linux/kernel/pid.c
<<
>>
Prefs
   1/*
   2 * Generic pidhash and scalable, time-bounded PID allocator
   3 *
   4 * (C) 2002-2003 Nadia Yvette Chambers, IBM
   5 * (C) 2004 Nadia Yvette Chambers, Oracle
   6 * (C) 2002-2004 Ingo Molnar, Red Hat
   7 *
   8 * pid-structures are backing objects for tasks sharing a given ID to chain
   9 * against. There is very little to them aside from hashing them and
  10 * parking tasks using given ID's on a list.
  11 *
  12 * The hash is always changed with the tasklist_lock write-acquired,
  13 * and the hash is only accessed with the tasklist_lock at least
  14 * read-acquired, so there's no additional SMP locking needed here.
  15 *
  16 * We have a list of bitmap pages, which bitmaps represent the PID space.
  17 * Allocating and freeing PIDs is completely lockless. The worst-case
  18 * allocation scenario when all but one out of 1 million PIDs possible are
  19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21 *
  22 * Pid namespaces:
  23 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25 *     Many thanks to Oleg Nesterov for comments and help
  26 *
  27 */
  28
  29#include <linux/mm.h>
  30#include <linux/export.h>
  31#include <linux/slab.h>
  32#include <linux/init.h>
  33#include <linux/rculist.h>
  34#include <linux/bootmem.h>
  35#include <linux/hash.h>
  36#include <linux/pid_namespace.h>
  37#include <linux/init_task.h>
  38#include <linux/syscalls.h>
  39#include <linux/proc_ns.h>
  40#include <linux/proc_fs.h>
  41#include <linux/sched/task.h>
  42
  43#define pid_hashfn(nr, ns)      \
  44        hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
  45static struct hlist_head *pid_hash;
  46static unsigned int pidhash_shift = 4;
  47struct pid init_struct_pid = INIT_STRUCT_PID;
  48
  49int pid_max = PID_MAX_DEFAULT;
  50
  51#define RESERVED_PIDS           300
  52
  53int pid_max_min = RESERVED_PIDS + 1;
  54int pid_max_max = PID_MAX_LIMIT;
  55
  56static inline int mk_pid(struct pid_namespace *pid_ns,
  57                struct pidmap *map, int off)
  58{
  59        return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
  60}
  61
  62#define find_next_offset(map, off)                                      \
  63                find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  64
  65/*
  66 * PID-map pages start out as NULL, they get allocated upon
  67 * first use and are never deallocated. This way a low pid_max
  68 * value does not cause lots of bitmaps to be allocated, but
  69 * the scheme scales to up to 4 million PIDs, runtime.
  70 */
  71struct pid_namespace init_pid_ns = {
  72        .kref = KREF_INIT(2),
  73        .pidmap = {
  74                [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  75        },
  76        .last_pid = 0,
  77        .nr_hashed = PIDNS_HASH_ADDING,
  78        .level = 0,
  79        .child_reaper = &init_task,
  80        .user_ns = &init_user_ns,
  81        .ns.inum = PROC_PID_INIT_INO,
  82#ifdef CONFIG_PID_NS
  83        .ns.ops = &pidns_operations,
  84#endif
  85};
  86EXPORT_SYMBOL_GPL(init_pid_ns);
  87
  88/*
  89 * Note: disable interrupts while the pidmap_lock is held as an
  90 * interrupt might come in and do read_lock(&tasklist_lock).
  91 *
  92 * If we don't disable interrupts there is a nasty deadlock between
  93 * detach_pid()->free_pid() and another cpu that does
  94 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  95 * read_lock(&tasklist_lock);
  96 *
  97 * After we clean up the tasklist_lock and know there are no
  98 * irq handlers that take it we can leave the interrupts enabled.
  99 * For now it is easier to be safe than to prove it can't happen.
 100 */
 101
 102static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
 103
 104static void free_pidmap(struct upid *upid)
 105{
 106        int nr = upid->nr;
 107        struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
 108        int offset = nr & BITS_PER_PAGE_MASK;
 109
 110        clear_bit(offset, map->page);
 111        atomic_inc(&map->nr_free);
 112}
 113
 114/*
 115 * If we started walking pids at 'base', is 'a' seen before 'b'?
 116 */
 117static int pid_before(int base, int a, int b)
 118{
 119        /*
 120         * This is the same as saying
 121         *
 122         * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
 123         * and that mapping orders 'a' and 'b' with respect to 'base'.
 124         */
 125        return (unsigned)(a - base) < (unsigned)(b - base);
 126}
 127
 128/*
 129 * We might be racing with someone else trying to set pid_ns->last_pid
 130 * at the pid allocation time (there's also a sysctl for this, but racing
 131 * with this one is OK, see comment in kernel/pid_namespace.c about it).
 132 * We want the winner to have the "later" value, because if the
 133 * "earlier" value prevails, then a pid may get reused immediately.
 134 *
 135 * Since pids rollover, it is not sufficient to just pick the bigger
 136 * value.  We have to consider where we started counting from.
 137 *
 138 * 'base' is the value of pid_ns->last_pid that we observed when
 139 * we started looking for a pid.
 140 *
 141 * 'pid' is the pid that we eventually found.
 142 */
 143static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
 144{
 145        int prev;
 146        int last_write = base;
 147        do {
 148                prev = last_write;
 149                last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
 150        } while ((prev != last_write) && (pid_before(base, last_write, pid)));
 151}
 152
 153static int alloc_pidmap(struct pid_namespace *pid_ns)
 154{
 155        int i, offset, max_scan, pid, last = pid_ns->last_pid;
 156        struct pidmap *map;
 157
 158        pid = last + 1;
 159        if (pid >= pid_max)
 160                pid = RESERVED_PIDS;
 161        offset = pid & BITS_PER_PAGE_MASK;
 162        map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
 163        /*
 164         * If last_pid points into the middle of the map->page we
 165         * want to scan this bitmap block twice, the second time
 166         * we start with offset == 0 (or RESERVED_PIDS).
 167         */
 168        max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
 169        for (i = 0; i <= max_scan; ++i) {
 170                if (unlikely(!map->page)) {
 171                        void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
 172                        /*
 173                         * Free the page if someone raced with us
 174                         * installing it:
 175                         */
 176                        spin_lock_irq(&pidmap_lock);
 177                        if (!map->page) {
 178                                map->page = page;
 179                                page = NULL;
 180                        }
 181                        spin_unlock_irq(&pidmap_lock);
 182                        kfree(page);
 183                        if (unlikely(!map->page))
 184                                return -ENOMEM;
 185                }
 186                if (likely(atomic_read(&map->nr_free))) {
 187                        for ( ; ; ) {
 188                                if (!test_and_set_bit(offset, map->page)) {
 189                                        atomic_dec(&map->nr_free);
 190                                        set_last_pid(pid_ns, last, pid);
 191                                        return pid;
 192                                }
 193                                offset = find_next_offset(map, offset);
 194                                if (offset >= BITS_PER_PAGE)
 195                                        break;
 196                                pid = mk_pid(pid_ns, map, offset);
 197                                if (pid >= pid_max)
 198                                        break;
 199                        }
 200                }
 201                if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
 202                        ++map;
 203                        offset = 0;
 204                } else {
 205                        map = &pid_ns->pidmap[0];
 206                        offset = RESERVED_PIDS;
 207                        if (unlikely(last == offset))
 208                                break;
 209                }
 210                pid = mk_pid(pid_ns, map, offset);
 211        }
 212        return -EAGAIN;
 213}
 214
 215int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
 216{
 217        int offset;
 218        struct pidmap *map, *end;
 219
 220        if (last >= PID_MAX_LIMIT)
 221                return -1;
 222
 223        offset = (last + 1) & BITS_PER_PAGE_MASK;
 224        map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
 225        end = &pid_ns->pidmap[PIDMAP_ENTRIES];
 226        for (; map < end; map++, offset = 0) {
 227                if (unlikely(!map->page))
 228                        continue;
 229                offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
 230                if (offset < BITS_PER_PAGE)
 231                        return mk_pid(pid_ns, map, offset);
 232        }
 233        return -1;
 234}
 235
 236void put_pid(struct pid *pid)
 237{
 238        struct pid_namespace *ns;
 239
 240        if (!pid)
 241                return;
 242
 243        ns = pid->numbers[pid->level].ns;
 244        if ((atomic_read(&pid->count) == 1) ||
 245             atomic_dec_and_test(&pid->count)) {
 246                kmem_cache_free(ns->pid_cachep, pid);
 247                put_pid_ns(ns);
 248        }
 249}
 250EXPORT_SYMBOL_GPL(put_pid);
 251
 252static void delayed_put_pid(struct rcu_head *rhp)
 253{
 254        struct pid *pid = container_of(rhp, struct pid, rcu);
 255        put_pid(pid);
 256}
 257
 258void free_pid(struct pid *pid)
 259{
 260        /* We can be called with write_lock_irq(&tasklist_lock) held */
 261        int i;
 262        unsigned long flags;
 263
 264        spin_lock_irqsave(&pidmap_lock, flags);
 265        for (i = 0; i <= pid->level; i++) {
 266                struct upid *upid = pid->numbers + i;
 267                struct pid_namespace *ns = upid->ns;
 268                hlist_del_rcu(&upid->pid_chain);
 269                switch(--ns->nr_hashed) {
 270                case 2:
 271                case 1:
 272                        /* When all that is left in the pid namespace
 273                         * is the reaper wake up the reaper.  The reaper
 274                         * may be sleeping in zap_pid_ns_processes().
 275                         */
 276                        wake_up_process(ns->child_reaper);
 277                        break;
 278                case PIDNS_HASH_ADDING:
 279                        /* Handle a fork failure of the first process */
 280                        WARN_ON(ns->child_reaper);
 281                        ns->nr_hashed = 0;
 282                        /* fall through */
 283                case 0:
 284                        schedule_work(&ns->proc_work);
 285                        break;
 286                }
 287        }
 288        spin_unlock_irqrestore(&pidmap_lock, flags);
 289
 290        for (i = 0; i <= pid->level; i++)
 291                free_pidmap(pid->numbers + i);
 292
 293        call_rcu(&pid->rcu, delayed_put_pid);
 294}
 295
 296struct pid *alloc_pid(struct pid_namespace *ns)
 297{
 298        struct pid *pid;
 299        enum pid_type type;
 300        int i, nr;
 301        struct pid_namespace *tmp;
 302        struct upid *upid;
 303        int retval = -ENOMEM;
 304
 305        pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
 306        if (!pid)
 307                return ERR_PTR(retval);
 308
 309        tmp = ns;
 310        pid->level = ns->level;
 311        for (i = ns->level; i >= 0; i--) {
 312                nr = alloc_pidmap(tmp);
 313                if (nr < 0) {
 314                        retval = nr;
 315                        goto out_free;
 316                }
 317
 318                pid->numbers[i].nr = nr;
 319                pid->numbers[i].ns = tmp;
 320                tmp = tmp->parent;
 321        }
 322
 323        if (unlikely(is_child_reaper(pid))) {
 324                if (pid_ns_prepare_proc(ns)) {
 325                        disable_pid_allocation(ns);
 326                        goto out_free;
 327                }
 328        }
 329
 330        get_pid_ns(ns);
 331        atomic_set(&pid->count, 1);
 332        for (type = 0; type < PIDTYPE_MAX; ++type)
 333                INIT_HLIST_HEAD(&pid->tasks[type]);
 334
 335        upid = pid->numbers + ns->level;
 336        spin_lock_irq(&pidmap_lock);
 337        if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
 338                goto out_unlock;
 339        for ( ; upid >= pid->numbers; --upid) {
 340                hlist_add_head_rcu(&upid->pid_chain,
 341                                &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
 342                upid->ns->nr_hashed++;
 343        }
 344        spin_unlock_irq(&pidmap_lock);
 345
 346        return pid;
 347
 348out_unlock:
 349        spin_unlock_irq(&pidmap_lock);
 350        put_pid_ns(ns);
 351
 352out_free:
 353        while (++i <= ns->level)
 354                free_pidmap(pid->numbers + i);
 355
 356        kmem_cache_free(ns->pid_cachep, pid);
 357        return ERR_PTR(retval);
 358}
 359
 360void disable_pid_allocation(struct pid_namespace *ns)
 361{
 362        spin_lock_irq(&pidmap_lock);
 363        ns->nr_hashed &= ~PIDNS_HASH_ADDING;
 364        spin_unlock_irq(&pidmap_lock);
 365}
 366
 367struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
 368{
 369        struct upid *pnr;
 370
 371        hlist_for_each_entry_rcu(pnr,
 372                        &pid_hash[pid_hashfn(nr, ns)], pid_chain)
 373                if (pnr->nr == nr && pnr->ns == ns)
 374                        return container_of(pnr, struct pid,
 375                                        numbers[ns->level]);
 376
 377        return NULL;
 378}
 379EXPORT_SYMBOL_GPL(find_pid_ns);
 380
 381struct pid *find_vpid(int nr)
 382{
 383        return find_pid_ns(nr, task_active_pid_ns(current));
 384}
 385EXPORT_SYMBOL_GPL(find_vpid);
 386
 387/*
 388 * attach_pid() must be called with the tasklist_lock write-held.
 389 */
 390void attach_pid(struct task_struct *task, enum pid_type type)
 391{
 392        struct pid_link *link = &task->pids[type];
 393        hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
 394}
 395
 396static void __change_pid(struct task_struct *task, enum pid_type type,
 397                        struct pid *new)
 398{
 399        struct pid_link *link;
 400        struct pid *pid;
 401        int tmp;
 402
 403        link = &task->pids[type];
 404        pid = link->pid;
 405
 406        hlist_del_rcu(&link->node);
 407        link->pid = new;
 408
 409        for (tmp = PIDTYPE_MAX; --tmp >= 0; )
 410                if (!hlist_empty(&pid->tasks[tmp]))
 411                        return;
 412
 413        free_pid(pid);
 414}
 415
 416void detach_pid(struct task_struct *task, enum pid_type type)
 417{
 418        __change_pid(task, type, NULL);
 419}
 420
 421void change_pid(struct task_struct *task, enum pid_type type,
 422                struct pid *pid)
 423{
 424        __change_pid(task, type, pid);
 425        attach_pid(task, type);
 426}
 427
 428/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
 429void transfer_pid(struct task_struct *old, struct task_struct *new,
 430                           enum pid_type type)
 431{
 432        new->pids[type].pid = old->pids[type].pid;
 433        hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
 434}
 435
 436struct task_struct *pid_task(struct pid *pid, enum pid_type type)
 437{
 438        struct task_struct *result = NULL;
 439        if (pid) {
 440                struct hlist_node *first;
 441                first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
 442                                              lockdep_tasklist_lock_is_held());
 443                if (first)
 444                        result = hlist_entry(first, struct task_struct, pids[(type)].node);
 445        }
 446        return result;
 447}
 448EXPORT_SYMBOL(pid_task);
 449
 450/*
 451 * Must be called under rcu_read_lock().
 452 */
 453struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
 454{
 455        RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
 456                         "find_task_by_pid_ns() needs rcu_read_lock() protection");
 457        return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
 458}
 459
 460struct task_struct *find_task_by_vpid(pid_t vnr)
 461{
 462        return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
 463}
 464
 465struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
 466{
 467        struct pid *pid;
 468        rcu_read_lock();
 469        if (type != PIDTYPE_PID)
 470                task = task->group_leader;
 471        pid = get_pid(rcu_dereference(task->pids[type].pid));
 472        rcu_read_unlock();
 473        return pid;
 474}
 475EXPORT_SYMBOL_GPL(get_task_pid);
 476
 477struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
 478{
 479        struct task_struct *result;
 480        rcu_read_lock();
 481        result = pid_task(pid, type);
 482        if (result)
 483                get_task_struct(result);
 484        rcu_read_unlock();
 485        return result;
 486}
 487EXPORT_SYMBOL_GPL(get_pid_task);
 488
 489struct pid *find_get_pid(pid_t nr)
 490{
 491        struct pid *pid;
 492
 493        rcu_read_lock();
 494        pid = get_pid(find_vpid(nr));
 495        rcu_read_unlock();
 496
 497        return pid;
 498}
 499EXPORT_SYMBOL_GPL(find_get_pid);
 500
 501pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
 502{
 503        struct upid *upid;
 504        pid_t nr = 0;
 505
 506        if (pid && ns->level <= pid->level) {
 507                upid = &pid->numbers[ns->level];
 508                if (upid->ns == ns)
 509                        nr = upid->nr;
 510        }
 511        return nr;
 512}
 513EXPORT_SYMBOL_GPL(pid_nr_ns);
 514
 515pid_t pid_vnr(struct pid *pid)
 516{
 517        return pid_nr_ns(pid, task_active_pid_ns(current));
 518}
 519EXPORT_SYMBOL_GPL(pid_vnr);
 520
 521pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
 522                        struct pid_namespace *ns)
 523{
 524        pid_t nr = 0;
 525
 526        rcu_read_lock();
 527        if (!ns)
 528                ns = task_active_pid_ns(current);
 529        if (likely(pid_alive(task))) {
 530                if (type != PIDTYPE_PID) {
 531                        if (type == __PIDTYPE_TGID)
 532                                type = PIDTYPE_PID;
 533                        task = task->group_leader;
 534                }
 535                nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
 536        }
 537        rcu_read_unlock();
 538
 539        return nr;
 540}
 541EXPORT_SYMBOL(__task_pid_nr_ns);
 542
 543struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
 544{
 545        return ns_of_pid(task_pid(tsk));
 546}
 547EXPORT_SYMBOL_GPL(task_active_pid_ns);
 548
 549/*
 550 * Used by proc to find the first pid that is greater than or equal to nr.
 551 *
 552 * If there is a pid at nr this function is exactly the same as find_pid_ns.
 553 */
 554struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
 555{
 556        struct pid *pid;
 557
 558        do {
 559                pid = find_pid_ns(nr, ns);
 560                if (pid)
 561                        break;
 562                nr = next_pidmap(ns, nr);
 563        } while (nr > 0);
 564
 565        return pid;
 566}
 567
 568/*
 569 * The pid hash table is scaled according to the amount of memory in the
 570 * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
 571 * more.
 572 */
 573void __init pidhash_init(void)
 574{
 575        pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
 576                                           HASH_EARLY | HASH_SMALL | HASH_ZERO,
 577                                           &pidhash_shift, NULL,
 578                                           0, 4096);
 579}
 580
 581void __init pidmap_init(void)
 582{
 583        /* Verify no one has done anything silly: */
 584        BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
 585
 586        /* bump default and minimum pid_max based on number of cpus */
 587        pid_max = min(pid_max_max, max_t(int, pid_max,
 588                                PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
 589        pid_max_min = max_t(int, pid_max_min,
 590                                PIDS_PER_CPU_MIN * num_possible_cpus());
 591        pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
 592
 593        init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
 594        /* Reserve PID 0. We never call free_pidmap(0) */
 595        set_bit(0, init_pid_ns.pidmap[0].page);
 596        atomic_dec(&init_pid_ns.pidmap[0].nr_free);
 597
 598        init_pid_ns.pid_cachep = KMEM_CACHE(pid,
 599                        SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
 600}
 601