perf_event_stop(event, 1);
7034}
7035
7036/*
7037 * Adjust all task's events' filters to the new vma
7038 */
7039static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7040{
7041        struct perf_event_context *ctx;
7042        int ctxn;
7043
7044        /*
7045         * Data tracing isn't supported yet and as such there is no need
7046         * to keep track of anything that isn't related to executable code:
7047         */
7048        if (!(vma->vm_flags & VM_EXEC))
7049                return;
7050
7051        rcu_read_lock();
7052        for_each_task_context_nr(ctxn) {
7053                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7054                if (!ctx)
7055                        continue;
7056
7057                perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7058        }
7059        rcu_read_unlock();
7060}
7061
7062void perf_event_mmap(struct vm_area_struct *vma)
7063{
7064        struct perf_mmap_event mmap_event;
7065
7066        if (!atomic_read(&nr_mmap_events))
7067                return;
7068
7069        mmap_event = (struct perf_mmap_event){
7070                .vma    = vma,
7071                /* .file_name */
7072                /* .file_size */
7073                .event_id  = {
7074                        .header = {
7075                                .type = PERF_RECORD_MMAP,
7076                                .misc = PERF_RECORD_MISC_USER,
7077                                /* .size */
7078                        },
7079                        /* .pid */
7080                        /* .tid */
7081                        .start  = vma->vm_start,
7082                        .len    = vma->vm_end - vma->vm_start,
7083                        .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7084                },
7085                /* .maj (attr_mmap2 only) */
7086                /* .min (attr_mmap2 only) */
7087                /* .ino (attr_mmap2 only) */
7088                /* .ino_generation (attr_mmap2 only) */
7089                /* .prot (attr_mmap2 only) */
7090                /* .flags (attr_mmap2 only) */
7091        };
7092
7093        perf_addr_filters_adjust(vma);
7094        perf_event_mmap_event(&mmap_event);
7095}
7096
7097void perf_event_aux_event(struct perf_event *event, unsigned long head,
7098                          unsigned long size, u64 flags)
7099{
7100        struct perf_output_handle handle;
7101        struct perf_sample_data sample;
7102        struct perf_aux_event {
7103                struct perf_event_header        header;
7104                u64                             offset;
7105                u64                             size;
7106                u64                             flags;
7107        } rec = {
7108                .header = {
7109                        .type = PERF_RECORD_AUX,
7110                        .misc = 0,
7111                        .size = sizeof(rec),
7112                },
7113                .offset         = head,
7114                .size           = size,
7115                .flags          = flags,
7116        };
7117        int ret;
7118
7119        perf_event_header__init_id(&rec.header, &sample, event);
7120        ret = perf_output_begin(&handle, event, rec.header.size);
7121
7122        if (ret)
7123                return;
7124
7125        perf_output_put(&handle, rec);
7126        perf_event__output_id_sample(event, &handle, &sample);
7127
7128        perf_output_end(&handle);
7129}
7130
7131/*
7132 * Lost/dropped samples logging
7133 */
7134void perf_log_lost_samples(struct perf_event *event, u64 lost)
7135{
7136        struct perf_output_handle handle;
7137        struct perf_sample_data sample;
7138        int ret;
7139
7140        struct {
7141                struct perf_event_header        header;
7142                u64                             lost;
7143        } lost_samples_event = {
7144                .header = {
7145                        .type = PERF_RECORD_LOST_SAMPLES,
7146                        .misc = 0,
7147                        .size = sizeof(lost_samples_event),
7148                },
7149                .lost           = lost,
7150        };
7151
7152        perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7153
7154        ret = perf_output_begin(&handle, event,
7155                                lost_samples_event.header.size);
7156        if (ret)
7157                return;
7158
7159        perf_output_put(&handle, lost_samples_event);
7160        perf_event__output_id_sample(event, &handle, &sample);
7161        perf_output_end(&handle);
7162}
7163
7164/*
7165 * context_switch tracking
7166 */
7167
7168struct perf_switch_event {
7169        struct task_struct      *task;
7170        struct task_struct      *next_prev;
7171
7172        struct {
7173                struct perf_event_header        header;
7174                u32                             next_prev_pid;
7175                u32                             next_prev_tid;
7176        } event_id;
7177};
7178
7179static int perf_event_switch_match(struct perf_event *event)
7180{
7181        return event->attr.context_switch;
7182}
7183
7184static void perf_event_switch_output(struct perf_event *event, void *data)
7185{
7186        struct perf_switch_event *se = data;
7187        struct perf_output_handle handle;
7188        struct perf_sample_data sample;
7189        int ret;
7190
7191        if (!perf_event_switch_match(event))
7192                return;
7193
7194        /* Only CPU-wide events are allowed to see next/prev pid/tid */
7195        if (event->ctx->task) {
7196                se->event_id.header.type = PERF_RECORD_SWITCH;
7197                se->event_id.header.size = sizeof(se->event_id.header);
7198        } else {
7199                se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7200                se->event_id.header.size = sizeof(se->event_id);
7201                se->event_id.next_prev_pid =
7202                                        perf_event_pid(event, se->next_prev);
7203                se->event_id.next_prev_tid =
7204                                        perf_event_tid(event, se->next_prev);
7205        }
7206
7207        perf_event_header__init_id(&se->event_id.header, &sample, event);
7208
7209        ret = perf_output_begin(&handle, event, se->event_id.header.size);
7210        if (ret)
7211                return;
7212
7213        if (event->ctx->task)
7214                perf_output_put(&handle, se->event_id.header);
7215        else
7216                perf_output_put(&handle, se->event_id);
7217
7218        perf_event__output_id_sample(event, &handle, &sample);
7219
7220        perf_output_end(&handle);
7221}
7222
7223static void perf_event_switch(struct task_struct *task,
7224                              struct task_struct *next_prev, bool sched_in)
7225{
7226        struct perf_switch_event switch_event;
7227
7228        /* N.B. caller checks nr_switch_events != 0 */
7229
7230        switch_event = (struct perf_switch_event){
7231                .task           = task,
7232                .next_prev      = next_prev,
7233                .event_id       = {
7234                        .header = {
7235                                /* .type */
7236                                .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7237                                /* .size */
7238                        },
7239                        /* .next_prev_pid */
7240                        /* .next_prev_tid */
7241                },
7242        };
7243
7244        perf_iterate_sb(perf_event_switch_output,
7245                       &switch_event,
7246                       NULL);
7247}
7248
7249/*
7250 * IRQ throttle logging
7251 */
7252
7253static void perf_log_throttle(struct perf_event *event, int enable)
7254{
7255        struct perf_output_handle handle;
7256        struct perf_sample_data sample;
7257        int ret;
7258
7259        struct {
7260                struct perf_event_header        header;
7261                u64                             time;
7262                u64                             id;
7263                u64                             stream_id;
7264        } throttle_event = {
7265                .header = {
7266                        .type = PERF_RECORD_THROTTLE,
7267                        .misc = 0,
7268                        .size = sizeof(throttle_event),
7269                },
7270                .time           = perf_event_clock(event),
7271                .id             = primary_event_id(event),
7272                .stream_id      = event->id,
7273        };
7274
7275        if (enable)
7276                throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7277
7278        perf_event_header__init_id(&throttle_event.header, &sample, event);
7279
7280        ret = perf_output_begin(&handle, event,
7281                                throttle_event.header.size);
7282        if (ret)
7283                return;
7284
7285        perf_output_put(&handle, throttle_event);
7286        perf_event__output_id_sample(event, &handle, &sample);
7287        perf_output_end(&handle);
7288}
7289
7290static void perf_log_itrace_start(struct perf_event *event)
7291{
7292        struct perf_output_handle handle;
7293        struct perf_sample_data sample;
7294        struct perf_aux_event {
7295                struct perf_event_header        header;
7296                u32                             pid;
7297                u32                             tid;
7298        } rec;
7299        int ret;
7300
7301        if (event->parent)
7302                event = event->parent;
7303
7304        if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7305            event->hw.itrace_started)
7306                return;
7307
7308        rec.header.type = PERF_RECORD_ITRACE_START;
7309        rec.header.misc = 0;
7310        rec.header.size = sizeof(rec);
7311        rec.pid = perf_event_pid(event, current);
7312        rec.tid = perf_event_tid(event, current);
7313
7314        perf_event_header__init_id(&rec.header, &sample, event);
7315        ret = perf_output_begin(&handle, event, rec.header.size);
7316
7317        if (ret)
7318                return;
7319
7320        perf_output_put(&handle, rec);
7321        perf_event__output_id_sample(event, &handle, &sample);
7322
7323        perf_output_end(&handle);
7324}
7325
7326static int
7327__perf_event_account_interrupt(struct perf_event *event, int throttle)
7328{
7329        struct hw_perf_event *hwc = &event->hw;
7330        int ret = 0;
7331        u64 seq;
7332
7333        seq = __this_cpu_read(perf_throttled_seq);
7334        if (seq != hwc->interrupts_seq) {
7335                hwc->interrupts_seq = seq;
7336                hwc->interrupts = 1;
7337        } else {
7338                hwc->interrupts++;
7339                if (unlikely(throttle
7340                             && hwc->interrupts >= max_samples_per_tick)) {
7341                        __this_cpu_inc(perf_throttled_count);
7342                        tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7343                        hwc->interrupts = MAX_INTERRUPTS;
7344                        perf_log_throttle(event, 0);
7345                        ret = 1;
7346                }
7347        }
7348
7349        if (event->attr.freq) {
7350                u64 now = perf_clock();
7351                s64 delta = now - hwc->freq_time_stamp;
7352
7353                hwc->freq_time_stamp = now;
7354
7355                if (delta > 0 && delta < 2*TICK_NSEC)
7356                        perf_adjust_period(event, delta, hwc->last_period, true);
7357        }
7358
7359        return ret;
7360}
7361
7362int perf_event_account_interrupt(struct perf_event *event)
7363{
7364        return __perf_event_account_interrupt(event, 1);
7365}
7366
7367/*
7368 * Generic event overflow handling, sampling.
7369 */
7370
7371static int __perf_event_overflow(struct perf_event *event,
7372                                   int throttle, struct perf_sample_data *data,
7373                                   struct pt_regs *regs)
7374{
7375        int events = atomic_read(&event->event_limit);
7376        int ret = 0;
7377
7378        /*
7379         * Non-sampling counters might still use the PMI to fold short
7380         * hardware counters, ignore those.
7381         */
7382        if (unlikely(!is_sampling_event(event)))
7383                return 0;
7384
7385        ret = __perf_event_account_interrupt(event, throttle);
7386
7387        /*
7388         * XXX event_limit might not quite work as expected on inherited
7389         * events
7390         */
7391
7392        event->pending_kill = POLL_IN;
7393        if (events && atomic_dec_and_test(&event->event_limit)) {
7394                ret = 1;
7395                event->pending_kill = POLL_HUP;
7396
7397                perf_event_disable_inatomic(event);
7398        }
7399
7400        READ_ONCE(event->overflow_handler)(event, data, regs);
7401
7402        if (*perf_event_fasync(event) && event->pending_kill) {
7403                event->pending_wakeup = 1;
7404                irq_work_queue(&event->pending);
7405        }
7406
7407        return ret;
7408}
7409
7410int perf_event_overflow(struct perf_event *event,
7411                          struct perf_sample_data *data,
7412                          struct pt_regs *regs)
7413{
7414        return __perf_event_overflow(event, 1, data, regs);
7415}
7416
7417/*
7418 * Generic software event infrastructure
7419 */
7420
7421struct swevent_htable {
7422        struct swevent_hlist            *swevent_hlist;
7423        struct mutex                    hlist_mutex;
7424        int                             hlist_refcount;
7425
7426        /* Recursion avoidance in each contexts */
7427        int                             recursion[PERF_NR_CONTEXTS];
7428};
7429
7430static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7431
7432/*
7433 * We directly increment event->count and keep a second value in
7434 * event->hw.period_left to count intervals. This period event
7435 * is kept in the range [-sample_period, 0] so that we can use the
7436 * sign as trigger.
7437 */
7438
7439u64 perf_swevent_set_period(struct perf_event *event)
7440{
7441        struct hw_perf_event *hwc = &event->hw;
7442        u64 period = hwc->last_period;
7443        u64 nr, offset;
7444        s64 old, val;
7445
7446        hwc->last_period = hwc->sample_period;
7447
7448again:
7449        old = val = local64_read(&hwc->period_left);
7450        if (val < 0)
7451                return 0;
7452
7453        nr = div64_u64(period + val, period);
7454        offset = nr * period;
7455        val -= offset;
7456        if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7457                goto again;
7458
7459        return nr;
7460}
7461
7462static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7463                                    struct perf_sample_data *data,
7464                                    struct pt_regs *regs)
7465{
7466        struct hw_perf_event *hwc = &event->hw;
7467        int throttle = 0;
7468
7469        if (!overflow)
7470                overflow = perf_swevent_set_period(event);
7471
7472        if (hwc->interrupts == MAX_INTERRUPTS)
7473                return;
7474
7475        for (; overflow; overflow--) {
7476                if (__perf_event_overflow(event, throttle,
7477                                            data, regs)) {
7478                        /*
7479                         * We inhibit the overflow from happening when
7480                         * hwc->interrupts == MAX_INTERRUPTS.
7481                         */
7482                        break;
7483                }
7484                throttle = 1;
7485        }
7486}
7487
7488static void perf_swevent_event(struct perf_event *event, u64 nr,
7489                               struct perf_sample_data *data,
7490                               struct pt_regs *regs)
7491{
7492        struct hw_perf_event *hwc = &event->hw;
7493
7494        local64_add(nr, &event->count);
7495
7496        if (!regs)
7497                return;
7498
7499        if (!is_sampling_event(event))
7500                return;
7501
7502        if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7503                data->period = nr;
7504                return perf_swevent_overflow(event, 1, data, regs);
7505        } else
7506                data->period = event->hw.last_period;
7507
7508        if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7509                return perf_swevent_overflow(event, 1, data, regs);
7510
7511        if (local64_add_negative(nr, &hwc->period_left))
7512                return;
7513
7514        perf_swevent_overflow(event, 0, data, regs);
7515}
7516
7517static int perf_exclude_event(struct perf_event *event,
7518                              struct pt_regs *regs)
7519{
7520        if (event->hw.state & PERF_HES_STOPPED)
7521                return 1;
7522
7523        if (regs) {
7524                if (event->attr.exclude_user && user_mode(regs))
7525                        return 1;
7526
7527                if (event->attr.exclude_kernel && !user_mode(regs))
7528                        return 1;
7529        }
7530
7531        return 0;
7532}
7533
7534static int perf_swevent_match(struct perf_event *event,
7535                                enum perf_type_id type,
7536                                u32 event_id,
7537                                struct perf_sample_data *data,
7538                                struct pt_regs *regs)
7539{
7540        if (event->attr.type != type)
7541                return 0;
7542
7543        if (event->attr.config != event_id)
7544                return 0;
7545
7546        if (perf_exclude_event(event, regs))
7547                return 0;
7548
7549        return 1;
7550}
7551
7552static inline u64 swevent_hash(u64 type, u32 event_id)
7553{
7554        u64 val = event_id | (type << 32);
7555
7556        return hash_64(val, SWEVENT_HLIST_BITS);
7557}
7558
7559static inline struct hlist_head *
7560__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7561{
7562        u64 hash = swevent_hash(type, event_id);
7563
7564        return &hlist->heads[hash];
7565}
7566
7567/* For the read side: events when they trigger */
7568static inline struct hlist_head *
7569find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7570{
7571        struct swevent_hlist *hlist;
7572
7573        hlist = rcu_dereference(swhash->swevent_hlist);
7574        if (!hlist)
7575                return NULL;
7576
7577        return __find_swevent_head(hlist, type, event_id);
7578}
7579
7580/* For the event head insertion and removal in the hlist */
7581static inline struct hlist_head *
7582find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7583{
7584        struct swevent_hlist *hlist;
7585        u32 event_id = event->attr.config;
7586        u64 type = event->attr.type;
7587
7588        /*
7589         * Event scheduling is always serialized against hlist allocation
7590         * and release. Which makes the protected version suitable here.
7591         * The context lock guarantees that.
7592         */
7593        hlist = rcu_dereference_protected(swhash->swevent_hlist,
7594                                          lockdep_is_held(&event->ctx->lock));
7595        if (!hlist)
7596                return NULL;
7597
7598        return __find_swevent_head(hlist, type, event_id);
7599}
7600
7601static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7602                                    u64 nr,
7603                                    struct perf_sample_data *data,
7604                                    struct pt_regs *regs)
7605{
7606        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7607        struct perf_event *event;
7608        struct hlist_head *head;
7609
7610        rcu_read_lock();
7611        head = find_swevent_head_rcu(swhash, type, event_id);
7612        if (!head)
7613                goto end;
7614
7615        hlist_for_each_entry_rcu(event, head, hlist_entry) {
7616                if (perf_swevent_match(event, type, event_id, data, regs))
7617                        perf_swevent_event(event, nr, data, regs);
7618        }
7619end:
7620        rcu_read_unlock();
7621}
7622
7623DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7624
7625int perf_swevent_get_recursion_context(void)
7626{
7627        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7628
7629        return get_recursion_context(swhash->recursion);
7630}
7631EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7632
7633void perf_swevent_put_recursion_context(int rctx)
7634{
7635        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7636
7637        put_recursion_context(swhash->recursion, rctx);
7638}
7639
7640void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7641{
7642        struct perf_sample_data data;
7643
7644        if (WARN_ON_ONCE(!regs))
7645                return;
7646
7647        perf_sample_data_init(&data, addr, 0);
7648        do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7649}
7650
7651void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7652{
7653        int rctx;
7654
7655        preempt_disable_notrace();
7656        rctx = perf_swevent_get_recursion_context();
7657        if (unlikely(rctx < 0))
7658                goto fail;
7659
7660        ___perf_sw_event(event_id, nr, regs, addr);
7661
7662        perf_swevent_put_recursion_context(rctx);
7663fail:
7664        preempt_enable_notrace();
7665}
7666
7667static void perf_swevent_read(struct perf_event *event)
7668{
7669}
7670
7671static int perf_swevent_add(struct perf_event *event, int flags)
7672{
7673        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7674        struct hw_perf_event *hwc = &event->hw;
7675        struct hlist_head *head;
7676
7677        if (is_sampling_event(event)) {
7678                hwc->last_period = hwc->sample_period;
7679                perf_swevent_set_period(event);
7680        }
7681
7682        hwc->state = !(flags & PERF_EF_START);
7683
7684        head = find_swevent_head(swhash, event);
7685        if (WARN_ON_ONCE(!head))
7686                return -EINVAL;
7687
7688        hlist_add_head_rcu(&event->hlist_entry, head);
7689        perf_event_update_userpage(event);
7690
7691        return 0;
7692}
7693
7694static void perf_swevent_del(struct perf_event *event, int flags)
7695{
7696        hlist_del_rcu(&event->hlist_entry);
7697}
7698
7699static void perf_swevent_start(struct perf_event *event, int flags)
7700{
7701        event->hw.state = 0;
7702}
7703
7704static void perf_swevent_stop(struct perf_event *event, int flags)
7705{
7706        event->hw.state = PERF_HES_STOPPED;
7707}
7708
7709/* Deref the hlist from the update side */
7710static inline struct swevent_hlist *
7711swevent_hlist_deref(struct swevent_htable *swhash)
7712{
7713        return rcu_dereference_protected(swhash->swevent_hlist,
7714                                         lockdep_is_held(&swhash->hlist_mutex));
7715}
7716
7717static void swevent_hlist_release(struct swevent_htable *swhash)
7718{
7719        struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7720
7721        if (!hlist)
7722                return;
7723
7724        RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7725        kfree_rcu(hlist, rcu_head);
7726}
7727
7728static void swevent_hlist_put_cpu(int cpu)
7729{
7730        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7731
7732        mutex_lock(&swhash->hlist_mutex);
7733
7734        if (!--swhash->hlist_refcount)
7735                swevent_hlist_release(swhash);
7736
7737        mutex_unlock(&swhash->hlist_mutex);
7738}
7739
7740static void swevent_hlist_put(void)
7741{
7742        int cpu;
7743
7744        for_each_possible_cpu(cpu)
7745                swevent_hlist_put_cpu(cpu);
7746}
7747
7748static int swevent_hlist_get_cpu(int cpu)
7749{
7750        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7751        int err = 0;
7752
7753        mutex_lock(&swhash->hlist_mutex);
7754        if (!swevent_hlist_deref(swhash) &&
7755            cpumask_test_cpu(cpu, perf_online_mask)) {
7756                struct swevent_hlist *hlist;
7757
7758                hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7759                if (!hlist) {
7760                        err = -ENOMEM;
7761                        goto exit;
7762                }
7763                rcu_assign_pointer(swhash->swevent_hlist, hlist);
7764        }
7765        swhash->hlist_refcount++;
7766exit:
7767        mutex_unlock(&swhash->hlist_mutex);
7768
7769        return err;
7770}
7771
7772static int swevent_hlist_get(void)
7773{
7774        int err, cpu, failed_cpu;
7775
7776        mutex_lock(&pmus_lock);
7777        for_each_possible_cpu(cpu) {
7778                err = swevent_hlist_get_cpu(cpu);
7779                if (err) {
7780                        failed_cpu = cpu;
7781                        goto fail;
7782                }
7783        }
7784        mutex_unlock(&pmus_lock);
7785        return 0;
7786fail:
7787        for_each_possible_cpu(cpu) {
7788                if (cpu == failed_cpu)
7789                        break;
7790                swevent_hlist_put_cpu(cpu);
7791        }
7792        mutex_unlock(&pmus_lock);
7793        return err;
7794}
7795
7796struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7797
7798static void sw_perf_event_destroy(struct perf_event *event)
7799{
7800        u64 event_id = event->attr.config;
7801
7802        WARN_ON(event->parent);
7803
7804        static_key_slow_dec(&perf_swevent_enabled[event_id]);
7805        swevent_hlist_put();
7806}
7807
7808static int perf_swevent_init(struct perf_event *event)
7809{
7810        u64 event_id = event->attr.config;
7811
7812        if (event->attr.type != PERF_TYPE_SOFTWARE)
7813                return -ENOENT;
7814
7815        /*
7816         * no branch sampling for software events
7817         */
7818        if (has_branch_stack(event))
7819                return -EOPNOTSUPP;
7820
7821        switch (event_id) {
7822        case PERF_COUNT_SW_CPU_CLOCK:
7823        case PERF_COUNT_SW_TASK_CLOCK:
7824                return -ENOENT;
7825
7826        default:
7827                break;
7828        }
7829
7830        if (event_id >= PERF_COUNT_SW_MAX)
7831                return -ENOENT;
7832
7833        if (!event->parent) {
7834                int err;
7835
7836                err = swevent_hlist_get();
7837                if (err)
7838                        return err;
7839
7840                static_key_slow_inc(&perf_swevent_enabled[event_id]);
7841                event->destroy = sw_perf_event_destroy;
7842        }
7843
7844        return 0;
7845}
7846
7847static struct pmu perf_swevent = {
7848        .task_ctx_nr    = perf_sw_context,
7849
7850        .capabilities   = PERF_PMU_CAP_NO_NMI,
7851
7852        .event_init     = perf_swevent_init,
7853        .add            = perf_swevent_add,
7854        .del            = perf_swevent_del,
7855        .start          = perf_swevent_start,
7856        .stop           = perf_swevent_stop,
7857        .read           = perf_swevent_read,
7858};
7859
7860#ifdef CONFIG_EVENT_TRACING
7861
7862static int perf_tp_filter_match(struct perf_event *event,
7863                                struct perf_sample_data *data)
7864{
7865        void *record = data->raw->frag.data;
7866
7867        /* only top level events have filters set */
7868        if (event->parent)
7869                event = event->parent;
7870
7871        if (likely(!event->filter) || filter_match_preds(event->filter, record))
7872                return 1;
7873        return 0;
7874}
7875
7876static int perf_tp_event_match(struct perf_event *event,
7877                                struct perf_sample_data *data,
7878                                struct pt_regs *regs)
7879{
7880        if (event->hw.state & PERF_HES_STOPPED)
7881                return 0;
7882        /*
7883         * All tracepoints are from kernel-space.
7884         */
7885        if (event->attr.exclude_kernel)
7886                return 0;
7887
7888        if (!perf_tp_filter_match(event, data))
7889                return 0;
7890
7891        return 1;
7892}
7893
7894void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7895                               struct trace_event_call *call, u64 count,
7896                               struct pt_regs *regs, struct hlist_head *head,
7897                               struct task_struct *task)
7898{
7899        struct bpf_prog *prog = call->prog;
7900
7901        if (prog) {
7902                *(struct pt_regs **)raw_data = regs;
7903                if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7904                        perf_swevent_put_recursion_context(rctx);
7905                        return;
7906                }
7907        }
7908        perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7909                      rctx, task, NULL);
7910}
7911EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7912
7913void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7914                   struct pt_regs *regs, struct hlist_head *head, int rctx,
7915                   struct task_struct *task, struct perf_event *event)
7916{
7917        struct perf_sample_data data;
7918
7919        struct perf_raw_record raw = {
7920                .frag = {
7921                        .size = entry_size,
7922                        .data = record,
7923                },
7924        };
7925
7926        perf_sample_data_init(&data, 0, 0);
7927        data.raw = &raw;
7928
7929        perf_trace_buf_update(record, event_type);
7930
7931        /* Use the given event instead of the hlist */
7932        if (event) {
7933                if (perf_tp_event_match(event, &data, regs))
7934                        perf_swevent_event(event, count, &data, regs);
7935        } else {
7936                hlist_for_each_entry_rcu(event, head, hlist_entry) {
7937                        if (perf_tp_event_match(event, &data, regs))
7938                                perf_swevent_event(event, count, &data, regs);
7939                }
7940        }
7941
7942        /*
7943         * If we got specified a target task, also iterate its context and
7944         * deliver this event there too.
7945         */
7946        if (task && task != current) {
7947                struct perf_event_context *ctx;
7948                struct trace_entry *entry = record;
7949
7950                rcu_read_lock();
7951                ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7952                if (!ctx)
7953                        goto unlock;
7954
7955                list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7956                        if (event->attr.type != PERF_TYPE_TRACEPOINT)
7957                                continue;
7958                        if (event->attr.config != entry->type)
7959                                continue;
7960                        if (perf_tp_event_match(event, &data, regs))
7961                                perf_swevent_event(event, count, &data, regs);
7962                }
7963unlock:
7964                rcu_read_unlock();
7965        }
7966
7967        perf_swevent_put_recursion_context(rctx);
7968}
7969EXPORT_SYMBOL_GPL(perf_tp_event);
7970
7971static void tp_perf_event_destroy(struct perf_event *event)
7972{
7973        perf_trace_destroy(event);
7974}
7975
7976static int perf_tp_event_init(struct perf_event *event)
7977{
7978        int err;
7979
7980        if (event->attr.type != PERF_TYPE_TRACEPOINT)
7981                return -ENOENT;
7982
7983        /*
7984         * no branch sampling for tracepoint events
7985         */
7986        if (has_branch_stack(event))
7987                return -EOPNOTSUPP;
7988
7989        err = perf_trace_init(event);
7990        if (err)
7991                return err;
7992
7993        event->destroy = tp_perf_event_destroy;
7994
7995        return 0;
7996}
7997
7998static struct pmu perf_tracepoint = {
7999        .task_ctx_nr    = perf_sw_context,
8000
8001        .event_init     = perf_tp_event_init,
8002        .add            = perf_trace_add,
8003        .del            = perf_trace_del,
8004        .start          = perf_swevent_start,
8005        .stop           = perf_swevent_stop,
8006        .read           = perf_swevent_read,
8007};
8008
8009static inline void perf_tp_register(void)
8010{
8011        perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8012}
8013
8014static void perf_event_free_filter(struct perf_event *event)
8015{
8016        ftrace_profile_free_filter(event);
8017}
8018
8019#ifdef CONFIG_BPF_SYSCALL
8020static void bpf_overflow_handler(struct perf_event *event,
8021                                 struct perf_sample_data *data,
8022                                 struct pt_regs *regs)
8023{
8024        struct bpf_perf_event_data_kern ctx = {
8025                .data = data,
8026                .regs = regs,
8027        };
8028        int ret = 0;
8029
8030        preempt_disable();
8031        if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8032                goto out;
8033        rcu_read_lock();
8034        ret = BPF_PROG_RUN(event->prog, &ctx);
8035        rcu_read_unlock();
8036out:
8037        __this_cpu_dec(bpf_prog_active);
8038        preempt_enable();
8039        if (!ret)
8040                return;
8041
8042        event->orig_overflow_handler(event, data, regs);
8043}
8044
8045static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8046{
8047        struct bpf_prog *prog;
8048
8049        if (event->overflow_handler_context)
8050                /* hw breakpoint or kernel counter */
8051                return -EINVAL;
8052
8053        if (event->prog)
8054                return -EEXIST;
8055
8056        prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8057        if (IS_ERR(prog))
8058                return PTR_ERR(prog);
8059
8060        event->prog = prog;
8061        event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8062        WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8063        return 0;
8064}
8065
8066static void perf_event_free_bpf_handler(struct perf_event *event)
8067{
8068        struct bpf_prog *prog = event->prog;
8069
8070        if (!prog)
8071                return;
8072
8073        WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8074        event->prog = NULL;
8075        bpf_prog_put(prog);
8076}
8077#else
8078static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8079{
8080        return -EOPNOTSUPP;
8081}
8082static void perf_event_free_bpf_handler(struct perf_event *event)
8083{
8084}
8085#endif
8086
8087static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8088{
8089        bool is_kprobe, is_tracepoint;
8090        struct bpf_prog *prog;
8091
8092        if (event->attr.type != PERF_TYPE_TRACEPOINT)
8093                return perf_event_set_bpf_handler(event, prog_fd);
8094
8095        if (event->tp_event->prog)
8096                return -EEXIST;
8097
8098        is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8099        is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8100        if (!is_kprobe && !is_tracepoint)
8101                /* bpf programs can only be attached to u/kprobe or tracepoint */
8102                return -EINVAL;
8103
8104        prog = bpf_prog_get(prog_fd);
8105        if (IS_ERR(prog))
8106                return PTR_ERR(prog);
8107
8108        if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8109            (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8110                /* valid fd, but invalid bpf program type */
8111                bpf_prog_put(prog);
8112                return -EINVAL;
8113        }
8114
8115        if (is_tracepoint) {
8116                int off = trace_event_get_offsets(event->tp_event);
8117
8118                if (prog->aux->max_ctx_offset > off) {
8119                        bpf_prog_put(prog);
8120                        return -EACCES;
8121                }
8122        }
8123        event->tp_event->prog = prog;
8124
8125        return 0;
8126}
8127
8128static void perf_event_free_bpf_prog(struct perf_event *event)
8129{
8130        struct bpf_prog *prog;
8131
8132        perf_event_free_bpf_handler(event);
8133
8134        if (!event->tp_event)
8135                return;
8136
8137        prog = event->tp_event->prog;
8138        if (prog) {
8139                event->tp_event->prog = NULL;
8140                bpf_prog_put(prog);
8141        }
8142}
8143
8144#else
8145
8146static inline void perf_tp_register(void)
8147{
8148}
8149
8150static void perf_event_free_filter(struct perf_event *event)
8151{
8152}
8153
8154static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8155{
8156        return -ENOENT;
8157}
8158
8159static void perf_event_free_bpf_prog(struct perf_event *event)
8160{
8161}
8162#endif /* CONFIG_EVENT_TRACING */
8163
8164#ifdef CONFIG_HAVE_HW_BREAKPOINT
8165void perf_bp_event(struct perf_event *bp, void *data)
8166{
8167        struct perf_sample_data sample;
8168        struct pt_regs *regs = data;
8169
8170        perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8171
8172        if (!bp->hw.state && !perf_exclude_event(bp, regs))
8173                perf_swevent_event(bp, 1, &sample, regs);
8174}
8175#endif
8176
8177/*
8178 * Allocate a new address filter
8179 */
8180static struct perf_addr_filter *
8181perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8182{
8183        int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8184        struct perf_addr_filter *filter;
8185
8186        filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8187        if (!filter)
8188                return NULL;
8189
8190        INIT_LIST_HEAD(&filter->entry);
8191        list_add_tail(&filter->entry, filters);
8192
8193        return filter;
8194}
8195
8196static void free_filters_list(struct list_head *filters)
8197{
8198        struct perf_addr_filter *filter, *iter;
8199
8200        list_for_each_entry_safe(filter, iter, filters, entry) {
8201                if (filter->inode)
8202                        iput(filter->inode);
8203                list_del(&filter->entry);
8204                kfree(filter);
8205        }
8206}
8207
8208/*
8209 * Free existing address filters and optionally install new ones
8210 */
8211static void perf_addr_filters_splice(struct perf_event *event,
8212                                     struct list_head *head)
8213{
8214        unsigned long flags;
8215        LIST_HEAD(list);
8216
8217        if (!has_addr_filter(event))
8218                return;
8219
8220        /* don't bother with children, they don't have their own filters */
8221        if (event->parent)
8222                return;
8223
8224        raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8225
8226        list_splice_init(&event->addr_filters.list, &list);
8227        if (head)
8228                list_splice(head, &event->addr_filters.list);
8229
8230        raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8231
8232        free_filters_list(&list);
8233}
8234
8235/*
8236 * Scan through mm's vmas and see if one of them matches the
8237 * @filter; if so, adjust filter's address range.
8238 * Called with mm::mmap_sem down for reading.
8239 */
8240static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8241                                            struct mm_struct *mm)
8242{
8243        struct vm_area_struct *vma;
8244
8245        for (vma = mm->mmap; vma; vma = vma->vm_next) {
8246                struct file *file = vma->vm_file;
8247                unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8248                unsigned long vma_size = vma->vm_end - vma->vm_start;
8249
8250                if (!file)
8251                        continue;
8252
8253                if (!perf_addr_filter_match(filter, file, off, vma_size))
8254                        continue;
8255
8256                return vma->vm_start;
8257        }
8258
8259        return 0;
8260}
8261
8262/*
8263 * Update event's address range filters based on the
8264 * task's existing mappings, if any.
8265 */
8266static void perf_event_addr_filters_apply(struct perf_event *event)
8267{
8268        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8269        struct task_struct *task = READ_ONCE(event->ctx->task);
8270        struct perf_addr_filter *filter;
8271        struct mm_struct *mm = NULL;
8272        unsigned int count = 0;
8273        unsigned long flags;
8274
8275        /*
8276         * We may observe TASK_TOMBSTONE, which means that the event tear-down
8277         * will stop on the parent's child_mutex that our caller is also holding
8278         */
8279        if (task == TASK_TOMBSTONE)
8280                return;
8281
8282        if (!ifh->nr_file_filters)
8283                return;
8284
8285        mm = get_task_mm(event->ctx->task);
8286        if (!mm)
8287                goto restart;
8288
8289        down_read(&mm->mmap_sem);
8290
8291        raw_spin_lock_irqsave(&ifh->lock, flags);
8292        list_for_each_entry(filter, &ifh->list, entry) {
8293                event->addr_filters_offs[count] = 0;
8294
8295                /*
8296                 * Adjust base offset if the filter is associated to a binary
8297                 * that needs to be mapped:
8298                 */
8299                if (filter->inode)
8300                        event->addr_filters_offs[count] =
8301                                perf_addr_filter_apply(filter, mm);
8302
8303                count++;
8304        }
8305
8306        event->addr_filters_gen++;
8307        raw_spin_unlock_irqrestore(&ifh->lock, flags);
8308
8309        up_read(&mm->mmap_sem);
8310
8311        mmput(mm);
8312
8313restart:
8314        perf_event_stop(event, 1);
8315}
8316
8317/*
8318 * Address range filtering: limiting the data to certain
8319 * instruction address ranges. Filters are ioctl()ed to us from
8320 * userspace as ascii strings.
8321 *
8322 * Filter string format:
8323 *
8324 * ACTION RANGE_SPEC
8325 * where ACTION is one of the
8326 *  * "filter": limit the trace to this region
8327 *  * "start": start tracing from this address
8328 *  * "stop": stop tracing at this address/region;
8329 * RANGE_SPEC is
8330 *  * for kernel addresses: <start address>[/<size>]
8331 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8332 *
8333 * if <size> is not specified, the range is treated as a single address.
8334 */
8335enum {
8336        IF_ACT_NONE = -1,
8337        IF_ACT_FILTER,
8338        IF_ACT_START,
8339        IF_ACT_STOP,
8340        IF_SRC_FILE,
8341        IF_SRC_KERNEL,
8342        IF_SRC_FILEADDR,
8343        IF_SRC_KERNELADDR,
8344};
8345
8346enum {
8347        IF_STATE_ACTION = 0,
8348        IF_STATE_SOURCE,
8349        IF_STATE_END,
8350};
8351
8352static const match_table_t if_tokens = {
8353        { IF_ACT_FILTER,        "filter" },
8354        { IF_ACT_START,         "start" },
8355        { IF_ACT_STOP,          "stop" },
8356        { IF_SRC_FILE,          "%u/%u@%s" },
8357        { IF_SRC_KERNEL,        "%u/%u" },
8358        { IF_SRC_FILEADDR,      "%u@%s" },
8359        { IF_SRC_KERNELADDR,    "%u" },
8360        { IF_ACT_NONE,          NULL },
8361};
8362
8363/*
8364 * Address filter string parser
8365 */
8366static int
8367perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8368                             struct list_head *filters)
8369{
8370        struct perf_addr_filter *filter = NULL;
8371        char *start, *orig, *filename = NULL;
8372        struct path path;
8373        substring_t args[MAX_OPT_ARGS];
8374        int state = IF_STATE_ACTION, token;
8375        unsigned int kernel = 0;
8376        int ret = -EINVAL;
8377
8378        orig = fstr = kstrdup(fstr, GFP_KERNEL);
8379        if (!fstr)
8380                return -ENOMEM;
8381
8382        while ((start = strsep(&fstr, " ,\n")) != NULL) {
8383                ret = -EINVAL;
8384
8385                if (!*start)
8386                        continue;
8387
8388                /* filter definition begins */
8389                if (state == IF_STATE_ACTION) {
8390                        filter = perf_addr_filter_new(event, filters);
8391                        if (!filter)
8392                                goto fail;
8393                }
8394
8395                token = match_token(start, if_tokens, args);
8396                switch (token) {
8397                case IF_ACT_FILTER:
8398                case IF_ACT_START:
8399                        filter->filter = 1;
8400
8401                case IF_ACT_STOP:
8402                        if (state != IF_STATE_ACTION)
8403                                goto fail;
8404
8405                        state = IF_STATE_SOURCE;
8406                        break;
8407
8408                case IF_SRC_KERNELADDR:
8409                case IF_SRC_KERNEL:
8410                        kernel = 1;
8411
8412                case IF_SRC_FILEADDR:
8413                case IF_SRC_FILE:
8414                        if (state != IF_STATE_SOURCE)
8415                                goto fail;
8416
8417                        if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8418                                filter->range = 1;
8419
8420                        *args[0].to = 0;
8421                        ret = kstrtoul(args[0].from, 0, &filter->offset);
8422                        if (ret)
8423                                goto fail;
8424
8425                        if (filter->range) {
8426                                *args[1].to = 0;
8427                                ret = kstrtoul(args[1].from, 0, &filter->size);
8428                                if (ret)
8429                                        goto fail;
8430                        }
8431
8432                        if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8433                                int fpos = filter->range ? 2 : 1;
8434
8435                                filename = match_strdup(&args[fpos]);
8436                                if (!filename) {
8437                                        ret = -ENOMEM;
8438                                        goto fail;
8439                                }
8440                        }
8441
8442                        state = IF_STATE_END;
8443                        break;
8444
8445                default:
8446                        goto fail;
8447                }
8448
8449                /*
8450                 * Filter definition is fully parsed, validate and install it.
8451                 * Make sure that it doesn't contradict itself or the event's
8452                 * attribute.
8453                 */
8454                if (state == IF_STATE_END) {
8455                        ret = -EINVAL;
8456                        if (kernel && event->attr.exclude_kernel)
8457                                goto fail;
8458
8459                        if (!kernel) {
8460                                if (!filename)
8461                                        goto fail;
8462
8463                                /*
8464                                 * For now, we only support file-based filters
8465                                 * in per-task events; doing so for CPU-wide
8466                                 * events requires additional context switching
8467                                 * trickery, since same object code will be
8468                                 * mapped at different virtual addresses in
8469                                 * different processes.
8470                                 */
8471                                ret = -EOPNOTSUPP;
8472                                if (!event->ctx->task)
8473                                        goto fail_free_name;
8474
8475                                /* look up the path and grab its inode */
8476                                ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8477                                if (ret)
8478                                        goto fail_free_name;
8479
8480                                filter->inode = igrab(d_inode(path.dentry));
8481                                path_put(&path);
8482                                kfree(filename);
8483                                filename = NULL;
8484
8485                                ret = -EINVAL;
8486                                if (!filter->inode ||
8487                                    !S_ISREG(filter->inode->i_mode))
8488                                        /* free_filters_list() will iput() */
8489                                        goto fail;
8490
8491                                event->addr_filters.nr_file_filters++;
8492                        }
8493
8494                        /* ready to consume more filters */
8495                        state = IF_STATE_ACTION;
8496                        filter = NULL;
8497                }
8498        }
8499
8500        if (state != IF_STATE_ACTION)
8501                goto fail;
8502
8503        kfree(orig);
8504
8505        return 0;
8506
8507fail_free_name:
8508        kfree(filename);
8509fail:
8510        free_filters_list(filters);
8511        kfree(orig);
8512
8513        return ret;
8514}
8515
8516static int
8517perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8518{
8519        LIST_HEAD(filters);
8520        int ret;
8521
8522        /*
8523         * Since this is called in perf_ioctl() path, we're already holding
8524         * ctx::mutex.
8525         */
8526        lockdep_assert_held(&event->ctx->mutex);
8527
8528        if (WARN_ON_ONCE(event->parent))
8529                return -EINVAL;
8530
8531        ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8532        if (ret)
8533                goto fail_clear_files;
8534
8535        ret = event->pmu->addr_filters_validate(&filters);
8536        if (ret)
8537                goto fail_free_filters;
8538
8539        /* remove existing filters, if any */
8540        perf_addr_filters_splice(event, &filters);
8541
8542        /* install new filters */
8543        perf_event_for_each_child(event, perf_event_addr_filters_apply);
8544
8545        return ret;
8546
8547fail_free_filters:
8548        free_filters_list(&filters);
8549
8550fail_clear_files:
8551        event->addr_filters.nr_file_filters = 0;
8552
8553        return ret;
8554}
8555
8556static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8557{
8558        char *filter_str;
8559        int ret = -EINVAL;
8560
8561        if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8562            !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8563            !has_addr_filter(event))
8564                return -EINVAL;
8565
8566        filter_str = strndup_user(arg, PAGE_SIZE);
8567        if (IS_ERR(filter_str))
8568                return PTR_ERR(filter_str);
8569
8570        if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8571            event->attr.type == PERF_TYPE_TRACEPOINT)
8572                ret = ftrace_profile_set_filter(event, event->attr.config,
8573                                                filter_str);
8574        else if (has_addr_filter(event))
8575                ret = perf_event_set_addr_filter(event, filter_str);
8576
8577        kfree(filter_str);
8578        return ret;
8579}
8580
8581/*
8582 * hrtimer based swevent callback
8583 */
8584
8585static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8586{
8587        enum hrtimer_restart ret = HRTIMER_RESTART;
8588        struct perf_sample_data data;
8589        struct pt_regs *regs;
8590        struct perf_event *event;
8591        u64 period;
8592
8593        event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8594
8595        if (event->state != PERF_EVENT_STATE_ACTIVE)
8596                return HRTIMER_NORESTART;
8597
8598        event->pmu->read(event);
8599
8600        perf_sample_data_init(&data, 0, event->hw.last_period);
8601        regs = get_irq_regs();
8602
8603        if (regs && !perf_exclude_event(event, regs)) {
8604                if (!(event->attr.exclude_idle && is_idle_task(current)))
8605                        if (__perf_event_overflow(event, 1, &data, regs))
8606                                ret = HRTIMER_NORESTART;
8607        }
8608
8609        period = max_t(u64, 10000, event->hw.sample_period);
8610        hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8611
8612        return ret;
8613}
8614
8615static void perf_swevent_start_hrtimer(struct perf_event *event)
8616{
8617        struct hw_perf_event *hwc = &event->hw;
8618        s64 period;
8619
8620        if (!is_sampling_event(event))
8621                return;
8622
8623        period = local64_read(&hwc->period_left);
8624        if (period) {
8625                if (period < 0)
8626                        period = 10000;
8627
8628                local64_set(&hwc->period_left, 0);
8629        } else {
8630                period = max_t(u64, 10000, hwc->sample_period);
8631        }
8632        hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8633                      HRTIMER_MODE_REL_PINNED);
8634}
8635
8636static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8637{
8638        struct hw_perf_event *hwc = &event->hw;
8639
8640        if (is_sampling_event(event)) {
8641                ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8642                local64_set(&hwc->period_left, ktime_to_ns(remaining));
8643
8644                hrtimer_cancel(&hwc->hrtimer);
8645        }
8646}
8647
8648static void perf_swevent_init_hrtimer(struct perf_event *event)
8649{
8650        struct hw_perf_event *hwc = &event->hw;
8651
8652        if (!is_sampling_event(event))
8653                return;
8654
8655        hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8656        hwc->hrtimer.function = perf_swevent_hrtimer;
8657
8658        /*
8659         * Since hrtimers have a fixed rate, we can do a static freq->period
8660         * mapping and avoid the whole period adjust feedback stuff.
8661         */
8662        if (event->attr.freq) {
8663                long freq = event->attr.sample_freq;
8664
8665                event->attr.sample_period = NSEC_PER_SEC / freq;
8666                hwc->sample_period = event->attr.sample_period;
8667                local64_set(&hwc->period_left, hwc->sample_period);
8668                hwc->last_period = hwc->sample_period;
8669                event->attr.freq = 0;
8670        }
8671}
8672
8673/*
8674 * Software event: cpu wall time clock
8675 */
8676
8677static void cpu_clock_event_update(struct perf_event *event)
8678{
8679        s64 prev;
8680        u64 now;
8681
8682        now = local_clock();
8683        prev = local64_xchg(&event->hw.prev_count, now);
8684        local64_add(now - prev, &event->count);
8685}
8686
8687static void cpu_clock_event_start(struct perf_event *event, int flags)
8688{
8689        local64_set(&event->hw.prev_count, local_clock());
8690        perf_swevent_start_hrtimer(event);
8691}
8692
8693static void cpu_clock_event_stop(struct perf_event *event, int flags)
8694{
8695        perf_swevent_cancel_hrtimer(event);
8696        cpu_clock_event_update(event);
8697}
8698
8699static int cpu_clock_event_add(struct perf_event *event, int flags)
8700{
8701        if (flags & PERF_EF_START)
8702                cpu_clock_event_start(event, flags);
8703        perf_event_update_userpage(event);
8704
8705        return 0;
8706}
8707
8708static void cpu_clock_event_del(struct perf_event *event, int flags)
8709{
8710        cpu_clock_event_stop(event, flags);
8711}
8712
8713static void cpu_clock_event_read(struct perf_event *event)
8714{
8715        cpu_clock_event_update(event);
8716}
8717
8718static int cpu_clock_event_init(struct perf_event *event)
8719{
8720        if (event->attr.type != PERF_TYPE_SOFTWARE)
8721                return -ENOENT;
8722
8723        if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8724                return -ENOENT;
8725
8726        /*
8727         * no branch sampling for software events
8728         */
8729        if (has_branch_stack(event))
8730                return -EOPNOTSUPP;
8731
8732        perf_swevent_init_hrtimer(event);
8733
8734        return 0;
8735}
8736
8737static struct pmu perf_cpu_clock = {
8738        .task_ctx_nr    = perf_sw_context,
8739
8740        .capabilities   = PERF_PMU_CAP_NO_NMI,
8741
8742        .event_init     = cpu_clock_event_init,
8743        .add            = cpu_clock_event_add,
8744        .del            = cpu_clock_event_del,
8745        .start          = cpu_clock_event_start,
8746        .stop           = cpu_clock_event_stop,
8747        .read           = cpu_clock_event_read,
8748};
8749
8750/*
8751 * Software event: task time clock
8752 */
8753
8754static void task_clock_event_update(struct perf_event *event, u64 now)
8755{
8756        u64 prev;
8757        s64 delta;
8758
8759        prev = local64_xchg(&event->hw.prev_count, now);
8760        delta = now - prev;
8761        local64_add(delta, &event->count);
8762}
8763
8764static void task_clock_event_start(struct perf_event *event, int flags)
8765{
8766        local64_set(&event->hw.prev_count, event->ctx->time);
8767        perf_swevent_start_hrtimer(event);
8768}
8769
8770static void task_clock_event_stop(struct perf_event *event, int flags)
8771{
8772        perf_swevent_cancel_hrtimer(event);
8773        task_clock_event_update(event, event->ctx->time);
8774}
8775
8776static int task_clock_event_add(struct perf_event *event, int flags)
8777{
8778        if (flags & PERF_EF_START)
8779                task_clock_event_start(event, flags);
8780        perf_event_update_userpage(event);
8781
8782        return 0;
8783}
8784
8785static void task_clock_event_del(struct perf_event *event, int flags)
8786{
8787        task_clock_event_stop(event, PERF_EF_UPDATE);
8788}
8789
8790static void task_clock_event_read(struct perf_event *event)
8791{
8792        u64 now = perf_clock();
8793        u64 delta = now - event->ctx->timestamp;
8794        u64 time = event->ctx->time + delta;
8795
8796        task_clock_event_update(event, time);
8797}
8798
8799static int task_clock_event_init(struct perf_event *event)
8800{
8801        if (event->attr.type != PERF_TYPE_SOFTWARE)
8802                return -ENOENT;
8803
8804        if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8805                return -ENOENT;
8806
8807        /*
8808         * no branch sampling for software events
8809         */
8810        if (has_branch_stack(event))
8811                return -EOPNOTSUPP;
8812
8813        perf_swevent_init_hrtimer(event);
8814
8815        return 0;
8816}
8817
8818static struct pmu perf_task_clock = {
8819        .task_ctx_nr    = perf_sw_context,
8820
8821        .capabilities   = PERF_PMU_CAP_NO_NMI,
8822
8823        .event_init     = task_clock_event_init,
8824        .add            = task_clock_event_add,
8825        .del            = task_clock_event_del,
8826        .start          = task_clock_event_start,
8827        .stop           = task_clock_event_stop,
8828        .read           = task_clock_event_read,
8829};
8830
8831static void perf_pmu_nop_void(struct pmu *pmu)
8832{
8833}
8834
8835static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8836{
8837}
8838
8839static int perf_pmu_nop_int(struct pmu *pmu)
8840{
8841        return 0;
8842}
8843
8844static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8845
8846static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8847{
8848        __this_cpu_write(nop_txn_flags, flags);
8849
8850        if (flags & ~PERF_PMU_TXN_ADD)
8851                return;
8852
8853        perf_pmu_disable(pmu);
8854}
8855
8856static int perf_pmu_commit_txn(struct pmu *pmu)
8857{
8858        unsigned int flags = __this_cpu_read(nop_txn_flags);
8859
8860        __this_cpu_write(nop_txn_flags, 0);
8861
8862        if (flags & ~PERF_PMU_TXN_ADD)
8863                return 0;
8864
8865        perf_pmu_enable(pmu);
8866        return 0;
8867}
8868
8869static void perf_pmu_cancel_txn(struct pmu *pmu)
8870{
8871        unsigned int flags =  __this_cpu_read(nop_txn_flags);
8872
8873        __this_cpu_write(nop_txn_flags, 0);
8874
8875        if (flags & ~PERF_PMU_TXN_ADD)
8876                return;
8877
8878        perf_pmu_enable(pmu);
8879}
8880
8881static int perf_event_idx_default(struct perf_event *event)
8882{
8883        return 0;
8884}
8885
8886/*
8887 * Ensures all contexts with the same task_ctx_nr have the same
8888 * pmu_cpu_context too.
8889 */
8890static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8891{
8892        struct pmu *pmu;
8893
8894        if (ctxn < 0)
8895                return NULL;
8896
8897        list_for_each_entry(pmu, &pmus, entry) {
8898                if (pmu->task_ctx_nr == ctxn)
8899                        return pmu->pmu_cpu_context;
8900        }
8901
8902        return NULL;
8903}
8904
8905static void free_pmu_context(struct pmu *pmu)
8906{
8907        mutex_lock(&pmus_lock);
8908        free_percpu(pmu->pmu_cpu_context);
8909        mutex_unlock(&pmus_lock);
8910}
8911
8912/*
8913 * Let userspace know that this PMU supports address range filtering:
8914 */
8915static ssize_t nr_addr_filters_show(struct device *dev,
8916                                    struct device_attribute *attr,
8917                                    char *page)
8918{
8919        struct pmu *pmu = dev_get_drvdata(dev);
8920
8921        return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8922}
8923DEVICE_ATTR_RO(nr_addr_filters);
8924
8925static struct idr pmu_idr;
8926
8927static ssize_t
8928type_show(struct device *dev, struct device_attribute *attr, char *page)
8929{
8930        struct pmu *pmu = dev_get_drvdata(dev);
8931
8932        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8933}
8934static DEVICE_ATTR_RO(type);
8935
8936static ssize_t
8937perf_event_mux_interval_ms_show(struct device *dev,
8938                                struct device_attribute *attr,
8939                                char *page)
8940{
8941        struct pmu *pmu = dev_get_drvdata(dev);
8942
8943        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8944}
8945
8946static DEFINE_MUTEX(mux_interval_mutex);
8947
8948static ssize_t
8949perf_event_mux_interval_ms_store(struct device *dev,
8950                                 struct device_attribute *attr,
8951                                 const char *buf, size_t count)
8952{
8953        struct pmu *pmu = dev_get_drvdata(dev);
8954        int timer, cpu, ret;
8955
8956        ret = kstrtoint(buf, 0, &timer);
8957        if (ret)
8958                return ret;
8959
8960        if (timer < 1)
8961                return -EINVAL;
8962
8963        /* same value, noting to do */
8964        if (timer == pmu->hrtimer_interval_ms)
8965                return count;
8966
8967        mutex_lock(&mux_interval_mutex);
8968        pmu->hrtimer_interval_ms = timer;
8969
8970        /* update all cpuctx for this PMU */
8971        cpus_read_lock();
8972        for_each_online_cpu(cpu) {
8973                struct perf_cpu_context *cpuctx;
8974                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8975                cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8976
8977                cpu_function_call(cpu,
8978                        (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8979        }
8980        cpus_read_unlock();
8981        mutex_unlock(&mux_interval_mutex);
8982
8983        return count;
8984}
8985static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8986
8987static struct attribute *pmu_dev_attrs[] = {
8988        &dev_attr_type.attr,
8989        &dev_attr_perf_event_mux_interval_ms.attr,
8990        NULL,
8991};
8992ATTRIBUTE_GROUPS(pmu_dev);
8993
8994static int pmu_bus_running;
8995static struct bus_type pmu_bus = {
8996        .name           = "event_source",
8997        .dev_groups     = pmu_dev_groups,
8998};
8999
9000static void pmu_dev_release(struct device *dev)
9001{
9002        kfree(dev);
9003}
9004
9005static int pmu_dev_alloc(struct pmu *pmu)
9006{
9007        int ret = -ENOMEM;
9008
9009        pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9010        if (!pmu->dev)
9011                goto out;
9012
9013        pmu->dev->groups = pmu->attr_groups;
9014        device_initialize(pmu->dev);
9015        ret = dev_set_name(pmu->dev, "%s", pmu->name);
9016        if (ret)
9017                goto free_dev;
9018
9019        dev_set_drvdata(pmu->dev, pmu);
9020        pmu->dev->bus = &pmu_bus;
9021        pmu->dev->release = pmu_dev_release;
9022        ret = device_add(pmu->dev);
9023        if (ret)
9024                goto free_dev;
9025
9026        /* For PMUs with address filters, throw in an extra attribute: */
9027        if (pmu->nr_addr_filters)
9028                ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9029
9030        if (ret)
9031                goto del_dev;
9032
9033out:
9034        return ret;
9035
9036del_dev:
9037        device_del(pmu->dev);
9038
9039free_dev:
9040        put_device(pmu->dev);
9041        goto out;
9042}
9043
9044static struct lock_class_key cpuctx_mutex;
9045static struct lock_class_key cpuctx_lock;
9046
9047int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9048{
9049        int cpu, ret;
9050
9051        mutex_lock(&pmus_lock);
9052        ret = -ENOMEM;
9053        pmu->pmu_disable_count = alloc_percpu(int);
9054        if (!pmu->pmu_disable_count)
9055                goto unlock;
9056
9057        pmu->type = -1;
9058        if (!name)
9059                goto skip_type;
9060        pmu->name = name;
9061
9062        if (type < 0) {
9063                type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9064                if (type < 0) {
9065                        ret = type;
9066                        goto free_pdc;
9067                }
9068        }
9069        pmu->type = type;
9070
9071        if (pmu_bus_running) {
9072                ret = pmu_dev_alloc(pmu);
9073                if (ret)
9074                        goto free_idr;
9075        }
9076
9077skip_type:
9078        if (pmu->task_ctx_nr == perf_hw_context) {
9079                static int hw_context_taken = 0;
9080
9081                /*
9082                 * Other than systems with heterogeneous CPUs, it never makes
9083                 * sense for two PMUs to share perf_hw_context. PMUs which are
9084                 * uncore must use perf_invalid_context.
9085                 */
9086                if (WARN_ON_ONCE(hw_context_taken &&
9087                    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9088                        pmu->task_ctx_nr = perf_invalid_context;
9089
9090                hw_context_taken = 1;
9091        }
9092
9093        pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9094        if (pmu->pmu_cpu_context)
9095                goto got_cpu_context;
9096
9097        ret = -ENOMEM;
9098        pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9099        if (!pmu->pmu_cpu_context)
9100                goto free_dev;
9101
9102        for_each_possible_cpu(cpu) {
9103                struct perf_cpu_context *cpuctx;
9104
9105                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9106                __perf_event_init_context(&cpuctx->ctx);
9107                lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9108                lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9109                cpuctx->ctx.pmu = pmu;
9110                cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9111
9112                __perf_mux_hrtimer_init(cpuctx, cpu);
9113        }
9114
9115got_cpu_context:
9116        if (!pmu->start_txn) {
9117                if (pmu->pmu_enable) {
9118                        /*
9119                         * If we have pmu_enable/pmu_disable calls, install
9120                         * transaction stubs that use that to try and batch
9121                         * hardware accesses.
9122                         */
9123                        pmu->start_txn  = perf_pmu_start_txn;
9124                        pmu->commit_txn = perf_pmu_commit_txn;
9125                        pmu->cancel_txn = perf_pmu_cancel_txn;
9126                } else {
9127                        pmu->start_txn  = perf_pmu_nop_txn;
9128                        pmu->commit_txn = perf_pmu_nop_int;
9129                        pmu->cancel_txn = perf_pmu_nop_void;
9130                }
9131        }
9132
9133        if (!pmu->pmu_enable) {
9134                pmu->pmu_enable  = perf_pmu_nop_void;
9135                pmu->pmu_disable = perf_pmu_nop_void;
9136        }
9137
9138        if (!pmu->event_idx)
9139                pmu->event_idx = perf_event_idx_default;
9140
9141        list_add_rcu(&pmu->entry, &pmus);
9142        atomic_set(&pmu->exclusive_cnt, 0);
9143        ret = 0;
9144unlock:
9145        mutex_unlock(&pmus_lock);
9146
9147        return ret;
9148
9149free_dev:
9150        device_del(pmu->dev);
9151        put_device(pmu->dev);
9152
9153free_idr:
9154        if (pmu->type >= PERF_TYPE_MAX)
9155                idr_remove(&pmu_idr, pmu->type);
9156
9157free_pdc:
9158        free_percpu(pmu->pmu_disable_count);
9159        goto unlock;
9160}
9161EXPORT_SYMBOL_GPL(perf_pmu_register);
9162
9163void perf_pmu_unregister(struct pmu *pmu)
9164{
9165        int remove_device;
9166
9167        mutex_lock(&pmus_lock);
9168        remove_device = pmu_bus_running;
9169        list_del_rcu(&pmu->entry);
9170        mutex_unlock(&pmus_lock);
9171
9172        /*
9173         * We dereference the pmu list under both SRCU and regular RCU, so
9174         * synchronize against both of those.
9175         */
9176        synchronize_srcu(&pmus_srcu);
9177        synchronize_rcu();
9178
9179        free_percpu(pmu->pmu_disable_count);
9180        if (pmu->type >= PERF_TYPE_MAX)
9181                idr_remove(&pmu_idr, pmu->type);
9182        if (remove_device) {
9183                if (pmu->nr_addr_filters)
9184                        device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9185                device_del(pmu->dev);
9186                put_device(pmu->dev);
9187        }
9188        free_pmu_context(pmu);
9189}
9190EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9191
9192static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9193{
9194        struct perf_event_context *ctx = NULL;
9195        int ret;
9196
9197        if (!try_module_get(pmu->module))
9198                return -ENODEV;
9199
9200        if (event->group_leader != event) {
9201                /*
9202                 * This ctx->mutex can nest when we're called through
9203                 * inheritance. See the perf_event_ctx_lock_nested() comment.
9204                 */
9205                ctx = perf_event_ctx_lock_nested(event->group_leader,
9206                                                 SINGLE_DEPTH_NESTING);
9207                BUG_ON(!ctx);
9208        }
9209
9210        event->pmu = pmu;
9211        ret = pmu->event_init(event);
9212
9213        if (ctx)
9214                perf_event_ctx_unlock(event->group_leader, ctx);
9215
9216        if (ret)
9217                module_put(pmu->module);
9218
9219        return ret;
9220}
9221
9222static struct pmu *perf_init_event(struct perf_event *event)
9223{
9224        struct pmu *pmu;
9225        int idx;
9226        int ret;
9227
9228        idx = srcu_read_lock(&pmus_srcu);
9229
9230        /* Try parent's PMU first: */
9231        if (event->parent && event->parent->pmu) {
9232                pmu = event->parent->pmu;
9233                ret = perf_try_init_event(pmu, event);
9234                if (!ret)
9235                        goto unlock;
9236        }
9237
9238        rcu_read_lock();
9239        pmu = idr_find(&pmu_idr, event->attr.type);
9240        rcu_read_unlock();
9241        if (pmu) {
9242                ret = perf_try_init_event(pmu, event);
9243                if (ret)
9244                        pmu = ERR_PTR(ret);
9245                goto unlock;
9246        }
9247
9248        list_for_each_entry_rcu(pmu, &pmus, entry) {
9249                ret = perf_try_init_event(pmu, event);
9250                if (!ret)
9251                        goto unlock;
9252
9253                if (ret != -ENOENT) {
9254                        pmu = ERR_PTR(ret);
9255                        goto unlock;
9256                }
9257        }
9258        pmu = ERR_PTR(-ENOENT);
9259unlock:
9260        srcu_read_unlock(&pmus_srcu, idx);
9261
9262        return pmu;
9263}
9264
9265static void attach_sb_event(struct perf_event *event)
9266{
9267        struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9268
9269        raw_spin_lock(&pel->lock);
9270        list_add_rcu(&event->sb_list, &pel->list);
9271        raw_spin_unlock(&pel->lock);
9272}
9273
9274/*
9275 * We keep a list of all !task (and therefore per-cpu) events
9276 * that need to receive side-band records.
9277 *
9278 * This avoids having to scan all the various PMU per-cpu contexts
9279 * looking for them.
9280 */
9281static void account_pmu_sb_event(struct perf_event *event)
9282{
9283        if (is_sb_event(event))
9284                attach_sb_event(event);
9285}
9286
9287static void account_event_cpu(struct perf_event *event, int cpu)
9288{
9289        if (event->parent)
9290                return;
9291
9292        if (is_cgroup_event(event))
9293                atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9294}
9295
9296/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9297static void account_freq_event_nohz(void)
9298{
9299#ifdef CONFIG_NO_HZ_FULL
9300        /* Lock so we don't race with concurrent unaccount */
9301        spin_lock(&nr_freq_lock);
9302        if (atomic_inc_return(&nr_freq_events) == 1)
9303                tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9304        spin_unlock(&nr_freq_lock);
9305#endif
9306}
9307
9308static void account_freq_event(void)
9309{
9310        if (tick_nohz_full_enabled())
9311                account_freq_event_nohz();
9312        else
9313                atomic_inc(&nr_freq_events);
9314}
9315
9316
9317static void account_event(struct perf_event *event)
9318{
9319        bool inc = false;
9320
9321        if (event->parent)
9322                return;
9323
9324        if (event->attach_state & PERF_ATTACH_TASK)
9325                inc = true;
9326        if (event->attr.mmap || event->attr.mmap_data)
9327                atomic_inc(&nr_mmap_events);
9328        if (event->attr.comm)
9329                atomic_inc(&nr_comm_events);
9330        if (event->attr.namespaces)
9331                atomic_inc(&nr_namespaces_events);
9332        if (event->attr.task)
9333                atomic_inc(&nr_task_events);
9334        if (event->attr.freq)
9335                account_freq_event();
9336        if (event->attr.context_switch) {
9337                atomic_inc(&nr_switch_events);
9338                inc = true;
9339        }
9340        if (has_branch_stack(event))
9341                inc = true;
9342        if (is_cgroup_event(event))
9343                inc = true;
9344
9345        if (inc) {
9346                if (atomic_inc_not_zero(&perf_sched_count))
9347                        goto enabled;
9348
9349                mutex_lock(&perf_sched_mutex);
9350                if (!atomic_read(&perf_sched_count)) {
9351                        static_branch_enable(&perf_sched_events);
9352                        /*
9353                         * Guarantee that all CPUs observe they key change and
9354                         * call the perf scheduling hooks before proceeding to
9355                         * install events that need them.
9356                         */
9357                        synchronize_sched();
9358                }
9359                /*
9360                 * Now that we have waited for the sync_sched(), allow further
9361                 * increments to by-pass the mutex.
9362                 */
9363                atomic_inc(&perf_sched_count);
9364                mutex_unlock(&perf_sched_mutex);
9365        }
9366enabled:
9367
9368        account_event_cpu(event, event->cpu);
9369
9370        account_pmu_sb_event(event);
9371}
9372
9373/*
9374 * Allocate and initialize a event structure
9375 */
9376static struct perf_event *
9377perf_event_alloc(struct perf_event_attr *attr, int cpu,
9378                 struct task_struct *task,
9379                 struct perf_event *group_leader,
9380                 struct perf_event *parent_event,
9381                 perf_overflow_handler_t overflow_handler,
9382                 void *context, int cgroup_fd)
9383{
9384        struct pmu *pmu;
9385        struct perf_event *event;
9386        struct hw_perf_event *hwc;
9387        long err = -EINVAL;
9388
9389        if ((unsigned)cpu >= nr_cpu_ids) {
9390                if (!task || cpu != -1)
9391                        return ERR_PTR(-EINVAL);
9392        }
9393
9394        event = kzalloc(sizeof(*event), GFP_KERNEL);
9395        if (!event)
9396                return ERR_PTR(-ENOMEM);
9397
9398        /*
9399         * Single events are their own group leaders, with an
9400         * empty sibling list:
9401         */
9402        if (!group_leader)
9403                group_leader = event;
9404
9405        mutex_init(&event->child_mutex);
9406        INIT_LIST_HEAD(&event->child_list);
9407
9408        INIT_LIST_HEAD(&event->group_entry);
9409        INIT_LIST_HEAD(&event->event_entry);
9410        INIT_LIST_HEAD(&event->sibling_list);
9411        INIT_LIST_HEAD(&event->rb_entry);
9412        INIT_LIST_HEAD(&event->active_entry);
9413        INIT_LIST_HEAD(&event->addr_filters.list);
9414        INIT_HLIST_NODE(&event->hlist_entry);
9415
9416
9417        init_waitqueue_head(&event->waitq);
9418        init_irq_work(&event->pending, perf_pending_event);
9419
9420        mutex_init(&event->mmap_mutex);
9421        raw_spin_lock_init(&event->addr_filters.lock);
9422
9423        atomic_long_set(&event->refcount, 1);
9424        event->cpu              = cpu;
9425        event->attr             = *attr;
9426        event->group_leader     = group_leader;
9427        event->pmu              = NULL;
9428        event->oncpu            = -1;
9429
9430        event->parent           = parent_event;
9431
9432        event->ns               = get_pid_ns(task_active_pid_ns(current));
9433        event->id               = atomic64_inc_return(&perf_event_id);
9434
9435        event->state            = PERF_EVENT_STATE_INACTIVE;
9436
9437        if (task) {
9438                event->attach_state = PERF_ATTACH_TASK;
9439                /*
9440                 * XXX pmu::event_init needs to know what task to account to
9441                 * and we cannot use the ctx information because we need the
9442                 * pmu before we get a ctx.
9443                 */
9444                event->hw.target = task;
9445        }
9446
9447        event->clock = &local_clock;
9448        if (parent_event)
9449                event->clock = parent_event->clock;
9450
9451        if (!overflow_handler && parent_event) {
9452                overflow_handler = parent_event->overflow_handler;
9453                context = parent_event->overflow_handler_context;
9454#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9455                if (overflow_handler == bpf_overflow_handler) {
9456                        struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9457
9458                        if (IS_ERR(prog)) {
9459                                err = PTR_ERR(prog);
9460                                goto err_ns;
9461                        }
9462                        event->prog = prog;
9463                        event->orig_overflow_handler =
9464                                parent_event->orig_overflow_handler;
9465                }
9466#endif
9467        }
9468
9469        if (overflow_handler) {
9470                event->overflow_handler = overflow_handler;
9471                event->overflow_handler_context = context;
9472        } else if (is_write_backward(event)){
9473                event->overflow_handler = perf_event_output_backward;
9474                event->overflow_handler_context = NULL;
9475        } else {
9476                event->overflow_handler = perf_event_output_forward;
9477                event->overflow_handler_context = NULL;
9478        }
9479
9480        perf_event__state_init(event);
9481
9482        pmu = NULL;
9483
9484        hwc = &event->hw;
9485        hwc->sample_period = attr->sample_period;
9486        if (attr->freq && attr->sample_freq)
9487                hwc->sample_period = 1;
9488        hwc->last_period = hwc->sample_period;
9489
9490        local64_set(&hwc->period_left, hwc->sample_period);
9491
9492        /*
9493         * We currently do not support PERF_SAMPLE_READ on inherited events.
9494         * See perf_output_read().
9495         */
9496        if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9497                goto err_ns;
9498
9499        if (!has_branch_stack(event))
9500                event->attr.branch_sample_type = 0;
9501
9502        if (cgroup_fd != -1) {
9503                err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9504                if (err)
9505                        goto err_ns;
9506        }
9507
9508        pmu = perf_init_event(event);
9509        if (IS_ERR(pmu)) {
9510                err = PTR_ERR(pmu);
9511                goto err_ns;
9512        }
9513
9514        err = exclusive_event_init(event);
9515        if (err)
9516                goto err_pmu;
9517
9518        if (has_addr_filter(event)) {
9519                event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9520                                                   sizeof(unsigned long),
9521                                                   GFP_KERNEL);
9522                if (!event->addr_filters_offs) {
9523                        err = -ENOMEM;
9524                        goto err_per_task;
9525                }
9526
9527                /* force hw sync on the address filters */
9528                event->addr_filters_gen = 1;
9529        }
9530
9531        if (!event->parent) {
9532                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9533                        err = get_callchain_buffers(attr->sample_max_stack);
9534                        if (err)
9535                                goto err_addr_filters;
9536                }
9537        }
9538
9539        /* symmetric to unaccount_event() in _free_event() */
9540        account_event(event);
9541
9542        return event;
9543
9544err_addr_filters:
9545        kfree(event->addr_filters_offs);
9546
9547err_per_task:
9548        exclusive_event_destroy(event);
9549
9550err_pmu:
9551        if (event->destroy)
9552                event->destroy(event);
9553        module_put(pmu->module);
9554err_ns:
9555        if (is_cgroup_event(event))
9556                perf_detach_cgroup(event);
9557        if (event->ns)
9558                put_pid_ns(event->ns);
9559        kfree(event);
9560
9561        return ERR_PTR(err);
9562}
9563
9564static int perf_copy_attr(struct perf_event_attr __user *uattr,
9565                          struct perf_event_attr *attr)
9566{
9567        u32 size;
9568        int ret;
9569
9570        if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9571                return -EFAULT;
9572
9573        /*
9574         * zero the full structure, so that a short copy will be nice.
9575         */
9576        memset(attr, 0, sizeof(*attr));
9577
9578        ret = get_user(size, &uattr->size);
9579        if (ret)
9580                return ret;
9581
9582        if (size > PAGE_SIZE)   /* silly large */
9583                goto err_size;
9584
9585        if (!size)              /* abi compat */
9586                size = PERF_ATTR_SIZE_VER0;
9587
9588        if (size < PERF_ATTR_SIZE_VER0)
9589                goto err_size;
9590
9591        /*
9592         * If we're handed a bigger struct than we know of,
9593         * ensure all the unknown bits are 0 - i.e. new
9594         * user-space does not rely on any kernel feature
9595         * extensions we dont know about yet.
9596         */
9597        if (size > sizeof(*attr)) {
9598                unsigned char __user *addr;
9599                unsigned char __user *end;
9600                unsigned char val;
9601
9602                addr = (void __user *)uattr + sizeof(*attr);
9603                end  = (void __user *)uattr + size;
9604
9605                for (; addr < end; addr++) {
9606                        ret = get_user(val, addr);
9607                        if (ret)
9608                                return ret;
9609                        if (val)
9610                                goto err_size;
9611                }
9612                size = sizeof(*attr);
9613        }
9614
9615        ret = copy_from_user(attr, uattr, size);
9616        if (ret)
9617                return -EFAULT;
9618
9619        attr->size = size;
9620
9621        if (attr->__reserved_1)
9622                return -EINVAL;
9623
9624        if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9625                return -EINVAL;
9626
9627        if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9628                return -EINVAL;
9629
9630        if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9631                u64 mask = attr->branch_sample_type;
9632
9633                /* only using defined bits */
9634                if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9635                        return -EINVAL;
9636
9637                /* at least one branch bit must be set */
9638                if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9639                        return -EINVAL;
9640
9641                /* propagate priv level, when not set for branch */
9642                if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9643
9644                        /* exclude_kernel checked on syscall entry */
9645                        if (!attr->exclude_kernel)
9646                                mask |= PERF_SAMPLE_BRANCH_KERNEL;
9647
9648                        if (!attr->exclude_user)
9649                                mask |= PERF_SAMPLE_BRANCH_USER;
9650
9651                        if (!attr->exclude_hv)
9652                                mask |= PERF_SAMPLE_BRANCH_HV;
9653                        /*
9654                         * adjust user setting (for HW filter setup)
9655                         */
9656                        attr->branch_sample_type = mask;
9657                }
9658                /* privileged levels capture (kernel, hv): check permissions */
9659                if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9660                    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9661                        return -EACCES;
9662        }
9663
9664        if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9665                ret = perf_reg_validate(attr->sample_regs_user);
9666                if (ret)
9667                        return ret;
9668        }
9669
9670        if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9671                if (!arch_perf_have_user_stack_dump())
9672                        return -ENOSYS;
9673
9674                /*
9675                 * We have __u32 type for the size, but so far
9676                 * we can only use __u16 as maximum due to the
9677                 * __u16 sample size limit.
9678                 */
9679                if (attr->sample_stack_user >= USHRT_MAX)
9680                        ret = -EINVAL;
9681                else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9682                        ret = -EINVAL;
9683        }
9684
9685        if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9686                ret = perf_reg_validate(attr->sample_regs_intr);
9687out:
9688        return ret;
9689
9690err_size:
9691        put_user(sizeof(*attr), &uattr->size);
9692        ret = -E2BIG;
9693        goto out;
9694}
9695
9696static int
9697perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9698{
9699        struct ring_buffer *rb = NULL;
9700        int ret = -EINVAL;
9701
9702        if (!output_event)
9703                goto set;
9704
9705        /* don't allow circular references */
9706        if (event == output_event)
9707                goto out;
9708
9709        /*
9710         * Don't allow cross-cpu buffers
9711         */
9712        if (output_event->cpu != event->cpu)
9713                goto out;
9714
9715        /*
9716         * If its not a per-cpu rb, it must be the same task.
9717         */
9718        if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9719                goto out;
9720
9721        /*
9722         * Mixing clocks in the same buffer is trouble you don't need.
9723         */
9724        if (output_event->clock != event->clock)
9725                goto out;
9726
9727        /*
9728         * Either writing ring buffer from beginning or from end.
9729         * Mixing is not allowed.
9730         */
9731        if (is_write_backward(output_event) != is_write_backward(event))
9732                goto out;
9733
9734        /*
9735         * If both events generate aux data, they must be on the same PMU
9736         */
9737        if (has_aux(event) && has_aux(output_event) &&
9738            event->pmu != output_event->pmu)
9739                goto out;
9740
9741set:
9742        mutex_lock(&event->mmap_mutex);
9743        /* Can't redirect output if we've got an active mmap() */
9744        if (atomic_read(&event->mmap_count))
9745                goto unlock;
9746
9747        if (output_event) {
9748                /* get the rb we want to redirect to */
9749                rb = ring_buffer_get(output_event);
9750                if (!rb)
9751                        goto unlock;
9752        }
9753
9754        ring_buffer_attach(event, rb);
9755
9756        ret = 0;
9757unlock:
9758        mutex_unlock(&event->mmap_mutex);
9759
9760out:
9761        return ret;
9762}
9763
9764static void mutex_lock_double(struct mutex *a, struct mutex *b)
9765{
9766        if (b < a)
9767                swap(a, b);
9768
9769        mutex_lock(a);
9770        mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9771}
9772
9773static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9774{
9775        bool nmi_safe = false;
9776
9777        switch (clk_id) {
9778        case CLOCK_MONOTONIC:
9779                event->clock = &ktime_get_mono_fast_ns;
9780                nmi_safe = true;
9781                break;
9782
9783        case CLOCK_MONOTONIC_RAW:
9784                event->clock = &ktime_get_raw_fast_ns;
9785                nmi_safe = true;
9786                break;
9787
9788        case CLOCK_REALTIME:
9789                event->clock = &ktime_get_real_ns;
9790                break;
9791
9792        case CLOCK_BOOTTIME:
9793                event->clock = &ktime_get_boot_ns;
9794                break;
9795
9796        case CLOCK_TAI:
9797                event->clock = &ktime_get_tai_ns;
9798                break;
9799
9800        default:
9801                return -EINVAL;
9802        }
9803
9804        if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9805                return -EINVAL;
9806
9807        return 0;
9808}
9809
9810/*
9811 * Variation on perf_event_ctx_lock_nested(), except we take two context
9812 * mutexes.
9813 */
9814static struct perf_event_context *
9815__perf_event_ctx_lock_double(struct perf_event *group_leader,
9816                             struct perf_event_context *ctx)
9817{
9818        struct perf_event_context *gctx;
9819
9820again:
9821        rcu_read_lock();
9822        gctx = READ_ONCE(group_leader->ctx);
9823        if (!atomic_inc_not_zero(&gctx->refcount)) {
9824                rcu_read_unlock();
9825                goto again;
9826        }
9827        rcu_read_unlock();
9828
9829        mutex_lock_double(&gctx->mutex, &ctx->mutex);
9830
9831        if (group_leader->ctx != gctx) {
9832                mutex_unlock(&ctx->mutex);
9833                mutex_unlock(&gctx->mutex);
9834                put_ctx(gctx);
9835                goto again;
9836        }
9837
9838        return gctx;
9839}
9840
9841/**
9842 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9843 *
9844 * @attr_uptr:  event_id type attributes for monitoring/sampling
9845 * @pid:                target pid
9846 * @cpu:                target cpu
9847 * @group_fd:           group leader event fd
9848 */
9849SYSCALL_DEFINE5(perf_event_open,
9850                struct perf_event_attr __user *, attr_uptr,
9851                pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9852{
9853        struct perf_event *group_leader = NULL, *output_event = NULL;
9854        struct perf_event *event, *sibling;
9855        struct perf_event_attr attr;
9856        struct perf_event_context *ctx, *uninitialized_var(gctx);
9857        struct file *event_file = NULL;
9858        struct fd group = {NULL, 0};
9859        struct task_struct *task = NULL;
9860        struct pmu *pmu;
9861        int event_fd;
9862        int move_group = 0;
9863        int err;
9864        int f_flags = O_RDWR;
9865        int cgroup_fd = -1;
9866
9867        /* for future expandability... */
9868        if (flags & ~PERF_FLAG_ALL)
9869                return -EINVAL;
9870
9871        err = perf_copy_attr(attr_uptr, &attr);
9872        if (err)
9873                return err;
9874
9875        if (!attr.exclude_kernel) {
9876                if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9877                        return -EACCES;
9878        }
9879
9880        if (attr.namespaces) {
9881                if (!capable(CAP_SYS_ADMIN))
9882                        return -EACCES;
9883        }
9884
9885        if (attr.freq) {
9886                if (attr.sample_freq > sysctl_perf_event_sample_rate)
9887                        return -EINVAL;
9888        } else {
9889                if (attr.sample_period & (1ULL << 63))
9890                        return -EINVAL;
9891        }
9892
9893        if (!attr.sample_max_stack)
9894                attr.sample_max_stack = sysctl_perf_event_max_stack;
9895
9896        /*
9897         * In cgroup mode, the pid argument is used to pass the fd
9898         * opened to the cgroup directory in cgroupfs. The cpu argument
9899         * designates the cpu on which to monitor threads from that
9900         * cgroup.
9901         */
9902        if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9903                return -EINVAL;
9904
9905        if (flags & PERF_FLAG_FD_CLOEXEC)
9906                f_flags |= O_CLOEXEC;
9907
9908        event_fd = get_unused_fd_flags(f_flags);
9909        if (event_fd < 0)
9910                return event_fd;
9911
9912        if (group_fd != -1) {
9913                err = perf_fget_light(group_fd, &group);
9914                if (err)
9915                        goto err_fd;
9916                group_leader = group.file->private_data;
9917                if (flags & PERF_FLAG_FD_OUTPUT)
9918                        output_event = group_leader;
9919                if (flags & PERF_FLAG_FD_NO_GROUP)
9920                        group_leader = NULL;
9921        }
9922
9923        if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9924                task = find_lively_task_by_vpid(pid);
9925                if (IS_ERR(task)) {
9926                        err = PTR_ERR(task);
9927                        goto err_group_fd;
9928                }
9929        }
9930
9931        if (task && group_leader &&
9932            group_leader->attr.inherit != attr.inherit) {
9933                err = -EINVAL;
9934                goto err_task;
9935        }
9936
9937        if (task) {
9938                err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9939                if (err)
9940                        goto err_task;
9941
9942                /*
9943                 * Reuse ptrace permission checks for now.
9944                 *
9945                 * We must hold cred_guard_mutex across this and any potential
9946                 * perf_install_in_context() call for this new event to
9947                 * serialize against exec() altering our credentials (and the
9948                 * perf_event_exit_task() that could imply).
9949                 */
9950                err = -EACCES;
9951                if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9952                        goto err_cred;
9953        }
9954
9955        if (flags & PERF_FLAG_PID_CGROUP)
9956                cgroup_fd = pid;
9957
9958        event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9959                                 NULL, NULL, cgroup_fd);
9960        if (IS_ERR(event)) {
9961                err = PTR_ERR(event);
9962                goto err_cred;
9963        }
9964
9965        if (is_sampling_event(event)) {
9966                if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9967                        err = -EOPNOTSUPP;
9968                        goto err_alloc;
9969                }
9970        }
9971
9972        /*
9973         * Special case software events and allow them to be part of
9974         * any hardware group.
9975         */
9976        pmu = event->pmu;
9977
9978        if (attr.use_clockid) {
9979                err = perf_event_set_clock(event, attr.clockid);
9980                if (err)
9981                        goto err_alloc;
9982        }
9983
9984        if (pmu->task_ctx_nr == perf_sw_context)
9985                event->event_caps |= PERF_EV_CAP_SOFTWARE;
9986
9987        if (group_leader &&
9988            (is_software_event(event) != is_software_event(group_leader))) {
9989                if (is_software_event(event)) {
9990                        /*
9991                         * If event and group_leader are not both a software
9992                         * event, and event is, then group leader is not.
9993                         *
9994                         * Allow the addition of software events to !software
9995                         * groups, this is safe because software events never
9996                         * fail to schedule.
9997                         */
9998                        pmu = group_leader->pmu;
9999                } else if (is_software_event(group_leader) &&
10000                           (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10001                        /*
10002                         * In case the group is a pure software group, and we
10003                         * try to add a hardware event, move the whole group to
10004                         * the hardware context.
10005                         */
10006                        move_group = 1;
10007                }
10008        }
10009
10010        /*
10011         * Get the target context (task or percpu):
10012         */
10013        ctx = find_get_context(pmu, task, event);
10014        if (IS_ERR(ctx)) {
10015                err = PTR_ERR(ctx);
10016                goto err_alloc;
10017        }
10018
10019        if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10020                err = -EBUSY;
10021                goto err_context;
10022        }
10023
10024        /*
10025         * Look up the group leader (we will attach this event to it):
10026         */
10027        if (group_leader) {
10028                err = -EINVAL;
10029
10030                /*
10031                 * Do not allow a recursive hierarchy (this new sibling
10032                 * becoming part of another group-sibling):
10033                 */
10034                if (group_leader->group_leader != group_leader)
10035                        goto err_context;
10036
10037                /* All events in a group should have the same clock */
10038                if (group_leader->clock != event->clock)
10039                        goto err_context;
10040
10041                /*
10042                 * Make sure we're both events for the same CPU;
10043                 * grouping events for different CPUs is broken; since
10044                 * you can never concurrently schedule them anyhow.
10045                 */
10046                if (group_leader->cpu != event->cpu)
10047                        goto err_context;
10048
10049                /*
10050                 * Make sure we're both on the same task, or both
10051                 * per-CPU events.
10052                 */
10053                if (group_leader->ctx->task != ctx->task)
10054                        goto err_context;
10055
10056                /*
10057                 * Do not allow to attach to a group in a different task
10058                 * or CPU context. If we're moving SW events, we'll fix
10059                 * this up later, so allow that.
10060                 */
10061                if (!move_group && group_leader->ctx != ctx)
10062                        goto err_context;
10063
10064                /*
10065                 * Only a group leader can be exclusive or pinned
10066                 */
10067                if (attr.exclusive || attr.pinned)
10068                        goto err_context;
10069        }
10070
10071        if (output_event) {
10072                err = perf_event_set_output(event, output_event);
10073                if (err)
10074                        goto err_context;
10075        }
10076
10077        event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10078                                        f_flags);
10079        if (IS_ERR(event_file)) {
10080                err = PTR_ERR(event_file);
10081                event_file = NULL;
10082                goto err_context;
10083        }
10084
10085        if (move_group) {
10086                gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10087
10088                if (gctx->task == TASK_TOMBSTONE) {
10089                        err = -ESRCH;
10090                        goto err_locked;
10091                }
10092
10093                /*
10094                 * Check if we raced against another sys_perf_event_open() call
10095                 * moving the software group underneath us.
10096                 */
10097                if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10098                        /*
10099                         * If someone moved the group out from under us, check
10100                         * if this new event wound up on the same ctx, if so
10101                         * its the regular !move_group case, otherwise fail.
10102                         */
10103                        if (gctx != ctx) {
10104                                err = -EINVAL;
10105                                goto err_locked;
10106                        } else {
10107                                perf_event_ctx_unlock(group_leader, gctx);
10108                                move_group = 0;
10109                        }
10110                }
10111        } else {
10112                mutex_lock(&ctx->mutex);
10113        }
10114
10115        if (ctx->task == TASK_TOMBSTONE) {
10116                err = -ESRCH;
10117                goto err_locked;
10118        }
10119
10120        if (!perf_event_validate_size(event)) {
10121                err = -E2BIG;
10122                goto err_locked;
10123        }
10124
10125        if (!task) {
10126                /*
10127                 * Check if the @cpu we're creating an event for is online.
10128                 *
10129                 * We use the perf_cpu_context::ctx::mutex to serialize against
10130                 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10131                 */
10132                struct perf_cpu_context *cpuctx =
10133                        container_of(ctx, struct perf_cpu_context, ctx);
10134
10135                if (!cpuctx->online) {
10136                        err = -ENODEV;
10137                        goto err_locked;
10138                }
10139        }
10140
10141
10142        /*
10143         * Must be under the same ctx::mutex as perf_install_in_context(),
10144         * because we need to serialize with concurrent event creation.
10145         */
10146        if (!exclusive_event_installable(event, ctx)) {
10147                /* exclusive and group stuff are assumed mutually exclusive */
10148                WARN_ON_ONCE(move_group);
10149
10150                err = -EBUSY;
10151                goto err_locked;
10152        }
10153
10154        WARN_ON_ONCE(ctx->parent_ctx);
10155
10156        /*
10157         * This is the point on no return; we cannot fail hereafter. This is
10158         * where we start modifying current state.
10159         */
10160
10161        if (move_group) {
10162                /*
10163                 * See perf_event_ctx_lock() for comments on the details
10164                 * of swizzling perf_event::ctx.
10165                 */
10166                perf_remove_from_context(group_leader, 0);
10167                put_ctx(gctx);
10168
10169                list_for_each_entry(sibling, &group_leader->sibling_list,
10170                                    group_entry) {
10171                        perf_remove_from_context(sibling, 0);
10172                        put_ctx(gctx);
10173                }
10174
10175                /*
10176                 * Wait for everybody to stop referencing the events through
10177                 * the old lists, before installing it on new lists.
10178                 */
10179                synchronize_rcu();
10180
10181                /*
10182                 * Install the group siblings before the group leader.
10183                 *
10184                 * Because a group leader will try and install the entire group
10185                 * (through the sibling list, which is still in-tact), we can
10186                 * end up with siblings installed in the wrong context.
10187                 *
10188                 * By installing siblings first we NO-OP because they're not
10189                 * reachable through the group lists.
10190                 */
10191                list_for_each_entry(sibling, &group_leader->sibling_list,
10192                                    group_entry) {
10193                        perf_event__state_init(sibling);
10194                        perf_install_in_context(ctx, sibling, sibling->cpu);
10195                        get_ctx(ctx);
10196                }
10197
10198                /*
10199                 * Removing from the context ends up with disabled
10200                 * event. What we want here is event in the initial
10201                 * startup state, ready to be add into new context.
10202                 */
10203                perf_event__state_init(group_leader);
10204                perf_install_in_context(ctx, group_leader, group_leader->cpu);
10205                get_ctx(ctx);
10206        }
10207
10208        /*
10209         * Precalculate sample_data sizes; do while holding ctx::mutex such
10210         * that we're serialized against further additions and before
10211         * perf_install_in_context() which is the point the event is active and
10212         * can use these values.
10213         */
10214        perf_event__header_size(event);
10215        perf_event__id_header_size(event);
10216
10217        event->owner = current;
10218
10219        perf_install_in_context(ctx, event, event->cpu);
10220        perf_unpin_context(ctx);
10221
10222        if (move_group)
10223                perf_event_ctx_unlock(group_leader, gctx);
10224        mutex_unlock(&ctx->mutex);
10225
10226        if (task) {
10227                mutex_unlock(&task->signal->cred_guard_mutex);
10228                put_task_struct(task);
10229        }
10230
10231        mutex_lock(&current->perf_event_mutex);
10232        list_add_tail(&event->owner_entry, &current->perf_event_list);
10233        mutex_unlock(&current->perf_event_mutex);
10234
10235        /*
10236         * Drop the reference on the group_event after placing the
10237         * new event on the sibling_list. This ensures destruction
10238         * of the group leader will find the pointer to itself in
10239         * perf_group_detach().
10240         */
10241        fdput(group);
10242        fd_install(event_fd, event_file);
10243        return event_fd;
10244
10245err_locked:
10246        if (move_group)
10247                perf_event_ctx_unlock(group_leader, gctx);
10248        mutex_unlock(&ctx->mutex);
10249/* err_file: */
10250        fput(event_file);
10251err_context:
10252        perf_unpin_context(ctx);
10253        put_ctx(ctx);
10254err_alloc:
10255        /*
10256         * If event_file is set, the fput() above will have called ->release()
10257         * and that will take care of freeing the event.
10258         */
10259        if (!event_file)
10260                free_event(event);
10261err_cred:
10262        if (task)
10263                mutex_unlock(&task->signal->cred_guard_mutex);
10264err_task:
10265        if (task)
10266                put_task_struct(task);
10267err_group_fd:
10268        fdput(group);
10269err_fd:
10270        put_unused_fd(event_fd);
10271        return err;
10272}
10273
10274/**
10275 * perf_event_create_kernel_counter
10276 *
10277 * @attr: attributes of the counter to create
10278 * @cpu: cpu in which the counter is bound
10279 * @task: task to profile (NULL for percpu)
10280 */
10281struct perf_event *
10282perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10283                                 struct task_struct *task,
10284                                 perf_overflow_handler_t overflow_handler,
10285                                 void *context)
10286{
10287        struct perf_event_context *ctx;
10288        struct perf_event *event;
10289        int err;
10290
10291        /*
10292         * Get the target context (task or percpu):
10293         */
10294
10295        event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10296                                 overflow_handler, context, -1);
10297        if (IS_ERR(event)) {
10298                err = PTR_ERR(event);
10299                goto err;
10300        }
10301
10302        /* Mark owner so we could distinguish it from user events. */
10303        event->owner = TASK_TOMBSTONE;
10304
10305        ctx = find_get_context(event->pmu, task, event);
10306        if (IS_ERR(ctx)) {
10307                err = PTR_ERR(ctx);
10308                goto err_free;
10309        }
10310
10311        WARN_ON_ONCE(ctx->parent_ctx);
10312        mutex_lock(&ctx->mutex);
10313        if (ctx->task == TASK_TOMBSTONE) {
10314                err = -ESRCH;
10315                goto err_unlock;
10316        }
10317
10318        if (!task) {
10319                /*
10320                 * Check if the @cpu we're creating an event for is online.
10321                 *
10322                 * We use the perf_cpu_context::ctx::mutex to serialize against
10323                 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10324                 */
10325                struct perf_cpu_context *cpuctx =
10326                        container_of(ctx, struct perf_cpu_context, ctx);
10327                if (!cpuctx->online) {
10328                        err = -ENODEV;
10329                        goto err_unlock;
10330                }
10331        }
10332
10333        if (!exclusive_event_installable(event, ctx)) {
10334                err = -EBUSY;
10335                goto err_unlock;
10336        }
10337
10338        perf_install_in_context(ctx, event, cpu);
10339        perf_unpin_context(ctx);
10340        mutex_unlock(&ctx->mutex);
10341
10342        return event;
10343
10344err_unlock:
10345        mutex_unlock(&ctx->mutex);
10346        perf_unpin_context(ctx);
10347        put_ctx(ctx);
10348err_free:
10349        free_event(event);
10350err:
10351        return ERR_PTR(err);
10352}
10353EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10354
10355void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10356{
10357        struct perf_event_context *src_ctx;
10358        struct perf_event_context *dst_ctx;
10359        struct perf_event *event, *tmp;
10360        LIST_HEAD(events);
10361
10362        src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10363        dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10364
10365        /*
10366         * See perf_event_ctx_lock() for comments on the details
10367         * of swizzling perf_event::ctx.
10368         */
10369        mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10370        list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10371                                 event_entry) {
10372                perf_remove_from_context(event, 0);
10373                unaccount_event_cpu(event, src_cpu);
10374                put_ctx(src_ctx);
10375                list_add(&event->migrate_entry, &events);
10376        }
10377
10378        /*
10379         * Wait for the events to quiesce before re-instating them.
10380         */
10381        synchronize_rcu();
10382
10383        /*
10384         * Re-instate events in 2 passes.
10385         *
10386         * Skip over group leaders and only install siblings on this first
10387         * pass, siblings will not get enabled without a leader, however a
10388         * leader will enable its siblings, even if those are still on the old
10389         * context.
10390         */
10391        list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10392                if (event->group_leader == event)
10393                        continue;
10394
10395                list_del(&event->migrate_entry);
10396                if (event->state >= PERF_EVENT_STATE_OFF)
10397                        event->state = PERF_EVENT_STATE_INACTIVE;
10398                account_event_cpu(event, dst_cpu);
10399                perf_install_in_context(dst_ctx, event, dst_cpu);
10400                get_ctx(dst_ctx);
10401        }
10402
10403        /*
10404         * Once all the siblings are setup properly, install the group leaders
10405         * to make it go.
10406         */
10407        list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10408                list_del(&event->migrate_entry);
10409                if (event->state >= PERF_EVENT_STATE_OFF)
10410                        event->state = PERF_EVENT_STATE_INACTIVE;
10411                account_event_cpu(event, dst_cpu);
10412                perf_install_in_context(dst_ctx, event, dst_cpu);
10413                get_ctx(dst_ctx);
10414        }
10415        mutex_unlock(&dst_ctx->mutex);
10416        mutex_unlock(&src_ctx->mutex);
10417}
10418EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10419
10420static void sync_child_event(struct perf_event *child_event,
10421                               struct task_struct *child)
10422{
10423        struct perf_event *parent_event = child_event->parent;
10424        u64 child_val;
10425
10426        if (child_event->attr.inherit_stat)
10427                perf_event_read_event(child_event, child);
10428
10429        child_val = perf_event_count(child_event);
10430
10431        /*
10432         * Add back the child's count to the parent's count:
10433         */
10434        atomic64_add(child_val, &parent_event->child_count);
10435        atomic64_add(child_event->total_time_enabled,
10436                     &parent_event->child_total_time_enabled);
10437        atomic64_add(child_event->total_time_running,
10438                     &parent_event->child_total_time_running);
10439}
10440
10441static void
10442perf_event_exit_event(struct perf_event *child_event,
10443                      struct perf_event_context *child_ctx,
10444                      struct task_struct *child)
10445{
10446        struct perf_event *parent_event = child_event->parent;
10447
10448        /*
10449         * Do not destroy the 'original' grouping; because of the context
10450         * switch optimization the original events could've ended up in a
10451         * random child task.
10452         *
10453         * If we were to destroy the original group, all group related
10454         * operations would cease to function properly after this random
10455         * child dies.
10456         *
10457         * Do destroy all inherited groups, we don't care about those
10458         * and being thorough is better.
10459         */
10460        raw_spin_lock_irq(&child_ctx->lock);
10461        WARN_ON_ONCE(child_ctx->is_active);
10462
10463        if (parent_event)
10464                perf_group_detach(child_event);
10465        list_del_event(child_event, child_ctx);
10466        child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10467        raw_spin_unlock_irq(&child_ctx->lock);
10468
10469        /*
10470         * Parent events are governed by their filedesc, retain them.
10471         */
10472        if (!parent_event) {
10473                perf_event_wakeup(child_event);
10474                return;
10475        }
10476        /*
10477         * Child events can be cleaned up.
10478         */
10479
10480        sync_child_event(child_event, child);
10481
10482        /*
10483         * Remove this event from the parent's list
10484         */
10485        WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10486        mutex_lock(&parent_event->child_mutex);
10487        list_del_init(&child_event->child_list);
10488        mutex_unlock(&parent_event->child_mutex);
10489
10490        /*
10491         * Kick perf_poll() for is_event_hup().
10492         */
10493        perf_event_wakeup(parent_event);
10494        free_event(child_event);
10495        put_event(parent_event);
10496}
10497
10498static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10499{
10500        struct perf_event_context *child_ctx, *clone_ctx = NULL;
10501        struct perf_event *child_event, *next;
10502
10503        WARN_ON_ONCE(child != current);
10504
10505        child_ctx = perf_pin_task_context(child, ctxn);
10506        if (!child_ctx)
10507                return;
10508
10509        /*
10510         * In order to reduce the amount of tricky in ctx tear-down, we hold
10511         * ctx::mutex over the entire thing. This serializes against almost
10512         * everything that wants to access the ctx.
10513         *
10514         * The exception is sys_perf_event_open() /
10515         * perf_event_create_kernel_count() which does find_get_context()
10516         * without ctx::mutex (it cannot because of the move_group double mutex
10517         * lock thing). See the comments in perf_install_in_context().
10518         */
10519        mutex_lock(&child_ctx->mutex);
10520
10521        /*
10522         * In a single ctx::lock section, de-schedule the events and detach the
10523         * context from the task such that we cannot ever get it scheduled back
10524         * in.
10525         */
10526        raw_spin_lock_irq(&child_ctx->lock);
10527        task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10528
10529        /*
10530         * Now that the context is inactive, destroy the task <-> ctx relation
10531         * and mark the context dead.
10532         */
10533        RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10534        put_ctx(child_ctx); /* cannot be last */
10535        WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10536        put_task_struct(current); /* cannot be last */
10537
10538        clone_ctx = unclone_ctx(child_ctx);
10539        raw_spin_unlock_irq(&child_ctx->lock);
10540
10541        if (clone_ctx)
10542                put_ctx(clone_ctx);
10543
10544        /*
10545         * Report the task dead after unscheduling the events so that we
10546         * won't get any samples after PERF_RECORD_EXIT. We can however still
10547         * get a few PERF_RECORD_READ events.
10548         */
10549        perf_event_task(child, child_ctx, 0);
10550
10551        list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10552                perf_event_exit_event(child_event, child_ctx, child);
10553
10554        mutex_unlock(&child_ctx->mutex);
10555
10556        put_ctx(child_ctx);
10557}
10558
10559/*
10560 * When a child task exits, feed back event values to parent events.
10561 *
10562 * Can be called with cred_guard_mutex held when called from
10563 * install_exec_creds().
10564 */
10565void perf_event_exit_task(struct task_struct *child)
10566{
10567        struct perf_event *event, *tmp;
10568        int ctxn;
10569
10570        mutex_lock(&child->perf_event_mutex);
10571        list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10572                                 owner_entry) {
10573                list_del_init(&event->owner_entry);
10574
10575                /*
10576                 * Ensure the list deletion is visible before we clear
10577                 * the owner, closes a race against perf_release() where
10578                 * we need to serialize on the owner->perf_event_mutex.
10579                 */
10580                smp_store_release(&event->owner, NULL);
10581        }
10582        mutex_unlock(&child->perf_event_mutex);
10583
10584        for_each_task_context_nr(ctxn)
10585                perf_event_exit_task_context(child, ctxn);
10586
10587        /*
10588         * The perf_event_exit_task_context calls perf_event_task
10589         * with child's task_ctx, which generates EXIT events for
10590         * child contexts and sets child->perf_event_ctxp[] to NULL.
10591         * At this point we need to send EXIT events to cpu contexts.
10592         */
10593        perf_event_task(child, NULL, 0);
10594}
10595
10596static void perf_free_event(struct perf_event *event,
10597                            struct perf_event_context *ctx)
10598{
10599        struct perf_event *parent = event->parent;
10600
10601        if (WARN_ON_ONCE(!parent))
10602                return;
10603
10604        mutex_lock(&parent->child_mutex);
10605        list_del_init(&event->child_list);
10606        mutex_unlock(&parent->child_mutex);
10607
10608        put_event(parent);
10609
10610        raw_spin_lock_irq(&ctx->lock);
10611        perf_group_detach(event);
10612        list_del_event(event, ctx);
10613        raw_spin_unlock_irq(&ctx->lock);
10614        free_event(event);
10615}
10616
10617/*
10618 * Free an unexposed, unused context as created by inheritance by
10619 * perf_event_init_task below, used by fork() in case of fail.
10620 *
10621 * Not all locks are strictly required, but take them anyway to be nice and
10622 * help out with the lockdep assertions.
10623 */
10624void perf_event_free_task(struct task_struct *task)
10625{
10626        struct perf_event_context *ctx;
10627        struct perf_event *event, *tmp;
10628        int ctxn;
10629
10630        for_each_task_context_nr(ctxn) {
10631                ctx = task->perf_event_ctxp[ctxn];
10632                if (!ctx)
10633                        continue;
10634
10635                mutex_lock(&ctx->mutex);
10636                raw_spin_lock_irq(&ctx->lock);
10637                /*
10638                 * Destroy the task <-> ctx relation and mark the context dead.
10639                 *
10640                 * This is important because even though the task hasn't been
10641                 * exposed yet the context has been (through child_list).
10642                 */
10643                RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10644                WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10645                put_task_struct(task); /* cannot be last */
10646                raw_spin_unlock_irq(&ctx->lock);
10647
10648                list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10649                        perf_free_event(event, ctx);
10650
10651                mutex_unlock(&ctx->mutex);
10652                put_ctx(ctx);
10653        }
10654}
10655
10656void perf_event_delayed_put(struct task_struct *task)
10657{
10658        int ctxn;
10659
10660        for_each_task_context_nr(ctxn)
10661                WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10662}
10663
10664struct file *perf_event_get(unsigned int fd)
10665{
10666        struct file *file;
10667
10668        file = fget_raw(fd);
10669        if (!file)
10670                return ERR_PTR(-EBADF);
10671
10672        if (file->f_op != &perf_fops) {
10673                fput(file);
10674                return ERR_PTR(-EBADF);
10675        }
10676
10677        return file;
10678}
10679
10680const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10681{
10682        if (!event)
10683                return ERR_PTR(-EINVAL);
10684
10685        return &event->attr;
10686}
10687
10688/*
10689 * Inherit a event from parent task to child task.
10690 *
10691 * Returns:
10692 *  - valid pointer on success
10693 *  - NULL for orphaned events
10694 *  - IS_ERR() on error
10695 */
10696static struct perf_event *
10697inherit_event(struct perf_event *parent_event,
10698              struct task_struct *parent,
10699              struct perf_event_context *parent_ctx,
10700              struct task_struct *child,
10701              struct perf_event *group_leader,
10702              struct perf_event_context *child_ctx)
10703{
10704        enum perf_event_active_state parent_state = parent_event->state;
10705        struct perf_event *child_event;
10706        unsigned long flags;
10707
10708        /*
10709         * Instead of creating recursive hierarchies of events,
10710         * we link inherited events back to the original parent,
10711         * which has a filp for sure, which we use as the reference
10712         * count:
10713         */
10714        if (parent_event->parent)
10715                parent_event = parent_event->parent;
10716
10717        child_event = perf_event_alloc(&parent_event->attr,
10718                                           parent_event->cpu,
10719                                           child,
10720                                           group_leader, parent_event,
10721                                           NULL, NULL, -1);
10722        if (IS_ERR(child_event))
10723                return child_event;
10724
10725        /*
10726         * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10727         * must be under the same lock in order to serialize against
10728         * perf_event_release_kernel(), such that either we must observe
10729         * is_orphaned_event() or they will observe us on the child_list.
10730         */
10731        mutex_lock(&parent_event->child_mutex);
10732        if (is_orphaned_event(parent_event) ||
10733            !atomic_long_inc_not_zero(&parent_event->refcount)) {
10734                mutex_unlock(&parent_event->child_mutex);
10735                free_event(child_event);
10736                return NULL;
10737        }
10738
10739        get_ctx(child_ctx);
10740
10741        /*
10742         * Make the child state follow the state of the parent event,
10743         * not its attr.disabled bit.  We hold the parent's mutex,
10744         * so we won't race with perf_event_{en, dis}able_family.
10745         */
10746        if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10747                child_event->state = PERF_EVENT_STATE_INACTIVE;
10748        else
10749                child_event->state = PERF_EVENT_STATE_OFF;
10750
10751        if (parent_event->attr.freq) {
10752                u64 sample_period = parent_event->hw.sample_period;
10753                struct hw_perf_event *hwc = &child_event->hw;
10754
10755                hwc->sample_period = sample_period;
10756                hwc->last_period   = sample_period;
10757
10758                local64_set(&hwc->period_left, sample_period);
10759        }
10760
10761        child_event->ctx = child_ctx;
10762        child_event->overflow_handler = parent_event->overflow_handler;
10763        child_event->overflow_handler_context
10764                = parent_event->overflow_handler_context;
10765
10766        /*
10767         * Precalculate sample_data sizes
10768         */
10769        perf_event__header_size(child_event);
10770        perf_event__id_header_size(child_event);
10771
10772        /*
10773         * Link it up in the child's context:
10774         */
10775        raw_spin_lock_irqsave(&child_ctx->lock, flags);
10776        add_event_to_ctx(child_event, child_ctx);
10777        raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10778
10779        /*
10780         * Link this into the parent event's child list
10781         */
10782        list_add_tail(&child_event->child_list, &parent_event->child_list);
10783        mutex_unlock(&parent_event->child_mutex);
10784
10785        return child_event;
10786}
10787
10788/*
10789 * Inherits an event group.
10790 *
10791 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10792 * This matches with perf_event_release_kernel() removing all child events.
10793 *
10794 * Returns:
10795 *  - 0 on success
10796 *  - <0 on error
10797 */
10798static int inherit_group(struct perf_event *parent_event,
10799              struct task_struct *parent,
10800              struct perf_event_context *parent_ctx,
10801              struct task_struct *child,
10802              struct perf_event_context *child_ctx)
10803{
10804        struct perf_event *leader;
10805        struct perf_event *sub;
10806        struct perf_event *child_ctr;
10807
10808        leader = inherit_event(parent_event, parent, parent_ctx,
10809                                 child, NULL, child_ctx);
10810        if (IS_ERR(leader))
10811                return PTR_ERR(leader);
10812        /*
10813         * @leader can be NULL here because of is_orphaned_event(). In this
10814         * case inherit_event() will create individual events, similar to what
10815         * perf_group_detach() would do anyway.
10816         */
10817        list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10818                child_ctr = inherit_event(sub, parent, parent_ctx,
10819                                            child, leader, child_ctx);
10820                if (IS_ERR(child_ctr))
10821                        return PTR_ERR(child_ctr);
10822        }
10823        return 0;
10824}
10825
10826/*
10827 * Creates the child task context and tries to inherit the event-group.
10828 *
10829 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10830 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10831 * consistent with perf_event_release_kernel() removing all child events.
10832 *
10833 * Returns:
10834 *  - 0 on success
10835 *  - <0 on error
10836 */
10837static int
10838inherit_task_group(struct perf_event *event, struct task_struct *parent,
10839                   struct perf_event_context *parent_ctx,
10840                   struct task_struct *child, int ctxn,
10841                   int *inherited_all)
10842{
10843        int ret;
10844        struct perf_event_context *child_ctx;
10845
10846        if (!event->attr.inherit) {
10847                *inherited_all = 0;
10848                return 0;
10849        }
10850
10851        child_ctx = child->perf_event_ctxp[ctxn];
10852        if (!child_ctx) {
10853                /*
10854                 * This is executed from the parent task context, so
10855                 * inherit events that have been marked for cloning.
10856                 * First allocate and initialize a context for the
10857                 * child.
10858                 */
10859                child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10860                if (!child_ctx)
10861                        return -ENOMEM;
10862
10863                child->perf_event_ctxp[ctxn] = child_ctx;
10864        }
10865
10866        ret = inherit_group(event, parent, parent_ctx,
10867                            child, child_ctx);
10868
10869        if (ret)
10870                *inherited_all = 0;
10871
10872        return ret;
10873}
10874
10875/*
10876 * Initialize the perf_event context in task_struct
10877 */
10878static int perf_event_init_context(struct task_struct *child, int ctxn)
10879{
10880        struct perf_event_context *child_ctx, *parent_ctx;
10881        struct perf_event_context *cloned_ctx;
10882        struct perf_event *event;
10883        struct task_struct *parent = current;
10884        int inherited_all = 1;
10885        unsigned long flags;
10886        int ret = 0;
10887
10888        if (likely(!parent->perf_event_ctxp[ctxn]))
10889                return 0;
10890
10891        /*
10892         * If the parent's context is a clone, pin it so it won't get
10893         * swapped under us.
10894         */
10895        parent_ctx = perf_pin_task_context(parent, ctxn);
10896        if (!parent_ctx)
10897                return 0;
10898
10899        /*
10900         * No need to check if parent_ctx != NULL here; since we saw
10901         * it non-NULL earlier, the only reason for it to become NULL
10902         * is if we exit, and since we're currently in the middle of
10903         * a fork we can't be exiting at the same time.
10904         */
10905
10906        /*
10907         * Lock the parent list. No need to lock the child - not PID
10908         * hashed yet and not running, so nobody can access it.
10909         */
10910        mutex_lock(&parent_ctx->mutex);
10911
10912        /*
10913         * We dont have to disable NMIs - we are only looking at
10914         * the list, not manipulating it:
10915         */
10916        list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10917                ret = inherit_task_group(event, parent, parent_ctx,
10918                                         child, ctxn, &inherited_all);
10919                if (ret)
10920                        goto out_unlock;
10921        }
10922
10923        /*
10924         * We can't hold ctx->lock when iterating the ->flexible_group list due
10925         * to allocations, but we need to prevent rotation because
10926         * rotate_ctx() will change the list from interrupt context.
10927         */
10928        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10929        parent_ctx->rotate_disable = 1;
10930        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10931
10932        list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10933                ret = inherit_task_group(event, parent, parent_ctx,
10934                                         child, ctxn, &inherited_all);
10935                if (ret)
10936                        goto out_unlock;
10937        }
10938
10939        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10940        parent_ctx->rotate_disable = 0;
10941
10942        child_ctx = child->perf_event_ctxp[ctxn];
10943
10944        if (child_ctx && inherited_all) {
10945                /*
10946                 * Mark the child context as a clone of the parent
10947                 * context, or of whatever the parent is a clone of.
10948                 *
10949                 * Note that if the parent is a clone, the holding of
10950                 * parent_ctx->lock avoids it from being uncloned.
10951                 */
10952                cloned_ctx = parent_ctx->parent_ctx;
10953                if (cloned_ctx) {
10954                        child_ctx->parent_ctx = cloned_ctx;
10955                        child_ctx->parent_gen = parent_ctx->parent_gen;
10956                } else {
10957                        child_ctx->parent_ctx = parent_ctx;
10958                        child_ctx->parent_gen = parent_ctx->generation;
10959                }
10960                get_ctx(child_ctx->parent_ctx);
10961        }
10962
10963        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10964out_unlock:
10965        mutex_unlock(&parent_ctx->mutex);
10966
10967        perf_unpin_context(parent_ctx);
10968        put_ctx(parent_ctx);
10969
10970        return ret;
10971}
10972
10973/*
10974 * Initialize the perf_event context in task_struct
10975 */
10976int perf_event_init_task(struct task_struct *child)
10977{
10978        int ctxn, ret;
10979
10980        memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10981        mutex_init(&child->perf_event_mutex);
10982        INIT_LIST_HEAD(&child->perf_event_list);
10983
10984        for_each_task_context_nr(ctxn) {
10985                ret = perf_event_init_context(child, ctxn);
10986                if (ret) {
10987                        perf_event_free_task(child);
10988                        return ret;
10989                }
10990        }
10991
10992        return 0;
10993}
10994
10995static void __init perf_event_init_all_cpus(void)
10996{
10997        struct swevent_htable *swhash;
10998        int cpu;
10999
11000        zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11001
11002        for_each_possible_cpu(cpu) {
11003                swhash = &per_cpu(swevent_htable, cpu);
11004                mutex_init(&swhash->hlist_mutex);
11005                INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11006
11007                INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11008                raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11009
11010#ifdef CONFIG_CGROUP_PERF
11011                INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11012#endif
11013                INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11014        }
11015}
11016
11017void perf_swevent_init_cpu(unsigned int cpu)
11018{
11019        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11020
11021        mutex_lock(&swhash->hlist_mutex);
11022        if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11023                struct swevent_hlist *hlist;
11024
11025                hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11026                WARN_ON(!hlist);
11027                rcu_assign_pointer(swhash->swevent_hlist, hlist);
11028        }
11029        mutex_unlock(&swhash->hlist_mutex);
11030}
11031
11032#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11033static void __perf_event_exit_context(void *__info)
11034{
11035        struct perf_event_context *ctx = __info;
11036        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11037        struct perf_event *event;
11038
11039        raw_spin_lock(&ctx->lock);
11040        list_for_each_entry(event, &ctx->event_list, event_entry)
11041                __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11042        raw_spin_unlock(&ctx->lock);
11043}
11044
11045static void perf_event_exit_cpu_context(int cpu)
11046{
11047        struct perf_cpu_context *cpuctx;
11048        struct perf_event_context *ctx;
11049        struct pmu *pmu;
11050
11051        mutex_lock(&pmus_lock);
11052        list_for_each_entry(pmu, &pmus, entry) {
11053                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11054                ctx = &cpuctx->ctx;
11055
11056                mutex_lock(&ctx->mutex);
11057                smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11058                cpuctx->online = 0;
11059                mutex_unlock(&ctx->mutex);
11060        }
11061        cpumask_clear_cpu(cpu, perf_online_mask);
11062        mutex_unlock(&pmus_lock);
11063}
11064#else
11065
11066static void perf_event_exit_cpu_context(int cpu) { }
11067
11068#endif
11069
11070int perf_event_init_cpu(unsigned int cpu)
11071{
11072        struct perf_cpu_context *cpuctx;
11073        struct perf_event_context *ctx;
11074        struct pmu *pmu;
11075
11076        perf_swevent_init_cpu(cpu);
11077
11078        mutex_lock(&pmus_lock);
11079        cpumask_set_cpu(cpu, perf_online_mask);
11080        list_for_each_entry(pmu, &pmus, entry) {
11081                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11082                ctx = &cpuctx->ctx;
11083
11084                mutex_lock(&ctx->mutex);
11085                cpuctx->online = 1;
11086                mutex_unlock(&ctx->mutex);
11087        }
11088        mutex_unlock(&pmus_lock);
11089
11090        return 0;
11091}
11092
11093int perf_event_exit_cpu(unsigned int cpu)
11094{
11095        perf_event_exit_cpu_context(cpu);
11096        return 0;
11097}
11098
11099static int
11100perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11101{
11102        int cpu;
11103
11104        for_each_online_cpu(cpu)
11105                perf_event_exit_cpu(cpu);
11106
11107        return NOTIFY_OK;
11108}
11109
11110/*
11111 * Run the perf reboot notifier at the very last possible moment so that
11112 * the generic watchdog code runs as long as possible.
11113 */
11114static struct notifier_block perf_reboot_notifier = {
11115        .notifier_call = perf_reboot,
11116        .priority = INT_MIN,
11117};
11118
11119void __init perf_event_init(void)
11120{
11121        int ret;
11122
11123        idr_init(&pmu_idr);
11124
11125        perf_event_init_all_cpus();
11126        init_srcu_struct(&pmus_srcu);
11127        perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11128        perf_pmu_register(&perf_cpu_clock, NULL, -1);
11129        perf_pmu_register(&perf_task_clock, NULL, -1);
11130        perf_tp_register();
11131        perf_event_init_cpu(smp_processor_id());
11132        register_reboot_notifier(&perf_reboot_notifier);
11133
11134        ret = init_hw_breakpoint();
11135        WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11136
11137        /*
11138         * Build time assertion that we keep the data_head at the intended
11139         * location.  IOW, validation we got the __reserved[] size right.
11140         */
11141        BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11142                     != 1024);
11143}
11144
11145ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11146                              char *page)
11147{
11148        struct perf_pmu_events_attr *pmu_attr =
11149                container_of(attr, struct perf_pmu_events_attr, attr);
11150
11151        if (pmu_attr->event_str)
11152                return sprintf(page, "%s\n", pmu_attr->event_str);
11153
11154        return 0;
11155}
11156EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11157
11158static int __init perf_event_sysfs_init(void)
11159{
11160        struct pmu *pmu;
11161        int ret;
11162
11163        mutex_lock(&pmus_lock);
11164
11165        ret = bus_register(&pmu_bus);
11166        if (ret)
11167                goto unlock;
11168
11169        list_for_each_entry(pmu, &pmus, entry) {
11170                if (!pmu->name || pmu->type < 0)
11171                        continue;
11172
11173                ret = pmu_dev_alloc(pmu);
11174                WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11175        }
11176        pmu_bus_running = 1;
11177        ret = 0;
11178
11179unlock:
11180        mutex_unlock(&pmus_lock);
11181
11182        return ret;
11183}
11184device_initcall(perf_event_sysfs_init);
11185
11186#ifdef CONFIG_CGROUP_PERF
11187static struct cgroup_subsys_state *
11188perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11189{
11190        struct perf_cgroup *jc;
11191
11192        jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11193        if (!jc)
11194                return ERR_PTR(-ENOMEM);
11195
11196        jc->info = alloc_percpu(struct perf_cgroup_info);
11197        if (!jc->info) {
11198                kfree(jc);
11199                return ERR_PTR(-ENOMEM);
11200        }
11201
11202        return &jc->css;
11203}
11204
11205static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11206{
11207        struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11208
11209        free_percpu(jc->info);
11210        kfree(jc);
11211}
11212
11213static int __perf_cgroup_move(void *info)
11214{
11215        struct task_struct *task = info;
11216        rcu_read_lock();
11217        perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11218        rcu_read_unlock();
11219        return 0;
11220}
11221
11222static void perf_cgroup_attach(struct cgroup_taskset *tset)
11223{
11224        struct task_struct *task;
11225        struct cgroup_subsys_state *css;
11226
11227        cgroup_taskset_for_each(task, css, tset)
11228                task_function_call(task, __perf_cgroup_move, task);
11229}
11230
11231struct cgroup_subsys perf_event_cgrp_subsys = {
11232        .css_alloc      = perf_cgroup_css_alloc,
11233        .css_free       = perf_cgroup_css_free,
11234        .attach         = perf_cgroup_attach,
11235        /*
11236         * Implicitly enable on dfl hierarchy so that perf events can
11237         * always be filtered by cgroup2 path as long as perf_event
11238         * controller is not mounted on a legacy hierarchy.
11239         */
11240        .implicit_on_dfl = true,
11241};
11242#endif /* CONFIG_CGROUP_PERF */
11243