linux/kernel/fork.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/fork.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 *  'fork.c' contains the help-routines for the 'fork' system call
   9 * (see also entry.S and others).
  10 * Fork is rather simple, once you get the hang of it, but the memory
  11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/sched/autogroup.h>
  16#include <linux/sched/mm.h>
  17#include <linux/sched/coredump.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/numa_balancing.h>
  20#include <linux/sched/stat.h>
  21#include <linux/sched/task.h>
  22#include <linux/sched/task_stack.h>
  23#include <linux/sched/cputime.h>
  24#include <linux/rtmutex.h>
  25#include <linux/init.h>
  26#include <linux/unistd.h>
  27#include <linux/module.h>
  28#include <linux/vmalloc.h>
  29#include <linux/completion.h>
  30#include <linux/personality.h>
  31#include <linux/mempolicy.h>
  32#include <linux/sem.h>
  33#include <linux/file.h>
  34#include <linux/fdtable.h>
  35#include <linux/iocontext.h>
  36#include <linux/key.h>
  37#include <linux/binfmts.h>
  38#include <linux/mman.h>
  39#include <linux/mmu_notifier.h>
  40#include <linux/fs.h>
  41#include <linux/mm.h>
  42#include <linux/vmacache.h>
  43#include <linux/nsproxy.h>
  44#include <linux/capability.h>
  45#include <linux/cpu.h>
  46#include <linux/cgroup.h>
  47#include <linux/security.h>
  48#include <linux/hugetlb.h>
  49#include <linux/seccomp.h>
  50#include <linux/swap.h>
  51#include <linux/syscalls.h>
  52#include <linux/jiffies.h>
  53#include <linux/futex.h>
  54#include <linux/compat.h>
  55#include <linux/kthread.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/rcupdate.h>
  58#include <linux/ptrace.h>
  59#include <linux/mount.h>
  60#include <linux/audit.h>
  61#include <linux/memcontrol.h>
  62#include <linux/ftrace.h>
  63#include <linux/proc_fs.h>
  64#include <linux/profile.h>
  65#include <linux/rmap.h>
  66#include <linux/ksm.h>
  67#include <linux/acct.h>
  68#include <linux/userfaultfd_k.h>
  69#include <linux/tsacct_kern.h>
  70#include <linux/cn_proc.h>
  71#include <linux/freezer.h>
  72#include <linux/delayacct.h>
  73#include <linux/taskstats_kern.h>
  74#include <linux/random.h>
  75#include <linux/tty.h>
  76#include <linux/blkdev.h>
  77#include <linux/fs_struct.h>
  78#include <linux/magic.h>
  79#include <linux/perf_event.h>
  80#include <linux/posix-timers.h>
  81#include <linux/user-return-notifier.h>
  82#include <linux/oom.h>
  83#include <linux/khugepaged.h>
  84#include <linux/signalfd.h>
  85#include <linux/uprobes.h>
  86#include <linux/aio.h>
  87#include <linux/compiler.h>
  88#include <linux/sysctl.h>
  89#include <linux/kcov.h>
  90#include <linux/livepatch.h>
  91
  92#include <asm/pgtable.h>
  93#include <asm/pgalloc.h>
  94#include <linux/uaccess.h>
  95#include <asm/mmu_context.h>
  96#include <asm/cacheflush.h>
  97#include <asm/tlbflush.h>
  98
  99#include <trace/events/sched.h>
 100
 101#define CREATE_TRACE_POINTS
 102#include <trace/events/task.h>
 103
 104/*
 105 * Minimum number of threads to boot the kernel
 106 */
 107#define MIN_THREADS 20
 108
 109/*
 110 * Maximum number of threads
 111 */
 112#define MAX_THREADS FUTEX_TID_MASK
 113
 114/*
 115 * Protected counters by write_lock_irq(&tasklist_lock)
 116 */
 117unsigned long total_forks;      /* Handle normal Linux uptimes. */
 118int nr_threads;                 /* The idle threads do not count.. */
 119
 120int max_threads;                /* tunable limit on nr_threads */
 121
 122DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 123
 124__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 125
 126#ifdef CONFIG_PROVE_RCU
 127int lockdep_tasklist_lock_is_held(void)
 128{
 129        return lockdep_is_held(&tasklist_lock);
 130}
 131EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 132#endif /* #ifdef CONFIG_PROVE_RCU */
 133
 134int nr_processes(void)
 135{
 136        int cpu;
 137        int total = 0;
 138
 139        for_each_possible_cpu(cpu)
 140                total += per_cpu(process_counts, cpu);
 141
 142        return total;
 143}
 144
 145void __weak arch_release_task_struct(struct task_struct *tsk)
 146{
 147}
 148
 149#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 150static struct kmem_cache *task_struct_cachep;
 151
 152static inline struct task_struct *alloc_task_struct_node(int node)
 153{
 154        return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 155}
 156
 157static inline void free_task_struct(struct task_struct *tsk)
 158{
 159        kmem_cache_free(task_struct_cachep, tsk);
 160}
 161#endif
 162
 163void __weak arch_release_thread_stack(unsigned long *stack)
 164{
 165}
 166
 167#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 168
 169/*
 170 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 171 * kmemcache based allocator.
 172 */
 173# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 174
 175#ifdef CONFIG_VMAP_STACK
 176/*
 177 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 178 * flush.  Try to minimize the number of calls by caching stacks.
 179 */
 180#define NR_CACHED_STACKS 2
 181static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 182
 183static int free_vm_stack_cache(unsigned int cpu)
 184{
 185        struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 186        int i;
 187
 188        for (i = 0; i < NR_CACHED_STACKS; i++) {
 189                struct vm_struct *vm_stack = cached_vm_stacks[i];
 190
 191                if (!vm_stack)
 192                        continue;
 193
 194                vfree(vm_stack->addr);
 195                cached_vm_stacks[i] = NULL;
 196        }
 197
 198        return 0;
 199}
 200#endif
 201
 202static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
 203{
 204#ifdef CONFIG_VMAP_STACK
 205        void *stack;
 206        int i;
 207
 208        for (i = 0; i < NR_CACHED_STACKS; i++) {
 209                struct vm_struct *s;
 210
 211                s = this_cpu_xchg(cached_stacks[i], NULL);
 212
 213                if (!s)
 214                        continue;
 215
 216                tsk->stack_vm_area = s;
 217                return s->addr;
 218        }
 219
 220        stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
 221                                     VMALLOC_START, VMALLOC_END,
 222                                     THREADINFO_GFP,
 223                                     PAGE_KERNEL,
 224                                     0, node, __builtin_return_address(0));
 225
 226        /*
 227         * We can't call find_vm_area() in interrupt context, and
 228         * free_thread_stack() can be called in interrupt context,
 229         * so cache the vm_struct.
 230         */
 231        if (stack)
 232                tsk->stack_vm_area = find_vm_area(stack);
 233        return stack;
 234#else
 235        struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 236                                             THREAD_SIZE_ORDER);
 237
 238        return page ? page_address(page) : NULL;
 239#endif
 240}
 241
 242static inline void free_thread_stack(struct task_struct *tsk)
 243{
 244#ifdef CONFIG_VMAP_STACK
 245        if (task_stack_vm_area(tsk)) {
 246                int i;
 247
 248                for (i = 0; i < NR_CACHED_STACKS; i++) {
 249                        if (this_cpu_cmpxchg(cached_stacks[i],
 250                                        NULL, tsk->stack_vm_area) != NULL)
 251                                continue;
 252
 253                        return;
 254                }
 255
 256                vfree_atomic(tsk->stack);
 257                return;
 258        }
 259#endif
 260
 261        __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
 262}
 263# else
 264static struct kmem_cache *thread_stack_cache;
 265
 266static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 267                                                  int node)
 268{
 269        return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 270}
 271
 272static void free_thread_stack(struct task_struct *tsk)
 273{
 274        kmem_cache_free(thread_stack_cache, tsk->stack);
 275}
 276
 277void thread_stack_cache_init(void)
 278{
 279        thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
 280                                              THREAD_SIZE, 0, NULL);
 281        BUG_ON(thread_stack_cache == NULL);
 282}
 283# endif
 284#endif
 285
 286/* SLAB cache for signal_struct structures (tsk->signal) */
 287static struct kmem_cache *signal_cachep;
 288
 289/* SLAB cache for sighand_struct structures (tsk->sighand) */
 290struct kmem_cache *sighand_cachep;
 291
 292/* SLAB cache for files_struct structures (tsk->files) */
 293struct kmem_cache *files_cachep;
 294
 295/* SLAB cache for fs_struct structures (tsk->fs) */
 296struct kmem_cache *fs_cachep;
 297
 298/* SLAB cache for vm_area_struct structures */
 299struct kmem_cache *vm_area_cachep;
 300
 301/* SLAB cache for mm_struct structures (tsk->mm) */
 302static struct kmem_cache *mm_cachep;
 303
 304static void account_kernel_stack(struct task_struct *tsk, int account)
 305{
 306        void *stack = task_stack_page(tsk);
 307        struct vm_struct *vm = task_stack_vm_area(tsk);
 308
 309        BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 310
 311        if (vm) {
 312                int i;
 313
 314                BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 315
 316                for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 317                        mod_zone_page_state(page_zone(vm->pages[i]),
 318                                            NR_KERNEL_STACK_KB,
 319                                            PAGE_SIZE / 1024 * account);
 320                }
 321
 322                /* All stack pages belong to the same memcg. */
 323                mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
 324                                     account * (THREAD_SIZE / 1024));
 325        } else {
 326                /*
 327                 * All stack pages are in the same zone and belong to the
 328                 * same memcg.
 329                 */
 330                struct page *first_page = virt_to_page(stack);
 331
 332                mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
 333                                    THREAD_SIZE / 1024 * account);
 334
 335                mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
 336                                     account * (THREAD_SIZE / 1024));
 337        }
 338}
 339
 340static void release_task_stack(struct task_struct *tsk)
 341{
 342        if (WARN_ON(tsk->state != TASK_DEAD))
 343                return;  /* Better to leak the stack than to free prematurely */
 344
 345        account_kernel_stack(tsk, -1);
 346        arch_release_thread_stack(tsk->stack);
 347        free_thread_stack(tsk);
 348        tsk->stack = NULL;
 349#ifdef CONFIG_VMAP_STACK
 350        tsk->stack_vm_area = NULL;
 351#endif
 352}
 353
 354#ifdef CONFIG_THREAD_INFO_IN_TASK
 355void put_task_stack(struct task_struct *tsk)
 356{
 357        if (atomic_dec_and_test(&tsk->stack_refcount))
 358                release_task_stack(tsk);
 359}
 360#endif
 361
 362void free_task(struct task_struct *tsk)
 363{
 364#ifndef CONFIG_THREAD_INFO_IN_TASK
 365        /*
 366         * The task is finally done with both the stack and thread_info,
 367         * so free both.
 368         */
 369        release_task_stack(tsk);
 370#else
 371        /*
 372         * If the task had a separate stack allocation, it should be gone
 373         * by now.
 374         */
 375        WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
 376#endif
 377        rt_mutex_debug_task_free(tsk);
 378        ftrace_graph_exit_task(tsk);
 379        put_seccomp_filter(tsk);
 380        arch_release_task_struct(tsk);
 381        if (tsk->flags & PF_KTHREAD)
 382                free_kthread_struct(tsk);
 383        free_task_struct(tsk);
 384}
 385EXPORT_SYMBOL(free_task);
 386
 387static inline void free_signal_struct(struct signal_struct *sig)
 388{
 389        taskstats_tgid_free(sig);
 390        sched_autogroup_exit(sig);
 391        /*
 392         * __mmdrop is not safe to call from softirq context on x86 due to
 393         * pgd_dtor so postpone it to the async context
 394         */
 395        if (sig->oom_mm)
 396                mmdrop_async(sig->oom_mm);
 397        kmem_cache_free(signal_cachep, sig);
 398}
 399
 400static inline void put_signal_struct(struct signal_struct *sig)
 401{
 402        if (atomic_dec_and_test(&sig->sigcnt))
 403                free_signal_struct(sig);
 404}
 405
 406void __put_task_struct(struct task_struct *tsk)
 407{
 408        WARN_ON(!tsk->exit_state);
 409        WARN_ON(atomic_read(&tsk->usage));
 410        WARN_ON(tsk == current);
 411
 412        cgroup_free(tsk);
 413        task_numa_free(tsk);
 414        security_task_free(tsk);
 415        exit_creds(tsk);
 416        delayacct_tsk_free(tsk);
 417        put_signal_struct(tsk->signal);
 418
 419        if (!profile_handoff_task(tsk))
 420                free_task(tsk);
 421}
 422EXPORT_SYMBOL_GPL(__put_task_struct);
 423
 424void __init __weak arch_task_cache_init(void) { }
 425
 426/*
 427 * set_max_threads
 428 */
 429static void set_max_threads(unsigned int max_threads_suggested)
 430{
 431        u64 threads;
 432
 433        /*
 434         * The number of threads shall be limited such that the thread
 435         * structures may only consume a small part of the available memory.
 436         */
 437        if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
 438                threads = MAX_THREADS;
 439        else
 440                threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
 441                                    (u64) THREAD_SIZE * 8UL);
 442
 443        if (threads > max_threads_suggested)
 444                threads = max_threads_suggested;
 445
 446        max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 447}
 448
 449#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 450/* Initialized by the architecture: */
 451int arch_task_struct_size __read_mostly;
 452#endif
 453
 454void __init fork_init(void)
 455{
 456        int i;
 457#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 458#ifndef ARCH_MIN_TASKALIGN
 459#define ARCH_MIN_TASKALIGN      0
 460#endif
 461        int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 462
 463        /* create a slab on which task_structs can be allocated */
 464        task_struct_cachep = kmem_cache_create("task_struct",
 465                        arch_task_struct_size, align,
 466                        SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
 467#endif
 468
 469        /* do the arch specific task caches init */
 470        arch_task_cache_init();
 471
 472        set_max_threads(MAX_THREADS);
 473
 474        init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 475        init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 476        init_task.signal->rlim[RLIMIT_SIGPENDING] =
 477                init_task.signal->rlim[RLIMIT_NPROC];
 478
 479        for (i = 0; i < UCOUNT_COUNTS; i++) {
 480                init_user_ns.ucount_max[i] = max_threads/2;
 481        }
 482
 483#ifdef CONFIG_VMAP_STACK
 484        cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 485                          NULL, free_vm_stack_cache);
 486#endif
 487}
 488
 489int __weak arch_dup_task_struct(struct task_struct *dst,
 490                                               struct task_struct *src)
 491{
 492        *dst = *src;
 493        return 0;
 494}
 495
 496void set_task_stack_end_magic(struct task_struct *tsk)
 497{
 498        unsigned long *stackend;
 499
 500        stackend = end_of_stack(tsk);
 501        *stackend = STACK_END_MAGIC;    /* for overflow detection */
 502}
 503
 504static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 505{
 506        struct task_struct *tsk;
 507        unsigned long *stack;
 508        struct vm_struct *stack_vm_area;
 509        int err;
 510
 511        if (node == NUMA_NO_NODE)
 512                node = tsk_fork_get_node(orig);
 513        tsk = alloc_task_struct_node(node);
 514        if (!tsk)
 515                return NULL;
 516
 517        stack = alloc_thread_stack_node(tsk, node);
 518        if (!stack)
 519                goto free_tsk;
 520
 521        stack_vm_area = task_stack_vm_area(tsk);
 522
 523        err = arch_dup_task_struct(tsk, orig);
 524
 525        /*
 526         * arch_dup_task_struct() clobbers the stack-related fields.  Make
 527         * sure they're properly initialized before using any stack-related
 528         * functions again.
 529         */
 530        tsk->stack = stack;
 531#ifdef CONFIG_VMAP_STACK
 532        tsk->stack_vm_area = stack_vm_area;
 533#endif
 534#ifdef CONFIG_THREAD_INFO_IN_TASK
 535        atomic_set(&tsk->stack_refcount, 1);
 536#endif
 537
 538        if (err)
 539                goto free_stack;
 540
 541#ifdef CONFIG_SECCOMP
 542        /*
 543         * We must handle setting up seccomp filters once we're under
 544         * the sighand lock in case orig has changed between now and
 545         * then. Until then, filter must be NULL to avoid messing up
 546         * the usage counts on the error path calling free_task.
 547         */
 548        tsk->seccomp.filter = NULL;
 549#endif
 550
 551        setup_thread_stack(tsk, orig);
 552        clear_user_return_notifier(tsk);
 553        clear_tsk_need_resched(tsk);
 554        set_task_stack_end_magic(tsk);
 555
 556#ifdef CONFIG_CC_STACKPROTECTOR
 557        tsk->stack_canary = get_random_canary();
 558#endif
 559
 560        /*
 561         * One for us, one for whoever does the "release_task()" (usually
 562         * parent)
 563         */
 564        atomic_set(&tsk->usage, 2);
 565#ifdef CONFIG_BLK_DEV_IO_TRACE
 566        tsk->btrace_seq = 0;
 567#endif
 568        tsk->splice_pipe = NULL;
 569        tsk->task_frag.page = NULL;
 570        tsk->wake_q.next = NULL;
 571
 572        account_kernel_stack(tsk, 1);
 573
 574        kcov_task_init(tsk);
 575
 576#ifdef CONFIG_FAULT_INJECTION
 577        tsk->fail_nth = 0;
 578#endif
 579
 580        return tsk;
 581
 582free_stack:
 583        free_thread_stack(tsk);
 584free_tsk:
 585        free_task_struct(tsk);
 586        return NULL;
 587}
 588
 589#ifdef CONFIG_MMU
 590static __latent_entropy int dup_mmap(struct mm_struct *mm,
 591                                        struct mm_struct *oldmm)
 592{
 593        struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 594        struct rb_node **rb_link, *rb_parent;
 595        int retval;
 596        unsigned long charge;
 597        LIST_HEAD(uf);
 598
 599        uprobe_start_dup_mmap();
 600        if (down_write_killable(&oldmm->mmap_sem)) {
 601                retval = -EINTR;
 602                goto fail_uprobe_end;
 603        }
 604        flush_cache_dup_mm(oldmm);
 605        uprobe_dup_mmap(oldmm, mm);
 606        /*
 607         * Not linked in yet - no deadlock potential:
 608         */
 609        down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 610
 611        /* No ordering required: file already has been exposed. */
 612        RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 613
 614        mm->total_vm = oldmm->total_vm;
 615        mm->data_vm = oldmm->data_vm;
 616        mm->exec_vm = oldmm->exec_vm;
 617        mm->stack_vm = oldmm->stack_vm;
 618
 619        rb_link = &mm->mm_rb.rb_node;
 620        rb_parent = NULL;
 621        pprev = &mm->mmap;
 622        retval = ksm_fork(mm, oldmm);
 623        if (retval)
 624                goto out;
 625        retval = khugepaged_fork(mm, oldmm);
 626        if (retval)
 627                goto out;
 628
 629        prev = NULL;
 630        for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 631                struct file *file;
 632
 633                if (mpnt->vm_flags & VM_DONTCOPY) {
 634                        vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 635                        continue;
 636                }
 637                charge = 0;
 638                if (mpnt->vm_flags & VM_ACCOUNT) {
 639                        unsigned long len = vma_pages(mpnt);
 640
 641                        if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 642                                goto fail_nomem;
 643                        charge = len;
 644                }
 645                tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 646                if (!tmp)
 647                        goto fail_nomem;
 648                *tmp = *mpnt;
 649                INIT_LIST_HEAD(&tmp->anon_vma_chain);
 650                retval = vma_dup_policy(mpnt, tmp);
 651                if (retval)
 652                        goto fail_nomem_policy;
 653                tmp->vm_mm = mm;
 654                retval = dup_userfaultfd(tmp, &uf);
 655                if (retval)
 656                        goto fail_nomem_anon_vma_fork;
 657                if (anon_vma_fork(tmp, mpnt))
 658                        goto fail_nomem_anon_vma_fork;
 659                tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
 660                tmp->vm_next = tmp->vm_prev = NULL;
 661                file = tmp->vm_file;
 662                if (file) {
 663                        struct inode *inode = file_inode(file);
 664                        struct address_space *mapping = file->f_mapping;
 665
 666                        get_file(file);
 667                        if (tmp->vm_flags & VM_DENYWRITE)
 668                                atomic_dec(&inode->i_writecount);
 669                        i_mmap_lock_write(mapping);
 670                        if (tmp->vm_flags & VM_SHARED)
 671                                atomic_inc(&mapping->i_mmap_writable);
 672                        flush_dcache_mmap_lock(mapping);
 673                        /* insert tmp into the share list, just after mpnt */
 674                        vma_interval_tree_insert_after(tmp, mpnt,
 675                                        &mapping->i_mmap);
 676                        flush_dcache_mmap_unlock(mapping);
 677                        i_mmap_unlock_write(mapping);
 678                }
 679
 680                /*
 681                 * Clear hugetlb-related page reserves for children. This only
 682                 * affects MAP_PRIVATE mappings. Faults generated by the child
 683                 * are not guaranteed to succeed, even if read-only
 684                 */
 685                if (is_vm_hugetlb_page(tmp))
 686                        reset_vma_resv_huge_pages(tmp);
 687
 688                /*
 689                 * Link in the new vma and copy the page table entries.
 690                 */
 691                *pprev = tmp;
 692                pprev = &tmp->vm_next;
 693                tmp->vm_prev = prev;
 694                prev = tmp;
 695
 696                __vma_link_rb(mm, tmp, rb_link, rb_parent);
 697                rb_link = &tmp->vm_rb.rb_right;
 698                rb_parent = &tmp->vm_rb;
 699
 700                mm->map_count++;
 701                retval = copy_page_range(mm, oldmm, mpnt);
 702
 703                if (tmp->vm_ops && tmp->vm_ops->open)
 704                        tmp->vm_ops->open(tmp);
 705
 706                if (retval)
 707                        goto out;
 708        }
 709        /* a new mm has just been created */
 710        arch_dup_mmap(oldmm, mm);
 711        retval = 0;
 712out:
 713        up_write(&mm->mmap_sem);
 714        flush_tlb_mm(oldmm);
 715        up_write(&oldmm->mmap_sem);
 716        dup_userfaultfd_complete(&uf);
 717fail_uprobe_end:
 718        uprobe_end_dup_mmap();
 719        return retval;
 720fail_nomem_anon_vma_fork:
 721        mpol_put(vma_policy(tmp));
 722fail_nomem_policy:
 723        kmem_cache_free(vm_area_cachep, tmp);
 724fail_nomem:
 725        retval = -ENOMEM;
 726        vm_unacct_memory(charge);
 727        goto out;
 728}
 729
 730static inline int mm_alloc_pgd(struct mm_struct *mm)
 731{
 732        mm->pgd = pgd_alloc(mm);
 733        if (unlikely(!mm->pgd))
 734                return -ENOMEM;
 735        return 0;
 736}
 737
 738static inline void mm_free_pgd(struct mm_struct *mm)
 739{
 740        pgd_free(mm, mm->pgd);
 741}
 742#else
 743static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 744{
 745        down_write(&oldmm->mmap_sem);
 746        RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 747        up_write(&oldmm->mmap_sem);
 748        return 0;
 749}
 750#define mm_alloc_pgd(mm)        (0)
 751#define mm_free_pgd(mm)
 752#endif /* CONFIG_MMU */
 753
 754__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 755
 756#define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 757#define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
 758
 759static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 760
 761static int __init coredump_filter_setup(char *s)
 762{
 763        default_dump_filter =
 764                (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 765                MMF_DUMP_FILTER_MASK;
 766        return 1;
 767}
 768
 769__setup("coredump_filter=", coredump_filter_setup);
 770
 771#include <linux/init_task.h>
 772
 773static void mm_init_aio(struct mm_struct *mm)
 774{
 775#ifdef CONFIG_AIO
 776        spin_lock_init(&mm->ioctx_lock);
 777        mm->ioctx_table = NULL;
 778#endif
 779}
 780
 781static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 782{
 783#ifdef CONFIG_MEMCG
 784        mm->owner = p;
 785#endif
 786}
 787
 788static void mm_init_uprobes_state(struct mm_struct *mm)
 789{
 790#ifdef CONFIG_UPROBES
 791        mm->uprobes_state.xol_area = NULL;
 792#endif
 793}
 794
 795static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
 796        struct user_namespace *user_ns)
 797{
 798        mm->mmap = NULL;
 799        mm->mm_rb = RB_ROOT;
 800        mm->vmacache_seqnum = 0;
 801        atomic_set(&mm->mm_users, 1);
 802        atomic_set(&mm->mm_count, 1);
 803        init_rwsem(&mm->mmap_sem);
 804        INIT_LIST_HEAD(&mm->mmlist);
 805        mm->core_state = NULL;
 806        atomic_long_set(&mm->nr_ptes, 0);
 807        mm_nr_pmds_init(mm);
 808        mm->map_count = 0;
 809        mm->locked_vm = 0;
 810        mm->pinned_vm = 0;
 811        memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
 812        spin_lock_init(&mm->page_table_lock);
 813        mm_init_cpumask(mm);
 814        mm_init_aio(mm);
 815        mm_init_owner(mm, p);
 816        RCU_INIT_POINTER(mm->exe_file, NULL);
 817        mmu_notifier_mm_init(mm);
 818        init_tlb_flush_pending(mm);
 819#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 820        mm->pmd_huge_pte = NULL;
 821#endif
 822        mm_init_uprobes_state(mm);
 823
 824        if (current->mm) {
 825                mm->flags = current->mm->flags & MMF_INIT_MASK;
 826                mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
 827        } else {
 828                mm->flags = default_dump_filter;
 829                mm->def_flags = 0;
 830        }
 831
 832        if (mm_alloc_pgd(mm))
 833                goto fail_nopgd;
 834
 835        if (init_new_context(p, mm))
 836                goto fail_nocontext;
 837
 838        mm->user_ns = get_user_ns(user_ns);
 839        return mm;
 840
 841fail_nocontext:
 842        mm_free_pgd(mm);
 843fail_nopgd:
 844        free_mm(mm);
 845        return NULL;
 846}
 847
 848static void check_mm(struct mm_struct *mm)
 849{
 850        int i;
 851
 852        for (i = 0; i < NR_MM_COUNTERS; i++) {
 853                long x = atomic_long_read(&mm->rss_stat.count[i]);
 854
 855                if (unlikely(x))
 856                        printk(KERN_ALERT "BUG: Bad rss-counter state "
 857                                          "mm:%p idx:%d val:%ld\n", mm, i, x);
 858        }
 859
 860        if (atomic_long_read(&mm->nr_ptes))
 861                pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
 862                                atomic_long_read(&mm->nr_ptes));
 863        if (mm_nr_pmds(mm))
 864                pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
 865                                mm_nr_pmds(mm));
 866
 867#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 868        VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 869#endif
 870}
 871
 872/*
 873 * Allocate and initialize an mm_struct.
 874 */
 875struct mm_struct *mm_alloc(void)
 876{
 877        struct mm_struct *mm;
 878
 879        mm = allocate_mm();
 880        if (!mm)
 881                return NULL;
 882
 883        memset(mm, 0, sizeof(*mm));
 884        return mm_init(mm, current, current_user_ns());
 885}
 886
 887/*
 888 * Called when the last reference to the mm
 889 * is dropped: either by a lazy thread or by
 890 * mmput. Free the page directory and the mm.
 891 */
 892void __mmdrop(struct mm_struct *mm)
 893{
 894        BUG_ON(mm == &init_mm);
 895        mm_free_pgd(mm);
 896        destroy_context(mm);
 897        mmu_notifier_mm_destroy(mm);
 898        check_mm(mm);
 899        put_user_ns(mm->user_ns);
 900        free_mm(mm);
 901}
 902EXPORT_SYMBOL_GPL(__mmdrop);
 903
 904static inline void __mmput(struct mm_struct *mm)
 905{
 906        VM_BUG_ON(atomic_read(&mm->mm_users));
 907
 908        uprobe_clear_state(mm);
 909        exit_aio(mm);
 910        ksm_exit(mm);
 911        khugepaged_exit(mm); /* must run before exit_mmap */
 912        exit_mmap(mm);
 913        mm_put_huge_zero_page(mm);
 914        set_mm_exe_file(mm, NULL);
 915        if (!list_empty(&mm->mmlist)) {
 916                spin_lock(&mmlist_lock);
 917                list_del(&mm->mmlist);
 918                spin_unlock(&mmlist_lock);
 919        }
 920        if (mm->binfmt)
 921                module_put(mm->binfmt->module);
 922        set_bit(MMF_OOM_SKIP, &mm->flags);
 923        mmdrop(mm);
 924}
 925
 926/*
 927 * Decrement the use count and release all resources for an mm.
 928 */
 929void mmput(struct mm_struct *mm)
 930{
 931        might_sleep();
 932
 933        if (atomic_dec_and_test(&mm->mm_users))
 934                __mmput(mm);
 935}
 936EXPORT_SYMBOL_GPL(mmput);
 937
 938#ifdef CONFIG_MMU
 939static void mmput_async_fn(struct work_struct *work)
 940{
 941        struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
 942        __mmput(mm);
 943}
 944
 945void mmput_async(struct mm_struct *mm)
 946{
 947        if (atomic_dec_and_test(&mm->mm_users)) {
 948                INIT_WORK(&mm->async_put_work, mmput_async_fn);
 949                schedule_work(&mm->async_put_work);
 950        }
 951}
 952#endif
 953
 954/**
 955 * set_mm_exe_file - change a reference to the mm's executable file
 956 *
 957 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
 958 *
 959 * Main users are mmput() and sys_execve(). Callers prevent concurrent
 960 * invocations: in mmput() nobody alive left, in execve task is single
 961 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
 962 * mm->exe_file, but does so without using set_mm_exe_file() in order
 963 * to do avoid the need for any locks.
 964 */
 965void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
 966{
 967        struct file *old_exe_file;
 968
 969        /*
 970         * It is safe to dereference the exe_file without RCU as
 971         * this function is only called if nobody else can access
 972         * this mm -- see comment above for justification.
 973         */
 974        old_exe_file = rcu_dereference_raw(mm->exe_file);
 975
 976        if (new_exe_file)
 977                get_file(new_exe_file);
 978        rcu_assign_pointer(mm->exe_file, new_exe_file);
 979        if (old_exe_file)
 980                fput(old_exe_file);
 981}
 982
 983/**
 984 * get_mm_exe_file - acquire a reference to the mm's executable file
 985 *
 986 * Returns %NULL if mm has no associated executable file.
 987 * User must release file via fput().
 988 */
 989struct file *get_mm_exe_file(struct mm_struct *mm)
 990{
 991        struct file *exe_file;
 992
 993        rcu_read_lock();
 994        exe_file = rcu_dereference(mm->exe_file);
 995        if (exe_file && !get_file_rcu(exe_file))
 996                exe_file = NULL;
 997        rcu_read_unlock();
 998        return exe_file;
 999}
1000EXPORT_SYMBOL(get_mm_exe_file);
1001
1002/**
1003 * get_task_exe_file - acquire a reference to the task's executable file
1004 *
1005 * Returns %NULL if task's mm (if any) has no associated executable file or
1006 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1007 * User must release file via fput().
1008 */
1009struct file *get_task_exe_file(struct task_struct *task)
1010{
1011        struct file *exe_file = NULL;
1012        struct mm_struct *mm;
1013
1014        task_lock(task);
1015        mm = task->mm;
1016        if (mm) {
1017                if (!(task->flags & PF_KTHREAD))
1018                        exe_file = get_mm_exe_file(mm);
1019        }
1020        task_unlock(task);
1021        return exe_file;
1022}
1023EXPORT_SYMBOL(get_task_exe_file);
1024
1025/**
1026 * get_task_mm - acquire a reference to the task's mm
1027 *
1028 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1029 * this kernel workthread has transiently adopted a user mm with use_mm,
1030 * to do its AIO) is not set and if so returns a reference to it, after
1031 * bumping up the use count.  User must release the mm via mmput()
1032 * after use.  Typically used by /proc and ptrace.
1033 */
1034struct mm_struct *get_task_mm(struct task_struct *task)
1035{
1036        struct mm_struct *mm;
1037
1038        task_lock(task);
1039        mm = task->mm;
1040        if (mm) {
1041                if (task->flags & PF_KTHREAD)
1042                        mm = NULL;
1043                else
1044                        mmget(mm);
1045        }
1046        task_unlock(task);
1047        return mm;
1048}
1049EXPORT_SYMBOL_GPL(get_task_mm);
1050
1051struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1052{
1053        struct mm_struct *mm;
1054        int err;
1055
1056        err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1057        if (err)
1058                return ERR_PTR(err);
1059
1060        mm = get_task_mm(task);
1061        if (mm && mm != current->mm &&
1062                        !ptrace_may_access(task, mode)) {
1063                mmput(mm);
1064                mm = ERR_PTR(-EACCES);
1065        }
1066        mutex_unlock(&task->signal->cred_guard_mutex);
1067
1068        return mm;
1069}
1070
1071static void complete_vfork_done(struct task_struct *tsk)
1072{
1073        struct completion *vfork;
1074
1075        task_lock(tsk);
1076        vfork = tsk->vfork_done;
1077        if (likely(vfork)) {
1078                tsk->vfork_done = NULL;
1079                complete(vfork);
1080        }
1081        task_unlock(tsk);
1082}
1083
1084static int wait_for_vfork_done(struct task_struct *child,
1085                                struct completion *vfork)
1086{
1087        int killed;
1088
1089        freezer_do_not_count();
1090        killed = wait_for_completion_killable(vfork);
1091        freezer_count();
1092
1093        if (killed) {
1094                task_lock(child);
1095                child->vfork_done = NULL;
1096                task_unlock(child);
1097        }
1098
1099        put_task_struct(child);
1100        return killed;
1101}
1102
1103/* Please note the differences between mmput and mm_release.
1104 * mmput is called whenever we stop holding onto a mm_struct,
1105 * error success whatever.
1106 *
1107 * mm_release is called after a mm_struct has been removed
1108 * from the current process.
1109 *
1110 * This difference is important for error handling, when we
1111 * only half set up a mm_struct for a new process and need to restore
1112 * the old one.  Because we mmput the new mm_struct before
1113 * restoring the old one. . .
1114 * Eric Biederman 10 January 1998
1115 */
1116void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1117{
1118        /* Get rid of any futexes when releasing the mm */
1119#ifdef CONFIG_FUTEX
1120        if (unlikely(tsk->robust_list)) {
1121                exit_robust_list(tsk);
1122                tsk->robust_list = NULL;
1123        }
1124#ifdef CONFIG_COMPAT
1125        if (unlikely(tsk->compat_robust_list)) {
1126                compat_exit_robust_list(tsk);
1127                tsk->compat_robust_list = NULL;
1128        }
1129#endif
1130        if (unlikely(!list_empty(&tsk->pi_state_list)))
1131                exit_pi_state_list(tsk);
1132#endif
1133
1134        uprobe_free_utask(tsk);
1135
1136        /* Get rid of any cached register state */
1137        deactivate_mm(tsk, mm);
1138
1139        /*
1140         * Signal userspace if we're not exiting with a core dump
1141         * because we want to leave the value intact for debugging
1142         * purposes.
1143         */
1144        if (tsk->clear_child_tid) {
1145                if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1146                    atomic_read(&mm->mm_users) > 1) {
1147                        /*
1148                         * We don't check the error code - if userspace has
1149                         * not set up a proper pointer then tough luck.
1150                         */
1151                        put_user(0, tsk->clear_child_tid);
1152                        sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1153                                        1, NULL, NULL, 0);
1154                }
1155                tsk->clear_child_tid = NULL;
1156        }
1157
1158        /*
1159         * All done, finally we can wake up parent and return this mm to him.
1160         * Also kthread_stop() uses this completion for synchronization.
1161         */
1162        if (tsk->vfork_done)
1163                complete_vfork_done(tsk);
1164}
1165
1166/*
1167 * Allocate a new mm structure and copy contents from the
1168 * mm structure of the passed in task structure.
1169 */
1170static struct mm_struct *dup_mm(struct task_struct *tsk)
1171{
1172        struct mm_struct *mm, *oldmm = current->mm;
1173        int err;
1174
1175        mm = allocate_mm();
1176        if (!mm)
1177                goto fail_nomem;
1178
1179        memcpy(mm, oldmm, sizeof(*mm));
1180
1181        if (!mm_init(mm, tsk, mm->user_ns))
1182                goto fail_nomem;
1183
1184        err = dup_mmap(mm, oldmm);
1185        if (err)
1186                goto free_pt;
1187
1188        mm->hiwater_rss = get_mm_rss(mm);
1189        mm->hiwater_vm = mm->total_vm;
1190
1191        if (mm->binfmt && !try_module_get(mm->binfmt->module))
1192                goto free_pt;
1193
1194        return mm;
1195
1196free_pt:
1197        /* don't put binfmt in mmput, we haven't got module yet */
1198        mm->binfmt = NULL;
1199        mmput(mm);
1200
1201fail_nomem:
1202        return NULL;
1203}
1204
1205static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1206{
1207        struct mm_struct *mm, *oldmm;
1208        int retval;
1209
1210        tsk->min_flt = tsk->maj_flt = 0;
1211        tsk->nvcsw = tsk->nivcsw = 0;
1212#ifdef CONFIG_DETECT_HUNG_TASK
1213        tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1214#endif
1215
1216        tsk->mm = NULL;
1217        tsk->active_mm = NULL;
1218
1219        /*
1220         * Are we cloning a kernel thread?
1221         *
1222         * We need to steal a active VM for that..
1223         */
1224        oldmm = current->mm;
1225        if (!oldmm)
1226                return 0;
1227
1228        /* initialize the new vmacache entries */
1229        vmacache_flush(tsk);
1230
1231        if (clone_flags & CLONE_VM) {
1232                mmget(oldmm);
1233                mm = oldmm;
1234                goto good_mm;
1235        }
1236
1237        retval = -ENOMEM;
1238        mm = dup_mm(tsk);
1239        if (!mm)
1240                goto fail_nomem;
1241
1242good_mm:
1243        tsk->mm = mm;
1244        tsk->active_mm = mm;
1245        return 0;
1246
1247fail_nomem:
1248        return retval;
1249}
1250
1251static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1252{
1253        struct fs_struct *fs = current->fs;
1254        if (clone_flags & CLONE_FS) {
1255                /* tsk->fs is already what we want */
1256                spin_lock(&fs->lock);
1257                if (fs->in_exec) {
1258                        spin_unlock(&fs->lock);
1259                        return -EAGAIN;
1260                }
1261                fs->users++;
1262                spin_unlock(&fs->lock);
1263                return 0;
1264        }
1265        tsk->fs = copy_fs_struct(fs);
1266        if (!tsk->fs)
1267                return -ENOMEM;
1268        return 0;
1269}
1270
1271static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1272{
1273        struct files_struct *oldf, *newf;
1274        int error = 0;
1275
1276        /*
1277         * A background process may not have any files ...
1278         */
1279        oldf = current->files;
1280        if (!oldf)
1281                goto out;
1282
1283        if (clone_flags & CLONE_FILES) {
1284                atomic_inc(&oldf->count);
1285                goto out;
1286        }
1287
1288        newf = dup_fd(oldf, &error);
1289        if (!newf)
1290                goto out;
1291
1292        tsk->files = newf;
1293        error = 0;
1294out:
1295        return error;
1296}
1297
1298static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1299{
1300#ifdef CONFIG_BLOCK
1301        struct io_context *ioc = current->io_context;
1302        struct io_context *new_ioc;
1303
1304        if (!ioc)
1305                return 0;
1306        /*
1307         * Share io context with parent, if CLONE_IO is set
1308         */
1309        if (clone_flags & CLONE_IO) {
1310                ioc_task_link(ioc);
1311                tsk->io_context = ioc;
1312        } else if (ioprio_valid(ioc->ioprio)) {
1313                new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1314                if (unlikely(!new_ioc))
1315                        return -ENOMEM;
1316
1317                new_ioc->ioprio = ioc->ioprio;
1318                put_io_context(new_ioc);
1319        }
1320#endif
1321        return 0;
1322}
1323
1324static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1325{
1326        struct sighand_struct *sig;
1327
1328        if (clone_flags & CLONE_SIGHAND) {
1329                atomic_inc(&current->sighand->count);
1330                return 0;
1331        }
1332        sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1333        rcu_assign_pointer(tsk->sighand, sig);
1334        if (!sig)
1335                return -ENOMEM;
1336
1337        atomic_set(&sig->count, 1);
1338        memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1339        return 0;
1340}
1341
1342void __cleanup_sighand(struct sighand_struct *sighand)
1343{
1344        if (atomic_dec_and_test(&sighand->count)) {
1345                signalfd_cleanup(sighand);
1346                /*
1347                 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1348                 * without an RCU grace period, see __lock_task_sighand().
1349                 */
1350                kmem_cache_free(sighand_cachep, sighand);
1351        }
1352}
1353
1354#ifdef CONFIG_POSIX_TIMERS
1355/*
1356 * Initialize POSIX timer handling for a thread group.
1357 */
1358static void posix_cpu_timers_init_group(struct signal_struct *sig)
1359{
1360        unsigned long cpu_limit;
1361
1362        cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1363        if (cpu_limit != RLIM_INFINITY) {
1364                sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1365                sig->cputimer.running = true;
1366        }
1367
1368        /* The timer lists. */
1369        INIT_LIST_HEAD(&sig->cpu_timers[0]);
1370        INIT_LIST_HEAD(&sig->cpu_timers[1]);
1371        INIT_LIST_HEAD(&sig->cpu_timers[2]);
1372}
1373#else
1374static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1375#endif
1376
1377static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1378{
1379        struct signal_struct *sig;
1380
1381        if (clone_flags & CLONE_THREAD)
1382                return 0;
1383
1384        sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1385        tsk->signal = sig;
1386        if (!sig)
1387                return -ENOMEM;
1388
1389        sig->nr_threads = 1;
1390        atomic_set(&sig->live, 1);
1391        atomic_set(&sig->sigcnt, 1);
1392
1393        /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1394        sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1395        tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1396
1397        init_waitqueue_head(&sig->wait_chldexit);
1398        sig->curr_target = tsk;
1399        init_sigpending(&sig->shared_pending);
1400        seqlock_init(&sig->stats_lock);
1401        prev_cputime_init(&sig->prev_cputime);
1402
1403#ifdef CONFIG_POSIX_TIMERS
1404        INIT_LIST_HEAD(&sig->posix_timers);
1405        hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1406        sig->real_timer.function = it_real_fn;
1407#endif
1408
1409        task_lock(current->group_leader);
1410        memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1411        task_unlock(current->group_leader);
1412
1413        posix_cpu_timers_init_group(sig);
1414
1415        tty_audit_fork(sig);
1416        sched_autogroup_fork(sig);
1417
1418        sig->oom_score_adj = current->signal->oom_score_adj;
1419        sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1420
1421        mutex_init(&sig->cred_guard_mutex);
1422
1423        return 0;
1424}
1425
1426static void copy_seccomp(struct task_struct *p)
1427{
1428#ifdef CONFIG_SECCOMP
1429        /*
1430         * Must be called with sighand->lock held, which is common to
1431         * all threads in the group. Holding cred_guard_mutex is not
1432         * needed because this new task is not yet running and cannot
1433         * be racing exec.
1434         */
1435        assert_spin_locked(&current->sighand->siglock);
1436
1437        /* Ref-count the new filter user, and assign it. */
1438        get_seccomp_filter(current);
1439        p->seccomp = current->seccomp;
1440
1441        /*
1442         * Explicitly enable no_new_privs here in case it got set
1443         * between the task_struct being duplicated and holding the
1444         * sighand lock. The seccomp state and nnp must be in sync.
1445         */
1446        if (task_no_new_privs(current))
1447                task_set_no_new_privs(p);
1448
1449        /*
1450         * If the parent gained a seccomp mode after copying thread
1451         * flags and between before we held the sighand lock, we have
1452         * to manually enable the seccomp thread flag here.
1453         */
1454        if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1455                set_tsk_thread_flag(p, TIF_SECCOMP);
1456#endif
1457}
1458
1459SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1460{
1461        current->clear_child_tid = tidptr;
1462
1463        return task_pid_vnr(current);
1464}
1465
1466static void rt_mutex_init_task(struct task_struct *p)
1467{
1468        raw_spin_lock_init(&p->pi_lock);
1469#ifdef CONFIG_RT_MUTEXES
1470        p->pi_waiters = RB_ROOT;
1471        p->pi_waiters_leftmost = NULL;
1472        p->pi_top_task = NULL;
1473        p->pi_blocked_on = NULL;
1474#endif
1475}
1476
1477#ifdef CONFIG_POSIX_TIMERS
1478/*
1479 * Initialize POSIX timer handling for a single task.
1480 */
1481static void posix_cpu_timers_init(struct task_struct *tsk)
1482{
1483        tsk->cputime_expires.prof_exp = 0;
1484        tsk->cputime_expires.virt_exp = 0;
1485        tsk->cputime_expires.sched_exp = 0;
1486        INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1487        INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1488        INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1489}
1490#else
1491static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1492#endif
1493
1494static inline void
1495init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1496{
1497         task->pids[type].pid = pid;
1498}
1499
1500static inline void rcu_copy_process(struct task_struct *p)
1501{
1502#ifdef CONFIG_PREEMPT_RCU
1503        p->rcu_read_lock_nesting = 0;
1504        p->rcu_read_unlock_special.s = 0;
1505        p->rcu_blocked_node = NULL;
1506        INIT_LIST_HEAD(&p->rcu_node_entry);
1507#endif /* #ifdef CONFIG_PREEMPT_RCU */
1508#ifdef CONFIG_TASKS_RCU
1509        p->rcu_tasks_holdout = false;
1510        INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1511        p->rcu_tasks_idle_cpu = -1;
1512#endif /* #ifdef CONFIG_TASKS_RCU */
1513}
1514
1515/*
1516 * This creates a new process as a copy of the old one,
1517 * but does not actually start it yet.
1518 *
1519 * It copies the registers, and all the appropriate
1520 * parts of the process environment (as per the clone
1521 * flags). The actual kick-off is left to the caller.
1522 */
1523static __latent_entropy struct task_struct *copy_process(
1524                                        unsigned long clone_flags,
1525                                        unsigned long stack_start,
1526                                        unsigned long stack_size,
1527                                        int __user *child_tidptr,
1528                                        struct pid *pid,
1529                                        int trace,
1530                                        unsigned long tls,
1531                                        int node)
1532{
1533        int retval;
1534        struct task_struct *p;
1535
1536        if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1537                return ERR_PTR(-EINVAL);
1538
1539        if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1540                return ERR_PTR(-EINVAL);
1541
1542        /*
1543         * Thread groups must share signals as well, and detached threads
1544         * can only be started up within the thread group.
1545         */
1546        if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1547                return ERR_PTR(-EINVAL);
1548
1549        /*
1550         * Shared signal handlers imply shared VM. By way of the above,
1551         * thread groups also imply shared VM. Blocking this case allows
1552         * for various simplifications in other code.
1553         */
1554        if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1555                return ERR_PTR(-EINVAL);
1556
1557        /*
1558         * Siblings of global init remain as zombies on exit since they are
1559         * not reaped by their parent (swapper). To solve this and to avoid
1560         * multi-rooted process trees, prevent global and container-inits
1561         * from creating siblings.
1562         */
1563        if ((clone_flags & CLONE_PARENT) &&
1564                                current->signal->flags & SIGNAL_UNKILLABLE)
1565                return ERR_PTR(-EINVAL);
1566
1567        /*
1568         * If the new process will be in a different pid or user namespace
1569         * do not allow it to share a thread group with the forking task.
1570         */
1571        if (clone_flags & CLONE_THREAD) {
1572                if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1573                    (task_active_pid_ns(current) !=
1574                                current->nsproxy->pid_ns_for_children))
1575                        return ERR_PTR(-EINVAL);
1576        }
1577
1578        retval = security_task_create(clone_flags);
1579        if (retval)
1580                goto fork_out;
1581
1582        retval = -ENOMEM;
1583        p = dup_task_struct(current, node);
1584        if (!p)
1585                goto fork_out;
1586
1587        /*
1588         * This _must_ happen before we call free_task(), i.e. before we jump
1589         * to any of the bad_fork_* labels. This is to avoid freeing
1590         * p->set_child_tid which is (ab)used as a kthread's data pointer for
1591         * kernel threads (PF_KTHREAD).
1592         */
1593        p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1594        /*
1595         * Clear TID on mm_release()?
1596         */
1597        p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1598
1599        ftrace_graph_init_task(p);
1600
1601        rt_mutex_init_task(p);
1602
1603#ifdef CONFIG_PROVE_LOCKING
1604        DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1605        DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1606#endif
1607        retval = -EAGAIN;
1608        if (atomic_read(&p->real_cred->user->processes) >=
1609                        task_rlimit(p, RLIMIT_NPROC)) {
1610                if (p->real_cred->user != INIT_USER &&
1611                    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1612                        goto bad_fork_free;
1613        }
1614        current->flags &= ~PF_NPROC_EXCEEDED;
1615
1616        retval = copy_creds(p, clone_flags);
1617        if (retval < 0)
1618                goto bad_fork_free;
1619
1620        /*
1621         * If multiple threads are within copy_process(), then this check
1622         * triggers too late. This doesn't hurt, the check is only there
1623         * to stop root fork bombs.
1624         */
1625        retval = -EAGAIN;
1626        if (nr_threads >= max_threads)
1627                goto bad_fork_cleanup_count;
1628
1629        delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1630        p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1631        p->flags |= PF_FORKNOEXEC;
1632        INIT_LIST_HEAD(&p->children);
1633        INIT_LIST_HEAD(&p->sibling);
1634        rcu_copy_process(p);
1635        p->vfork_done = NULL;
1636        spin_lock_init(&p->alloc_lock);
1637
1638        init_sigpending(&p->pending);
1639
1640        p->utime = p->stime = p->gtime = 0;
1641#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1642        p->utimescaled = p->stimescaled = 0;
1643#endif
1644        prev_cputime_init(&p->prev_cputime);
1645
1646#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1647        seqcount_init(&p->vtime.seqcount);
1648        p->vtime.starttime = 0;
1649        p->vtime.state = VTIME_INACTIVE;
1650#endif
1651
1652#if defined(SPLIT_RSS_COUNTING)
1653        memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1654#endif
1655
1656        p->default_timer_slack_ns = current->timer_slack_ns;
1657
1658        task_io_accounting_init(&p->ioac);
1659        acct_clear_integrals(p);
1660
1661        posix_cpu_timers_init(p);
1662
1663        p->start_time = ktime_get_ns();
1664        p->real_start_time = ktime_get_boot_ns();
1665        p->io_context = NULL;
1666        p->audit_context = NULL;
1667        cgroup_fork(p);
1668#ifdef CONFIG_NUMA
1669        p->mempolicy = mpol_dup(p->mempolicy);
1670        if (IS_ERR(p->mempolicy)) {
1671                retval = PTR_ERR(p->mempolicy);
1672                p->mempolicy = NULL;
1673                goto bad_fork_cleanup_threadgroup_lock;
1674        }
1675#endif
1676#ifdef CONFIG_CPUSETS
1677        p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1678        p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1679        seqcount_init(&p->mems_allowed_seq);
1680#endif
1681#ifdef CONFIG_TRACE_IRQFLAGS
1682        p->irq_events = 0;
1683        p->hardirqs_enabled = 0;
1684        p->hardirq_enable_ip = 0;
1685        p->hardirq_enable_event = 0;
1686        p->hardirq_disable_ip = _THIS_IP_;
1687        p->hardirq_disable_event = 0;
1688        p->softirqs_enabled = 1;
1689        p->softirq_enable_ip = _THIS_IP_;
1690        p->softirq_enable_event = 0;
1691        p->softirq_disable_ip = 0;
1692        p->softirq_disable_event = 0;
1693        p->hardirq_context = 0;
1694        p->softirq_context = 0;
1695#endif
1696
1697        p->pagefault_disabled = 0;
1698
1699#ifdef CONFIG_LOCKDEP
1700        p->lockdep_depth = 0; /* no locks held yet */
1701        p->curr_chain_key = 0;
1702        p->lockdep_recursion = 0;
1703#endif
1704
1705#ifdef CONFIG_DEBUG_MUTEXES
1706        p->blocked_on = NULL; /* not blocked yet */
1707#endif
1708#ifdef CONFIG_BCACHE
1709        p->sequential_io        = 0;
1710        p->sequential_io_avg    = 0;
1711#endif
1712
1713        /* Perform scheduler related setup. Assign this task to a CPU. */
1714        retval = sched_fork(clone_flags, p);
1715        if (retval)
1716                goto bad_fork_cleanup_policy;
1717
1718        retval = perf_event_init_task(p);
1719        if (retval)
1720                goto bad_fork_cleanup_policy;
1721        retval = audit_alloc(p);
1722        if (retval)
1723                goto bad_fork_cleanup_perf;
1724        /* copy all the process information */
1725        shm_init_task(p);
1726        retval = security_task_alloc(p, clone_flags);
1727        if (retval)
1728                goto bad_fork_cleanup_audit;
1729        retval = copy_semundo(clone_flags, p);
1730        if (retval)
1731                goto bad_fork_cleanup_security;
1732        retval = copy_files(clone_flags, p);
1733        if (retval)
1734                goto bad_fork_cleanup_semundo;
1735        retval = copy_fs(clone_flags, p);
1736        if (retval)
1737                goto bad_fork_cleanup_files;
1738        retval = copy_sighand(clone_flags, p);
1739        if (retval)
1740                goto bad_fork_cleanup_fs;
1741        retval = copy_signal(clone_flags, p);
1742        if (retval)
1743                goto bad_fork_cleanup_sighand;
1744        retval = copy_mm(clone_flags, p);
1745        if (retval)
1746                goto bad_fork_cleanup_signal;
1747        retval = copy_namespaces(clone_flags, p);
1748        if (retval)
1749                goto bad_fork_cleanup_mm;
1750        retval = copy_io(clone_flags, p);
1751        if (retval)
1752                goto bad_fork_cleanup_namespaces;
1753        retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1754        if (retval)
1755                goto bad_fork_cleanup_io;
1756
1757        if (pid != &init_struct_pid) {
1758                pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1759                if (IS_ERR(pid)) {
1760                        retval = PTR_ERR(pid);
1761                        goto bad_fork_cleanup_thread;
1762                }
1763        }
1764
1765#ifdef CONFIG_BLOCK
1766        p->plug = NULL;
1767#endif
1768#ifdef CONFIG_FUTEX
1769        p->robust_list = NULL;
1770#ifdef CONFIG_COMPAT
1771        p->compat_robust_list = NULL;
1772#endif
1773        INIT_LIST_HEAD(&p->pi_state_list);
1774        p->pi_state_cache = NULL;
1775#endif
1776        /*
1777         * sigaltstack should be cleared when sharing the same VM
1778         */
1779        if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1780                sas_ss_reset(p);
1781
1782        /*
1783         * Syscall tracing and stepping should be turned off in the
1784         * child regardless of CLONE_PTRACE.
1785         */
1786        user_disable_single_step(p);
1787        clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1788#ifdef TIF_SYSCALL_EMU
1789        clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1790#endif
1791        clear_all_latency_tracing(p);
1792
1793        /* ok, now we should be set up.. */
1794        p->pid = pid_nr(pid);
1795        if (clone_flags & CLONE_THREAD) {
1796                p->exit_signal = -1;
1797                p->group_leader = current->group_leader;
1798                p->tgid = current->tgid;
1799        } else {
1800                if (clone_flags & CLONE_PARENT)
1801                        p->exit_signal = current->group_leader->exit_signal;
1802                else
1803                        p->exit_signal = (clone_flags & CSIGNAL);
1804                p->group_leader = p;
1805                p->tgid = p->pid;
1806        }
1807
1808        p->nr_dirtied = 0;
1809        p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1810        p->dirty_paused_when = 0;
1811
1812        p->pdeath_signal = 0;
1813        INIT_LIST_HEAD(&p->thread_group);
1814        p->task_works = NULL;
1815
1816        cgroup_threadgroup_change_begin(current);
1817        /*
1818         * Ensure that the cgroup subsystem policies allow the new process to be
1819         * forked. It should be noted the the new process's css_set can be changed
1820         * between here and cgroup_post_fork() if an organisation operation is in
1821         * progress.
1822         */
1823        retval = cgroup_can_fork(p);
1824        if (retval)
1825                goto bad_fork_free_pid;
1826
1827        /*
1828         * Make it visible to the rest of the system, but dont wake it up yet.
1829         * Need tasklist lock for parent etc handling!
1830         */
1831        write_lock_irq(&tasklist_lock);
1832
1833        /* CLONE_PARENT re-uses the old parent */
1834        if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1835                p->real_parent = current->real_parent;
1836                p->parent_exec_id = current->parent_exec_id;
1837        } else {
1838                p->real_parent = current;
1839                p->parent_exec_id = current->self_exec_id;
1840        }
1841
1842        klp_copy_process(p);
1843
1844        spin_lock(&current->sighand->siglock);
1845
1846        /*
1847         * Copy seccomp details explicitly here, in case they were changed
1848         * before holding sighand lock.
1849         */
1850        copy_seccomp(p);
1851
1852        /*
1853         * Process group and session signals need to be delivered to just the
1854         * parent before the fork or both the parent and the child after the
1855         * fork. Restart if a signal comes in before we add the new process to
1856         * it's process group.
1857         * A fatal signal pending means that current will exit, so the new
1858         * thread can't slip out of an OOM kill (or normal SIGKILL).
1859        */
1860        recalc_sigpending();
1861        if (signal_pending(current)) {
1862                retval = -ERESTARTNOINTR;
1863                goto bad_fork_cancel_cgroup;
1864        }
1865        if (unlikely(!(ns_of_pid(pid)->nr_hashed & PIDNS_HASH_ADDING))) {
1866                retval = -ENOMEM;
1867                goto bad_fork_cancel_cgroup;
1868        }
1869
1870        if (likely(p->pid)) {
1871                ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1872
1873                init_task_pid(p, PIDTYPE_PID, pid);
1874                if (thread_group_leader(p)) {
1875                        init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1876                        init_task_pid(p, PIDTYPE_SID, task_session(current));
1877
1878                        if (is_child_reaper(pid)) {
1879                                ns_of_pid(pid)->child_reaper = p;
1880                                p->signal->flags |= SIGNAL_UNKILLABLE;
1881                        }
1882
1883                        p->signal->leader_pid = pid;
1884                        p->signal->tty = tty_kref_get(current->signal->tty);
1885                        /*
1886                         * Inherit has_child_subreaper flag under the same
1887                         * tasklist_lock with adding child to the process tree
1888                         * for propagate_has_child_subreaper optimization.
1889                         */
1890                        p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1891                                                         p->real_parent->signal->is_child_subreaper;
1892                        list_add_tail(&p->sibling, &p->real_parent->children);
1893                        list_add_tail_rcu(&p->tasks, &init_task.tasks);
1894                        attach_pid(p, PIDTYPE_PGID);
1895                        attach_pid(p, PIDTYPE_SID);
1896                        __this_cpu_inc(process_counts);
1897                } else {
1898                        current->signal->nr_threads++;
1899                        atomic_inc(&current->signal->live);
1900                        atomic_inc(&current->signal->sigcnt);
1901                        list_add_tail_rcu(&p->thread_group,
1902                                          &p->group_leader->thread_group);
1903                        list_add_tail_rcu(&p->thread_node,
1904                                          &p->signal->thread_head);
1905                }
1906                attach_pid(p, PIDTYPE_PID);
1907                nr_threads++;
1908        }
1909
1910        total_forks++;
1911        spin_unlock(&current->sighand->siglock);
1912        syscall_tracepoint_update(p);
1913        write_unlock_irq(&tasklist_lock);
1914
1915        proc_fork_connector(p);
1916        cgroup_post_fork(p);
1917        cgroup_threadgroup_change_end(current);
1918        perf_event_fork(p);
1919
1920        trace_task_newtask(p, clone_flags);
1921        uprobe_copy_process(p, clone_flags);
1922
1923        return p;
1924
1925bad_fork_cancel_cgroup:
1926        spin_unlock(&current->sighand->siglock);
1927        write_unlock_irq(&tasklist_lock);
1928        cgroup_cancel_fork(p);
1929bad_fork_free_pid:
1930        cgroup_threadgroup_change_end(current);
1931        if (pid != &init_struct_pid)
1932                free_pid(pid);
1933bad_fork_cleanup_thread:
1934        exit_thread(p);
1935bad_fork_cleanup_io:
1936        if (p->io_context)
1937                exit_io_context(p);
1938bad_fork_cleanup_namespaces:
1939        exit_task_namespaces(p);
1940bad_fork_cleanup_mm:
1941        if (p->mm)
1942                mmput(p->mm);
1943bad_fork_cleanup_signal:
1944        if (!(clone_flags & CLONE_THREAD))
1945                free_signal_struct(p->signal);
1946bad_fork_cleanup_sighand:
1947        __cleanup_sighand(p->sighand);
1948bad_fork_cleanup_fs:
1949        exit_fs(p); /* blocking */
1950bad_fork_cleanup_files:
1951        exit_files(p); /* blocking */
1952bad_fork_cleanup_semundo:
1953        exit_sem(p);
1954bad_fork_cleanup_security:
1955        security_task_free(p);
1956bad_fork_cleanup_audit:
1957        audit_free(p);
1958bad_fork_cleanup_perf:
1959        perf_event_free_task(p);
1960bad_fork_cleanup_policy:
1961#ifdef CONFIG_NUMA
1962        mpol_put(p->mempolicy);
1963bad_fork_cleanup_threadgroup_lock:
1964#endif
1965        delayacct_tsk_free(p);
1966bad_fork_cleanup_count:
1967        atomic_dec(&p->cred->user->processes);
1968        exit_creds(p);
1969bad_fork_free:
1970        p->state = TASK_DEAD;
1971        put_task_stack(p);
1972        free_task(p);
1973fork_out:
1974        return ERR_PTR(retval);
1975}
1976
1977static inline void init_idle_pids(struct pid_link *links)
1978{
1979        enum pid_type type;
1980
1981        for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1982                INIT_HLIST_NODE(&links[type].node); /* not really needed */
1983                links[type].pid = &init_struct_pid;
1984        }
1985}
1986
1987struct task_struct *fork_idle(int cpu)
1988{
1989        struct task_struct *task;
1990        task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1991                            cpu_to_node(cpu));
1992        if (!IS_ERR(task)) {
1993                init_idle_pids(task->pids);
1994                init_idle(task, cpu);
1995        }
1996
1997        return task;
1998}
1999
2000/*
2001 *  Ok, this is the main fork-routine.
2002 *
2003 * It copies the process, and if successful kick-starts
2004 * it and waits for it to finish using the VM if required.
2005 */
2006long _do_fork(unsigned long clone_flags,
2007              unsigned long stack_start,
2008              unsigned long stack_size,
2009              int __user *parent_tidptr,
2010              int __user *child_tidptr,
2011              unsigned long tls)
2012{
2013        struct task_struct *p;
2014        int trace = 0;
2015        long nr;
2016
2017        /*
2018         * Determine whether and which event to report to ptracer.  When
2019         * called from kernel_thread or CLONE_UNTRACED is explicitly
2020         * requested, no event is reported; otherwise, report if the event
2021         * for the type of forking is enabled.
2022         */
2023        if (!(clone_flags & CLONE_UNTRACED)) {
2024                if (clone_flags & CLONE_VFORK)
2025                        trace = PTRACE_EVENT_VFORK;
2026                else if ((clone_flags & CSIGNAL) != SIGCHLD)
2027                        trace = PTRACE_EVENT_CLONE;
2028                else
2029                        trace = PTRACE_EVENT_FORK;
2030
2031                if (likely(!ptrace_event_enabled(current, trace)))
2032                        trace = 0;
2033        }
2034
2035        p = copy_process(clone_flags, stack_start, stack_size,
2036                         child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2037        add_latent_entropy();
2038        /*
2039         * Do this prior waking up the new thread - the thread pointer
2040         * might get invalid after that point, if the thread exits quickly.
2041         */
2042        if (!IS_ERR(p)) {
2043                struct completion vfork;
2044                struct pid *pid;
2045
2046                trace_sched_process_fork(current, p);
2047
2048                pid = get_task_pid(p, PIDTYPE_PID);
2049                nr = pid_vnr(pid);
2050
2051                if (clone_flags & CLONE_PARENT_SETTID)
2052                        put_user(nr, parent_tidptr);
2053
2054                if (clone_flags & CLONE_VFORK) {
2055                        p->vfork_done = &vfork;
2056                        init_completion(&vfork);
2057                        get_task_struct(p);
2058                }
2059
2060                wake_up_new_task(p);
2061
2062                /* forking complete and child started to run, tell ptracer */
2063                if (unlikely(trace))
2064                        ptrace_event_pid(trace, pid);
2065
2066                if (clone_flags & CLONE_VFORK) {
2067                        if (!wait_for_vfork_done(p, &vfork))
2068                                ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2069                }
2070
2071                put_pid(pid);
2072        } else {
2073                nr = PTR_ERR(p);
2074        }
2075        return nr;
2076}
2077
2078#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2079/* For compatibility with architectures that call do_fork directly rather than
2080 * using the syscall entry points below. */
2081long do_fork(unsigned long clone_flags,
2082              unsigned long stack_start,
2083              unsigned long stack_size,
2084              int __user *parent_tidptr,
2085              int __user *child_tidptr)
2086{
2087        return _do_fork(clone_flags, stack_start, stack_size,
2088                        parent_tidptr, child_tidptr, 0);
2089}
2090#endif
2091
2092/*
2093 * Create a kernel thread.
2094 */
2095pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2096{
2097        return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2098                (unsigned long)arg, NULL, NULL, 0);
2099}
2100
2101#ifdef __ARCH_WANT_SYS_FORK
2102SYSCALL_DEFINE0(fork)
2103{
2104#ifdef CONFIG_MMU
2105        return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2106#else
2107        /* can not support in nommu mode */
2108        return -EINVAL;
2109#endif
2110}
2111#endif
2112
2113#ifdef __ARCH_WANT_SYS_VFORK
2114SYSCALL_DEFINE0(vfork)
2115{
2116        return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2117                        0, NULL, NULL, 0);
2118}
2119#endif
2120
2121#ifdef __ARCH_WANT_SYS_CLONE
2122#ifdef CONFIG_CLONE_BACKWARDS
2123SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2124                 int __user *, parent_tidptr,
2125                 unsigned long, tls,
2126                 int __user *, child_tidptr)
2127#elif defined(CONFIG_CLONE_BACKWARDS2)
2128SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2129                 int __user *, parent_tidptr,
2130                 int __user *, child_tidptr,
2131                 unsigned long, tls)
2132#elif defined(CONFIG_CLONE_BACKWARDS3)
2133SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2134                int, stack_size,
2135                int __user *, parent_tidptr,
2136                int __user *, child_tidptr,
2137                unsigned long, tls)
2138#else
2139SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2140                 int __user *, parent_tidptr,
2141                 int __user *, child_tidptr,
2142                 unsigned long, tls)
2143#endif
2144{
2145        return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2146}
2147#endif
2148
2149void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2150{
2151        struct task_struct *leader, *parent, *child;
2152        int res;
2153
2154        read_lock(&tasklist_lock);
2155        leader = top = top->group_leader;
2156down:
2157        for_each_thread(leader, parent) {
2158                list_for_each_entry(child, &parent->children, sibling) {
2159                        res = visitor(child, data);
2160                        if (res) {
2161                                if (res < 0)
2162                                        goto out;
2163                                leader = child;
2164                                goto down;
2165                        }
2166up:
2167                        ;
2168                }
2169        }
2170
2171        if (leader != top) {
2172                child = leader;
2173                parent = child->real_parent;
2174                leader = parent->group_leader;
2175                goto up;
2176        }
2177out:
2178        read_unlock(&tasklist_lock);
2179}
2180
2181#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2182#define ARCH_MIN_MMSTRUCT_ALIGN 0
2183#endif
2184
2185static void sighand_ctor(void *data)
2186{
2187        struct sighand_struct *sighand = data;
2188
2189        spin_lock_init(&sighand->siglock);
2190        init_waitqueue_head(&sighand->signalfd_wqh);
2191}
2192
2193void __init proc_caches_init(void)
2194{
2195        sighand_cachep = kmem_cache_create("sighand_cache",
2196                        sizeof(struct sighand_struct), 0,
2197                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2198                        SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2199        signal_cachep = kmem_cache_create("signal_cache",
2200                        sizeof(struct signal_struct), 0,
2201                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2202                        NULL);
2203        files_cachep = kmem_cache_create("files_cache",
2204                        sizeof(struct files_struct), 0,
2205                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2206                        NULL);
2207        fs_cachep = kmem_cache_create("fs_cache",
2208                        sizeof(struct fs_struct), 0,
2209                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2210                        NULL);
2211        /*
2212         * FIXME! The "sizeof(struct mm_struct)" currently includes the
2213         * whole struct cpumask for the OFFSTACK case. We could change
2214         * this to *only* allocate as much of it as required by the
2215         * maximum number of CPU's we can ever have.  The cpumask_allocation
2216         * is at the end of the structure, exactly for that reason.
2217         */
2218        mm_cachep = kmem_cache_create("mm_struct",
2219                        sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2220                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2221                        NULL);
2222        vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2223        mmap_init();
2224        nsproxy_cache_init();
2225}
2226
2227/*
2228 * Check constraints on flags passed to the unshare system call.
2229 */
2230static int check_unshare_flags(unsigned long unshare_flags)
2231{
2232        if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2233                                CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2234                                CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2235                                CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2236                return -EINVAL;
2237        /*
2238         * Not implemented, but pretend it works if there is nothing
2239         * to unshare.  Note that unsharing the address space or the
2240         * signal handlers also need to unshare the signal queues (aka
2241         * CLONE_THREAD).
2242         */
2243        if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2244                if (!thread_group_empty(current))
2245                        return -EINVAL;
2246        }
2247        if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2248                if (atomic_read(&current->sighand->count) > 1)
2249                        return -EINVAL;
2250        }
2251        if (unshare_flags & CLONE_VM) {
2252                if (!current_is_single_threaded())
2253                        return -EINVAL;
2254        }
2255
2256        return 0;
2257}
2258
2259/*
2260 * Unshare the filesystem structure if it is being shared
2261 */
2262static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2263{
2264        struct fs_struct *fs = current->fs;
2265
2266        if (!(unshare_flags & CLONE_FS) || !fs)
2267                return 0;
2268
2269        /* don't need lock here; in the worst case we'll do useless copy */
2270        if (fs->users == 1)
2271                return 0;
2272
2273        *new_fsp = copy_fs_struct(fs);
2274        if (!*new_fsp)
2275                return -ENOMEM;
2276
2277        return 0;
2278}
2279
2280/*
2281 * Unshare file descriptor table if it is being shared
2282 */
2283static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2284{
2285        struct files_struct *fd = current->files;
2286        int error = 0;
2287
2288        if ((unshare_flags & CLONE_FILES) &&
2289            (fd && atomic_read(&fd->count) > 1)) {
2290                *new_fdp = dup_fd(fd, &error);
2291                if (!*new_fdp)
2292                        return error;
2293        }
2294
2295        return 0;
2296}
2297
2298/*
2299 * unshare allows a process to 'unshare' part of the process
2300 * context which was originally shared using clone.  copy_*
2301 * functions used by do_fork() cannot be used here directly
2302 * because they modify an inactive task_struct that is being
2303 * constructed. Here we are modifying the current, active,
2304 * task_struct.
2305 */
2306SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2307{
2308        struct fs_struct *fs, *new_fs = NULL;
2309        struct files_struct *fd, *new_fd = NULL;
2310        struct cred *new_cred = NULL;
2311        struct nsproxy *new_nsproxy = NULL;
2312        int do_sysvsem = 0;
2313        int err;
2314
2315        /*
2316         * If unsharing a user namespace must also unshare the thread group
2317         * and unshare the filesystem root and working directories.
2318         */
2319        if (unshare_flags & CLONE_NEWUSER)
2320                unshare_flags |= CLONE_THREAD | CLONE_FS;
2321        /*
2322         * If unsharing vm, must also unshare signal handlers.
2323         */
2324        if (unshare_flags & CLONE_VM)
2325                unshare_flags |= CLONE_SIGHAND;
2326        /*
2327         * If unsharing a signal handlers, must also unshare the signal queues.
2328         */
2329        if (unshare_flags & CLONE_SIGHAND)
2330                unshare_flags |= CLONE_THREAD;
2331        /*
2332         * If unsharing namespace, must also unshare filesystem information.
2333         */
2334        if (unshare_flags & CLONE_NEWNS)
2335                unshare_flags |= CLONE_FS;
2336
2337        err = check_unshare_flags(unshare_flags);
2338        if (err)
2339                goto bad_unshare_out;
2340        /*
2341         * CLONE_NEWIPC must also detach from the undolist: after switching
2342         * to a new ipc namespace, the semaphore arrays from the old
2343         * namespace are unreachable.
2344         */
2345        if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2346                do_sysvsem = 1;
2347        err = unshare_fs(unshare_flags, &new_fs);
2348        if (err)
2349                goto bad_unshare_out;
2350        err = unshare_fd(unshare_flags, &new_fd);
2351        if (err)
2352                goto bad_unshare_cleanup_fs;
2353        err = unshare_userns(unshare_flags, &new_cred);
2354        if (err)
2355                goto bad_unshare_cleanup_fd;
2356        err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2357                                         new_cred, new_fs);
2358        if (err)
2359                goto bad_unshare_cleanup_cred;
2360
2361        if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2362                if (do_sysvsem) {
2363                        /*
2364                         * CLONE_SYSVSEM is equivalent to sys_exit().
2365                         */
2366                        exit_sem(current);
2367                }
2368                if (unshare_flags & CLONE_NEWIPC) {
2369                        /* Orphan segments in old ns (see sem above). */
2370                        exit_shm(current);
2371                        shm_init_task(current);
2372                }
2373
2374                if (new_nsproxy)
2375                        switch_task_namespaces(current, new_nsproxy);
2376
2377                task_lock(current);
2378
2379                if (new_fs) {
2380                        fs = current->fs;
2381                        spin_lock(&fs->lock);
2382                        current->fs = new_fs;
2383                        if (--fs->users)
2384                                new_fs = NULL;
2385                        else
2386                                new_fs = fs;
2387                        spin_unlock(&fs->lock);
2388                }
2389
2390                if (new_fd) {
2391                        fd = current->files;
2392                        current->files = new_fd;
2393                        new_fd = fd;
2394                }
2395
2396                task_unlock(current);
2397
2398                if (new_cred) {
2399                        /* Install the new user namespace */
2400                        commit_creds(new_cred);
2401                        new_cred = NULL;
2402                }
2403        }
2404
2405        perf_event_namespaces(current);
2406
2407bad_unshare_cleanup_cred:
2408        if (new_cred)
2409                put_cred(new_cred);
2410bad_unshare_cleanup_fd:
2411        if (new_fd)
2412                put_files_struct(new_fd);
2413
2414bad_unshare_cleanup_fs:
2415        if (new_fs)
2416                free_fs_struct(new_fs);
2417
2418bad_unshare_out:
2419        return err;
2420}
2421
2422/*
2423 *      Helper to unshare the files of the current task.
2424 *      We don't want to expose copy_files internals to
2425 *      the exec layer of the kernel.
2426 */
2427
2428int unshare_files(struct files_struct **displaced)
2429{
2430        struct task_struct *task = current;
2431        struct files_struct *copy = NULL;
2432        int error;
2433
2434        error = unshare_fd(CLONE_FILES, &copy);
2435        if (error || !copy) {
2436                *displaced = NULL;
2437                return error;
2438        }
2439        *displaced = task->files;
2440        task_lock(task);
2441        task->files = copy;
2442        task_unlock(task);
2443        return 0;
2444}
2445
2446int sysctl_max_threads(struct ctl_table *table, int write,
2447                       void __user *buffer, size_t *lenp, loff_t *ppos)
2448{
2449        struct ctl_table t;
2450        int ret;
2451        int threads = max_threads;
2452        int min = MIN_THREADS;
2453        int max = MAX_THREADS;
2454
2455        t = *table;
2456        t.data = &threads;
2457        t.extra1 = &min;
2458        t.extra2 = &max;
2459
2460        ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2461        if (ret || !write)
2462                return ret;
2463
2464        set_max_threads(threads);
2465
2466        return 0;
2467}
2468