linux/kernel/events/uprobes.c
<<
>>
Prefs
   1/*
   2 * User-space Probes (UProbes)
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright (C) IBM Corporation, 2008-2012
  19 * Authors:
  20 *      Srikar Dronamraju
  21 *      Jim Keniston
  22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
  23 */
  24
  25#include <linux/kernel.h>
  26#include <linux/highmem.h>
  27#include <linux/pagemap.h>      /* read_mapping_page */
  28#include <linux/slab.h>
  29#include <linux/sched.h>
  30#include <linux/sched/mm.h>
  31#include <linux/sched/coredump.h>
  32#include <linux/export.h>
  33#include <linux/rmap.h>         /* anon_vma_prepare */
  34#include <linux/mmu_notifier.h> /* set_pte_at_notify */
  35#include <linux/swap.h>         /* try_to_free_swap */
  36#include <linux/ptrace.h>       /* user_enable_single_step */
  37#include <linux/kdebug.h>       /* notifier mechanism */
  38#include "../../mm/internal.h"  /* munlock_vma_page */
  39#include <linux/percpu-rwsem.h>
  40#include <linux/task_work.h>
  41#include <linux/shmem_fs.h>
  42
  43#include <linux/uprobes.h>
  44
  45#define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
  46#define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
  47
  48static struct rb_root uprobes_tree = RB_ROOT;
  49/*
  50 * allows us to skip the uprobe_mmap if there are no uprobe events active
  51 * at this time.  Probably a fine grained per inode count is better?
  52 */
  53#define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
  54
  55static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
  56
  57#define UPROBES_HASH_SZ 13
  58/* serialize uprobe->pending_list */
  59static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
  60#define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
  61
  62static struct percpu_rw_semaphore dup_mmap_sem;
  63
  64/* Have a copy of original instruction */
  65#define UPROBE_COPY_INSN        0
  66
  67struct uprobe {
  68        struct rb_node          rb_node;        /* node in the rb tree */
  69        atomic_t                ref;
  70        struct rw_semaphore     register_rwsem;
  71        struct rw_semaphore     consumer_rwsem;
  72        struct list_head        pending_list;
  73        struct uprobe_consumer  *consumers;
  74        struct inode            *inode;         /* Also hold a ref to inode */
  75        loff_t                  offset;
  76        unsigned long           flags;
  77
  78        /*
  79         * The generic code assumes that it has two members of unknown type
  80         * owned by the arch-specific code:
  81         *
  82         *      insn -  copy_insn() saves the original instruction here for
  83         *              arch_uprobe_analyze_insn().
  84         *
  85         *      ixol -  potentially modified instruction to execute out of
  86         *              line, copied to xol_area by xol_get_insn_slot().
  87         */
  88        struct arch_uprobe      arch;
  89};
  90
  91/*
  92 * Execute out of line area: anonymous executable mapping installed
  93 * by the probed task to execute the copy of the original instruction
  94 * mangled by set_swbp().
  95 *
  96 * On a breakpoint hit, thread contests for a slot.  It frees the
  97 * slot after singlestep. Currently a fixed number of slots are
  98 * allocated.
  99 */
 100struct xol_area {
 101        wait_queue_head_t               wq;             /* if all slots are busy */
 102        atomic_t                        slot_count;     /* number of in-use slots */
 103        unsigned long                   *bitmap;        /* 0 = free slot */
 104
 105        struct vm_special_mapping       xol_mapping;
 106        struct page                     *pages[2];
 107        /*
 108         * We keep the vma's vm_start rather than a pointer to the vma
 109         * itself.  The probed process or a naughty kernel module could make
 110         * the vma go away, and we must handle that reasonably gracefully.
 111         */
 112        unsigned long                   vaddr;          /* Page(s) of instruction slots */
 113};
 114
 115/*
 116 * valid_vma: Verify if the specified vma is an executable vma
 117 * Relax restrictions while unregistering: vm_flags might have
 118 * changed after breakpoint was inserted.
 119 *      - is_register: indicates if we are in register context.
 120 *      - Return 1 if the specified virtual address is in an
 121 *        executable vma.
 122 */
 123static bool valid_vma(struct vm_area_struct *vma, bool is_register)
 124{
 125        vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
 126
 127        if (is_register)
 128                flags |= VM_WRITE;
 129
 130        return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
 131}
 132
 133static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
 134{
 135        return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 136}
 137
 138static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
 139{
 140        return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
 141}
 142
 143/**
 144 * __replace_page - replace page in vma by new page.
 145 * based on replace_page in mm/ksm.c
 146 *
 147 * @vma:      vma that holds the pte pointing to page
 148 * @addr:     address the old @page is mapped at
 149 * @page:     the cowed page we are replacing by kpage
 150 * @kpage:    the modified page we replace page by
 151 *
 152 * Returns 0 on success, -EFAULT on failure.
 153 */
 154static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
 155                                struct page *old_page, struct page *new_page)
 156{
 157        struct mm_struct *mm = vma->vm_mm;
 158        struct page_vma_mapped_walk pvmw = {
 159                .page = old_page,
 160                .vma = vma,
 161                .address = addr,
 162        };
 163        int err;
 164        /* For mmu_notifiers */
 165        const unsigned long mmun_start = addr;
 166        const unsigned long mmun_end   = addr + PAGE_SIZE;
 167        struct mem_cgroup *memcg;
 168
 169        VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page);
 170
 171        err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
 172                        false);
 173        if (err)
 174                return err;
 175
 176        /* For try_to_free_swap() and munlock_vma_page() below */
 177        lock_page(old_page);
 178
 179        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 180        err = -EAGAIN;
 181        if (!page_vma_mapped_walk(&pvmw)) {
 182                mem_cgroup_cancel_charge(new_page, memcg, false);
 183                goto unlock;
 184        }
 185        VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
 186
 187        get_page(new_page);
 188        page_add_new_anon_rmap(new_page, vma, addr, false);
 189        mem_cgroup_commit_charge(new_page, memcg, false, false);
 190        lru_cache_add_active_or_unevictable(new_page, vma);
 191
 192        if (!PageAnon(old_page)) {
 193                dec_mm_counter(mm, mm_counter_file(old_page));
 194                inc_mm_counter(mm, MM_ANONPAGES);
 195        }
 196
 197        flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
 198        ptep_clear_flush_notify(vma, addr, pvmw.pte);
 199        set_pte_at_notify(mm, addr, pvmw.pte,
 200                        mk_pte(new_page, vma->vm_page_prot));
 201
 202        page_remove_rmap(old_page, false);
 203        if (!page_mapped(old_page))
 204                try_to_free_swap(old_page);
 205        page_vma_mapped_walk_done(&pvmw);
 206
 207        if (vma->vm_flags & VM_LOCKED)
 208                munlock_vma_page(old_page);
 209        put_page(old_page);
 210
 211        err = 0;
 212 unlock:
 213        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 214        unlock_page(old_page);
 215        return err;
 216}
 217
 218/**
 219 * is_swbp_insn - check if instruction is breakpoint instruction.
 220 * @insn: instruction to be checked.
 221 * Default implementation of is_swbp_insn
 222 * Returns true if @insn is a breakpoint instruction.
 223 */
 224bool __weak is_swbp_insn(uprobe_opcode_t *insn)
 225{
 226        return *insn == UPROBE_SWBP_INSN;
 227}
 228
 229/**
 230 * is_trap_insn - check if instruction is breakpoint instruction.
 231 * @insn: instruction to be checked.
 232 * Default implementation of is_trap_insn
 233 * Returns true if @insn is a breakpoint instruction.
 234 *
 235 * This function is needed for the case where an architecture has multiple
 236 * trap instructions (like powerpc).
 237 */
 238bool __weak is_trap_insn(uprobe_opcode_t *insn)
 239{
 240        return is_swbp_insn(insn);
 241}
 242
 243static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
 244{
 245        void *kaddr = kmap_atomic(page);
 246        memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
 247        kunmap_atomic(kaddr);
 248}
 249
 250static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
 251{
 252        void *kaddr = kmap_atomic(page);
 253        memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
 254        kunmap_atomic(kaddr);
 255}
 256
 257static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
 258{
 259        uprobe_opcode_t old_opcode;
 260        bool is_swbp;
 261
 262        /*
 263         * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
 264         * We do not check if it is any other 'trap variant' which could
 265         * be conditional trap instruction such as the one powerpc supports.
 266         *
 267         * The logic is that we do not care if the underlying instruction
 268         * is a trap variant; uprobes always wins over any other (gdb)
 269         * breakpoint.
 270         */
 271        copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
 272        is_swbp = is_swbp_insn(&old_opcode);
 273
 274        if (is_swbp_insn(new_opcode)) {
 275                if (is_swbp)            /* register: already installed? */
 276                        return 0;
 277        } else {
 278                if (!is_swbp)           /* unregister: was it changed by us? */
 279                        return 0;
 280        }
 281
 282        return 1;
 283}
 284
 285/*
 286 * NOTE:
 287 * Expect the breakpoint instruction to be the smallest size instruction for
 288 * the architecture. If an arch has variable length instruction and the
 289 * breakpoint instruction is not of the smallest length instruction
 290 * supported by that architecture then we need to modify is_trap_at_addr and
 291 * uprobe_write_opcode accordingly. This would never be a problem for archs
 292 * that have fixed length instructions.
 293 *
 294 * uprobe_write_opcode - write the opcode at a given virtual address.
 295 * @mm: the probed process address space.
 296 * @vaddr: the virtual address to store the opcode.
 297 * @opcode: opcode to be written at @vaddr.
 298 *
 299 * Called with mm->mmap_sem held for write.
 300 * Return 0 (success) or a negative errno.
 301 */
 302int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
 303                        uprobe_opcode_t opcode)
 304{
 305        struct page *old_page, *new_page;
 306        struct vm_area_struct *vma;
 307        int ret;
 308
 309retry:
 310        /* Read the page with vaddr into memory */
 311        ret = get_user_pages_remote(NULL, mm, vaddr, 1,
 312                        FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL);
 313        if (ret <= 0)
 314                return ret;
 315
 316        ret = verify_opcode(old_page, vaddr, &opcode);
 317        if (ret <= 0)
 318                goto put_old;
 319
 320        ret = anon_vma_prepare(vma);
 321        if (ret)
 322                goto put_old;
 323
 324        ret = -ENOMEM;
 325        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
 326        if (!new_page)
 327                goto put_old;
 328
 329        __SetPageUptodate(new_page);
 330        copy_highpage(new_page, old_page);
 331        copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
 332
 333        ret = __replace_page(vma, vaddr, old_page, new_page);
 334        put_page(new_page);
 335put_old:
 336        put_page(old_page);
 337
 338        if (unlikely(ret == -EAGAIN))
 339                goto retry;
 340        return ret;
 341}
 342
 343/**
 344 * set_swbp - store breakpoint at a given address.
 345 * @auprobe: arch specific probepoint information.
 346 * @mm: the probed process address space.
 347 * @vaddr: the virtual address to insert the opcode.
 348 *
 349 * For mm @mm, store the breakpoint instruction at @vaddr.
 350 * Return 0 (success) or a negative errno.
 351 */
 352int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 353{
 354        return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
 355}
 356
 357/**
 358 * set_orig_insn - Restore the original instruction.
 359 * @mm: the probed process address space.
 360 * @auprobe: arch specific probepoint information.
 361 * @vaddr: the virtual address to insert the opcode.
 362 *
 363 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 364 * Return 0 (success) or a negative errno.
 365 */
 366int __weak
 367set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 368{
 369        return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
 370}
 371
 372static struct uprobe *get_uprobe(struct uprobe *uprobe)
 373{
 374        atomic_inc(&uprobe->ref);
 375        return uprobe;
 376}
 377
 378static void put_uprobe(struct uprobe *uprobe)
 379{
 380        if (atomic_dec_and_test(&uprobe->ref))
 381                kfree(uprobe);
 382}
 383
 384static int match_uprobe(struct uprobe *l, struct uprobe *r)
 385{
 386        if (l->inode < r->inode)
 387                return -1;
 388
 389        if (l->inode > r->inode)
 390                return 1;
 391
 392        if (l->offset < r->offset)
 393                return -1;
 394
 395        if (l->offset > r->offset)
 396                return 1;
 397
 398        return 0;
 399}
 400
 401static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
 402{
 403        struct uprobe u = { .inode = inode, .offset = offset };
 404        struct rb_node *n = uprobes_tree.rb_node;
 405        struct uprobe *uprobe;
 406        int match;
 407
 408        while (n) {
 409                uprobe = rb_entry(n, struct uprobe, rb_node);
 410                match = match_uprobe(&u, uprobe);
 411                if (!match)
 412                        return get_uprobe(uprobe);
 413
 414                if (match < 0)
 415                        n = n->rb_left;
 416                else
 417                        n = n->rb_right;
 418        }
 419        return NULL;
 420}
 421
 422/*
 423 * Find a uprobe corresponding to a given inode:offset
 424 * Acquires uprobes_treelock
 425 */
 426static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
 427{
 428        struct uprobe *uprobe;
 429
 430        spin_lock(&uprobes_treelock);
 431        uprobe = __find_uprobe(inode, offset);
 432        spin_unlock(&uprobes_treelock);
 433
 434        return uprobe;
 435}
 436
 437static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
 438{
 439        struct rb_node **p = &uprobes_tree.rb_node;
 440        struct rb_node *parent = NULL;
 441        struct uprobe *u;
 442        int match;
 443
 444        while (*p) {
 445                parent = *p;
 446                u = rb_entry(parent, struct uprobe, rb_node);
 447                match = match_uprobe(uprobe, u);
 448                if (!match)
 449                        return get_uprobe(u);
 450
 451                if (match < 0)
 452                        p = &parent->rb_left;
 453                else
 454                        p = &parent->rb_right;
 455
 456        }
 457
 458        u = NULL;
 459        rb_link_node(&uprobe->rb_node, parent, p);
 460        rb_insert_color(&uprobe->rb_node, &uprobes_tree);
 461        /* get access + creation ref */
 462        atomic_set(&uprobe->ref, 2);
 463
 464        return u;
 465}
 466
 467/*
 468 * Acquire uprobes_treelock.
 469 * Matching uprobe already exists in rbtree;
 470 *      increment (access refcount) and return the matching uprobe.
 471 *
 472 * No matching uprobe; insert the uprobe in rb_tree;
 473 *      get a double refcount (access + creation) and return NULL.
 474 */
 475static struct uprobe *insert_uprobe(struct uprobe *uprobe)
 476{
 477        struct uprobe *u;
 478
 479        spin_lock(&uprobes_treelock);
 480        u = __insert_uprobe(uprobe);
 481        spin_unlock(&uprobes_treelock);
 482
 483        return u;
 484}
 485
 486static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
 487{
 488        struct uprobe *uprobe, *cur_uprobe;
 489
 490        uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
 491        if (!uprobe)
 492                return NULL;
 493
 494        uprobe->inode = igrab(inode);
 495        uprobe->offset = offset;
 496        init_rwsem(&uprobe->register_rwsem);
 497        init_rwsem(&uprobe->consumer_rwsem);
 498
 499        /* add to uprobes_tree, sorted on inode:offset */
 500        cur_uprobe = insert_uprobe(uprobe);
 501        /* a uprobe exists for this inode:offset combination */
 502        if (cur_uprobe) {
 503                kfree(uprobe);
 504                uprobe = cur_uprobe;
 505                iput(inode);
 506        }
 507
 508        return uprobe;
 509}
 510
 511static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
 512{
 513        down_write(&uprobe->consumer_rwsem);
 514        uc->next = uprobe->consumers;
 515        uprobe->consumers = uc;
 516        up_write(&uprobe->consumer_rwsem);
 517}
 518
 519/*
 520 * For uprobe @uprobe, delete the consumer @uc.
 521 * Return true if the @uc is deleted successfully
 522 * or return false.
 523 */
 524static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
 525{
 526        struct uprobe_consumer **con;
 527        bool ret = false;
 528
 529        down_write(&uprobe->consumer_rwsem);
 530        for (con = &uprobe->consumers; *con; con = &(*con)->next) {
 531                if (*con == uc) {
 532                        *con = uc->next;
 533                        ret = true;
 534                        break;
 535                }
 536        }
 537        up_write(&uprobe->consumer_rwsem);
 538
 539        return ret;
 540}
 541
 542static int __copy_insn(struct address_space *mapping, struct file *filp,
 543                        void *insn, int nbytes, loff_t offset)
 544{
 545        struct page *page;
 546        /*
 547         * Ensure that the page that has the original instruction is populated
 548         * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
 549         * see uprobe_register().
 550         */
 551        if (mapping->a_ops->readpage)
 552                page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
 553        else
 554                page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 555        if (IS_ERR(page))
 556                return PTR_ERR(page);
 557
 558        copy_from_page(page, offset, insn, nbytes);
 559        put_page(page);
 560
 561        return 0;
 562}
 563
 564static int copy_insn(struct uprobe *uprobe, struct file *filp)
 565{
 566        struct address_space *mapping = uprobe->inode->i_mapping;
 567        loff_t offs = uprobe->offset;
 568        void *insn = &uprobe->arch.insn;
 569        int size = sizeof(uprobe->arch.insn);
 570        int len, err = -EIO;
 571
 572        /* Copy only available bytes, -EIO if nothing was read */
 573        do {
 574                if (offs >= i_size_read(uprobe->inode))
 575                        break;
 576
 577                len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
 578                err = __copy_insn(mapping, filp, insn, len, offs);
 579                if (err)
 580                        break;
 581
 582                insn += len;
 583                offs += len;
 584                size -= len;
 585        } while (size);
 586
 587        return err;
 588}
 589
 590static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
 591                                struct mm_struct *mm, unsigned long vaddr)
 592{
 593        int ret = 0;
 594
 595        if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 596                return ret;
 597
 598        /* TODO: move this into _register, until then we abuse this sem. */
 599        down_write(&uprobe->consumer_rwsem);
 600        if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 601                goto out;
 602
 603        ret = copy_insn(uprobe, file);
 604        if (ret)
 605                goto out;
 606
 607        ret = -ENOTSUPP;
 608        if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
 609                goto out;
 610
 611        ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
 612        if (ret)
 613                goto out;
 614
 615        /* uprobe_write_opcode() assumes we don't cross page boundary */
 616        BUG_ON((uprobe->offset & ~PAGE_MASK) +
 617                        UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
 618
 619        smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
 620        set_bit(UPROBE_COPY_INSN, &uprobe->flags);
 621
 622 out:
 623        up_write(&uprobe->consumer_rwsem);
 624
 625        return ret;
 626}
 627
 628static inline bool consumer_filter(struct uprobe_consumer *uc,
 629                                   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 630{
 631        return !uc->filter || uc->filter(uc, ctx, mm);
 632}
 633
 634static bool filter_chain(struct uprobe *uprobe,
 635                         enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 636{
 637        struct uprobe_consumer *uc;
 638        bool ret = false;
 639
 640        down_read(&uprobe->consumer_rwsem);
 641        for (uc = uprobe->consumers; uc; uc = uc->next) {
 642                ret = consumer_filter(uc, ctx, mm);
 643                if (ret)
 644                        break;
 645        }
 646        up_read(&uprobe->consumer_rwsem);
 647
 648        return ret;
 649}
 650
 651static int
 652install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
 653                        struct vm_area_struct *vma, unsigned long vaddr)
 654{
 655        bool first_uprobe;
 656        int ret;
 657
 658        ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
 659        if (ret)
 660                return ret;
 661
 662        /*
 663         * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
 664         * the task can hit this breakpoint right after __replace_page().
 665         */
 666        first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
 667        if (first_uprobe)
 668                set_bit(MMF_HAS_UPROBES, &mm->flags);
 669
 670        ret = set_swbp(&uprobe->arch, mm, vaddr);
 671        if (!ret)
 672                clear_bit(MMF_RECALC_UPROBES, &mm->flags);
 673        else if (first_uprobe)
 674                clear_bit(MMF_HAS_UPROBES, &mm->flags);
 675
 676        return ret;
 677}
 678
 679static int
 680remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
 681{
 682        set_bit(MMF_RECALC_UPROBES, &mm->flags);
 683        return set_orig_insn(&uprobe->arch, mm, vaddr);
 684}
 685
 686static inline bool uprobe_is_active(struct uprobe *uprobe)
 687{
 688        return !RB_EMPTY_NODE(&uprobe->rb_node);
 689}
 690/*
 691 * There could be threads that have already hit the breakpoint. They
 692 * will recheck the current insn and restart if find_uprobe() fails.
 693 * See find_active_uprobe().
 694 */
 695static void delete_uprobe(struct uprobe *uprobe)
 696{
 697        if (WARN_ON(!uprobe_is_active(uprobe)))
 698                return;
 699
 700        spin_lock(&uprobes_treelock);
 701        rb_erase(&uprobe->rb_node, &uprobes_tree);
 702        spin_unlock(&uprobes_treelock);
 703        RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
 704        iput(uprobe->inode);
 705        put_uprobe(uprobe);
 706}
 707
 708struct map_info {
 709        struct map_info *next;
 710        struct mm_struct *mm;
 711        unsigned long vaddr;
 712};
 713
 714static inline struct map_info *free_map_info(struct map_info *info)
 715{
 716        struct map_info *next = info->next;
 717        kfree(info);
 718        return next;
 719}
 720
 721static struct map_info *
 722build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
 723{
 724        unsigned long pgoff = offset >> PAGE_SHIFT;
 725        struct vm_area_struct *vma;
 726        struct map_info *curr = NULL;
 727        struct map_info *prev = NULL;
 728        struct map_info *info;
 729        int more = 0;
 730
 731 again:
 732        i_mmap_lock_read(mapping);
 733        vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 734                if (!valid_vma(vma, is_register))
 735                        continue;
 736
 737                if (!prev && !more) {
 738                        /*
 739                         * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
 740                         * reclaim. This is optimistic, no harm done if it fails.
 741                         */
 742                        prev = kmalloc(sizeof(struct map_info),
 743                                        GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
 744                        if (prev)
 745                                prev->next = NULL;
 746                }
 747                if (!prev) {
 748                        more++;
 749                        continue;
 750                }
 751
 752                if (!mmget_not_zero(vma->vm_mm))
 753                        continue;
 754
 755                info = prev;
 756                prev = prev->next;
 757                info->next = curr;
 758                curr = info;
 759
 760                info->mm = vma->vm_mm;
 761                info->vaddr = offset_to_vaddr(vma, offset);
 762        }
 763        i_mmap_unlock_read(mapping);
 764
 765        if (!more)
 766                goto out;
 767
 768        prev = curr;
 769        while (curr) {
 770                mmput(curr->mm);
 771                curr = curr->next;
 772        }
 773
 774        do {
 775                info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
 776                if (!info) {
 777                        curr = ERR_PTR(-ENOMEM);
 778                        goto out;
 779                }
 780                info->next = prev;
 781                prev = info;
 782        } while (--more);
 783
 784        goto again;
 785 out:
 786        while (prev)
 787                prev = free_map_info(prev);
 788        return curr;
 789}
 790
 791static int
 792register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
 793{
 794        bool is_register = !!new;
 795        struct map_info *info;
 796        int err = 0;
 797
 798        percpu_down_write(&dup_mmap_sem);
 799        info = build_map_info(uprobe->inode->i_mapping,
 800                                        uprobe->offset, is_register);
 801        if (IS_ERR(info)) {
 802                err = PTR_ERR(info);
 803                goto out;
 804        }
 805
 806        while (info) {
 807                struct mm_struct *mm = info->mm;
 808                struct vm_area_struct *vma;
 809
 810                if (err && is_register)
 811                        goto free;
 812
 813                down_write(&mm->mmap_sem);
 814                vma = find_vma(mm, info->vaddr);
 815                if (!vma || !valid_vma(vma, is_register) ||
 816                    file_inode(vma->vm_file) != uprobe->inode)
 817                        goto unlock;
 818
 819                if (vma->vm_start > info->vaddr ||
 820                    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
 821                        goto unlock;
 822
 823                if (is_register) {
 824                        /* consult only the "caller", new consumer. */
 825                        if (consumer_filter(new,
 826                                        UPROBE_FILTER_REGISTER, mm))
 827                                err = install_breakpoint(uprobe, mm, vma, info->vaddr);
 828                } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
 829                        if (!filter_chain(uprobe,
 830                                        UPROBE_FILTER_UNREGISTER, mm))
 831                                err |= remove_breakpoint(uprobe, mm, info->vaddr);
 832                }
 833
 834 unlock:
 835                up_write(&mm->mmap_sem);
 836 free:
 837                mmput(mm);
 838                info = free_map_info(info);
 839        }
 840 out:
 841        percpu_up_write(&dup_mmap_sem);
 842        return err;
 843}
 844
 845static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
 846{
 847        consumer_add(uprobe, uc);
 848        return register_for_each_vma(uprobe, uc);
 849}
 850
 851static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
 852{
 853        int err;
 854
 855        if (WARN_ON(!consumer_del(uprobe, uc)))
 856                return;
 857
 858        err = register_for_each_vma(uprobe, NULL);
 859        /* TODO : cant unregister? schedule a worker thread */
 860        if (!uprobe->consumers && !err)
 861                delete_uprobe(uprobe);
 862}
 863
 864/*
 865 * uprobe_register - register a probe
 866 * @inode: the file in which the probe has to be placed.
 867 * @offset: offset from the start of the file.
 868 * @uc: information on howto handle the probe..
 869 *
 870 * Apart from the access refcount, uprobe_register() takes a creation
 871 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 872 * inserted into the rbtree (i.e first consumer for a @inode:@offset
 873 * tuple).  Creation refcount stops uprobe_unregister from freeing the
 874 * @uprobe even before the register operation is complete. Creation
 875 * refcount is released when the last @uc for the @uprobe
 876 * unregisters.
 877 *
 878 * Return errno if it cannot successully install probes
 879 * else return 0 (success)
 880 */
 881int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
 882{
 883        struct uprobe *uprobe;
 884        int ret;
 885
 886        /* Uprobe must have at least one set consumer */
 887        if (!uc->handler && !uc->ret_handler)
 888                return -EINVAL;
 889
 890        /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
 891        if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
 892                return -EIO;
 893        /* Racy, just to catch the obvious mistakes */
 894        if (offset > i_size_read(inode))
 895                return -EINVAL;
 896
 897 retry:
 898        uprobe = alloc_uprobe(inode, offset);
 899        if (!uprobe)
 900                return -ENOMEM;
 901        /*
 902         * We can race with uprobe_unregister()->delete_uprobe().
 903         * Check uprobe_is_active() and retry if it is false.
 904         */
 905        down_write(&uprobe->register_rwsem);
 906        ret = -EAGAIN;
 907        if (likely(uprobe_is_active(uprobe))) {
 908                ret = __uprobe_register(uprobe, uc);
 909                if (ret)
 910                        __uprobe_unregister(uprobe, uc);
 911        }
 912        up_write(&uprobe->register_rwsem);
 913        put_uprobe(uprobe);
 914
 915        if (unlikely(ret == -EAGAIN))
 916                goto retry;
 917        return ret;
 918}
 919EXPORT_SYMBOL_GPL(uprobe_register);
 920
 921/*
 922 * uprobe_apply - unregister a already registered probe.
 923 * @inode: the file in which the probe has to be removed.
 924 * @offset: offset from the start of the file.
 925 * @uc: consumer which wants to add more or remove some breakpoints
 926 * @add: add or remove the breakpoints
 927 */
 928int uprobe_apply(struct inode *inode, loff_t offset,
 929                        struct uprobe_consumer *uc, bool add)
 930{
 931        struct uprobe *uprobe;
 932        struct uprobe_consumer *con;
 933        int ret = -ENOENT;
 934
 935        uprobe = find_uprobe(inode, offset);
 936        if (WARN_ON(!uprobe))
 937                return ret;
 938
 939        down_write(&uprobe->register_rwsem);
 940        for (con = uprobe->consumers; con && con != uc ; con = con->next)
 941                ;
 942        if (con)
 943                ret = register_for_each_vma(uprobe, add ? uc : NULL);
 944        up_write(&uprobe->register_rwsem);
 945        put_uprobe(uprobe);
 946
 947        return ret;
 948}
 949
 950/*
 951 * uprobe_unregister - unregister a already registered probe.
 952 * @inode: the file in which the probe has to be removed.
 953 * @offset: offset from the start of the file.
 954 * @uc: identify which probe if multiple probes are colocated.
 955 */
 956void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
 957{
 958        struct uprobe *uprobe;
 959
 960        uprobe = find_uprobe(inode, offset);
 961        if (WARN_ON(!uprobe))
 962                return;
 963
 964        down_write(&uprobe->register_rwsem);
 965        __uprobe_unregister(uprobe, uc);
 966        up_write(&uprobe->register_rwsem);
 967        put_uprobe(uprobe);
 968}
 969EXPORT_SYMBOL_GPL(uprobe_unregister);
 970
 971static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
 972{
 973        struct vm_area_struct *vma;
 974        int err = 0;
 975
 976        down_read(&mm->mmap_sem);
 977        for (vma = mm->mmap; vma; vma = vma->vm_next) {
 978                unsigned long vaddr;
 979                loff_t offset;
 980
 981                if (!valid_vma(vma, false) ||
 982                    file_inode(vma->vm_file) != uprobe->inode)
 983                        continue;
 984
 985                offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
 986                if (uprobe->offset <  offset ||
 987                    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
 988                        continue;
 989
 990                vaddr = offset_to_vaddr(vma, uprobe->offset);
 991                err |= remove_breakpoint(uprobe, mm, vaddr);
 992        }
 993        up_read(&mm->mmap_sem);
 994
 995        return err;
 996}
 997
 998static struct rb_node *
 999find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1000{
1001        struct rb_node *n = uprobes_tree.rb_node;
1002
1003        while (n) {
1004                struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1005
1006                if (inode < u->inode) {
1007                        n = n->rb_left;
1008                } else if (inode > u->inode) {
1009                        n = n->rb_right;
1010                } else {
1011                        if (max < u->offset)
1012                                n = n->rb_left;
1013                        else if (min > u->offset)
1014                                n = n->rb_right;
1015                        else
1016                                break;
1017                }
1018        }
1019
1020        return n;
1021}
1022
1023/*
1024 * For a given range in vma, build a list of probes that need to be inserted.
1025 */
1026static void build_probe_list(struct inode *inode,
1027                                struct vm_area_struct *vma,
1028                                unsigned long start, unsigned long end,
1029                                struct list_head *head)
1030{
1031        loff_t min, max;
1032        struct rb_node *n, *t;
1033        struct uprobe *u;
1034
1035        INIT_LIST_HEAD(head);
1036        min = vaddr_to_offset(vma, start);
1037        max = min + (end - start) - 1;
1038
1039        spin_lock(&uprobes_treelock);
1040        n = find_node_in_range(inode, min, max);
1041        if (n) {
1042                for (t = n; t; t = rb_prev(t)) {
1043                        u = rb_entry(t, struct uprobe, rb_node);
1044                        if (u->inode != inode || u->offset < min)
1045                                break;
1046                        list_add(&u->pending_list, head);
1047                        get_uprobe(u);
1048                }
1049                for (t = n; (t = rb_next(t)); ) {
1050                        u = rb_entry(t, struct uprobe, rb_node);
1051                        if (u->inode != inode || u->offset > max)
1052                                break;
1053                        list_add(&u->pending_list, head);
1054                        get_uprobe(u);
1055                }
1056        }
1057        spin_unlock(&uprobes_treelock);
1058}
1059
1060/*
1061 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1062 *
1063 * Currently we ignore all errors and always return 0, the callers
1064 * can't handle the failure anyway.
1065 */
1066int uprobe_mmap(struct vm_area_struct *vma)
1067{
1068        struct list_head tmp_list;
1069        struct uprobe *uprobe, *u;
1070        struct inode *inode;
1071
1072        if (no_uprobe_events() || !valid_vma(vma, true))
1073                return 0;
1074
1075        inode = file_inode(vma->vm_file);
1076        if (!inode)
1077                return 0;
1078
1079        mutex_lock(uprobes_mmap_hash(inode));
1080        build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1081        /*
1082         * We can race with uprobe_unregister(), this uprobe can be already
1083         * removed. But in this case filter_chain() must return false, all
1084         * consumers have gone away.
1085         */
1086        list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1087                if (!fatal_signal_pending(current) &&
1088                    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1089                        unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1090                        install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1091                }
1092                put_uprobe(uprobe);
1093        }
1094        mutex_unlock(uprobes_mmap_hash(inode));
1095
1096        return 0;
1097}
1098
1099static bool
1100vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1101{
1102        loff_t min, max;
1103        struct inode *inode;
1104        struct rb_node *n;
1105
1106        inode = file_inode(vma->vm_file);
1107
1108        min = vaddr_to_offset(vma, start);
1109        max = min + (end - start) - 1;
1110
1111        spin_lock(&uprobes_treelock);
1112        n = find_node_in_range(inode, min, max);
1113        spin_unlock(&uprobes_treelock);
1114
1115        return !!n;
1116}
1117
1118/*
1119 * Called in context of a munmap of a vma.
1120 */
1121void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1122{
1123        if (no_uprobe_events() || !valid_vma(vma, false))
1124                return;
1125
1126        if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1127                return;
1128
1129        if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1130             test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1131                return;
1132
1133        if (vma_has_uprobes(vma, start, end))
1134                set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1135}
1136
1137/* Slot allocation for XOL */
1138static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1139{
1140        struct vm_area_struct *vma;
1141        int ret;
1142
1143        if (down_write_killable(&mm->mmap_sem))
1144                return -EINTR;
1145
1146        if (mm->uprobes_state.xol_area) {
1147                ret = -EALREADY;
1148                goto fail;
1149        }
1150
1151        if (!area->vaddr) {
1152                /* Try to map as high as possible, this is only a hint. */
1153                area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1154                                                PAGE_SIZE, 0, 0);
1155                if (area->vaddr & ~PAGE_MASK) {
1156                        ret = area->vaddr;
1157                        goto fail;
1158                }
1159        }
1160
1161        vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1162                                VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1163                                &area->xol_mapping);
1164        if (IS_ERR(vma)) {
1165                ret = PTR_ERR(vma);
1166                goto fail;
1167        }
1168
1169        ret = 0;
1170        smp_wmb();      /* pairs with get_xol_area() */
1171        mm->uprobes_state.xol_area = area;
1172 fail:
1173        up_write(&mm->mmap_sem);
1174
1175        return ret;
1176}
1177
1178static struct xol_area *__create_xol_area(unsigned long vaddr)
1179{
1180        struct mm_struct *mm = current->mm;
1181        uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1182        struct xol_area *area;
1183
1184        area = kmalloc(sizeof(*area), GFP_KERNEL);
1185        if (unlikely(!area))
1186                goto out;
1187
1188        area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1189        if (!area->bitmap)
1190                goto free_area;
1191
1192        area->xol_mapping.name = "[uprobes]";
1193        area->xol_mapping.fault = NULL;
1194        area->xol_mapping.pages = area->pages;
1195        area->pages[0] = alloc_page(GFP_HIGHUSER);
1196        if (!area->pages[0])
1197                goto free_bitmap;
1198        area->pages[1] = NULL;
1199
1200        area->vaddr = vaddr;
1201        init_waitqueue_head(&area->wq);
1202        /* Reserve the 1st slot for get_trampoline_vaddr() */
1203        set_bit(0, area->bitmap);
1204        atomic_set(&area->slot_count, 1);
1205        arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1206
1207        if (!xol_add_vma(mm, area))
1208                return area;
1209
1210        __free_page(area->pages[0]);
1211 free_bitmap:
1212        kfree(area->bitmap);
1213 free_area:
1214        kfree(area);
1215 out:
1216        return NULL;
1217}
1218
1219/*
1220 * get_xol_area - Allocate process's xol_area if necessary.
1221 * This area will be used for storing instructions for execution out of line.
1222 *
1223 * Returns the allocated area or NULL.
1224 */
1225static struct xol_area *get_xol_area(void)
1226{
1227        struct mm_struct *mm = current->mm;
1228        struct xol_area *area;
1229
1230        if (!mm->uprobes_state.xol_area)
1231                __create_xol_area(0);
1232
1233        area = mm->uprobes_state.xol_area;
1234        smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1235        return area;
1236}
1237
1238/*
1239 * uprobe_clear_state - Free the area allocated for slots.
1240 */
1241void uprobe_clear_state(struct mm_struct *mm)
1242{
1243        struct xol_area *area = mm->uprobes_state.xol_area;
1244
1245        if (!area)
1246                return;
1247
1248        put_page(area->pages[0]);
1249        kfree(area->bitmap);
1250        kfree(area);
1251}
1252
1253void uprobe_start_dup_mmap(void)
1254{
1255        percpu_down_read(&dup_mmap_sem);
1256}
1257
1258void uprobe_end_dup_mmap(void)
1259{
1260        percpu_up_read(&dup_mmap_sem);
1261}
1262
1263void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1264{
1265        if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1266                set_bit(MMF_HAS_UPROBES, &newmm->flags);
1267                /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1268                set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1269        }
1270}
1271
1272/*
1273 *  - search for a free slot.
1274 */
1275static unsigned long xol_take_insn_slot(struct xol_area *area)
1276{
1277        unsigned long slot_addr;
1278        int slot_nr;
1279
1280        do {
1281                slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1282                if (slot_nr < UINSNS_PER_PAGE) {
1283                        if (!test_and_set_bit(slot_nr, area->bitmap))
1284                                break;
1285
1286                        slot_nr = UINSNS_PER_PAGE;
1287                        continue;
1288                }
1289                wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1290        } while (slot_nr >= UINSNS_PER_PAGE);
1291
1292        slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1293        atomic_inc(&area->slot_count);
1294
1295        return slot_addr;
1296}
1297
1298/*
1299 * xol_get_insn_slot - allocate a slot for xol.
1300 * Returns the allocated slot address or 0.
1301 */
1302static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1303{
1304        struct xol_area *area;
1305        unsigned long xol_vaddr;
1306
1307        area = get_xol_area();
1308        if (!area)
1309                return 0;
1310
1311        xol_vaddr = xol_take_insn_slot(area);
1312        if (unlikely(!xol_vaddr))
1313                return 0;
1314
1315        arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1316                              &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1317
1318        return xol_vaddr;
1319}
1320
1321/*
1322 * xol_free_insn_slot - If slot was earlier allocated by
1323 * @xol_get_insn_slot(), make the slot available for
1324 * subsequent requests.
1325 */
1326static void xol_free_insn_slot(struct task_struct *tsk)
1327{
1328        struct xol_area *area;
1329        unsigned long vma_end;
1330        unsigned long slot_addr;
1331
1332        if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1333                return;
1334
1335        slot_addr = tsk->utask->xol_vaddr;
1336        if (unlikely(!slot_addr))
1337                return;
1338
1339        area = tsk->mm->uprobes_state.xol_area;
1340        vma_end = area->vaddr + PAGE_SIZE;
1341        if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1342                unsigned long offset;
1343                int slot_nr;
1344
1345                offset = slot_addr - area->vaddr;
1346                slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1347                if (slot_nr >= UINSNS_PER_PAGE)
1348                        return;
1349
1350                clear_bit(slot_nr, area->bitmap);
1351                atomic_dec(&area->slot_count);
1352                smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1353                if (waitqueue_active(&area->wq))
1354                        wake_up(&area->wq);
1355
1356                tsk->utask->xol_vaddr = 0;
1357        }
1358}
1359
1360void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1361                                  void *src, unsigned long len)
1362{
1363        /* Initialize the slot */
1364        copy_to_page(page, vaddr, src, len);
1365
1366        /*
1367         * We probably need flush_icache_user_range() but it needs vma.
1368         * This should work on most of architectures by default. If
1369         * architecture needs to do something different it can define
1370         * its own version of the function.
1371         */
1372        flush_dcache_page(page);
1373}
1374
1375/**
1376 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1377 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1378 * instruction.
1379 * Return the address of the breakpoint instruction.
1380 */
1381unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1382{
1383        return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1384}
1385
1386unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1387{
1388        struct uprobe_task *utask = current->utask;
1389
1390        if (unlikely(utask && utask->active_uprobe))
1391                return utask->vaddr;
1392
1393        return instruction_pointer(regs);
1394}
1395
1396static struct return_instance *free_ret_instance(struct return_instance *ri)
1397{
1398        struct return_instance *next = ri->next;
1399        put_uprobe(ri->uprobe);
1400        kfree(ri);
1401        return next;
1402}
1403
1404/*
1405 * Called with no locks held.
1406 * Called in context of a exiting or a exec-ing thread.
1407 */
1408void uprobe_free_utask(struct task_struct *t)
1409{
1410        struct uprobe_task *utask = t->utask;
1411        struct return_instance *ri;
1412
1413        if (!utask)
1414                return;
1415
1416        if (utask->active_uprobe)
1417                put_uprobe(utask->active_uprobe);
1418
1419        ri = utask->return_instances;
1420        while (ri)
1421                ri = free_ret_instance(ri);
1422
1423        xol_free_insn_slot(t);
1424        kfree(utask);
1425        t->utask = NULL;
1426}
1427
1428/*
1429 * Allocate a uprobe_task object for the task if if necessary.
1430 * Called when the thread hits a breakpoint.
1431 *
1432 * Returns:
1433 * - pointer to new uprobe_task on success
1434 * - NULL otherwise
1435 */
1436static struct uprobe_task *get_utask(void)
1437{
1438        if (!current->utask)
1439                current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1440        return current->utask;
1441}
1442
1443static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1444{
1445        struct uprobe_task *n_utask;
1446        struct return_instance **p, *o, *n;
1447
1448        n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1449        if (!n_utask)
1450                return -ENOMEM;
1451        t->utask = n_utask;
1452
1453        p = &n_utask->return_instances;
1454        for (o = o_utask->return_instances; o; o = o->next) {
1455                n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1456                if (!n)
1457                        return -ENOMEM;
1458
1459                *n = *o;
1460                get_uprobe(n->uprobe);
1461                n->next = NULL;
1462
1463                *p = n;
1464                p = &n->next;
1465                n_utask->depth++;
1466        }
1467
1468        return 0;
1469}
1470
1471static void uprobe_warn(struct task_struct *t, const char *msg)
1472{
1473        pr_warn("uprobe: %s:%d failed to %s\n",
1474                        current->comm, current->pid, msg);
1475}
1476
1477static void dup_xol_work(struct callback_head *work)
1478{
1479        if (current->flags & PF_EXITING)
1480                return;
1481
1482        if (!__create_xol_area(current->utask->dup_xol_addr) &&
1483                        !fatal_signal_pending(current))
1484                uprobe_warn(current, "dup xol area");
1485}
1486
1487/*
1488 * Called in context of a new clone/fork from copy_process.
1489 */
1490void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1491{
1492        struct uprobe_task *utask = current->utask;
1493        struct mm_struct *mm = current->mm;
1494        struct xol_area *area;
1495
1496        t->utask = NULL;
1497
1498        if (!utask || !utask->return_instances)
1499                return;
1500
1501        if (mm == t->mm && !(flags & CLONE_VFORK))
1502                return;
1503
1504        if (dup_utask(t, utask))
1505                return uprobe_warn(t, "dup ret instances");
1506
1507        /* The task can fork() after dup_xol_work() fails */
1508        area = mm->uprobes_state.xol_area;
1509        if (!area)
1510                return uprobe_warn(t, "dup xol area");
1511
1512        if (mm == t->mm)
1513                return;
1514
1515        t->utask->dup_xol_addr = area->vaddr;
1516        init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1517        task_work_add(t, &t->utask->dup_xol_work, true);
1518}
1519
1520/*
1521 * Current area->vaddr notion assume the trampoline address is always
1522 * equal area->vaddr.
1523 *
1524 * Returns -1 in case the xol_area is not allocated.
1525 */
1526static unsigned long get_trampoline_vaddr(void)
1527{
1528        struct xol_area *area;
1529        unsigned long trampoline_vaddr = -1;
1530
1531        area = current->mm->uprobes_state.xol_area;
1532        smp_read_barrier_depends();
1533        if (area)
1534                trampoline_vaddr = area->vaddr;
1535
1536        return trampoline_vaddr;
1537}
1538
1539static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1540                                        struct pt_regs *regs)
1541{
1542        struct return_instance *ri = utask->return_instances;
1543        enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1544
1545        while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1546                ri = free_ret_instance(ri);
1547                utask->depth--;
1548        }
1549        utask->return_instances = ri;
1550}
1551
1552static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1553{
1554        struct return_instance *ri;
1555        struct uprobe_task *utask;
1556        unsigned long orig_ret_vaddr, trampoline_vaddr;
1557        bool chained;
1558
1559        if (!get_xol_area())
1560                return;
1561
1562        utask = get_utask();
1563        if (!utask)
1564                return;
1565
1566        if (utask->depth >= MAX_URETPROBE_DEPTH) {
1567                printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1568                                " nestedness limit pid/tgid=%d/%d\n",
1569                                current->pid, current->tgid);
1570                return;
1571        }
1572
1573        ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1574        if (!ri)
1575                return;
1576
1577        trampoline_vaddr = get_trampoline_vaddr();
1578        orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1579        if (orig_ret_vaddr == -1)
1580                goto fail;
1581
1582        /* drop the entries invalidated by longjmp() */
1583        chained = (orig_ret_vaddr == trampoline_vaddr);
1584        cleanup_return_instances(utask, chained, regs);
1585
1586        /*
1587         * We don't want to keep trampoline address in stack, rather keep the
1588         * original return address of first caller thru all the consequent
1589         * instances. This also makes breakpoint unwrapping easier.
1590         */
1591        if (chained) {
1592                if (!utask->return_instances) {
1593                        /*
1594                         * This situation is not possible. Likely we have an
1595                         * attack from user-space.
1596                         */
1597                        uprobe_warn(current, "handle tail call");
1598                        goto fail;
1599                }
1600                orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1601        }
1602
1603        ri->uprobe = get_uprobe(uprobe);
1604        ri->func = instruction_pointer(regs);
1605        ri->stack = user_stack_pointer(regs);
1606        ri->orig_ret_vaddr = orig_ret_vaddr;
1607        ri->chained = chained;
1608
1609        utask->depth++;
1610        ri->next = utask->return_instances;
1611        utask->return_instances = ri;
1612
1613        return;
1614 fail:
1615        kfree(ri);
1616}
1617
1618/* Prepare to single-step probed instruction out of line. */
1619static int
1620pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1621{
1622        struct uprobe_task *utask;
1623        unsigned long xol_vaddr;
1624        int err;
1625
1626        utask = get_utask();
1627        if (!utask)
1628                return -ENOMEM;
1629
1630        xol_vaddr = xol_get_insn_slot(uprobe);
1631        if (!xol_vaddr)
1632                return -ENOMEM;
1633
1634        utask->xol_vaddr = xol_vaddr;
1635        utask->vaddr = bp_vaddr;
1636
1637        err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1638        if (unlikely(err)) {
1639                xol_free_insn_slot(current);
1640                return err;
1641        }
1642
1643        utask->active_uprobe = uprobe;
1644        utask->state = UTASK_SSTEP;
1645        return 0;
1646}
1647
1648/*
1649 * If we are singlestepping, then ensure this thread is not connected to
1650 * non-fatal signals until completion of singlestep.  When xol insn itself
1651 * triggers the signal,  restart the original insn even if the task is
1652 * already SIGKILL'ed (since coredump should report the correct ip).  This
1653 * is even more important if the task has a handler for SIGSEGV/etc, The
1654 * _same_ instruction should be repeated again after return from the signal
1655 * handler, and SSTEP can never finish in this case.
1656 */
1657bool uprobe_deny_signal(void)
1658{
1659        struct task_struct *t = current;
1660        struct uprobe_task *utask = t->utask;
1661
1662        if (likely(!utask || !utask->active_uprobe))
1663                return false;
1664
1665        WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1666
1667        if (signal_pending(t)) {
1668                spin_lock_irq(&t->sighand->siglock);
1669                clear_tsk_thread_flag(t, TIF_SIGPENDING);
1670                spin_unlock_irq(&t->sighand->siglock);
1671
1672                if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1673                        utask->state = UTASK_SSTEP_TRAPPED;
1674                        set_tsk_thread_flag(t, TIF_UPROBE);
1675                }
1676        }
1677
1678        return true;
1679}
1680
1681static void mmf_recalc_uprobes(struct mm_struct *mm)
1682{
1683        struct vm_area_struct *vma;
1684
1685        for (vma = mm->mmap; vma; vma = vma->vm_next) {
1686                if (!valid_vma(vma, false))
1687                        continue;
1688                /*
1689                 * This is not strictly accurate, we can race with
1690                 * uprobe_unregister() and see the already removed
1691                 * uprobe if delete_uprobe() was not yet called.
1692                 * Or this uprobe can be filtered out.
1693                 */
1694                if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1695                        return;
1696        }
1697
1698        clear_bit(MMF_HAS_UPROBES, &mm->flags);
1699}
1700
1701static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1702{
1703        struct page *page;
1704        uprobe_opcode_t opcode;
1705        int result;
1706
1707        pagefault_disable();
1708        result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1709        pagefault_enable();
1710
1711        if (likely(result == 0))
1712                goto out;
1713
1714        /*
1715         * The NULL 'tsk' here ensures that any faults that occur here
1716         * will not be accounted to the task.  'mm' *is* current->mm,
1717         * but we treat this as a 'remote' access since it is
1718         * essentially a kernel access to the memory.
1719         */
1720        result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1721                        NULL, NULL);
1722        if (result < 0)
1723                return result;
1724
1725        copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1726        put_page(page);
1727 out:
1728        /* This needs to return true for any variant of the trap insn */
1729        return is_trap_insn(&opcode);
1730}
1731
1732static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1733{
1734        struct mm_struct *mm = current->mm;
1735        struct uprobe *uprobe = NULL;
1736        struct vm_area_struct *vma;
1737
1738        down_read(&mm->mmap_sem);
1739        vma = find_vma(mm, bp_vaddr);
1740        if (vma && vma->vm_start <= bp_vaddr) {
1741                if (valid_vma(vma, false)) {
1742                        struct inode *inode = file_inode(vma->vm_file);
1743                        loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1744
1745                        uprobe = find_uprobe(inode, offset);
1746                }
1747
1748                if (!uprobe)
1749                        *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1750        } else {
1751                *is_swbp = -EFAULT;
1752        }
1753
1754        if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1755                mmf_recalc_uprobes(mm);
1756        up_read(&mm->mmap_sem);
1757
1758        return uprobe;
1759}
1760
1761static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1762{
1763        struct uprobe_consumer *uc;
1764        int remove = UPROBE_HANDLER_REMOVE;
1765        bool need_prep = false; /* prepare return uprobe, when needed */
1766
1767        down_read(&uprobe->register_rwsem);
1768        for (uc = uprobe->consumers; uc; uc = uc->next) {
1769                int rc = 0;
1770
1771                if (uc->handler) {
1772                        rc = uc->handler(uc, regs);
1773                        WARN(rc & ~UPROBE_HANDLER_MASK,
1774                                "bad rc=0x%x from %pf()\n", rc, uc->handler);
1775                }
1776
1777                if (uc->ret_handler)
1778                        need_prep = true;
1779
1780                remove &= rc;
1781        }
1782
1783        if (need_prep && !remove)
1784                prepare_uretprobe(uprobe, regs); /* put bp at return */
1785
1786        if (remove && uprobe->consumers) {
1787                WARN_ON(!uprobe_is_active(uprobe));
1788                unapply_uprobe(uprobe, current->mm);
1789        }
1790        up_read(&uprobe->register_rwsem);
1791}
1792
1793static void
1794handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1795{
1796        struct uprobe *uprobe = ri->uprobe;
1797        struct uprobe_consumer *uc;
1798
1799        down_read(&uprobe->register_rwsem);
1800        for (uc = uprobe->consumers; uc; uc = uc->next) {
1801                if (uc->ret_handler)
1802                        uc->ret_handler(uc, ri->func, regs);
1803        }
1804        up_read(&uprobe->register_rwsem);
1805}
1806
1807static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1808{
1809        bool chained;
1810
1811        do {
1812                chained = ri->chained;
1813                ri = ri->next;  /* can't be NULL if chained */
1814        } while (chained);
1815
1816        return ri;
1817}
1818
1819static void handle_trampoline(struct pt_regs *regs)
1820{
1821        struct uprobe_task *utask;
1822        struct return_instance *ri, *next;
1823        bool valid;
1824
1825        utask = current->utask;
1826        if (!utask)
1827                goto sigill;
1828
1829        ri = utask->return_instances;
1830        if (!ri)
1831                goto sigill;
1832
1833        do {
1834                /*
1835                 * We should throw out the frames invalidated by longjmp().
1836                 * If this chain is valid, then the next one should be alive
1837                 * or NULL; the latter case means that nobody but ri->func
1838                 * could hit this trampoline on return. TODO: sigaltstack().
1839                 */
1840                next = find_next_ret_chain(ri);
1841                valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1842
1843                instruction_pointer_set(regs, ri->orig_ret_vaddr);
1844                do {
1845                        if (valid)
1846                                handle_uretprobe_chain(ri, regs);
1847                        ri = free_ret_instance(ri);
1848                        utask->depth--;
1849                } while (ri != next);
1850        } while (!valid);
1851
1852        utask->return_instances = ri;
1853        return;
1854
1855 sigill:
1856        uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1857        force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1858
1859}
1860
1861bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1862{
1863        return false;
1864}
1865
1866bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1867                                        struct pt_regs *regs)
1868{
1869        return true;
1870}
1871
1872/*
1873 * Run handler and ask thread to singlestep.
1874 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1875 */
1876static void handle_swbp(struct pt_regs *regs)
1877{
1878        struct uprobe *uprobe;
1879        unsigned long bp_vaddr;
1880        int uninitialized_var(is_swbp);
1881
1882        bp_vaddr = uprobe_get_swbp_addr(regs);
1883        if (bp_vaddr == get_trampoline_vaddr())
1884                return handle_trampoline(regs);
1885
1886        uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1887        if (!uprobe) {
1888                if (is_swbp > 0) {
1889                        /* No matching uprobe; signal SIGTRAP. */
1890                        send_sig(SIGTRAP, current, 0);
1891                } else {
1892                        /*
1893                         * Either we raced with uprobe_unregister() or we can't
1894                         * access this memory. The latter is only possible if
1895                         * another thread plays with our ->mm. In both cases
1896                         * we can simply restart. If this vma was unmapped we
1897                         * can pretend this insn was not executed yet and get
1898                         * the (correct) SIGSEGV after restart.
1899                         */
1900                        instruction_pointer_set(regs, bp_vaddr);
1901                }
1902                return;
1903        }
1904
1905        /* change it in advance for ->handler() and restart */
1906        instruction_pointer_set(regs, bp_vaddr);
1907
1908        /*
1909         * TODO: move copy_insn/etc into _register and remove this hack.
1910         * After we hit the bp, _unregister + _register can install the
1911         * new and not-yet-analyzed uprobe at the same address, restart.
1912         */
1913        smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1914        if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1915                goto out;
1916
1917        /* Tracing handlers use ->utask to communicate with fetch methods */
1918        if (!get_utask())
1919                goto out;
1920
1921        if (arch_uprobe_ignore(&uprobe->arch, regs))
1922                goto out;
1923
1924        handler_chain(uprobe, regs);
1925
1926        if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1927                goto out;
1928
1929        if (!pre_ssout(uprobe, regs, bp_vaddr))
1930                return;
1931
1932        /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1933out:
1934        put_uprobe(uprobe);
1935}
1936
1937/*
1938 * Perform required fix-ups and disable singlestep.
1939 * Allow pending signals to take effect.
1940 */
1941static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1942{
1943        struct uprobe *uprobe;
1944        int err = 0;
1945
1946        uprobe = utask->active_uprobe;
1947        if (utask->state == UTASK_SSTEP_ACK)
1948                err = arch_uprobe_post_xol(&uprobe->arch, regs);
1949        else if (utask->state == UTASK_SSTEP_TRAPPED)
1950                arch_uprobe_abort_xol(&uprobe->arch, regs);
1951        else
1952                WARN_ON_ONCE(1);
1953
1954        put_uprobe(uprobe);
1955        utask->active_uprobe = NULL;
1956        utask->state = UTASK_RUNNING;
1957        xol_free_insn_slot(current);
1958
1959        spin_lock_irq(&current->sighand->siglock);
1960        recalc_sigpending(); /* see uprobe_deny_signal() */
1961        spin_unlock_irq(&current->sighand->siglock);
1962
1963        if (unlikely(err)) {
1964                uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1965                force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1966        }
1967}
1968
1969/*
1970 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1971 * allows the thread to return from interrupt. After that handle_swbp()
1972 * sets utask->active_uprobe.
1973 *
1974 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1975 * and allows the thread to return from interrupt.
1976 *
1977 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1978 * uprobe_notify_resume().
1979 */
1980void uprobe_notify_resume(struct pt_regs *regs)
1981{
1982        struct uprobe_task *utask;
1983
1984        clear_thread_flag(TIF_UPROBE);
1985
1986        utask = current->utask;
1987        if (utask && utask->active_uprobe)
1988                handle_singlestep(utask, regs);
1989        else
1990                handle_swbp(regs);
1991}
1992
1993/*
1994 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1995 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1996 */
1997int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1998{
1999        if (!current->mm)
2000                return 0;
2001
2002        if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2003            (!current->utask || !current->utask->return_instances))
2004                return 0;
2005
2006        set_thread_flag(TIF_UPROBE);
2007        return 1;
2008}
2009
2010/*
2011 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2012 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2013 */
2014int uprobe_post_sstep_notifier(struct pt_regs *regs)
2015{
2016        struct uprobe_task *utask = current->utask;
2017
2018        if (!current->mm || !utask || !utask->active_uprobe)
2019                /* task is currently not uprobed */
2020                return 0;
2021
2022        utask->state = UTASK_SSTEP_ACK;
2023        set_thread_flag(TIF_UPROBE);
2024        return 1;
2025}
2026
2027static struct notifier_block uprobe_exception_nb = {
2028        .notifier_call          = arch_uprobe_exception_notify,
2029        .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2030};
2031
2032static int __init init_uprobes(void)
2033{
2034        int i;
2035
2036        for (i = 0; i < UPROBES_HASH_SZ; i++)
2037                mutex_init(&uprobes_mmap_mutex[i]);
2038
2039        if (percpu_init_rwsem(&dup_mmap_sem))
2040                return -ENOMEM;
2041
2042        return register_die_notifier(&uprobe_exception_nb);
2043}
2044__initcall(init_uprobes);
2045