linux/kernel/rcu/tree.c
<<
>>
Prefs
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2008
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *          Manfred Spraul <manfred@colorfullife.com>
  22 *          Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23 *
  24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26 *
  27 * For detailed explanation of Read-Copy Update mechanism see -
  28 *      Documentation/RCU
  29 */
  30#include <linux/types.h>
  31#include <linux/kernel.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/smp.h>
  35#include <linux/rcupdate_wait.h>
  36#include <linux/interrupt.h>
  37#include <linux/sched.h>
  38#include <linux/sched/debug.h>
  39#include <linux/nmi.h>
  40#include <linux/atomic.h>
  41#include <linux/bitops.h>
  42#include <linux/export.h>
  43#include <linux/completion.h>
  44#include <linux/moduleparam.h>
  45#include <linux/percpu.h>
  46#include <linux/notifier.h>
  47#include <linux/cpu.h>
  48#include <linux/mutex.h>
  49#include <linux/time.h>
  50#include <linux/kernel_stat.h>
  51#include <linux/wait.h>
  52#include <linux/kthread.h>
  53#include <uapi/linux/sched/types.h>
  54#include <linux/prefetch.h>
  55#include <linux/delay.h>
  56#include <linux/stop_machine.h>
  57#include <linux/random.h>
  58#include <linux/trace_events.h>
  59#include <linux/suspend.h>
  60#include <linux/ftrace.h>
  61
  62#include "tree.h"
  63#include "rcu.h"
  64
  65#ifdef MODULE_PARAM_PREFIX
  66#undef MODULE_PARAM_PREFIX
  67#endif
  68#define MODULE_PARAM_PREFIX "rcutree."
  69
  70/* Data structures. */
  71
  72/*
  73 * In order to export the rcu_state name to the tracing tools, it
  74 * needs to be added in the __tracepoint_string section.
  75 * This requires defining a separate variable tp_<sname>_varname
  76 * that points to the string being used, and this will allow
  77 * the tracing userspace tools to be able to decipher the string
  78 * address to the matching string.
  79 */
  80#ifdef CONFIG_TRACING
  81# define DEFINE_RCU_TPS(sname) \
  82static char sname##_varname[] = #sname; \
  83static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
  84# define RCU_STATE_NAME(sname) sname##_varname
  85#else
  86# define DEFINE_RCU_TPS(sname)
  87# define RCU_STATE_NAME(sname) __stringify(sname)
  88#endif
  89
  90#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  91DEFINE_RCU_TPS(sname) \
  92static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
  93struct rcu_state sname##_state = { \
  94        .level = { &sname##_state.node[0] }, \
  95        .rda = &sname##_data, \
  96        .call = cr, \
  97        .gp_state = RCU_GP_IDLE, \
  98        .gpnum = 0UL - 300UL, \
  99        .completed = 0UL - 300UL, \
 100        .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
 101        .orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
 102        .orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
 103        .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
 104        .name = RCU_STATE_NAME(sname), \
 105        .abbr = sabbr, \
 106        .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
 107        .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
 108}
 109
 110RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
 111RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
 112
 113static struct rcu_state *const rcu_state_p;
 114LIST_HEAD(rcu_struct_flavors);
 115
 116/* Dump rcu_node combining tree at boot to verify correct setup. */
 117static bool dump_tree;
 118module_param(dump_tree, bool, 0444);
 119/* Control rcu_node-tree auto-balancing at boot time. */
 120static bool rcu_fanout_exact;
 121module_param(rcu_fanout_exact, bool, 0444);
 122/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 123static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 124module_param(rcu_fanout_leaf, int, 0444);
 125int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 126/* Number of rcu_nodes at specified level. */
 127int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 128int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 129/* panic() on RCU Stall sysctl. */
 130int sysctl_panic_on_rcu_stall __read_mostly;
 131
 132/*
 133 * The rcu_scheduler_active variable is initialized to the value
 134 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 135 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 136 * RCU can assume that there is but one task, allowing RCU to (for example)
 137 * optimize synchronize_rcu() to a simple barrier().  When this variable
 138 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 139 * to detect real grace periods.  This variable is also used to suppress
 140 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 141 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 142 * is fully initialized, including all of its kthreads having been spawned.
 143 */
 144int rcu_scheduler_active __read_mostly;
 145EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 146
 147/*
 148 * The rcu_scheduler_fully_active variable transitions from zero to one
 149 * during the early_initcall() processing, which is after the scheduler
 150 * is capable of creating new tasks.  So RCU processing (for example,
 151 * creating tasks for RCU priority boosting) must be delayed until after
 152 * rcu_scheduler_fully_active transitions from zero to one.  We also
 153 * currently delay invocation of any RCU callbacks until after this point.
 154 *
 155 * It might later prove better for people registering RCU callbacks during
 156 * early boot to take responsibility for these callbacks, but one step at
 157 * a time.
 158 */
 159static int rcu_scheduler_fully_active __read_mostly;
 160
 161static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 162static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 163static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 164static void invoke_rcu_core(void);
 165static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
 166static void rcu_report_exp_rdp(struct rcu_state *rsp,
 167                               struct rcu_data *rdp, bool wake);
 168static void sync_sched_exp_online_cleanup(int cpu);
 169
 170/* rcuc/rcub kthread realtime priority */
 171static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 172module_param(kthread_prio, int, 0644);
 173
 174/* Delay in jiffies for grace-period initialization delays, debug only. */
 175
 176static int gp_preinit_delay;
 177module_param(gp_preinit_delay, int, 0444);
 178static int gp_init_delay;
 179module_param(gp_init_delay, int, 0444);
 180static int gp_cleanup_delay;
 181module_param(gp_cleanup_delay, int, 0444);
 182
 183/*
 184 * Number of grace periods between delays, normalized by the duration of
 185 * the delay.  The longer the delay, the more the grace periods between
 186 * each delay.  The reason for this normalization is that it means that,
 187 * for non-zero delays, the overall slowdown of grace periods is constant
 188 * regardless of the duration of the delay.  This arrangement balances
 189 * the need for long delays to increase some race probabilities with the
 190 * need for fast grace periods to increase other race probabilities.
 191 */
 192#define PER_RCU_NODE_PERIOD 3   /* Number of grace periods between delays. */
 193
 194/*
 195 * Track the rcutorture test sequence number and the update version
 196 * number within a given test.  The rcutorture_testseq is incremented
 197 * on every rcutorture module load and unload, so has an odd value
 198 * when a test is running.  The rcutorture_vernum is set to zero
 199 * when rcutorture starts and is incremented on each rcutorture update.
 200 * These variables enable correlating rcutorture output with the
 201 * RCU tracing information.
 202 */
 203unsigned long rcutorture_testseq;
 204unsigned long rcutorture_vernum;
 205
 206/*
 207 * Compute the mask of online CPUs for the specified rcu_node structure.
 208 * This will not be stable unless the rcu_node structure's ->lock is
 209 * held, but the bit corresponding to the current CPU will be stable
 210 * in most contexts.
 211 */
 212unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 213{
 214        return READ_ONCE(rnp->qsmaskinitnext);
 215}
 216
 217/*
 218 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 219 * permit this function to be invoked without holding the root rcu_node
 220 * structure's ->lock, but of course results can be subject to change.
 221 */
 222static int rcu_gp_in_progress(struct rcu_state *rsp)
 223{
 224        return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
 225}
 226
 227/*
 228 * Note a quiescent state.  Because we do not need to know
 229 * how many quiescent states passed, just if there was at least
 230 * one since the start of the grace period, this just sets a flag.
 231 * The caller must have disabled preemption.
 232 */
 233void rcu_sched_qs(void)
 234{
 235        RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
 236        if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
 237                return;
 238        trace_rcu_grace_period(TPS("rcu_sched"),
 239                               __this_cpu_read(rcu_sched_data.gpnum),
 240                               TPS("cpuqs"));
 241        __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
 242        if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
 243                return;
 244        __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
 245        rcu_report_exp_rdp(&rcu_sched_state,
 246                           this_cpu_ptr(&rcu_sched_data), true);
 247}
 248
 249void rcu_bh_qs(void)
 250{
 251        RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
 252        if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
 253                trace_rcu_grace_period(TPS("rcu_bh"),
 254                                       __this_cpu_read(rcu_bh_data.gpnum),
 255                                       TPS("cpuqs"));
 256                __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
 257        }
 258}
 259
 260/*
 261 * Steal a bit from the bottom of ->dynticks for idle entry/exit
 262 * control.  Initially this is for TLB flushing.
 263 */
 264#define RCU_DYNTICK_CTRL_MASK 0x1
 265#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
 266#ifndef rcu_eqs_special_exit
 267#define rcu_eqs_special_exit() do { } while (0)
 268#endif
 269
 270static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
 271        .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
 272        .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
 273};
 274
 275/*
 276 * There's a few places, currently just in the tracing infrastructure,
 277 * that uses rcu_irq_enter() to make sure RCU is watching. But there's
 278 * a small location where that will not even work. In those cases
 279 * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
 280 * can be called.
 281 */
 282static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
 283
 284bool rcu_irq_enter_disabled(void)
 285{
 286        return this_cpu_read(disable_rcu_irq_enter);
 287}
 288
 289/*
 290 * Record entry into an extended quiescent state.  This is only to be
 291 * called when not already in an extended quiescent state.
 292 */
 293static void rcu_dynticks_eqs_enter(void)
 294{
 295        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 296        int seq;
 297
 298        /*
 299         * CPUs seeing atomic_add_return() must see prior RCU read-side
 300         * critical sections, and we also must force ordering with the
 301         * next idle sojourn.
 302         */
 303        seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 304        /* Better be in an extended quiescent state! */
 305        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 306                     (seq & RCU_DYNTICK_CTRL_CTR));
 307        /* Better not have special action (TLB flush) pending! */
 308        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 309                     (seq & RCU_DYNTICK_CTRL_MASK));
 310}
 311
 312/*
 313 * Record exit from an extended quiescent state.  This is only to be
 314 * called from an extended quiescent state.
 315 */
 316static void rcu_dynticks_eqs_exit(void)
 317{
 318        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 319        int seq;
 320
 321        /*
 322         * CPUs seeing atomic_add_return() must see prior idle sojourns,
 323         * and we also must force ordering with the next RCU read-side
 324         * critical section.
 325         */
 326        seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 327        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 328                     !(seq & RCU_DYNTICK_CTRL_CTR));
 329        if (seq & RCU_DYNTICK_CTRL_MASK) {
 330                atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
 331                smp_mb__after_atomic(); /* _exit after clearing mask. */
 332                /* Prefer duplicate flushes to losing a flush. */
 333                rcu_eqs_special_exit();
 334        }
 335}
 336
 337/*
 338 * Reset the current CPU's ->dynticks counter to indicate that the
 339 * newly onlined CPU is no longer in an extended quiescent state.
 340 * This will either leave the counter unchanged, or increment it
 341 * to the next non-quiescent value.
 342 *
 343 * The non-atomic test/increment sequence works because the upper bits
 344 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 345 * or when the corresponding CPU is offline.
 346 */
 347static void rcu_dynticks_eqs_online(void)
 348{
 349        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 350
 351        if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
 352                return;
 353        atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 354}
 355
 356/*
 357 * Is the current CPU in an extended quiescent state?
 358 *
 359 * No ordering, as we are sampling CPU-local information.
 360 */
 361bool rcu_dynticks_curr_cpu_in_eqs(void)
 362{
 363        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 364
 365        return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
 366}
 367
 368/*
 369 * Snapshot the ->dynticks counter with full ordering so as to allow
 370 * stable comparison of this counter with past and future snapshots.
 371 */
 372int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
 373{
 374        int snap = atomic_add_return(0, &rdtp->dynticks);
 375
 376        return snap & ~RCU_DYNTICK_CTRL_MASK;
 377}
 378
 379/*
 380 * Return true if the snapshot returned from rcu_dynticks_snap()
 381 * indicates that RCU is in an extended quiescent state.
 382 */
 383static bool rcu_dynticks_in_eqs(int snap)
 384{
 385        return !(snap & RCU_DYNTICK_CTRL_CTR);
 386}
 387
 388/*
 389 * Return true if the CPU corresponding to the specified rcu_dynticks
 390 * structure has spent some time in an extended quiescent state since
 391 * rcu_dynticks_snap() returned the specified snapshot.
 392 */
 393static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
 394{
 395        return snap != rcu_dynticks_snap(rdtp);
 396}
 397
 398/*
 399 * Do a double-increment of the ->dynticks counter to emulate a
 400 * momentary idle-CPU quiescent state.
 401 */
 402static void rcu_dynticks_momentary_idle(void)
 403{
 404        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 405        int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
 406                                        &rdtp->dynticks);
 407
 408        /* It is illegal to call this from idle state. */
 409        WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
 410}
 411
 412/*
 413 * Set the special (bottom) bit of the specified CPU so that it
 414 * will take special action (such as flushing its TLB) on the
 415 * next exit from an extended quiescent state.  Returns true if
 416 * the bit was successfully set, or false if the CPU was not in
 417 * an extended quiescent state.
 418 */
 419bool rcu_eqs_special_set(int cpu)
 420{
 421        int old;
 422        int new;
 423        struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
 424
 425        do {
 426                old = atomic_read(&rdtp->dynticks);
 427                if (old & RCU_DYNTICK_CTRL_CTR)
 428                        return false;
 429                new = old | RCU_DYNTICK_CTRL_MASK;
 430        } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
 431        return true;
 432}
 433
 434/*
 435 * Let the RCU core know that this CPU has gone through the scheduler,
 436 * which is a quiescent state.  This is called when the need for a
 437 * quiescent state is urgent, so we burn an atomic operation and full
 438 * memory barriers to let the RCU core know about it, regardless of what
 439 * this CPU might (or might not) do in the near future.
 440 *
 441 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 442 *
 443 * The caller must have disabled interrupts.
 444 */
 445static void rcu_momentary_dyntick_idle(void)
 446{
 447        raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
 448        rcu_dynticks_momentary_idle();
 449}
 450
 451/*
 452 * Note a context switch.  This is a quiescent state for RCU-sched,
 453 * and requires special handling for preemptible RCU.
 454 * The caller must have disabled interrupts.
 455 */
 456void rcu_note_context_switch(bool preempt)
 457{
 458        barrier(); /* Avoid RCU read-side critical sections leaking down. */
 459        trace_rcu_utilization(TPS("Start context switch"));
 460        rcu_sched_qs();
 461        rcu_preempt_note_context_switch(preempt);
 462        /* Load rcu_urgent_qs before other flags. */
 463        if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
 464                goto out;
 465        this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
 466        if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
 467                rcu_momentary_dyntick_idle();
 468        this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
 469        if (!preempt)
 470                rcu_note_voluntary_context_switch_lite(current);
 471out:
 472        trace_rcu_utilization(TPS("End context switch"));
 473        barrier(); /* Avoid RCU read-side critical sections leaking up. */
 474}
 475EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 476
 477/*
 478 * Register a quiescent state for all RCU flavors.  If there is an
 479 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 480 * dyntick-idle quiescent state visible to other CPUs (but only for those
 481 * RCU flavors in desperate need of a quiescent state, which will normally
 482 * be none of them).  Either way, do a lightweight quiescent state for
 483 * all RCU flavors.
 484 *
 485 * The barrier() calls are redundant in the common case when this is
 486 * called externally, but just in case this is called from within this
 487 * file.
 488 *
 489 */
 490void rcu_all_qs(void)
 491{
 492        unsigned long flags;
 493
 494        if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
 495                return;
 496        preempt_disable();
 497        /* Load rcu_urgent_qs before other flags. */
 498        if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
 499                preempt_enable();
 500                return;
 501        }
 502        this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
 503        barrier(); /* Avoid RCU read-side critical sections leaking down. */
 504        if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
 505                local_irq_save(flags);
 506                rcu_momentary_dyntick_idle();
 507                local_irq_restore(flags);
 508        }
 509        if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
 510                rcu_sched_qs();
 511        this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
 512        barrier(); /* Avoid RCU read-side critical sections leaking up. */
 513        preempt_enable();
 514}
 515EXPORT_SYMBOL_GPL(rcu_all_qs);
 516
 517#define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch. */
 518static long blimit = DEFAULT_RCU_BLIMIT;
 519#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
 520static long qhimark = DEFAULT_RCU_QHIMARK;
 521#define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
 522static long qlowmark = DEFAULT_RCU_QLOMARK;
 523
 524module_param(blimit, long, 0444);
 525module_param(qhimark, long, 0444);
 526module_param(qlowmark, long, 0444);
 527
 528static ulong jiffies_till_first_fqs = ULONG_MAX;
 529static ulong jiffies_till_next_fqs = ULONG_MAX;
 530static bool rcu_kick_kthreads;
 531
 532module_param(jiffies_till_first_fqs, ulong, 0644);
 533module_param(jiffies_till_next_fqs, ulong, 0644);
 534module_param(rcu_kick_kthreads, bool, 0644);
 535
 536/*
 537 * How long the grace period must be before we start recruiting
 538 * quiescent-state help from rcu_note_context_switch().
 539 */
 540static ulong jiffies_till_sched_qs = HZ / 20;
 541module_param(jiffies_till_sched_qs, ulong, 0644);
 542
 543static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
 544                                  struct rcu_data *rdp);
 545static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
 546static void force_quiescent_state(struct rcu_state *rsp);
 547static int rcu_pending(void);
 548
 549/*
 550 * Return the number of RCU batches started thus far for debug & stats.
 551 */
 552unsigned long rcu_batches_started(void)
 553{
 554        return rcu_state_p->gpnum;
 555}
 556EXPORT_SYMBOL_GPL(rcu_batches_started);
 557
 558/*
 559 * Return the number of RCU-sched batches started thus far for debug & stats.
 560 */
 561unsigned long rcu_batches_started_sched(void)
 562{
 563        return rcu_sched_state.gpnum;
 564}
 565EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
 566
 567/*
 568 * Return the number of RCU BH batches started thus far for debug & stats.
 569 */
 570unsigned long rcu_batches_started_bh(void)
 571{
 572        return rcu_bh_state.gpnum;
 573}
 574EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
 575
 576/*
 577 * Return the number of RCU batches completed thus far for debug & stats.
 578 */
 579unsigned long rcu_batches_completed(void)
 580{
 581        return rcu_state_p->completed;
 582}
 583EXPORT_SYMBOL_GPL(rcu_batches_completed);
 584
 585/*
 586 * Return the number of RCU-sched batches completed thus far for debug & stats.
 587 */
 588unsigned long rcu_batches_completed_sched(void)
 589{
 590        return rcu_sched_state.completed;
 591}
 592EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
 593
 594/*
 595 * Return the number of RCU BH batches completed thus far for debug & stats.
 596 */
 597unsigned long rcu_batches_completed_bh(void)
 598{
 599        return rcu_bh_state.completed;
 600}
 601EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
 602
 603/*
 604 * Return the number of RCU expedited batches completed thus far for
 605 * debug & stats.  Odd numbers mean that a batch is in progress, even
 606 * numbers mean idle.  The value returned will thus be roughly double
 607 * the cumulative batches since boot.
 608 */
 609unsigned long rcu_exp_batches_completed(void)
 610{
 611        return rcu_state_p->expedited_sequence;
 612}
 613EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 614
 615/*
 616 * Return the number of RCU-sched expedited batches completed thus far
 617 * for debug & stats.  Similar to rcu_exp_batches_completed().
 618 */
 619unsigned long rcu_exp_batches_completed_sched(void)
 620{
 621        return rcu_sched_state.expedited_sequence;
 622}
 623EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
 624
 625/*
 626 * Force a quiescent state.
 627 */
 628void rcu_force_quiescent_state(void)
 629{
 630        force_quiescent_state(rcu_state_p);
 631}
 632EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 633
 634/*
 635 * Force a quiescent state for RCU BH.
 636 */
 637void rcu_bh_force_quiescent_state(void)
 638{
 639        force_quiescent_state(&rcu_bh_state);
 640}
 641EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
 642
 643/*
 644 * Force a quiescent state for RCU-sched.
 645 */
 646void rcu_sched_force_quiescent_state(void)
 647{
 648        force_quiescent_state(&rcu_sched_state);
 649}
 650EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
 651
 652/*
 653 * Show the state of the grace-period kthreads.
 654 */
 655void show_rcu_gp_kthreads(void)
 656{
 657        struct rcu_state *rsp;
 658
 659        for_each_rcu_flavor(rsp) {
 660                pr_info("%s: wait state: %d ->state: %#lx\n",
 661                        rsp->name, rsp->gp_state, rsp->gp_kthread->state);
 662                /* sched_show_task(rsp->gp_kthread); */
 663        }
 664}
 665EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
 666
 667/*
 668 * Record the number of times rcutorture tests have been initiated and
 669 * terminated.  This information allows the debugfs tracing stats to be
 670 * correlated to the rcutorture messages, even when the rcutorture module
 671 * is being repeatedly loaded and unloaded.  In other words, we cannot
 672 * store this state in rcutorture itself.
 673 */
 674void rcutorture_record_test_transition(void)
 675{
 676        rcutorture_testseq++;
 677        rcutorture_vernum = 0;
 678}
 679EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
 680
 681/*
 682 * Send along grace-period-related data for rcutorture diagnostics.
 683 */
 684void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 685                            unsigned long *gpnum, unsigned long *completed)
 686{
 687        struct rcu_state *rsp = NULL;
 688
 689        switch (test_type) {
 690        case RCU_FLAVOR:
 691                rsp = rcu_state_p;
 692                break;
 693        case RCU_BH_FLAVOR:
 694                rsp = &rcu_bh_state;
 695                break;
 696        case RCU_SCHED_FLAVOR:
 697                rsp = &rcu_sched_state;
 698                break;
 699        default:
 700                break;
 701        }
 702        if (rsp == NULL)
 703                return;
 704        *flags = READ_ONCE(rsp->gp_flags);
 705        *gpnum = READ_ONCE(rsp->gpnum);
 706        *completed = READ_ONCE(rsp->completed);
 707}
 708EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 709
 710/*
 711 * Record the number of writer passes through the current rcutorture test.
 712 * This is also used to correlate debugfs tracing stats with the rcutorture
 713 * messages.
 714 */
 715void rcutorture_record_progress(unsigned long vernum)
 716{
 717        rcutorture_vernum++;
 718}
 719EXPORT_SYMBOL_GPL(rcutorture_record_progress);
 720
 721/*
 722 * Return the root node of the specified rcu_state structure.
 723 */
 724static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
 725{
 726        return &rsp->node[0];
 727}
 728
 729/*
 730 * Is there any need for future grace periods?
 731 * Interrupts must be disabled.  If the caller does not hold the root
 732 * rnp_node structure's ->lock, the results are advisory only.
 733 */
 734static int rcu_future_needs_gp(struct rcu_state *rsp)
 735{
 736        struct rcu_node *rnp = rcu_get_root(rsp);
 737        int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
 738        int *fp = &rnp->need_future_gp[idx];
 739
 740        RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_future_needs_gp() invoked with irqs enabled!!!");
 741        return READ_ONCE(*fp);
 742}
 743
 744/*
 745 * Does the current CPU require a not-yet-started grace period?
 746 * The caller must have disabled interrupts to prevent races with
 747 * normal callback registry.
 748 */
 749static bool
 750cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
 751{
 752        RCU_LOCKDEP_WARN(!irqs_disabled(), "cpu_needs_another_gp() invoked with irqs enabled!!!");
 753        if (rcu_gp_in_progress(rsp))
 754                return false;  /* No, a grace period is already in progress. */
 755        if (rcu_future_needs_gp(rsp))
 756                return true;  /* Yes, a no-CBs CPU needs one. */
 757        if (!rcu_segcblist_is_enabled(&rdp->cblist))
 758                return false;  /* No, this is a no-CBs (or offline) CPU. */
 759        if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
 760                return true;  /* Yes, CPU has newly registered callbacks. */
 761        if (rcu_segcblist_future_gp_needed(&rdp->cblist,
 762                                           READ_ONCE(rsp->completed)))
 763                return true;  /* Yes, CBs for future grace period. */
 764        return false; /* No grace period needed. */
 765}
 766
 767/*
 768 * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
 769 *
 770 * Enter idle, doing appropriate accounting.  The caller must have
 771 * disabled interrupts.
 772 */
 773static void rcu_eqs_enter_common(bool user)
 774{
 775        struct rcu_state *rsp;
 776        struct rcu_data *rdp;
 777        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 778
 779        RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_enter_common() invoked with irqs enabled!!!");
 780        trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
 781        if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 782            !user && !is_idle_task(current)) {
 783                struct task_struct *idle __maybe_unused =
 784                        idle_task(smp_processor_id());
 785
 786                trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
 787                rcu_ftrace_dump(DUMP_ORIG);
 788                WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 789                          current->pid, current->comm,
 790                          idle->pid, idle->comm); /* must be idle task! */
 791        }
 792        for_each_rcu_flavor(rsp) {
 793                rdp = this_cpu_ptr(rsp->rda);
 794                do_nocb_deferred_wakeup(rdp);
 795        }
 796        rcu_prepare_for_idle();
 797        __this_cpu_inc(disable_rcu_irq_enter);
 798        rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
 799        rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
 800        __this_cpu_dec(disable_rcu_irq_enter);
 801        rcu_dynticks_task_enter();
 802
 803        /*
 804         * It is illegal to enter an extended quiescent state while
 805         * in an RCU read-side critical section.
 806         */
 807        RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
 808                         "Illegal idle entry in RCU read-side critical section.");
 809        RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
 810                         "Illegal idle entry in RCU-bh read-side critical section.");
 811        RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
 812                         "Illegal idle entry in RCU-sched read-side critical section.");
 813}
 814
 815/*
 816 * Enter an RCU extended quiescent state, which can be either the
 817 * idle loop or adaptive-tickless usermode execution.
 818 */
 819static void rcu_eqs_enter(bool user)
 820{
 821        struct rcu_dynticks *rdtp;
 822
 823        rdtp = this_cpu_ptr(&rcu_dynticks);
 824        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 825                     (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
 826        if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
 827                rcu_eqs_enter_common(user);
 828        else
 829                rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
 830}
 831
 832/**
 833 * rcu_idle_enter - inform RCU that current CPU is entering idle
 834 *
 835 * Enter idle mode, in other words, -leave- the mode in which RCU
 836 * read-side critical sections can occur.  (Though RCU read-side
 837 * critical sections can occur in irq handlers in idle, a possibility
 838 * handled by irq_enter() and irq_exit().)
 839 *
 840 * We crowbar the ->dynticks_nesting field to zero to allow for
 841 * the possibility of usermode upcalls having messed up our count
 842 * of interrupt nesting level during the prior busy period.
 843 */
 844void rcu_idle_enter(void)
 845{
 846        unsigned long flags;
 847
 848        local_irq_save(flags);
 849        rcu_eqs_enter(false);
 850        local_irq_restore(flags);
 851}
 852EXPORT_SYMBOL_GPL(rcu_idle_enter);
 853
 854#ifdef CONFIG_NO_HZ_FULL
 855/**
 856 * rcu_user_enter - inform RCU that we are resuming userspace.
 857 *
 858 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 859 * is permitted between this call and rcu_user_exit(). This way the
 860 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 861 * when the CPU runs in userspace.
 862 */
 863void rcu_user_enter(void)
 864{
 865        rcu_eqs_enter(1);
 866}
 867#endif /* CONFIG_NO_HZ_FULL */
 868
 869/**
 870 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 871 *
 872 * Exit from an interrupt handler, which might possibly result in entering
 873 * idle mode, in other words, leaving the mode in which read-side critical
 874 * sections can occur.  The caller must have disabled interrupts.
 875 *
 876 * This code assumes that the idle loop never does anything that might
 877 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 878 * architecture violates this assumption, RCU will give you what you
 879 * deserve, good and hard.  But very infrequently and irreproducibly.
 880 *
 881 * Use things like work queues to work around this limitation.
 882 *
 883 * You have been warned.
 884 */
 885void rcu_irq_exit(void)
 886{
 887        struct rcu_dynticks *rdtp;
 888
 889        RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
 890        rdtp = this_cpu_ptr(&rcu_dynticks);
 891        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 892                     rdtp->dynticks_nesting < 1);
 893        if (rdtp->dynticks_nesting <= 1) {
 894                rcu_eqs_enter_common(true);
 895        } else {
 896                trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
 897                rdtp->dynticks_nesting--;
 898        }
 899}
 900
 901/*
 902 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 903 */
 904void rcu_irq_exit_irqson(void)
 905{
 906        unsigned long flags;
 907
 908        local_irq_save(flags);
 909        rcu_irq_exit();
 910        local_irq_restore(flags);
 911}
 912
 913/*
 914 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
 915 *
 916 * If the new value of the ->dynticks_nesting counter was previously zero,
 917 * we really have exited idle, and must do the appropriate accounting.
 918 * The caller must have disabled interrupts.
 919 */
 920static void rcu_eqs_exit_common(long long oldval, int user)
 921{
 922        RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
 923
 924        rcu_dynticks_task_exit();
 925        rcu_dynticks_eqs_exit();
 926        rcu_cleanup_after_idle();
 927        trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
 928        if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 929            !user && !is_idle_task(current)) {
 930                struct task_struct *idle __maybe_unused =
 931                        idle_task(smp_processor_id());
 932
 933                trace_rcu_dyntick(TPS("Error on exit: not idle task"),
 934                                  oldval, rdtp->dynticks_nesting);
 935                rcu_ftrace_dump(DUMP_ORIG);
 936                WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 937                          current->pid, current->comm,
 938                          idle->pid, idle->comm); /* must be idle task! */
 939        }
 940}
 941
 942/*
 943 * Exit an RCU extended quiescent state, which can be either the
 944 * idle loop or adaptive-tickless usermode execution.
 945 */
 946static void rcu_eqs_exit(bool user)
 947{
 948        struct rcu_dynticks *rdtp;
 949        long long oldval;
 950
 951        RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_exit() invoked with irqs enabled!!!");
 952        rdtp = this_cpu_ptr(&rcu_dynticks);
 953        oldval = rdtp->dynticks_nesting;
 954        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 955        if (oldval & DYNTICK_TASK_NEST_MASK) {
 956                rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
 957        } else {
 958                rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
 959                rcu_eqs_exit_common(oldval, user);
 960        }
 961}
 962
 963/**
 964 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 965 *
 966 * Exit idle mode, in other words, -enter- the mode in which RCU
 967 * read-side critical sections can occur.
 968 *
 969 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 970 * allow for the possibility of usermode upcalls messing up our count
 971 * of interrupt nesting level during the busy period that is just
 972 * now starting.
 973 */
 974void rcu_idle_exit(void)
 975{
 976        unsigned long flags;
 977
 978        local_irq_save(flags);
 979        rcu_eqs_exit(false);
 980        local_irq_restore(flags);
 981}
 982EXPORT_SYMBOL_GPL(rcu_idle_exit);
 983
 984#ifdef CONFIG_NO_HZ_FULL
 985/**
 986 * rcu_user_exit - inform RCU that we are exiting userspace.
 987 *
 988 * Exit RCU idle mode while entering the kernel because it can
 989 * run a RCU read side critical section anytime.
 990 */
 991void rcu_user_exit(void)
 992{
 993        rcu_eqs_exit(1);
 994}
 995#endif /* CONFIG_NO_HZ_FULL */
 996
 997/**
 998 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 999 *
1000 * Enter an interrupt handler, which might possibly result in exiting
1001 * idle mode, in other words, entering the mode in which read-side critical
1002 * sections can occur.  The caller must have disabled interrupts.
1003 *
1004 * Note that the Linux kernel is fully capable of entering an interrupt
1005 * handler that it never exits, for example when doing upcalls to
1006 * user mode!  This code assumes that the idle loop never does upcalls to
1007 * user mode.  If your architecture does do upcalls from the idle loop (or
1008 * does anything else that results in unbalanced calls to the irq_enter()
1009 * and irq_exit() functions), RCU will give you what you deserve, good
1010 * and hard.  But very infrequently and irreproducibly.
1011 *
1012 * Use things like work queues to work around this limitation.
1013 *
1014 * You have been warned.
1015 */
1016void rcu_irq_enter(void)
1017{
1018        struct rcu_dynticks *rdtp;
1019        long long oldval;
1020
1021        RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1022        rdtp = this_cpu_ptr(&rcu_dynticks);
1023        oldval = rdtp->dynticks_nesting;
1024        rdtp->dynticks_nesting++;
1025        WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1026                     rdtp->dynticks_nesting == 0);
1027        if (oldval)
1028                trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1029        else
1030                rcu_eqs_exit_common(oldval, true);
1031}
1032
1033/*
1034 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1035 */
1036void rcu_irq_enter_irqson(void)
1037{
1038        unsigned long flags;
1039
1040        local_irq_save(flags);
1041        rcu_irq_enter();
1042        local_irq_restore(flags);
1043}
1044
1045/**
1046 * rcu_nmi_enter - inform RCU of entry to NMI context
1047 *
1048 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1049 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1050 * that the CPU is active.  This implementation permits nested NMIs, as
1051 * long as the nesting level does not overflow an int.  (You will probably
1052 * run out of stack space first.)
1053 */
1054void rcu_nmi_enter(void)
1055{
1056        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1057        int incby = 2;
1058
1059        /* Complain about underflow. */
1060        WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1061
1062        /*
1063         * If idle from RCU viewpoint, atomically increment ->dynticks
1064         * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1065         * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
1066         * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1067         * to be in the outermost NMI handler that interrupted an RCU-idle
1068         * period (observation due to Andy Lutomirski).
1069         */
1070        if (rcu_dynticks_curr_cpu_in_eqs()) {
1071                rcu_dynticks_eqs_exit();
1072                incby = 1;
1073        }
1074        rdtp->dynticks_nmi_nesting += incby;
1075        barrier();
1076}
1077
1078/**
1079 * rcu_nmi_exit - inform RCU of exit from NMI context
1080 *
1081 * If we are returning from the outermost NMI handler that interrupted an
1082 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1083 * to let the RCU grace-period handling know that the CPU is back to
1084 * being RCU-idle.
1085 */
1086void rcu_nmi_exit(void)
1087{
1088        struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1089
1090        /*
1091         * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1092         * (We are exiting an NMI handler, so RCU better be paying attention
1093         * to us!)
1094         */
1095        WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1096        WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1097
1098        /*
1099         * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1100         * leave it in non-RCU-idle state.
1101         */
1102        if (rdtp->dynticks_nmi_nesting != 1) {
1103                rdtp->dynticks_nmi_nesting -= 2;
1104                return;
1105        }
1106
1107        /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1108        rdtp->dynticks_nmi_nesting = 0;
1109        rcu_dynticks_eqs_enter();
1110}
1111
1112/**
1113 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1114 *
1115 * Return true if RCU is watching the running CPU, which means that this
1116 * CPU can safely enter RCU read-side critical sections.  In other words,
1117 * if the current CPU is in its idle loop and is neither in an interrupt
1118 * or NMI handler, return true.
1119 */
1120bool notrace rcu_is_watching(void)
1121{
1122        bool ret;
1123
1124        preempt_disable_notrace();
1125        ret = !rcu_dynticks_curr_cpu_in_eqs();
1126        preempt_enable_notrace();
1127        return ret;
1128}
1129EXPORT_SYMBOL_GPL(rcu_is_watching);
1130
1131/*
1132 * If a holdout task is actually running, request an urgent quiescent
1133 * state from its CPU.  This is unsynchronized, so migrations can cause
1134 * the request to go to the wrong CPU.  Which is OK, all that will happen
1135 * is that the CPU's next context switch will be a bit slower and next
1136 * time around this task will generate another request.
1137 */
1138void rcu_request_urgent_qs_task(struct task_struct *t)
1139{
1140        int cpu;
1141
1142        barrier();
1143        cpu = task_cpu(t);
1144        if (!task_curr(t))
1145                return; /* This task is not running on that CPU. */
1146        smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1147}
1148
1149#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1150
1151/*
1152 * Is the current CPU online?  Disable preemption to avoid false positives
1153 * that could otherwise happen due to the current CPU number being sampled,
1154 * this task being preempted, its old CPU being taken offline, resuming
1155 * on some other CPU, then determining that its old CPU is now offline.
1156 * It is OK to use RCU on an offline processor during initial boot, hence
1157 * the check for rcu_scheduler_fully_active.  Note also that it is OK
1158 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1159 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1160 * offline to continue to use RCU for one jiffy after marking itself
1161 * offline in the cpu_online_mask.  This leniency is necessary given the
1162 * non-atomic nature of the online and offline processing, for example,
1163 * the fact that a CPU enters the scheduler after completing the teardown
1164 * of the CPU.
1165 *
1166 * This is also why RCU internally marks CPUs online during in the
1167 * preparation phase and offline after the CPU has been taken down.
1168 *
1169 * Disable checking if in an NMI handler because we cannot safely report
1170 * errors from NMI handlers anyway.
1171 */
1172bool rcu_lockdep_current_cpu_online(void)
1173{
1174        struct rcu_data *rdp;
1175        struct rcu_node *rnp;
1176        bool ret;
1177
1178        if (in_nmi())
1179                return true;
1180        preempt_disable();
1181        rdp = this_cpu_ptr(&rcu_sched_data);
1182        rnp = rdp->mynode;
1183        ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1184              !rcu_scheduler_fully_active;
1185        preempt_enable();
1186        return ret;
1187}
1188EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1189
1190#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1191
1192/**
1193 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1194 *
1195 * If the current CPU is idle or running at a first-level (not nested)
1196 * interrupt from idle, return true.  The caller must have at least
1197 * disabled preemption.
1198 */
1199static int rcu_is_cpu_rrupt_from_idle(void)
1200{
1201        return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1202}
1203
1204/*
1205 * Snapshot the specified CPU's dynticks counter so that we can later
1206 * credit them with an implicit quiescent state.  Return 1 if this CPU
1207 * is in dynticks idle mode, which is an extended quiescent state.
1208 */
1209static int dyntick_save_progress_counter(struct rcu_data *rdp)
1210{
1211        rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1212        if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1213                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1214                if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1215                                 rdp->mynode->gpnum))
1216                        WRITE_ONCE(rdp->gpwrap, true);
1217                return 1;
1218        }
1219        return 0;
1220}
1221
1222/*
1223 * Return true if the specified CPU has passed through a quiescent
1224 * state by virtue of being in or having passed through an dynticks
1225 * idle state since the last call to dyntick_save_progress_counter()
1226 * for this same CPU, or by virtue of having been offline.
1227 */
1228static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1229{
1230        unsigned long jtsq;
1231        bool *rnhqp;
1232        bool *ruqp;
1233        unsigned long rjtsc;
1234        struct rcu_node *rnp;
1235
1236        /*
1237         * If the CPU passed through or entered a dynticks idle phase with
1238         * no active irq/NMI handlers, then we can safely pretend that the CPU
1239         * already acknowledged the request to pass through a quiescent
1240         * state.  Either way, that CPU cannot possibly be in an RCU
1241         * read-side critical section that started before the beginning
1242         * of the current RCU grace period.
1243         */
1244        if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1245                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1246                rdp->dynticks_fqs++;
1247                return 1;
1248        }
1249
1250        /* Compute and saturate jiffies_till_sched_qs. */
1251        jtsq = jiffies_till_sched_qs;
1252        rjtsc = rcu_jiffies_till_stall_check();
1253        if (jtsq > rjtsc / 2) {
1254                WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1255                jtsq = rjtsc / 2;
1256        } else if (jtsq < 1) {
1257                WRITE_ONCE(jiffies_till_sched_qs, 1);
1258                jtsq = 1;
1259        }
1260
1261        /*
1262         * Has this CPU encountered a cond_resched_rcu_qs() since the
1263         * beginning of the grace period?  For this to be the case,
1264         * the CPU has to have noticed the current grace period.  This
1265         * might not be the case for nohz_full CPUs looping in the kernel.
1266         */
1267        rnp = rdp->mynode;
1268        ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1269        if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1270            READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1271            READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1272                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1273                return 1;
1274        } else {
1275                /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1276                smp_store_release(ruqp, true);
1277        }
1278
1279        /* Check for the CPU being offline. */
1280        if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1281                trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1282                rdp->offline_fqs++;
1283                return 1;
1284        }
1285
1286        /*
1287         * A CPU running for an extended time within the kernel can
1288         * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1289         * even context-switching back and forth between a pair of
1290         * in-kernel CPU-bound tasks cannot advance grace periods.
1291         * So if the grace period is old enough, make the CPU pay attention.
1292         * Note that the unsynchronized assignments to the per-CPU
1293         * rcu_need_heavy_qs variable are safe.  Yes, setting of
1294         * bits can be lost, but they will be set again on the next
1295         * force-quiescent-state pass.  So lost bit sets do not result
1296         * in incorrect behavior, merely in a grace period lasting
1297         * a few jiffies longer than it might otherwise.  Because
1298         * there are at most four threads involved, and because the
1299         * updates are only once every few jiffies, the probability of
1300         * lossage (and thus of slight grace-period extension) is
1301         * quite low.
1302         *
1303         * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1304         * is set too high, we override with half of the RCU CPU stall
1305         * warning delay.
1306         */
1307        rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1308        if (!READ_ONCE(*rnhqp) &&
1309            (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1310             time_after(jiffies, rdp->rsp->jiffies_resched))) {
1311                WRITE_ONCE(*rnhqp, true);
1312                /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1313                smp_store_release(ruqp, true);
1314                rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1315        }
1316
1317        /*
1318         * If more than halfway to RCU CPU stall-warning time, do
1319         * a resched_cpu() to try to loosen things up a bit.
1320         */
1321        if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1322                resched_cpu(rdp->cpu);
1323
1324        return 0;
1325}
1326
1327static void record_gp_stall_check_time(struct rcu_state *rsp)
1328{
1329        unsigned long j = jiffies;
1330        unsigned long j1;
1331
1332        rsp->gp_start = j;
1333        smp_wmb(); /* Record start time before stall time. */
1334        j1 = rcu_jiffies_till_stall_check();
1335        WRITE_ONCE(rsp->jiffies_stall, j + j1);
1336        rsp->jiffies_resched = j + j1 / 2;
1337        rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1338}
1339
1340/*
1341 * Convert a ->gp_state value to a character string.
1342 */
1343static const char *gp_state_getname(short gs)
1344{
1345        if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1346                return "???";
1347        return gp_state_names[gs];
1348}
1349
1350/*
1351 * Complain about starvation of grace-period kthread.
1352 */
1353static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1354{
1355        unsigned long gpa;
1356        unsigned long j;
1357
1358        j = jiffies;
1359        gpa = READ_ONCE(rsp->gp_activity);
1360        if (j - gpa > 2 * HZ) {
1361                pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1362                       rsp->name, j - gpa,
1363                       rsp->gpnum, rsp->completed,
1364                       rsp->gp_flags,
1365                       gp_state_getname(rsp->gp_state), rsp->gp_state,
1366                       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1367                if (rsp->gp_kthread) {
1368                        sched_show_task(rsp->gp_kthread);
1369                        wake_up_process(rsp->gp_kthread);
1370                }
1371        }
1372}
1373
1374/*
1375 * Dump stacks of all tasks running on stalled CPUs.  First try using
1376 * NMIs, but fall back to manual remote stack tracing on architectures
1377 * that don't support NMI-based stack dumps.  The NMI-triggered stack
1378 * traces are more accurate because they are printed by the target CPU.
1379 */
1380static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1381{
1382        int cpu;
1383        unsigned long flags;
1384        struct rcu_node *rnp;
1385
1386        rcu_for_each_leaf_node(rsp, rnp) {
1387                raw_spin_lock_irqsave_rcu_node(rnp, flags);
1388                for_each_leaf_node_possible_cpu(rnp, cpu)
1389                        if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1390                                if (!trigger_single_cpu_backtrace(cpu))
1391                                        dump_cpu_task(cpu);
1392                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1393        }
1394}
1395
1396/*
1397 * If too much time has passed in the current grace period, and if
1398 * so configured, go kick the relevant kthreads.
1399 */
1400static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1401{
1402        unsigned long j;
1403
1404        if (!rcu_kick_kthreads)
1405                return;
1406        j = READ_ONCE(rsp->jiffies_kick_kthreads);
1407        if (time_after(jiffies, j) && rsp->gp_kthread &&
1408            (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1409                WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1410                rcu_ftrace_dump(DUMP_ALL);
1411                wake_up_process(rsp->gp_kthread);
1412                WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1413        }
1414}
1415
1416static inline void panic_on_rcu_stall(void)
1417{
1418        if (sysctl_panic_on_rcu_stall)
1419                panic("RCU Stall\n");
1420}
1421
1422static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1423{
1424        int cpu;
1425        long delta;
1426        unsigned long flags;
1427        unsigned long gpa;
1428        unsigned long j;
1429        int ndetected = 0;
1430        struct rcu_node *rnp = rcu_get_root(rsp);
1431        long totqlen = 0;
1432
1433        /* Kick and suppress, if so configured. */
1434        rcu_stall_kick_kthreads(rsp);
1435        if (rcu_cpu_stall_suppress)
1436                return;
1437
1438        /* Only let one CPU complain about others per time interval. */
1439
1440        raw_spin_lock_irqsave_rcu_node(rnp, flags);
1441        delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1442        if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1443                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1444                return;
1445        }
1446        WRITE_ONCE(rsp->jiffies_stall,
1447                   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1448        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1449
1450        /*
1451         * OK, time to rat on our buddy...
1452         * See Documentation/RCU/stallwarn.txt for info on how to debug
1453         * RCU CPU stall warnings.
1454         */
1455        pr_err("INFO: %s detected stalls on CPUs/tasks:",
1456               rsp->name);
1457        print_cpu_stall_info_begin();
1458        rcu_for_each_leaf_node(rsp, rnp) {
1459                raw_spin_lock_irqsave_rcu_node(rnp, flags);
1460                ndetected += rcu_print_task_stall(rnp);
1461                if (rnp->qsmask != 0) {
1462                        for_each_leaf_node_possible_cpu(rnp, cpu)
1463                                if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1464                                        print_cpu_stall_info(rsp, cpu);
1465                                        ndetected++;
1466                                }
1467                }
1468                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1469        }
1470
1471        print_cpu_stall_info_end();
1472        for_each_possible_cpu(cpu)
1473                totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1474                                                            cpu)->cblist);
1475        pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1476               smp_processor_id(), (long)(jiffies - rsp->gp_start),
1477               (long)rsp->gpnum, (long)rsp->completed, totqlen);
1478        if (ndetected) {
1479                rcu_dump_cpu_stacks(rsp);
1480
1481                /* Complain about tasks blocking the grace period. */
1482                rcu_print_detail_task_stall(rsp);
1483        } else {
1484                if (READ_ONCE(rsp->gpnum) != gpnum ||
1485                    READ_ONCE(rsp->completed) == gpnum) {
1486                        pr_err("INFO: Stall ended before state dump start\n");
1487                } else {
1488                        j = jiffies;
1489                        gpa = READ_ONCE(rsp->gp_activity);
1490                        pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1491                               rsp->name, j - gpa, j, gpa,
1492                               jiffies_till_next_fqs,
1493                               rcu_get_root(rsp)->qsmask);
1494                        /* In this case, the current CPU might be at fault. */
1495                        sched_show_task(current);
1496                }
1497        }
1498
1499        rcu_check_gp_kthread_starvation(rsp);
1500
1501        panic_on_rcu_stall();
1502
1503        force_quiescent_state(rsp);  /* Kick them all. */
1504}
1505
1506static void print_cpu_stall(struct rcu_state *rsp)
1507{
1508        int cpu;
1509        unsigned long flags;
1510        struct rcu_node *rnp = rcu_get_root(rsp);
1511        long totqlen = 0;
1512
1513        /* Kick and suppress, if so configured. */
1514        rcu_stall_kick_kthreads(rsp);
1515        if (rcu_cpu_stall_suppress)
1516                return;
1517
1518        /*
1519         * OK, time to rat on ourselves...
1520         * See Documentation/RCU/stallwarn.txt for info on how to debug
1521         * RCU CPU stall warnings.
1522         */
1523        pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1524        print_cpu_stall_info_begin();
1525        print_cpu_stall_info(rsp, smp_processor_id());
1526        print_cpu_stall_info_end();
1527        for_each_possible_cpu(cpu)
1528                totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1529                                                            cpu)->cblist);
1530        pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1531                jiffies - rsp->gp_start,
1532                (long)rsp->gpnum, (long)rsp->completed, totqlen);
1533
1534        rcu_check_gp_kthread_starvation(rsp);
1535
1536        rcu_dump_cpu_stacks(rsp);
1537
1538        raw_spin_lock_irqsave_rcu_node(rnp, flags);
1539        if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1540                WRITE_ONCE(rsp->jiffies_stall,
1541                           jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1542        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1543
1544        panic_on_rcu_stall();
1545
1546        /*
1547         * Attempt to revive the RCU machinery by forcing a context switch.
1548         *
1549         * A context switch would normally allow the RCU state machine to make
1550         * progress and it could be we're stuck in kernel space without context
1551         * switches for an entirely unreasonable amount of time.
1552         */
1553        resched_cpu(smp_processor_id());
1554}
1555
1556static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1557{
1558        unsigned long completed;
1559        unsigned long gpnum;
1560        unsigned long gps;
1561        unsigned long j;
1562        unsigned long js;
1563        struct rcu_node *rnp;
1564
1565        if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1566            !rcu_gp_in_progress(rsp))
1567                return;
1568        rcu_stall_kick_kthreads(rsp);
1569        j = jiffies;
1570
1571        /*
1572         * Lots of memory barriers to reject false positives.
1573         *
1574         * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1575         * then rsp->gp_start, and finally rsp->completed.  These values
1576         * are updated in the opposite order with memory barriers (or
1577         * equivalent) during grace-period initialization and cleanup.
1578         * Now, a false positive can occur if we get an new value of
1579         * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1580         * the memory barriers, the only way that this can happen is if one
1581         * grace period ends and another starts between these two fetches.
1582         * Detect this by comparing rsp->completed with the previous fetch
1583         * from rsp->gpnum.
1584         *
1585         * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1586         * and rsp->gp_start suffice to forestall false positives.
1587         */
1588        gpnum = READ_ONCE(rsp->gpnum);
1589        smp_rmb(); /* Pick up ->gpnum first... */
1590        js = READ_ONCE(rsp->jiffies_stall);
1591        smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1592        gps = READ_ONCE(rsp->gp_start);
1593        smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1594        completed = READ_ONCE(rsp->completed);
1595        if (ULONG_CMP_GE(completed, gpnum) ||
1596            ULONG_CMP_LT(j, js) ||
1597            ULONG_CMP_GE(gps, js))
1598                return; /* No stall or GP completed since entering function. */
1599        rnp = rdp->mynode;
1600        if (rcu_gp_in_progress(rsp) &&
1601            (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1602
1603                /* We haven't checked in, so go dump stack. */
1604                print_cpu_stall(rsp);
1605
1606        } else if (rcu_gp_in_progress(rsp) &&
1607                   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1608
1609                /* They had a few time units to dump stack, so complain. */
1610                print_other_cpu_stall(rsp, gpnum);
1611        }
1612}
1613
1614/**
1615 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1616 *
1617 * Set the stall-warning timeout way off into the future, thus preventing
1618 * any RCU CPU stall-warning messages from appearing in the current set of
1619 * RCU grace periods.
1620 *
1621 * The caller must disable hard irqs.
1622 */
1623void rcu_cpu_stall_reset(void)
1624{
1625        struct rcu_state *rsp;
1626
1627        for_each_rcu_flavor(rsp)
1628                WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1629}
1630
1631/*
1632 * Determine the value that ->completed will have at the end of the
1633 * next subsequent grace period.  This is used to tag callbacks so that
1634 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1635 * been dyntick-idle for an extended period with callbacks under the
1636 * influence of RCU_FAST_NO_HZ.
1637 *
1638 * The caller must hold rnp->lock with interrupts disabled.
1639 */
1640static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1641                                       struct rcu_node *rnp)
1642{
1643        lockdep_assert_held(&rnp->lock);
1644
1645        /*
1646         * If RCU is idle, we just wait for the next grace period.
1647         * But we can only be sure that RCU is idle if we are looking
1648         * at the root rcu_node structure -- otherwise, a new grace
1649         * period might have started, but just not yet gotten around
1650         * to initializing the current non-root rcu_node structure.
1651         */
1652        if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1653                return rnp->completed + 1;
1654
1655        /*
1656         * Otherwise, wait for a possible partial grace period and
1657         * then the subsequent full grace period.
1658         */
1659        return rnp->completed + 2;
1660}
1661
1662/*
1663 * Trace-event helper function for rcu_start_future_gp() and
1664 * rcu_nocb_wait_gp().
1665 */
1666static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1667                                unsigned long c, const char *s)
1668{
1669        trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1670                                      rnp->completed, c, rnp->level,
1671                                      rnp->grplo, rnp->grphi, s);
1672}
1673
1674/*
1675 * Start some future grace period, as needed to handle newly arrived
1676 * callbacks.  The required future grace periods are recorded in each
1677 * rcu_node structure's ->need_future_gp field.  Returns true if there
1678 * is reason to awaken the grace-period kthread.
1679 *
1680 * The caller must hold the specified rcu_node structure's ->lock.
1681 */
1682static bool __maybe_unused
1683rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1684                    unsigned long *c_out)
1685{
1686        unsigned long c;
1687        bool ret = false;
1688        struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1689
1690        lockdep_assert_held(&rnp->lock);
1691
1692        /*
1693         * Pick up grace-period number for new callbacks.  If this
1694         * grace period is already marked as needed, return to the caller.
1695         */
1696        c = rcu_cbs_completed(rdp->rsp, rnp);
1697        trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1698        if (rnp->need_future_gp[c & 0x1]) {
1699                trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1700                goto out;
1701        }
1702
1703        /*
1704         * If either this rcu_node structure or the root rcu_node structure
1705         * believe that a grace period is in progress, then we must wait
1706         * for the one following, which is in "c".  Because our request
1707         * will be noticed at the end of the current grace period, we don't
1708         * need to explicitly start one.  We only do the lockless check
1709         * of rnp_root's fields if the current rcu_node structure thinks
1710         * there is no grace period in flight, and because we hold rnp->lock,
1711         * the only possible change is when rnp_root's two fields are
1712         * equal, in which case rnp_root->gpnum might be concurrently
1713         * incremented.  But that is OK, as it will just result in our
1714         * doing some extra useless work.
1715         */
1716        if (rnp->gpnum != rnp->completed ||
1717            READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1718                rnp->need_future_gp[c & 0x1]++;
1719                trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1720                goto out;
1721        }
1722
1723        /*
1724         * There might be no grace period in progress.  If we don't already
1725         * hold it, acquire the root rcu_node structure's lock in order to
1726         * start one (if needed).
1727         */
1728        if (rnp != rnp_root)
1729                raw_spin_lock_rcu_node(rnp_root);
1730
1731        /*
1732         * Get a new grace-period number.  If there really is no grace
1733         * period in progress, it will be smaller than the one we obtained
1734         * earlier.  Adjust callbacks as needed.
1735         */
1736        c = rcu_cbs_completed(rdp->rsp, rnp_root);
1737        if (!rcu_is_nocb_cpu(rdp->cpu))
1738                (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1739
1740        /*
1741         * If the needed for the required grace period is already
1742         * recorded, trace and leave.
1743         */
1744        if (rnp_root->need_future_gp[c & 0x1]) {
1745                trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1746                goto unlock_out;
1747        }
1748
1749        /* Record the need for the future grace period. */
1750        rnp_root->need_future_gp[c & 0x1]++;
1751
1752        /* If a grace period is not already in progress, start one. */
1753        if (rnp_root->gpnum != rnp_root->completed) {
1754                trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1755        } else {
1756                trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1757                ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1758        }
1759unlock_out:
1760        if (rnp != rnp_root)
1761                raw_spin_unlock_rcu_node(rnp_root);
1762out:
1763        if (c_out != NULL)
1764                *c_out = c;
1765        return ret;
1766}
1767
1768/*
1769 * Clean up any old requests for the just-ended grace period.  Also return
1770 * whether any additional grace periods have been requested.
1771 */
1772static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1773{
1774        int c = rnp->completed;
1775        int needmore;
1776        struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1777
1778        rnp->need_future_gp[c & 0x1] = 0;
1779        needmore = rnp->need_future_gp[(c + 1) & 0x1];
1780        trace_rcu_future_gp(rnp, rdp, c,
1781                            needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1782        return needmore;
1783}
1784
1785/*
1786 * Awaken the grace-period kthread for the specified flavor of RCU.
1787 * Don't do a self-awaken, and don't bother awakening when there is
1788 * nothing for the grace-period kthread to do (as in several CPUs
1789 * raced to awaken, and we lost), and finally don't try to awaken
1790 * a kthread that has not yet been created.
1791 */
1792static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1793{
1794        if (current == rsp->gp_kthread ||
1795            !READ_ONCE(rsp->gp_flags) ||
1796            !rsp->gp_kthread)
1797                return;
1798        swake_up(&rsp->gp_wq);
1799}
1800
1801/*
1802 * If there is room, assign a ->completed number to any callbacks on
1803 * this CPU that have not already been assigned.  Also accelerate any
1804 * callbacks that were previously assigned a ->completed number that has
1805 * since proven to be too conservative, which can happen if callbacks get
1806 * assigned a ->completed number while RCU is idle, but with reference to
1807 * a non-root rcu_node structure.  This function is idempotent, so it does
1808 * not hurt to call it repeatedly.  Returns an flag saying that we should
1809 * awaken the RCU grace-period kthread.
1810 *
1811 * The caller must hold rnp->lock with interrupts disabled.
1812 */
1813static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1814                               struct rcu_data *rdp)
1815{
1816        bool ret = false;
1817
1818        lockdep_assert_held(&rnp->lock);
1819
1820        /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1821        if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1822                return false;
1823
1824        /*
1825         * Callbacks are often registered with incomplete grace-period
1826         * information.  Something about the fact that getting exact
1827         * information requires acquiring a global lock...  RCU therefore
1828         * makes a conservative estimate of the grace period number at which
1829         * a given callback will become ready to invoke.        The following
1830         * code checks this estimate and improves it when possible, thus
1831         * accelerating callback invocation to an earlier grace-period
1832         * number.
1833         */
1834        if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1835                ret = rcu_start_future_gp(rnp, rdp, NULL);
1836
1837        /* Trace depending on how much we were able to accelerate. */
1838        if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1839                trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1840        else
1841                trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1842        return ret;
1843}
1844
1845/*
1846 * Move any callbacks whose grace period has completed to the
1847 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1848 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1849 * sublist.  This function is idempotent, so it does not hurt to
1850 * invoke it repeatedly.  As long as it is not invoked -too- often...
1851 * Returns true if the RCU grace-period kthread needs to be awakened.
1852 *
1853 * The caller must hold rnp->lock with interrupts disabled.
1854 */
1855static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1856                            struct rcu_data *rdp)
1857{
1858        lockdep_assert_held(&rnp->lock);
1859
1860        /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1861        if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1862                return false;
1863
1864        /*
1865         * Find all callbacks whose ->completed numbers indicate that they
1866         * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1867         */
1868        rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1869
1870        /* Classify any remaining callbacks. */
1871        return rcu_accelerate_cbs(rsp, rnp, rdp);
1872}
1873
1874/*
1875 * Update CPU-local rcu_data state to record the beginnings and ends of
1876 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1877 * structure corresponding to the current CPU, and must have irqs disabled.
1878 * Returns true if the grace-period kthread needs to be awakened.
1879 */
1880static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1881                              struct rcu_data *rdp)
1882{
1883        bool ret;
1884        bool need_gp;
1885
1886        lockdep_assert_held(&rnp->lock);
1887
1888        /* Handle the ends of any preceding grace periods first. */
1889        if (rdp->completed == rnp->completed &&
1890            !unlikely(READ_ONCE(rdp->gpwrap))) {
1891
1892                /* No grace period end, so just accelerate recent callbacks. */
1893                ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1894
1895        } else {
1896
1897                /* Advance callbacks. */
1898                ret = rcu_advance_cbs(rsp, rnp, rdp);
1899
1900                /* Remember that we saw this grace-period completion. */
1901                rdp->completed = rnp->completed;
1902                trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1903        }
1904
1905        if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1906                /*
1907                 * If the current grace period is waiting for this CPU,
1908                 * set up to detect a quiescent state, otherwise don't
1909                 * go looking for one.
1910                 */
1911                rdp->gpnum = rnp->gpnum;
1912                trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1913                need_gp = !!(rnp->qsmask & rdp->grpmask);
1914                rdp->cpu_no_qs.b.norm = need_gp;
1915                rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1916                rdp->core_needs_qs = need_gp;
1917                zero_cpu_stall_ticks(rdp);
1918                WRITE_ONCE(rdp->gpwrap, false);
1919        }
1920        return ret;
1921}
1922
1923static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1924{
1925        unsigned long flags;
1926        bool needwake;
1927        struct rcu_node *rnp;
1928
1929        local_irq_save(flags);
1930        rnp = rdp->mynode;
1931        if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1932             rdp->completed == READ_ONCE(rnp->completed) &&
1933             !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1934            !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1935                local_irq_restore(flags);
1936                return;
1937        }
1938        needwake = __note_gp_changes(rsp, rnp, rdp);
1939        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1940        if (needwake)
1941                rcu_gp_kthread_wake(rsp);
1942}
1943
1944static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1945{
1946        if (delay > 0 &&
1947            !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1948                schedule_timeout_uninterruptible(delay);
1949}
1950
1951/*
1952 * Initialize a new grace period.  Return false if no grace period required.
1953 */
1954static bool rcu_gp_init(struct rcu_state *rsp)
1955{
1956        unsigned long oldmask;
1957        struct rcu_data *rdp;
1958        struct rcu_node *rnp = rcu_get_root(rsp);
1959
1960        WRITE_ONCE(rsp->gp_activity, jiffies);
1961        raw_spin_lock_irq_rcu_node(rnp);
1962        if (!READ_ONCE(rsp->gp_flags)) {
1963                /* Spurious wakeup, tell caller to go back to sleep.  */
1964                raw_spin_unlock_irq_rcu_node(rnp);
1965                return false;
1966        }
1967        WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1968
1969        if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1970                /*
1971                 * Grace period already in progress, don't start another.
1972                 * Not supposed to be able to happen.
1973                 */
1974                raw_spin_unlock_irq_rcu_node(rnp);
1975                return false;
1976        }
1977
1978        /* Advance to a new grace period and initialize state. */
1979        record_gp_stall_check_time(rsp);
1980        /* Record GP times before starting GP, hence smp_store_release(). */
1981        smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1982        trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1983        raw_spin_unlock_irq_rcu_node(rnp);
1984
1985        /*
1986         * Apply per-leaf buffered online and offline operations to the
1987         * rcu_node tree.  Note that this new grace period need not wait
1988         * for subsequent online CPUs, and that quiescent-state forcing
1989         * will handle subsequent offline CPUs.
1990         */
1991        rcu_for_each_leaf_node(rsp, rnp) {
1992                rcu_gp_slow(rsp, gp_preinit_delay);
1993                raw_spin_lock_irq_rcu_node(rnp);
1994                if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1995                    !rnp->wait_blkd_tasks) {
1996                        /* Nothing to do on this leaf rcu_node structure. */
1997                        raw_spin_unlock_irq_rcu_node(rnp);
1998                        continue;
1999                }
2000
2001                /* Record old state, apply changes to ->qsmaskinit field. */
2002                oldmask = rnp->qsmaskinit;
2003                rnp->qsmaskinit = rnp->qsmaskinitnext;
2004
2005                /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2006                if (!oldmask != !rnp->qsmaskinit) {
2007                        if (!oldmask) /* First online CPU for this rcu_node. */
2008                                rcu_init_new_rnp(rnp);
2009                        else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2010                                rnp->wait_blkd_tasks = true;
2011                        else /* Last offline CPU and can propagate. */
2012                                rcu_cleanup_dead_rnp(rnp);
2013                }
2014
2015                /*
2016                 * If all waited-on tasks from prior grace period are
2017                 * done, and if all this rcu_node structure's CPUs are
2018                 * still offline, propagate up the rcu_node tree and
2019                 * clear ->wait_blkd_tasks.  Otherwise, if one of this
2020                 * rcu_node structure's CPUs has since come back online,
2021                 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2022                 * checks for this, so just call it unconditionally).
2023                 */
2024                if (rnp->wait_blkd_tasks &&
2025                    (!rcu_preempt_has_tasks(rnp) ||
2026                     rnp->qsmaskinit)) {
2027                        rnp->wait_blkd_tasks = false;
2028                        rcu_cleanup_dead_rnp(rnp);
2029                }
2030
2031                raw_spin_unlock_irq_rcu_node(rnp);
2032        }
2033
2034        /*
2035         * Set the quiescent-state-needed bits in all the rcu_node
2036         * structures for all currently online CPUs in breadth-first order,
2037         * starting from the root rcu_node structure, relying on the layout
2038         * of the tree within the rsp->node[] array.  Note that other CPUs
2039         * will access only the leaves of the hierarchy, thus seeing that no
2040         * grace period is in progress, at least until the corresponding
2041         * leaf node has been initialized.
2042         *
2043         * The grace period cannot complete until the initialization
2044         * process finishes, because this kthread handles both.
2045         */
2046        rcu_for_each_node_breadth_first(rsp, rnp) {
2047                rcu_gp_slow(rsp, gp_init_delay);
2048                raw_spin_lock_irq_rcu_node(rnp);
2049                rdp = this_cpu_ptr(rsp->rda);
2050                rcu_preempt_check_blocked_tasks(rnp);
2051                rnp->qsmask = rnp->qsmaskinit;
2052                WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2053                if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2054                        WRITE_ONCE(rnp->completed, rsp->completed);
2055                if (rnp == rdp->mynode)
2056                        (void)__note_gp_changes(rsp, rnp, rdp);
2057                rcu_preempt_boost_start_gp(rnp);
2058                trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2059                                            rnp->level, rnp->grplo,
2060                                            rnp->grphi, rnp->qsmask);
2061                raw_spin_unlock_irq_rcu_node(rnp);
2062                cond_resched_rcu_qs();
2063                WRITE_ONCE(rsp->gp_activity, jiffies);
2064        }
2065
2066        return true;
2067}
2068
2069/*
2070 * Helper function for wait_event_interruptible_timeout() wakeup
2071 * at force-quiescent-state time.
2072 */
2073static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2074{
2075        struct rcu_node *rnp = rcu_get_root(rsp);
2076
2077        /* Someone like call_rcu() requested a force-quiescent-state scan. */
2078        *gfp = READ_ONCE(rsp->gp_flags);
2079        if (*gfp & RCU_GP_FLAG_FQS)
2080                return true;
2081
2082        /* The current grace period has completed. */
2083        if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2084                return true;
2085
2086        return false;
2087}
2088
2089/*
2090 * Do one round of quiescent-state forcing.
2091 */
2092static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2093{
2094        struct rcu_node *rnp = rcu_get_root(rsp);
2095
2096        WRITE_ONCE(rsp->gp_activity, jiffies);
2097        rsp->n_force_qs++;
2098        if (first_time) {
2099                /* Collect dyntick-idle snapshots. */
2100                force_qs_rnp(rsp, dyntick_save_progress_counter);
2101        } else {
2102                /* Handle dyntick-idle and offline CPUs. */
2103                force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
2104        }
2105        /* Clear flag to prevent immediate re-entry. */
2106        if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2107                raw_spin_lock_irq_rcu_node(rnp);
2108                WRITE_ONCE(rsp->gp_flags,
2109                           READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2110                raw_spin_unlock_irq_rcu_node(rnp);
2111        }
2112}
2113
2114/*
2115 * Clean up after the old grace period.
2116 */
2117static void rcu_gp_cleanup(struct rcu_state *rsp)
2118{
2119        unsigned long gp_duration;
2120        bool needgp = false;
2121        int nocb = 0;
2122        struct rcu_data *rdp;
2123        struct rcu_node *rnp = rcu_get_root(rsp);
2124        struct swait_queue_head *sq;
2125
2126        WRITE_ONCE(rsp->gp_activity, jiffies);
2127        raw_spin_lock_irq_rcu_node(rnp);
2128        gp_duration = jiffies - rsp->gp_start;
2129        if (gp_duration > rsp->gp_max)
2130                rsp->gp_max = gp_duration;
2131
2132        /*
2133         * We know the grace period is complete, but to everyone else
2134         * it appears to still be ongoing.  But it is also the case
2135         * that to everyone else it looks like there is nothing that
2136         * they can do to advance the grace period.  It is therefore
2137         * safe for us to drop the lock in order to mark the grace
2138         * period as completed in all of the rcu_node structures.
2139         */
2140        raw_spin_unlock_irq_rcu_node(rnp);
2141
2142        /*
2143         * Propagate new ->completed value to rcu_node structures so
2144         * that other CPUs don't have to wait until the start of the next
2145         * grace period to process their callbacks.  This also avoids
2146         * some nasty RCU grace-period initialization races by forcing
2147         * the end of the current grace period to be completely recorded in
2148         * all of the rcu_node structures before the beginning of the next
2149         * grace period is recorded in any of the rcu_node structures.
2150         */
2151        rcu_for_each_node_breadth_first(rsp, rnp) {
2152                raw_spin_lock_irq_rcu_node(rnp);
2153                WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2154                WARN_ON_ONCE(rnp->qsmask);
2155                WRITE_ONCE(rnp->completed, rsp->gpnum);
2156                rdp = this_cpu_ptr(rsp->rda);
2157                if (rnp == rdp->mynode)
2158                        needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2159                /* smp_mb() provided by prior unlock-lock pair. */
2160                nocb += rcu_future_gp_cleanup(rsp, rnp);
2161                sq = rcu_nocb_gp_get(rnp);
2162                raw_spin_unlock_irq_rcu_node(rnp);
2163                rcu_nocb_gp_cleanup(sq);
2164                cond_resched_rcu_qs();
2165                WRITE_ONCE(rsp->gp_activity, jiffies);
2166                rcu_gp_slow(rsp, gp_cleanup_delay);
2167        }
2168        rnp = rcu_get_root(rsp);
2169        raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2170        rcu_nocb_gp_set(rnp, nocb);
2171
2172        /* Declare grace period done. */
2173        WRITE_ONCE(rsp->completed, rsp->gpnum);
2174        trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2175        rsp->gp_state = RCU_GP_IDLE;
2176        rdp = this_cpu_ptr(rsp->rda);
2177        /* Advance CBs to reduce false positives below. */
2178        needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2179        if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2180                WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2181                trace_rcu_grace_period(rsp->name,
2182                                       READ_ONCE(rsp->gpnum),
2183                                       TPS("newreq"));
2184        }
2185        raw_spin_unlock_irq_rcu_node(rnp);
2186}
2187
2188/*
2189 * Body of kthread that handles grace periods.
2190 */
2191static int __noreturn rcu_gp_kthread(void *arg)
2192{
2193        bool first_gp_fqs;
2194        int gf;
2195        unsigned long j;
2196        int ret;
2197        struct rcu_state *rsp = arg;
2198        struct rcu_node *rnp = rcu_get_root(rsp);
2199
2200        rcu_bind_gp_kthread();
2201        for (;;) {
2202
2203                /* Handle grace-period start. */
2204                for (;;) {
2205                        trace_rcu_grace_period(rsp->name,
2206                                               READ_ONCE(rsp->gpnum),
2207                                               TPS("reqwait"));
2208                        rsp->gp_state = RCU_GP_WAIT_GPS;
2209                        swait_event_interruptible(rsp->gp_wq,
2210                                                 READ_ONCE(rsp->gp_flags) &
2211                                                 RCU_GP_FLAG_INIT);
2212                        rsp->gp_state = RCU_GP_DONE_GPS;
2213                        /* Locking provides needed memory barrier. */
2214                        if (rcu_gp_init(rsp))
2215                                break;
2216                        cond_resched_rcu_qs();
2217                        WRITE_ONCE(rsp->gp_activity, jiffies);
2218                        WARN_ON(signal_pending(current));
2219                        trace_rcu_grace_period(rsp->name,
2220                                               READ_ONCE(rsp->gpnum),
2221                                               TPS("reqwaitsig"));
2222                }
2223
2224                /* Handle quiescent-state forcing. */
2225                first_gp_fqs = true;
2226                j = jiffies_till_first_fqs;
2227                if (j > HZ) {
2228                        j = HZ;
2229                        jiffies_till_first_fqs = HZ;
2230                }
2231                ret = 0;
2232                for (;;) {
2233                        if (!ret) {
2234                                rsp->jiffies_force_qs = jiffies + j;
2235                                WRITE_ONCE(rsp->jiffies_kick_kthreads,
2236                                           jiffies + 3 * j);
2237                        }
2238                        trace_rcu_grace_period(rsp->name,
2239                                               READ_ONCE(rsp->gpnum),
2240                                               TPS("fqswait"));
2241                        rsp->gp_state = RCU_GP_WAIT_FQS;
2242                        ret = swait_event_interruptible_timeout(rsp->gp_wq,
2243                                        rcu_gp_fqs_check_wake(rsp, &gf), j);
2244                        rsp->gp_state = RCU_GP_DOING_FQS;
2245                        /* Locking provides needed memory barriers. */
2246                        /* If grace period done, leave loop. */
2247                        if (!READ_ONCE(rnp->qsmask) &&
2248                            !rcu_preempt_blocked_readers_cgp(rnp))
2249                                break;
2250                        /* If time for quiescent-state forcing, do it. */
2251                        if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2252                            (gf & RCU_GP_FLAG_FQS)) {
2253                                trace_rcu_grace_period(rsp->name,
2254                                                       READ_ONCE(rsp->gpnum),
2255                                                       TPS("fqsstart"));
2256                                rcu_gp_fqs(rsp, first_gp_fqs);
2257                                first_gp_fqs = false;
2258                                trace_rcu_grace_period(rsp->name,
2259                                                       READ_ONCE(rsp->gpnum),
2260                                                       TPS("fqsend"));
2261                                cond_resched_rcu_qs();
2262                                WRITE_ONCE(rsp->gp_activity, jiffies);
2263                                ret = 0; /* Force full wait till next FQS. */
2264                                j = jiffies_till_next_fqs;
2265                                if (j > HZ) {
2266                                        j = HZ;
2267                                        jiffies_till_next_fqs = HZ;
2268                                } else if (j < 1) {
2269                                        j = 1;
2270                                        jiffies_till_next_fqs = 1;
2271                                }
2272                        } else {
2273                                /* Deal with stray signal. */
2274                                cond_resched_rcu_qs();
2275                                WRITE_ONCE(rsp->gp_activity, jiffies);
2276                                WARN_ON(signal_pending(current));
2277                                trace_rcu_grace_period(rsp->name,
2278                                                       READ_ONCE(rsp->gpnum),
2279                                                       TPS("fqswaitsig"));
2280                                ret = 1; /* Keep old FQS timing. */
2281                                j = jiffies;
2282                                if (time_after(jiffies, rsp->jiffies_force_qs))
2283                                        j = 1;
2284                                else
2285                                        j = rsp->jiffies_force_qs - j;
2286                        }
2287                }
2288
2289                /* Handle grace-period end. */
2290                rsp->gp_state = RCU_GP_CLEANUP;
2291                rcu_gp_cleanup(rsp);
2292                rsp->gp_state = RCU_GP_CLEANED;
2293        }
2294}
2295
2296/*
2297 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2298 * in preparation for detecting the next grace period.  The caller must hold
2299 * the root node's ->lock and hard irqs must be disabled.
2300 *
2301 * Note that it is legal for a dying CPU (which is marked as offline) to
2302 * invoke this function.  This can happen when the dying CPU reports its
2303 * quiescent state.
2304 *
2305 * Returns true if the grace-period kthread must be awakened.
2306 */
2307static bool
2308rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2309                      struct rcu_data *rdp)
2310{
2311        lockdep_assert_held(&rnp->lock);
2312        if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2313                /*
2314                 * Either we have not yet spawned the grace-period
2315                 * task, this CPU does not need another grace period,
2316                 * or a grace period is already in progress.
2317                 * Either way, don't start a new grace period.
2318                 */
2319                return false;
2320        }
2321        WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2322        trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2323                               TPS("newreq"));
2324
2325        /*
2326         * We can't do wakeups while holding the rnp->lock, as that
2327         * could cause possible deadlocks with the rq->lock. Defer
2328         * the wakeup to our caller.
2329         */
2330        return true;
2331}
2332
2333/*
2334 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2335 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2336 * is invoked indirectly from rcu_advance_cbs(), which would result in
2337 * endless recursion -- or would do so if it wasn't for the self-deadlock
2338 * that is encountered beforehand.
2339 *
2340 * Returns true if the grace-period kthread needs to be awakened.
2341 */
2342static bool rcu_start_gp(struct rcu_state *rsp)
2343{
2344        struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2345        struct rcu_node *rnp = rcu_get_root(rsp);
2346        bool ret = false;
2347
2348        /*
2349         * If there is no grace period in progress right now, any
2350         * callbacks we have up to this point will be satisfied by the
2351         * next grace period.  Also, advancing the callbacks reduces the
2352         * probability of false positives from cpu_needs_another_gp()
2353         * resulting in pointless grace periods.  So, advance callbacks
2354         * then start the grace period!
2355         */
2356        ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2357        ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2358        return ret;
2359}
2360
2361/*
2362 * Report a full set of quiescent states to the specified rcu_state data
2363 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2364 * kthread if another grace period is required.  Whether we wake
2365 * the grace-period kthread or it awakens itself for the next round
2366 * of quiescent-state forcing, that kthread will clean up after the
2367 * just-completed grace period.  Note that the caller must hold rnp->lock,
2368 * which is released before return.
2369 */
2370static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2371        __releases(rcu_get_root(rsp)->lock)
2372{
2373        lockdep_assert_held(&rcu_get_root(rsp)->lock);
2374        WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2375        WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2376        raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2377        rcu_gp_kthread_wake(rsp);
2378}
2379
2380/*
2381 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2382 * Allows quiescent states for a group of CPUs to be reported at one go
2383 * to the specified rcu_node structure, though all the CPUs in the group
2384 * must be represented by the same rcu_node structure (which need not be a
2385 * leaf rcu_node structure, though it often will be).  The gps parameter
2386 * is the grace-period snapshot, which means that the quiescent states
2387 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2388 * must be held upon entry, and it is released before return.
2389 */
2390static void
2391rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2392                  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2393        __releases(rnp->lock)
2394{
2395        unsigned long oldmask = 0;
2396        struct rcu_node *rnp_c;
2397
2398        lockdep_assert_held(&rnp->lock);
2399
2400        /* Walk up the rcu_node hierarchy. */
2401        for (;;) {
2402                if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2403
2404                        /*
2405                         * Our bit has already been cleared, or the
2406                         * relevant grace period is already over, so done.
2407                         */
2408                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2409                        return;
2410                }
2411                WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2412                rnp->qsmask &= ~mask;
2413                trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2414                                                 mask, rnp->qsmask, rnp->level,
2415                                                 rnp->grplo, rnp->grphi,
2416                                                 !!rnp->gp_tasks);
2417                if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2418
2419                        /* Other bits still set at this level, so done. */
2420                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2421                        return;
2422                }
2423                mask = rnp->grpmask;
2424                if (rnp->parent == NULL) {
2425
2426                        /* No more levels.  Exit loop holding root lock. */
2427
2428                        break;
2429                }
2430                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2431                rnp_c = rnp;
2432                rnp = rnp->parent;
2433                raw_spin_lock_irqsave_rcu_node(rnp, flags);
2434                oldmask = rnp_c->qsmask;
2435        }
2436
2437        /*
2438         * Get here if we are the last CPU to pass through a quiescent
2439         * state for this grace period.  Invoke rcu_report_qs_rsp()
2440         * to clean up and start the next grace period if one is needed.
2441         */
2442        rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2443}
2444
2445/*
2446 * Record a quiescent state for all tasks that were previously queued
2447 * on the specified rcu_node structure and that were blocking the current
2448 * RCU grace period.  The caller must hold the specified rnp->lock with
2449 * irqs disabled, and this lock is released upon return, but irqs remain
2450 * disabled.
2451 */
2452static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2453                                      struct rcu_node *rnp, unsigned long flags)
2454        __releases(rnp->lock)
2455{
2456        unsigned long gps;
2457        unsigned long mask;
2458        struct rcu_node *rnp_p;
2459
2460        lockdep_assert_held(&rnp->lock);
2461        if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2462            rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2463                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2464                return;  /* Still need more quiescent states! */
2465        }
2466
2467        rnp_p = rnp->parent;
2468        if (rnp_p == NULL) {
2469                /*
2470                 * Only one rcu_node structure in the tree, so don't
2471                 * try to report up to its nonexistent parent!
2472                 */
2473                rcu_report_qs_rsp(rsp, flags);
2474                return;
2475        }
2476
2477        /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2478        gps = rnp->gpnum;
2479        mask = rnp->grpmask;
2480        raw_spin_unlock_rcu_node(rnp);  /* irqs remain disabled. */
2481        raw_spin_lock_rcu_node(rnp_p);  /* irqs already disabled. */
2482        rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2483}
2484
2485/*
2486 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2487 * structure.  This must be called from the specified CPU.
2488 */
2489static void
2490rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2491{
2492        unsigned long flags;
2493        unsigned long mask;
2494        bool needwake;
2495        struct rcu_node *rnp;
2496
2497        rnp = rdp->mynode;
2498        raw_spin_lock_irqsave_rcu_node(rnp, flags);
2499        if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2500            rnp->completed == rnp->gpnum || rdp->gpwrap) {
2501
2502                /*
2503                 * The grace period in which this quiescent state was
2504                 * recorded has ended, so don't report it upwards.
2505                 * We will instead need a new quiescent state that lies
2506                 * within the current grace period.
2507                 */
2508                rdp->cpu_no_qs.b.norm = true;   /* need qs for new gp. */
2509                rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2510                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2511                return;
2512        }
2513        mask = rdp->grpmask;
2514        if ((rnp->qsmask & mask) == 0) {
2515                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2516        } else {
2517                rdp->core_needs_qs = false;
2518
2519                /*
2520                 * This GP can't end until cpu checks in, so all of our
2521                 * callbacks can be processed during the next GP.
2522                 */
2523                needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2524
2525                rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2526                /* ^^^ Released rnp->lock */
2527                if (needwake)
2528                        rcu_gp_kthread_wake(rsp);
2529        }
2530}
2531
2532/*
2533 * Check to see if there is a new grace period of which this CPU
2534 * is not yet aware, and if so, set up local rcu_data state for it.
2535 * Otherwise, see if this CPU has just passed through its first
2536 * quiescent state for this grace period, and record that fact if so.
2537 */
2538static void
2539rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2540{
2541        /* Check for grace-period ends and beginnings. */
2542        note_gp_changes(rsp, rdp);
2543
2544        /*
2545         * Does this CPU still need to do its part for current grace period?
2546         * If no, return and let the other CPUs do their part as well.
2547         */
2548        if (!rdp->core_needs_qs)
2549                return;
2550
2551        /*
2552         * Was there a quiescent state since the beginning of the grace
2553         * period? If no, then exit and wait for the next call.
2554         */
2555        if (rdp->cpu_no_qs.b.norm)
2556                return;
2557
2558        /*
2559         * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2560         * judge of that).
2561         */
2562        rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2563}
2564
2565/*
2566 * Send the specified CPU's RCU callbacks to the orphanage.  The
2567 * specified CPU must be offline, and the caller must hold the
2568 * ->orphan_lock.
2569 */
2570static void
2571rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2572                          struct rcu_node *rnp, struct rcu_data *rdp)
2573{
2574        lockdep_assert_held(&rsp->orphan_lock);
2575
2576        /* No-CBs CPUs do not have orphanable callbacks. */
2577        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2578                return;
2579
2580        /*
2581         * Orphan the callbacks.  First adjust the counts.  This is safe
2582         * because _rcu_barrier() excludes CPU-hotplug operations, so it
2583         * cannot be running now.  Thus no memory barrier is required.
2584         */
2585        rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
2586        rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
2587
2588        /*
2589         * Next, move those callbacks still needing a grace period to
2590         * the orphanage, where some other CPU will pick them up.
2591         * Some of the callbacks might have gone partway through a grace
2592         * period, but that is too bad.  They get to start over because we
2593         * cannot assume that grace periods are synchronized across CPUs.
2594         */
2595        rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2596
2597        /*
2598         * Then move the ready-to-invoke callbacks to the orphanage,
2599         * where some other CPU will pick them up.  These will not be
2600         * required to pass though another grace period: They are done.
2601         */
2602        rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
2603
2604        /* Finally, disallow further callbacks on this CPU.  */
2605        rcu_segcblist_disable(&rdp->cblist);
2606}
2607
2608/*
2609 * Adopt the RCU callbacks from the specified rcu_state structure's
2610 * orphanage.  The caller must hold the ->orphan_lock.
2611 */
2612static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2613{
2614        struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2615
2616        lockdep_assert_held(&rsp->orphan_lock);
2617
2618        /* No-CBs CPUs are handled specially. */
2619        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2620            rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2621                return;
2622
2623        /* Do the accounting first. */
2624        rdp->n_cbs_adopted += rsp->orphan_done.len;
2625        if (rsp->orphan_done.len_lazy != rsp->orphan_done.len)
2626                rcu_idle_count_callbacks_posted();
2627        rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
2628
2629        /*
2630         * We do not need a memory barrier here because the only way we
2631         * can get here if there is an rcu_barrier() in flight is if
2632         * we are the task doing the rcu_barrier().
2633         */
2634
2635        /* First adopt the ready-to-invoke callbacks, then the done ones. */
2636        rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
2637        WARN_ON_ONCE(rsp->orphan_done.head);
2638        rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2639        WARN_ON_ONCE(rsp->orphan_pend.head);
2640        WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
2641                     !rcu_segcblist_n_cbs(&rdp->cblist));
2642}
2643
2644/*
2645 * Trace the fact that this CPU is going offline.
2646 */
2647static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2648{
2649        RCU_TRACE(unsigned long mask;)
2650        RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2651        RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2652
2653        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2654                return;
2655
2656        RCU_TRACE(mask = rdp->grpmask;)
2657        trace_rcu_grace_period(rsp->name,
2658                               rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2659                               TPS("cpuofl"));
2660}
2661
2662/*
2663 * All CPUs for the specified rcu_node structure have gone offline,
2664 * and all tasks that were preempted within an RCU read-side critical
2665 * section while running on one of those CPUs have since exited their RCU
2666 * read-side critical section.  Some other CPU is reporting this fact with
2667 * the specified rcu_node structure's ->lock held and interrupts disabled.
2668 * This function therefore goes up the tree of rcu_node structures,
2669 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2670 * the leaf rcu_node structure's ->qsmaskinit field has already been
2671 * updated
2672 *
2673 * This function does check that the specified rcu_node structure has
2674 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2675 * prematurely.  That said, invoking it after the fact will cost you
2676 * a needless lock acquisition.  So once it has done its work, don't
2677 * invoke it again.
2678 */
2679static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2680{
2681        long mask;
2682        struct rcu_node *rnp = rnp_leaf;
2683
2684        lockdep_assert_held(&rnp->lock);
2685        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2686            rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2687                return;
2688        for (;;) {
2689                mask = rnp->grpmask;
2690                rnp = rnp->parent;
2691                if (!rnp)
2692                        break;
2693                raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2694                rnp->qsmaskinit &= ~mask;
2695                rnp->qsmask &= ~mask;
2696                if (rnp->qsmaskinit) {
2697                        raw_spin_unlock_rcu_node(rnp);
2698                        /* irqs remain disabled. */
2699                        return;
2700                }
2701                raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2702        }
2703}
2704
2705/*
2706 * The CPU has been completely removed, and some other CPU is reporting
2707 * this fact from process context.  Do the remainder of the cleanup,
2708 * including orphaning the outgoing CPU's RCU callbacks, and also
2709 * adopting them.  There can only be one CPU hotplug operation at a time,
2710 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2711 */
2712static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2713{
2714        unsigned long flags;
2715        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2716        struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2717
2718        if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2719                return;
2720
2721        /* Adjust any no-longer-needed kthreads. */
2722        rcu_boost_kthread_setaffinity(rnp, -1);
2723
2724        /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2725        raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2726        rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2727        rcu_adopt_orphan_cbs(rsp, flags);
2728        raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2729
2730        WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
2731                  !rcu_segcblist_empty(&rdp->cblist),
2732                  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
2733                  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
2734                  rcu_segcblist_first_cb(&rdp->cblist));
2735}
2736
2737/*
2738 * Invoke any RCU callbacks that have made it to the end of their grace
2739 * period.  Thottle as specified by rdp->blimit.
2740 */
2741static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2742{
2743        unsigned long flags;
2744        struct rcu_head *rhp;
2745        struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2746        long bl, count;
2747
2748        /* If no callbacks are ready, just return. */
2749        if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2750                trace_rcu_batch_start(rsp->name,
2751                                      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2752                                      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2753                trace_rcu_batch_end(rsp->name, 0,
2754                                    !rcu_segcblist_empty(&rdp->cblist),
2755                                    need_resched(), is_idle_task(current),
2756                                    rcu_is_callbacks_kthread());
2757                return;
2758        }
2759
2760        /*
2761         * Extract the list of ready callbacks, disabling to prevent
2762         * races with call_rcu() from interrupt handlers.  Leave the
2763         * callback counts, as rcu_barrier() needs to be conservative.
2764         */
2765        local_irq_save(flags);
2766        WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2767        bl = rdp->blimit;
2768        trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2769                              rcu_segcblist_n_cbs(&rdp->cblist), bl);
2770        rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2771        local_irq_restore(flags);
2772
2773        /* Invoke callbacks. */
2774        rhp = rcu_cblist_dequeue(&rcl);
2775        for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2776                debug_rcu_head_unqueue(rhp);
2777                if (__rcu_reclaim(rsp->name, rhp))
2778                        rcu_cblist_dequeued_lazy(&rcl);
2779                /*
2780                 * Stop only if limit reached and CPU has something to do.
2781                 * Note: The rcl structure counts down from zero.
2782                 */
2783                if (-rcl.len >= bl &&
2784                    (need_resched() ||
2785                     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2786                        break;
2787        }
2788
2789        local_irq_save(flags);
2790        count = -rcl.len;
2791        trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2792                            is_idle_task(current), rcu_is_callbacks_kthread());
2793
2794        /* Update counts and requeue any remaining callbacks. */
2795        rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2796        smp_mb(); /* List handling before counting for rcu_barrier(). */
2797        rdp->n_cbs_invoked += count;
2798        rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2799
2800        /* Reinstate batch limit if we have worked down the excess. */
2801        count = rcu_segcblist_n_cbs(&rdp->cblist);
2802        if (rdp->blimit == LONG_MAX && count <= qlowmark)
2803                rdp->blimit = blimit;
2804
2805        /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2806        if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2807                rdp->qlen_last_fqs_check = 0;
2808                rdp->n_force_qs_snap = rsp->n_force_qs;
2809        } else if (count < rdp->qlen_last_fqs_check - qhimark)
2810                rdp->qlen_last_fqs_check = count;
2811        WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2812
2813        local_irq_restore(flags);
2814
2815        /* Re-invoke RCU core processing if there are callbacks remaining. */
2816        if (rcu_segcblist_ready_cbs(&rdp->cblist))
2817                invoke_rcu_core();
2818}
2819
2820/*
2821 * Check to see if this CPU is in a non-context-switch quiescent state
2822 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2823 * Also schedule RCU core processing.
2824 *
2825 * This function must be called from hardirq context.  It is normally
2826 * invoked from the scheduling-clock interrupt.
2827 */
2828void rcu_check_callbacks(int user)
2829{
2830        trace_rcu_utilization(TPS("Start scheduler-tick"));
2831        increment_cpu_stall_ticks();
2832        if (user || rcu_is_cpu_rrupt_from_idle()) {
2833
2834                /*
2835                 * Get here if this CPU took its interrupt from user
2836                 * mode or from the idle loop, and if this is not a
2837                 * nested interrupt.  In this case, the CPU is in
2838                 * a quiescent state, so note it.
2839                 *
2840                 * No memory barrier is required here because both
2841                 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2842                 * variables that other CPUs neither access nor modify,
2843                 * at least not while the corresponding CPU is online.
2844                 */
2845
2846                rcu_sched_qs();
2847                rcu_bh_qs();
2848
2849        } else if (!in_softirq()) {
2850
2851                /*
2852                 * Get here if this CPU did not take its interrupt from
2853                 * softirq, in other words, if it is not interrupting
2854                 * a rcu_bh read-side critical section.  This is an _bh
2855                 * critical section, so note it.
2856                 */
2857
2858                rcu_bh_qs();
2859        }
2860        rcu_preempt_check_callbacks();
2861        if (rcu_pending())
2862                invoke_rcu_core();
2863        if (user)
2864                rcu_note_voluntary_context_switch(current);
2865        trace_rcu_utilization(TPS("End scheduler-tick"));
2866}
2867
2868/*
2869 * Scan the leaf rcu_node structures, processing dyntick state for any that
2870 * have not yet encountered a quiescent state, using the function specified.
2871 * Also initiate boosting for any threads blocked on the root rcu_node.
2872 *
2873 * The caller must have suppressed start of new grace periods.
2874 */
2875static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
2876{
2877        int cpu;
2878        unsigned long flags;
2879        unsigned long mask;
2880        struct rcu_node *rnp;
2881
2882        rcu_for_each_leaf_node(rsp, rnp) {
2883                cond_resched_rcu_qs();
2884                mask = 0;
2885                raw_spin_lock_irqsave_rcu_node(rnp, flags);
2886                if (rnp->qsmask == 0) {
2887                        if (rcu_state_p == &rcu_sched_state ||
2888                            rsp != rcu_state_p ||
2889                            rcu_preempt_blocked_readers_cgp(rnp)) {
2890                                /*
2891                                 * No point in scanning bits because they
2892                                 * are all zero.  But we might need to
2893                                 * priority-boost blocked readers.
2894                                 */
2895                                rcu_initiate_boost(rnp, flags);
2896                                /* rcu_initiate_boost() releases rnp->lock */
2897                                continue;
2898                        }
2899                        if (rnp->parent &&
2900                            (rnp->parent->qsmask & rnp->grpmask)) {
2901                                /*
2902                                 * Race between grace-period
2903                                 * initialization and task exiting RCU
2904                                 * read-side critical section: Report.
2905                                 */
2906                                rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2907                                /* rcu_report_unblock_qs_rnp() rlses ->lock */
2908                                continue;
2909                        }
2910                }
2911                for_each_leaf_node_possible_cpu(rnp, cpu) {
2912                        unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2913                        if ((rnp->qsmask & bit) != 0) {
2914                                if (f(per_cpu_ptr(rsp->rda, cpu)))
2915                                        mask |= bit;
2916                        }
2917                }
2918                if (mask != 0) {
2919                        /* Idle/offline CPUs, report (releases rnp->lock. */
2920                        rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2921                } else {
2922                        /* Nothing to do here, so just drop the lock. */
2923                        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2924                }
2925        }
2926}
2927
2928/*
2929 * Force quiescent states on reluctant CPUs, and also detect which
2930 * CPUs are in dyntick-idle mode.
2931 */
2932static void force_quiescent_state(struct rcu_state *rsp)
2933{
2934        unsigned long flags;
2935        bool ret;
2936        struct rcu_node *rnp;
2937        struct rcu_node *rnp_old = NULL;
2938
2939        /* Funnel through hierarchy to reduce memory contention. */
2940        rnp = __this_cpu_read(rsp->rda->mynode);
2941        for (; rnp != NULL; rnp = rnp->parent) {
2942                ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2943                      !raw_spin_trylock(&rnp->fqslock);
2944                if (rnp_old != NULL)
2945                        raw_spin_unlock(&rnp_old->fqslock);
2946                if (ret) {
2947                        rsp->n_force_qs_lh++;
2948                        return;
2949                }
2950                rnp_old = rnp;
2951        }
2952        /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2953
2954        /* Reached the root of the rcu_node tree, acquire lock. */
2955        raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2956        raw_spin_unlock(&rnp_old->fqslock);
2957        if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2958                rsp->n_force_qs_lh++;
2959                raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2960                return;  /* Someone beat us to it. */
2961        }
2962        WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2963        raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2964        rcu_gp_kthread_wake(rsp);
2965}
2966
2967/*
2968 * This does the RCU core processing work for the specified rcu_state
2969 * and rcu_data structures.  This may be called only from the CPU to
2970 * whom the rdp belongs.
2971 */
2972static void
2973__rcu_process_callbacks(struct rcu_state *rsp)
2974{
2975        unsigned long flags;
2976        bool needwake;
2977        struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2978
2979        WARN_ON_ONCE(!rdp->beenonline);
2980
2981        /* Update RCU state based on any recent quiescent states. */
2982        rcu_check_quiescent_state(rsp, rdp);
2983
2984        /* Does this CPU require a not-yet-started grace period? */
2985        local_irq_save(flags);
2986        if (cpu_needs_another_gp(rsp, rdp)) {
2987                raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2988                needwake = rcu_start_gp(rsp);
2989                raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2990                if (needwake)
2991                        rcu_gp_kthread_wake(rsp);
2992        } else {
2993                local_irq_restore(flags);
2994        }
2995
2996        /* If there are callbacks ready, invoke them. */
2997        if (rcu_segcblist_ready_cbs(&rdp->cblist))
2998                invoke_rcu_callbacks(rsp, rdp);
2999
3000        /* Do any needed deferred wakeups of rcuo kthreads. */
3001        do_nocb_deferred_wakeup(rdp);
3002}
3003
3004/*
3005 * Do RCU core processing for the current CPU.
3006 */
3007static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3008{
3009        struct rcu_state *rsp;
3010
3011        if (cpu_is_offline(smp_processor_id()))
3012                return;
3013        trace_rcu_utilization(TPS("Start RCU core"));
3014        for_each_rcu_flavor(rsp)
3015                __rcu_process_callbacks(rsp);
3016        trace_rcu_utilization(TPS("End RCU core"));
3017}
3018
3019/*
3020 * Schedule RCU callback invocation.  If the specified type of RCU
3021 * does not support RCU priority boosting, just do a direct call,
3022 * otherwise wake up the per-CPU kernel kthread.  Note that because we
3023 * are running on the current CPU with softirqs disabled, the
3024 * rcu_cpu_kthread_task cannot disappear out from under us.
3025 */
3026static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3027{
3028        if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3029                return;
3030        if (likely(!rsp->boost)) {
3031                rcu_do_batch(rsp, rdp);
3032                return;
3033        }
3034        invoke_rcu_callbacks_kthread();
3035}
3036
3037static void invoke_rcu_core(void)
3038{
3039        if (cpu_online(smp_processor_id()))
3040                raise_softirq(RCU_SOFTIRQ);
3041}
3042
3043/*
3044 * Handle any core-RCU processing required by a call_rcu() invocation.
3045 */
3046static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3047                            struct rcu_head *head, unsigned long flags)
3048{
3049        bool needwake;
3050
3051        /*
3052         * If called from an extended quiescent state, invoke the RCU
3053         * core in order to force a re-evaluation of RCU's idleness.
3054         */
3055        if (!rcu_is_watching())
3056                invoke_rcu_core();
3057
3058        /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3059        if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3060                return;
3061
3062        /*
3063         * Force the grace period if too many callbacks or too long waiting.
3064         * Enforce hysteresis, and don't invoke force_quiescent_state()
3065         * if some other CPU has recently done so.  Also, don't bother
3066         * invoking force_quiescent_state() if the newly enqueued callback
3067         * is the only one waiting for a grace period to complete.
3068         */
3069        if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
3070                     rdp->qlen_last_fqs_check + qhimark)) {
3071
3072                /* Are we ignoring a completed grace period? */
3073                note_gp_changes(rsp, rdp);
3074
3075                /* Start a new grace period if one not already started. */
3076                if (!rcu_gp_in_progress(rsp)) {
3077                        struct rcu_node *rnp_root = rcu_get_root(rsp);
3078
3079                        raw_spin_lock_rcu_node(rnp_root);
3080                        needwake = rcu_start_gp(rsp);
3081                        raw_spin_unlock_rcu_node(rnp_root);
3082                        if (needwake)
3083                                rcu_gp_kthread_wake(rsp);
3084                } else {
3085                        /* Give the grace period a kick. */
3086                        rdp->blimit = LONG_MAX;
3087                        if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3088                            rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3089                                force_quiescent_state(rsp);
3090                        rdp->n_force_qs_snap = rsp->n_force_qs;
3091                        rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3092                }
3093        }
3094}
3095
3096/*
3097 * RCU callback function to leak a callback.
3098 */
3099static void rcu_leak_callback(struct rcu_head *rhp)
3100{
3101}
3102
3103/*
3104 * Helper function for call_rcu() and friends.  The cpu argument will
3105 * normally be -1, indicating "currently running CPU".  It may specify
3106 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3107 * is expected to specify a CPU.
3108 */
3109static void
3110__call_rcu(struct rcu_head *head, rcu_callback_t func,
3111           struct rcu_state *rsp, int cpu, bool lazy)
3112{
3113        unsigned long flags;
3114        struct rcu_data *rdp;
3115
3116        /* Misaligned rcu_head! */
3117        WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3118
3119        if (debug_rcu_head_queue(head)) {
3120                /*
3121                 * Probable double call_rcu(), so leak the callback.
3122                 * Use rcu:rcu_callback trace event to find the previous
3123                 * time callback was passed to __call_rcu().
3124                 */
3125                WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3126                          head, head->func);
3127                WRITE_ONCE(head->func, rcu_leak_callback);
3128                return;
3129        }
3130        head->func = func;
3131        head->next = NULL;
3132        local_irq_save(flags);
3133        rdp = this_cpu_ptr(rsp->rda);
3134
3135        /* Add the callback to our list. */
3136        if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3137                int offline;
3138
3139                if (cpu != -1)
3140                        rdp = per_cpu_ptr(rsp->rda, cpu);
3141                if (likely(rdp->mynode)) {
3142                        /* Post-boot, so this should be for a no-CBs CPU. */
3143                        offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3144                        WARN_ON_ONCE(offline);
3145                        /* Offline CPU, _call_rcu() illegal, leak callback.  */
3146                        local_irq_restore(flags);
3147                        return;
3148                }
3149                /*
3150                 * Very early boot, before rcu_init().  Initialize if needed
3151                 * and then drop through to queue the callback.
3152                 */
3153                BUG_ON(cpu != -1);
3154                WARN_ON_ONCE(!rcu_is_watching());
3155                if (rcu_segcblist_empty(&rdp->cblist))
3156                        rcu_segcblist_init(&rdp->cblist);
3157        }
3158        rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3159        if (!lazy)
3160                rcu_idle_count_callbacks_posted();
3161
3162        if (__is_kfree_rcu_offset((unsigned long)func))
3163                trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3164                                         rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3165                                         rcu_segcblist_n_cbs(&rdp->cblist));
3166        else
3167                trace_rcu_callback(rsp->name, head,
3168                                   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3169                                   rcu_segcblist_n_cbs(&rdp->cblist));
3170
3171        /* Go handle any RCU core processing required. */
3172        __call_rcu_core(rsp, rdp, head, flags);
3173        local_irq_restore(flags);
3174}
3175
3176/**
3177 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3178 * @head: structure to be used for queueing the RCU updates.
3179 * @func: actual callback function to be invoked after the grace period
3180 *
3181 * The callback function will be invoked some time after a full grace
3182 * period elapses, in other words after all currently executing RCU
3183 * read-side critical sections have completed. call_rcu_sched() assumes
3184 * that the read-side critical sections end on enabling of preemption
3185 * or on voluntary preemption.
3186 * RCU read-side critical sections are delimited by :
3187 *  - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3188 *  - anything that disables preemption.
3189 *
3190 *  These may be nested.
3191 *
3192 * See the description of call_rcu() for more detailed information on
3193 * memory ordering guarantees.
3194 */
3195void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3196{
3197        __call_rcu(head, func, &rcu_sched_state, -1, 0);
3198}
3199EXPORT_SYMBOL_GPL(call_rcu_sched);
3200
3201/**
3202 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3203 * @head: structure to be used for queueing the RCU updates.
3204 * @func: actual callback function to be invoked after the grace period
3205 *
3206 * The callback function will be invoked some time after a full grace
3207 * period elapses, in other words after all currently executing RCU
3208 * read-side critical sections have completed. call_rcu_bh() assumes
3209 * that the read-side critical sections end on completion of a softirq
3210 * handler. This means that read-side critical sections in process
3211 * context must not be interrupted by softirqs. This interface is to be
3212 * used when most of the read-side critical sections are in softirq context.
3213 * RCU read-side critical sections are delimited by :
3214 *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
3215 *  OR
3216 *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3217 *  These may be nested.
3218 *
3219 * See the description of call_rcu() for more detailed information on
3220 * memory ordering guarantees.
3221 */
3222void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3223{
3224        __call_rcu(head, func, &rcu_bh_state, -1, 0);
3225}
3226EXPORT_SYMBOL_GPL(call_rcu_bh);
3227
3228/*
3229 * Queue an RCU callback for lazy invocation after a grace period.
3230 * This will likely be later named something like "call_rcu_lazy()",
3231 * but this change will require some way of tagging the lazy RCU
3232 * callbacks in the list of pending callbacks. Until then, this
3233 * function may only be called from __kfree_rcu().
3234 */
3235void kfree_call_rcu(struct rcu_head *head,
3236                    rcu_callback_t func)
3237{
3238        __call_rcu(head, func, rcu_state_p, -1, 1);
3239}
3240EXPORT_SYMBOL_GPL(kfree_call_rcu);
3241
3242/*
3243 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3244 * any blocking grace-period wait automatically implies a grace period
3245 * if there is only one CPU online at any point time during execution
3246 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3247 * occasionally incorrectly indicate that there are multiple CPUs online
3248 * when there was in fact only one the whole time, as this just adds
3249 * some overhead: RCU still operates correctly.
3250 */
3251static inline int rcu_blocking_is_gp(void)
3252{
3253        int ret;
3254
3255        might_sleep();  /* Check for RCU read-side critical section. */
3256        preempt_disable();
3257        ret = num_online_cpus() <= 1;
3258        preempt_enable();
3259        return ret;
3260}
3261
3262/**
3263 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3264 *
3265 * Control will return to the caller some time after a full rcu-sched
3266 * grace period has elapsed, in other words after all currently executing
3267 * rcu-sched read-side critical sections have completed.   These read-side
3268 * critical sections are delimited by rcu_read_lock_sched() and
3269 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3270 * local_irq_disable(), and so on may be used in place of
3271 * rcu_read_lock_sched().
3272 *
3273 * This means that all preempt_disable code sequences, including NMI and
3274 * non-threaded hardware-interrupt handlers, in progress on entry will
3275 * have completed before this primitive returns.  However, this does not
3276 * guarantee that softirq handlers will have completed, since in some
3277 * kernels, these handlers can run in process context, and can block.
3278 *
3279 * Note that this guarantee implies further memory-ordering guarantees.
3280 * On systems with more than one CPU, when synchronize_sched() returns,
3281 * each CPU is guaranteed to have executed a full memory barrier since the
3282 * end of its last RCU-sched read-side critical section whose beginning
3283 * preceded the call to synchronize_sched().  In addition, each CPU having
3284 * an RCU read-side critical section that extends beyond the return from
3285 * synchronize_sched() is guaranteed to have executed a full memory barrier
3286 * after the beginning of synchronize_sched() and before the beginning of
3287 * that RCU read-side critical section.  Note that these guarantees include
3288 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3289 * that are executing in the kernel.
3290 *
3291 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3292 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3293 * to have executed a full memory barrier during the execution of
3294 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3295 * again only if the system has more than one CPU).
3296 */
3297void synchronize_sched(void)
3298{
3299        RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3300                         lock_is_held(&rcu_lock_map) ||
3301                         lock_is_held(&rcu_sched_lock_map),
3302                         "Illegal synchronize_sched() in RCU-sched read-side critical section");
3303        if (rcu_blocking_is_gp())
3304                return;
3305        if (rcu_gp_is_expedited())
3306                synchronize_sched_expedited();
3307        else
3308                wait_rcu_gp(call_rcu_sched);
3309}
3310EXPORT_SYMBOL_GPL(synchronize_sched);
3311
3312/**
3313 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3314 *
3315 * Control will return to the caller some time after a full rcu_bh grace
3316 * period has elapsed, in other words after all currently executing rcu_bh
3317 * read-side critical sections have completed.  RCU read-side critical
3318 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3319 * and may be nested.
3320 *
3321 * See the description of synchronize_sched() for more detailed information
3322 * on memory ordering guarantees.
3323 */
3324void synchronize_rcu_bh(void)
3325{
3326        RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3327                         lock_is_held(&rcu_lock_map) ||
3328                         lock_is_held(&rcu_sched_lock_map),
3329                         "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3330        if (rcu_blocking_is_gp())
3331                return;
3332        if (rcu_gp_is_expedited())
3333                synchronize_rcu_bh_expedited();
3334        else
3335                wait_rcu_gp(call_rcu_bh);
3336}
3337EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3338
3339/**
3340 * get_state_synchronize_rcu - Snapshot current RCU state
3341 *
3342 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3343 * to determine whether or not a full grace period has elapsed in the
3344 * meantime.
3345 */
3346unsigned long get_state_synchronize_rcu(void)
3347{
3348        /*
3349         * Any prior manipulation of RCU-protected data must happen
3350         * before the load from ->gpnum.
3351         */
3352        smp_mb();  /* ^^^ */
3353
3354        /*
3355         * Make sure this load happens before the purportedly
3356         * time-consuming work between get_state_synchronize_rcu()
3357         * and cond_synchronize_rcu().
3358         */
3359        return smp_load_acquire(&rcu_state_p->gpnum);
3360}
3361EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3362
3363/**
3364 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3365 *
3366 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3367 *
3368 * If a full RCU grace period has elapsed since the earlier call to
3369 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3370 * synchronize_rcu() to wait for a full grace period.
3371 *
3372 * Yes, this function does not take counter wrap into account.  But
3373 * counter wrap is harmless.  If the counter wraps, we have waited for
3374 * more than 2 billion grace periods (and way more on a 64-bit system!),
3375 * so waiting for one additional grace period should be just fine.
3376 */
3377void cond_synchronize_rcu(unsigned long oldstate)
3378{
3379        unsigned long newstate;
3380
3381        /*
3382         * Ensure that this load happens before any RCU-destructive
3383         * actions the caller might carry out after we return.
3384         */
3385        newstate = smp_load_acquire(&rcu_state_p->completed);
3386        if (ULONG_CMP_GE(oldstate, newstate))
3387                synchronize_rcu();
3388}
3389EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3390
3391/**
3392 * get_state_synchronize_sched - Snapshot current RCU-sched state
3393 *
3394 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3395 * to determine whether or not a full grace period has elapsed in the
3396 * meantime.
3397 */
3398unsigned long get_state_synchronize_sched(void)
3399{
3400        /*
3401         * Any prior manipulation of RCU-protected data must happen
3402         * before the load from ->gpnum.
3403         */
3404        smp_mb();  /* ^^^ */
3405
3406        /*
3407         * Make sure this load happens before the purportedly
3408         * time-consuming work between get_state_synchronize_sched()
3409         * and cond_synchronize_sched().
3410         */
3411        return smp_load_acquire(&rcu_sched_state.gpnum);
3412}
3413EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3414
3415/**
3416 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3417 *
3418 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3419 *
3420 * If a full RCU-sched grace period has elapsed since the earlier call to
3421 * get_state_synchronize_sched(), just return.  Otherwise, invoke
3422 * synchronize_sched() to wait for a full grace period.
3423 *
3424 * Yes, this function does not take counter wrap into account.  But
3425 * counter wrap is harmless.  If the counter wraps, we have waited for
3426 * more than 2 billion grace periods (and way more on a 64-bit system!),
3427 * so waiting for one additional grace period should be just fine.
3428 */
3429void cond_synchronize_sched(unsigned long oldstate)
3430{
3431        unsigned long newstate;
3432
3433        /*
3434         * Ensure that this load happens before any RCU-destructive
3435         * actions the caller might carry out after we return.
3436         */
3437        newstate = smp_load_acquire(&rcu_sched_state.completed);
3438        if (ULONG_CMP_GE(oldstate, newstate))
3439                synchronize_sched();
3440}
3441EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3442
3443/*
3444 * Check to see if there is any immediate RCU-related work to be done
3445 * by the current CPU, for the specified type of RCU, returning 1 if so.
3446 * The checks are in order of increasing expense: checks that can be
3447 * carried out against CPU-local state are performed first.  However,
3448 * we must check for CPU stalls first, else we might not get a chance.
3449 */
3450static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3451{
3452        struct rcu_node *rnp = rdp->mynode;
3453
3454        rdp->n_rcu_pending++;
3455
3456        /* Check for CPU stalls, if enabled. */
3457        check_cpu_stall(rsp, rdp);
3458
3459        /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3460        if (rcu_nohz_full_cpu(rsp))
3461                return 0;
3462
3463        /* Is the RCU core waiting for a quiescent state from this CPU? */
3464        if (rcu_scheduler_fully_active &&
3465            rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3466            rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3467                rdp->n_rp_core_needs_qs++;
3468        } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3469                rdp->n_rp_report_qs++;
3470                return 1;
3471        }
3472
3473        /* Does this CPU have callbacks ready to invoke? */
3474        if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
3475                rdp->n_rp_cb_ready++;
3476                return 1;
3477        }
3478
3479        /* Has RCU gone idle with this CPU needing another grace period? */
3480        if (cpu_needs_another_gp(rsp, rdp)) {
3481                rdp->n_rp_cpu_needs_gp++;
3482                return 1;
3483        }
3484
3485        /* Has another RCU grace period completed?  */
3486        if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3487                rdp->n_rp_gp_completed++;
3488                return 1;
3489        }
3490
3491        /* Has a new RCU grace period started? */
3492        if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3493            unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3494                rdp->n_rp_gp_started++;
3495                return 1;
3496        }
3497
3498        /* Does this CPU need a deferred NOCB wakeup? */
3499        if (rcu_nocb_need_deferred_wakeup(rdp)) {
3500                rdp->n_rp_nocb_defer_wakeup++;
3501                return 1;
3502        }
3503
3504        /* nothing to do */
3505        rdp->n_rp_need_nothing++;
3506        return 0;
3507}
3508
3509/*
3510 * Check to see if there is any immediate RCU-related work to be done
3511 * by the current CPU, returning 1 if so.  This function is part of the
3512 * RCU implementation; it is -not- an exported member of the RCU API.
3513 */
3514static int rcu_pending(void)
3515{
3516        struct rcu_state *rsp;
3517
3518        for_each_rcu_flavor(rsp)
3519                if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3520                        return 1;
3521        return 0;
3522}
3523
3524/*
3525 * Return true if the specified CPU has any callback.  If all_lazy is
3526 * non-NULL, store an indication of whether all callbacks are lazy.
3527 * (If there are no callbacks, all of them are deemed to be lazy.)
3528 */
3529static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3530{
3531        bool al = true;
3532        bool hc = false;
3533        struct rcu_data *rdp;
3534        struct rcu_state *rsp;
3535
3536        for_each_rcu_flavor(rsp) {
3537                rdp = this_cpu_ptr(rsp->rda);
3538                if (rcu_segcblist_empty(&rdp->cblist))
3539                        continue;
3540                hc = true;
3541                if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3542                        al = false;
3543                        break;
3544                }
3545        }
3546        if (all_lazy)
3547                *all_lazy = al;
3548        return hc;
3549}
3550
3551/*
3552 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3553 * the compiler is expected to optimize this away.
3554 */
3555static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3556                               int cpu, unsigned long done)
3557{
3558        trace_rcu_barrier(rsp->name, s, cpu,
3559                          atomic_read(&rsp->barrier_cpu_count), done);
3560}
3561
3562/*
3563 * RCU callback function for _rcu_barrier().  If we are last, wake
3564 * up the task executing _rcu_barrier().
3565 */
3566static void rcu_barrier_callback(struct rcu_head *rhp)
3567{
3568        struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3569        struct rcu_state *rsp = rdp->rsp;
3570
3571        if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3572                _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3573                complete(&rsp->barrier_completion);
3574        } else {
3575                _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3576        }
3577}
3578
3579/*
3580 * Called with preemption disabled, and from cross-cpu IRQ context.
3581 */
3582static void rcu_barrier_func(void *type)
3583{
3584        struct rcu_state *rsp = type;
3585        struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3586
3587        _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3588        rdp->barrier_head.func = rcu_barrier_callback;
3589        debug_rcu_head_queue(&rdp->barrier_head);
3590        if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3591                atomic_inc(&rsp->barrier_cpu_count);
3592        } else {
3593                debug_rcu_head_unqueue(&rdp->barrier_head);
3594                _rcu_barrier_trace(rsp, "IRQNQ", -1, rsp->barrier_sequence);
3595        }
3596}
3597
3598/*
3599 * Orchestrate the specified type of RCU barrier, waiting for all
3600 * RCU callbacks of the specified type to complete.
3601 */
3602static void _rcu_barrier(struct rcu_state *rsp)
3603{
3604        int cpu;
3605        struct rcu_data *rdp;
3606        unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3607
3608        _rcu_barrier_trace(rsp, "Begin", -1, s);
3609
3610        /* Take mutex to serialize concurrent rcu_barrier() requests. */
3611        mutex_lock(&rsp->barrier_mutex);
3612
3613        /* Did someone else do our work for us? */
3614        if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3615                _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3616                smp_mb(); /* caller's subsequent code after above check. */
3617                mutex_unlock(&rsp->barrier_mutex);
3618                return;
3619        }
3620
3621        /* Mark the start of the barrier operation. */
3622        rcu_seq_start(&rsp->barrier_sequence);
3623        _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3624
3625        /*
3626         * Initialize the count to one rather than to zero in order to
3627         * avoid a too-soon return to zero in case of a short grace period
3628         * (or preemption of this task).  Exclude CPU-hotplug operations
3629         * to ensure that no offline CPU has callbacks queued.
3630         */
3631        init_completion(&rsp->barrier_completion);
3632        atomic_set(&rsp->barrier_cpu_count, 1);
3633        get_online_cpus();
3634
3635        /*
3636         * Force each CPU with callbacks to register a new callback.
3637         * When that callback is invoked, we will know that all of the
3638         * corresponding CPU's preceding callbacks have been invoked.
3639         */
3640        for_each_possible_cpu(cpu) {
3641                if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3642                        continue;
3643                rdp = per_cpu_ptr(rsp->rda, cpu);
3644                if (rcu_is_nocb_cpu(cpu)) {
3645                        if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3646                                _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3647                                                   rsp->barrier_sequence);
3648                        } else {
3649                                _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3650                                                   rsp->barrier_sequence);
3651                                smp_mb__before_atomic();
3652                                atomic_inc(&rsp->barrier_cpu_count);
3653                                __call_rcu(&rdp->barrier_head,
3654                                           rcu_barrier_callback, rsp, cpu, 0);
3655                        }
3656                } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3657                        _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3658                                           rsp->barrier_sequence);
3659                        smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3660                } else {
3661                        _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3662                                           rsp->barrier_sequence);
3663                }
3664        }
3665        put_online_cpus();
3666
3667        /*
3668         * Now that we have an rcu_barrier_callback() callback on each
3669         * CPU, and thus each counted, remove the initial count.
3670         */
3671        if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3672                complete(&rsp->barrier_completion);
3673
3674        /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3675        wait_for_completion(&rsp->barrier_completion);
3676
3677        /* Mark the end of the barrier operation. */
3678        _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3679        rcu_seq_end(&rsp->barrier_sequence);
3680
3681        /* Other rcu_barrier() invocations can now safely proceed. */
3682        mutex_unlock(&rsp->barrier_mutex);
3683}
3684
3685/**
3686 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3687 */
3688void rcu_barrier_bh(void)
3689{
3690        _rcu_barrier(&rcu_bh_state);
3691}
3692EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3693
3694/**
3695 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3696 */
3697void rcu_barrier_sched(void)
3698{
3699        _rcu_barrier(&rcu_sched_state);
3700}
3701EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3702
3703/*
3704 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3705 * first CPU in a given leaf rcu_node structure coming online.  The caller
3706 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3707 * disabled.
3708 */
3709static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3710{
3711        long mask;
3712        struct rcu_node *rnp = rnp_leaf;
3713
3714        lockdep_assert_held(&rnp->lock);
3715        for (;;) {
3716                mask = rnp->grpmask;
3717                rnp = rnp->parent;
3718                if (rnp == NULL)
3719                        return;
3720                raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3721                rnp->qsmaskinit |= mask;
3722                raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3723        }
3724}
3725
3726/*
3727 * Do boot-time initialization of a CPU's per-CPU RCU data.
3728 */
3729static void __init
3730rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3731{
3732        unsigned long flags;
3733        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3734        struct rcu_node *rnp = rcu_get_root(rsp);
3735
3736        /* Set up local state, ensuring consistent view of global state. */
3737        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3738        rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3739        rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3740        WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3741        WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3742        rdp->cpu = cpu;
3743        rdp->rsp = rsp;
3744        rcu_boot_init_nocb_percpu_data(rdp);
3745        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3746}
3747
3748/*
3749 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3750 * offline event can be happening at a given time.  Note also that we
3751 * can accept some slop in the rsp->completed access due to the fact
3752 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3753 */
3754static void
3755rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3756{
3757        unsigned long flags;
3758        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3759        struct rcu_node *rnp = rcu_get_root(rsp);
3760
3761        /* Set up local state, ensuring consistent view of global state. */
3762        raw_spin_lock_irqsave_rcu_node(rnp, flags);
3763        rdp->qlen_last_fqs_check = 0;
3764        rdp->n_force_qs_snap = rsp->n_force_qs;
3765        rdp->blimit = blimit;
3766        if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3767            !init_nocb_callback_list(rdp))
3768                rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3769        rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3770        rcu_dynticks_eqs_online();
3771        raw_spin_unlock_rcu_node(rnp);          /* irqs remain disabled. */
3772
3773        /*
3774         * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3775         * propagation up the rcu_node tree will happen at the beginning
3776         * of the next grace period.
3777         */
3778        rnp = rdp->mynode;
3779        raw_spin_lock_rcu_node(rnp);            /* irqs already disabled. */
3780        if (!rdp->beenonline)
3781                WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3782        rdp->beenonline = true;  /* We have now been online. */
3783        rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3784        rdp->completed = rnp->completed;
3785        rdp->cpu_no_qs.b.norm = true;
3786        rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3787        rdp->core_needs_qs = false;
3788        trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3789        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3790}
3791
3792/*
3793 * Invoked early in the CPU-online process, when pretty much all
3794 * services are available.  The incoming CPU is not present.
3795 */
3796int rcutree_prepare_cpu(unsigned int cpu)
3797{
3798        struct rcu_state *rsp;
3799
3800        for_each_rcu_flavor(rsp)
3801                rcu_init_percpu_data(cpu, rsp);
3802
3803        rcu_prepare_kthreads(cpu);
3804        rcu_spawn_all_nocb_kthreads(cpu);
3805
3806        return 0;
3807}
3808
3809/*
3810 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3811 */
3812static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3813{
3814        struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3815
3816        rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3817}
3818
3819/*
3820 * Near the end of the CPU-online process.  Pretty much all services
3821 * enabled, and the CPU is now very much alive.
3822 */
3823int rcutree_online_cpu(unsigned int cpu)
3824{
3825        sync_sched_exp_online_cleanup(cpu);
3826        rcutree_affinity_setting(cpu, -1);
3827        if (IS_ENABLED(CONFIG_TREE_SRCU))
3828                srcu_online_cpu(cpu);
3829        return 0;
3830}
3831
3832/*
3833 * Near the beginning of the process.  The CPU is still very much alive
3834 * with pretty much all services enabled.
3835 */
3836int rcutree_offline_cpu(unsigned int cpu)
3837{
3838        rcutree_affinity_setting(cpu, cpu);
3839        if (IS_ENABLED(CONFIG_TREE_SRCU))
3840                srcu_offline_cpu(cpu);
3841        return 0;
3842}
3843
3844/*
3845 * Near the end of the offline process.  We do only tracing here.
3846 */
3847int rcutree_dying_cpu(unsigned int cpu)
3848{
3849        struct rcu_state *rsp;
3850
3851        for_each_rcu_flavor(rsp)
3852                rcu_cleanup_dying_cpu(rsp);
3853        return 0;
3854}
3855
3856/*
3857 * The outgoing CPU is gone and we are running elsewhere.
3858 */
3859int rcutree_dead_cpu(unsigned int cpu)
3860{
3861        struct rcu_state *rsp;
3862
3863        for_each_rcu_flavor(rsp) {
3864                rcu_cleanup_dead_cpu(cpu, rsp);
3865                do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3866        }
3867        return 0;
3868}
3869
3870/*
3871 * Mark the specified CPU as being online so that subsequent grace periods
3872 * (both expedited and normal) will wait on it.  Note that this means that
3873 * incoming CPUs are not allowed to use RCU read-side critical sections
3874 * until this function is called.  Failing to observe this restriction
3875 * will result in lockdep splats.
3876 *
3877 * Note that this function is special in that it is invoked directly
3878 * from the incoming CPU rather than from the cpuhp_step mechanism.
3879 * This is because this function must be invoked at a precise location.
3880 */
3881void rcu_cpu_starting(unsigned int cpu)
3882{
3883        unsigned long flags;
3884        unsigned long mask;
3885        struct rcu_data *rdp;
3886        struct rcu_node *rnp;
3887        struct rcu_state *rsp;
3888
3889        for_each_rcu_flavor(rsp) {
3890                rdp = per_cpu_ptr(rsp->rda, cpu);
3891                rnp = rdp->mynode;
3892                mask = rdp->grpmask;
3893                raw_spin_lock_irqsave_rcu_node(rnp, flags);
3894                rnp->qsmaskinitnext |= mask;
3895                rnp->expmaskinitnext |= mask;
3896                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3897        }
3898}
3899
3900#ifdef CONFIG_HOTPLUG_CPU
3901/*
3902 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3903 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3904 * bit masks.
3905 */
3906static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3907{
3908        unsigned long flags;
3909        unsigned long mask;
3910        struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3911        struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3912
3913        /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3914        mask = rdp->grpmask;
3915        raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3916        rnp->qsmaskinitnext &= ~mask;
3917        raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3918}
3919
3920/*
3921 * The outgoing function has no further need of RCU, so remove it from
3922 * the list of CPUs that RCU must track.
3923 *
3924 * Note that this function is special in that it is invoked directly
3925 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3926 * This is because this function must be invoked at a precise location.
3927 */
3928void rcu_report_dead(unsigned int cpu)
3929{
3930        struct rcu_state *rsp;
3931
3932        /* QS for any half-done expedited RCU-sched GP. */
3933        preempt_disable();
3934        rcu_report_exp_rdp(&rcu_sched_state,
3935                           this_cpu_ptr(rcu_sched_state.rda), true);
3936        preempt_enable();
3937        for_each_rcu_flavor(rsp)
3938                rcu_cleanup_dying_idle_cpu(cpu, rsp);
3939}
3940#endif
3941
3942/*
3943 * On non-huge systems, use expedited RCU grace periods to make suspend
3944 * and hibernation run faster.
3945 */
3946static int rcu_pm_notify(struct notifier_block *self,
3947                         unsigned long action, void *hcpu)
3948{
3949        switch (action) {
3950        case PM_HIBERNATION_PREPARE:
3951        case PM_SUSPEND_PREPARE:
3952                if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3953                        rcu_expedite_gp();
3954                break;
3955        case PM_POST_HIBERNATION:
3956        case PM_POST_SUSPEND:
3957                if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3958                        rcu_unexpedite_gp();
3959                break;
3960        default:
3961                break;
3962        }
3963        return NOTIFY_OK;
3964}
3965
3966/*
3967 * Spawn the kthreads that handle each RCU flavor's grace periods.
3968 */
3969static int __init rcu_spawn_gp_kthread(void)
3970{
3971        unsigned long flags;
3972        int kthread_prio_in = kthread_prio;
3973        struct rcu_node *rnp;
3974        struct rcu_state *rsp;
3975        struct sched_param sp;
3976        struct task_struct *t;
3977
3978        /* Force priority into range. */
3979        if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3980                kthread_prio = 1;
3981        else if (kthread_prio < 0)
3982                kthread_prio = 0;
3983        else if (kthread_prio > 99)
3984                kthread_prio = 99;
3985        if (kthread_prio != kthread_prio_in)
3986                pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3987                         kthread_prio, kthread_prio_in);
3988
3989        rcu_scheduler_fully_active = 1;
3990        for_each_rcu_flavor(rsp) {
3991                t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3992                BUG_ON(IS_ERR(t));
3993                rnp = rcu_get_root(rsp);
3994                raw_spin_lock_irqsave_rcu_node(rnp, flags);
3995                rsp->gp_kthread = t;
3996                if (kthread_prio) {
3997                        sp.sched_priority = kthread_prio;
3998                        sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3999                }
4000                raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4001                wake_up_process(t);
4002        }
4003        rcu_spawn_nocb_kthreads();
4004        rcu_spawn_boost_kthreads();
4005        return 0;
4006}
4007early_initcall(rcu_spawn_gp_kthread);
4008
4009/*
4010 * This function is invoked towards the end of the scheduler's
4011 * initialization process.  Before this is called, the idle task might
4012 * contain synchronous grace-period primitives (during which time, this idle
4013 * task is booting the system, and such primitives are no-ops).  After this
4014 * function is called, any synchronous grace-period primitives are run as
4015 * expedited, with the requesting task driving the grace period forward.
4016 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4017 * runtime RCU functionality.
4018 */
4019void rcu_scheduler_starting(void)
4020{
4021        WARN_ON(num_online_cpus() != 1);
4022        WARN_ON(nr_context_switches() > 0);
4023        rcu_test_sync_prims();
4024        rcu_scheduler_active = RCU_SCHEDULER_INIT;
4025        rcu_test_sync_prims();
4026}
4027
4028/*
4029 * Helper function for rcu_init() that initializes one rcu_state structure.
4030 */
4031static void __init rcu_init_one(struct rcu_state *rsp)
4032{
4033        static const char * const buf[] = RCU_NODE_NAME_INIT;
4034        static const char * const fqs[] = RCU_FQS_NAME_INIT;
4035        static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4036        static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4037
4038        int levelspread[RCU_NUM_LVLS];          /* kids/node in each level. */
4039        int cpustride = 1;
4040        int i;
4041        int j;
4042        struct rcu_node *rnp;
4043
4044        BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4045
4046        /* Silence gcc 4.8 false positive about array index out of range. */
4047        if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4048                panic("rcu_init_one: rcu_num_lvls out of range");
4049
4050        /* Initialize the level-tracking arrays. */
4051
4052        for (i = 1; i < rcu_num_lvls; i++)
4053                rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4054        rcu_init_levelspread(levelspread, num_rcu_lvl);
4055
4056        /* Initialize the elements themselves, starting from the leaves. */
4057
4058        for (i = rcu_num_lvls - 1; i >= 0; i--) {
4059                cpustride *= levelspread[i];
4060                rnp = rsp->level[i];
4061                for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4062                        raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4063                        lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4064                                                   &rcu_node_class[i], buf[i]);
4065                        raw_spin_lock_init(&rnp->fqslock);
4066                        lockdep_set_class_and_name(&rnp->fqslock,
4067                                                   &rcu_fqs_class[i], fqs[i]);
4068                        rnp->gpnum = rsp->gpnum;
4069                        rnp->completed = rsp->completed;
4070                        rnp->qsmask = 0;
4071                        rnp->qsmaskinit = 0;
4072                        rnp->grplo = j * cpustride;
4073                        rnp->grphi = (j + 1) * cpustride - 1;
4074                        if (rnp->grphi >= nr_cpu_ids)
4075                                rnp->grphi = nr_cpu_ids - 1;
4076                        if (i == 0) {
4077                                rnp->grpnum = 0;
4078                                rnp->grpmask = 0;
4079                                rnp->parent = NULL;
4080                        } else {
4081                                rnp->grpnum = j % levelspread[i - 1];
4082                                rnp->grpmask = 1UL << rnp->grpnum;
4083                                rnp->parent = rsp->level[i - 1] +
4084                                              j / levelspread[i - 1];
4085                        }
4086                        rnp->level = i;
4087                        INIT_LIST_HEAD(&rnp->blkd_tasks);
4088                        rcu_init_one_nocb(rnp);
4089                        init_waitqueue_head(&rnp->exp_wq[0]);
4090                        init_waitqueue_head(&rnp->exp_wq[1]);
4091                        init_waitqueue_head(&rnp->exp_wq[2]);
4092                        init_waitqueue_head(&rnp->exp_wq[3]);
4093                        spin_lock_init(&rnp->exp_lock);
4094                }
4095        }
4096
4097        init_swait_queue_head(&rsp->gp_wq);
4098        init_swait_queue_head(&rsp->expedited_wq);
4099        rnp = rsp->level[rcu_num_lvls - 1];
4100        for_each_possible_cpu(i) {
4101                while (i > rnp->grphi)
4102                        rnp++;
4103                per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4104                rcu_boot_init_percpu_data(i, rsp);
4105        }
4106        list_add(&rsp->flavors, &rcu_struct_flavors);
4107}
4108
4109/*
4110 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4111 * replace the definitions in tree.h because those are needed to size
4112 * the ->node array in the rcu_state structure.
4113 */
4114static void __init rcu_init_geometry(void)
4115{
4116        ulong d;
4117        int i;
4118        int rcu_capacity[RCU_NUM_LVLS];
4119
4120        /*
4121         * Initialize any unspecified boot parameters.
4122         * The default values of jiffies_till_first_fqs and
4123         * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4124         * value, which is a function of HZ, then adding one for each
4125         * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4126         */
4127        d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4128        if (jiffies_till_first_fqs == ULONG_MAX)
4129                jiffies_till_first_fqs = d;
4130        if (jiffies_till_next_fqs == ULONG_MAX)
4131                jiffies_till_next_fqs = d;
4132
4133        /* If the compile-time values are accurate, just leave. */
4134        if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4135            nr_cpu_ids == NR_CPUS)
4136                return;
4137        pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4138                rcu_fanout_leaf, nr_cpu_ids);
4139
4140        /*
4141         * The boot-time rcu_fanout_leaf parameter must be at least two
4142         * and cannot exceed the number of bits in the rcu_node masks.
4143         * Complain and fall back to the compile-time values if this
4144         * limit is exceeded.
4145         */
4146        if (rcu_fanout_leaf < 2 ||
4147            rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4148                rcu_fanout_leaf = RCU_FANOUT_LEAF;
4149                WARN_ON(1);
4150                return;
4151        }
4152
4153        /*
4154         * Compute number of nodes that can be handled an rcu_node tree
4155         * with the given number of levels.
4156         */
4157        rcu_capacity[0] = rcu_fanout_leaf;
4158        for (i = 1; i < RCU_NUM_LVLS; i++)
4159                rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4160
4161        /*
4162         * The tree must be able to accommodate the configured number of CPUs.
4163         * If this limit is exceeded, fall back to the compile-time values.
4164         */
4165        if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4166                rcu_fanout_leaf = RCU_FANOUT_LEAF;
4167                WARN_ON(1);
4168                return;
4169        }
4170
4171        /* Calculate the number of levels in the tree. */
4172        for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4173        }
4174        rcu_num_lvls = i + 1;
4175
4176        /* Calculate the number of rcu_nodes at each level of the tree. */
4177        for (i = 0; i < rcu_num_lvls; i++) {
4178                int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4179                num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4180        }
4181
4182        /* Calculate the total number of rcu_node structures. */
4183        rcu_num_nodes = 0;
4184        for (i = 0; i < rcu_num_lvls; i++)
4185                rcu_num_nodes += num_rcu_lvl[i];
4186}
4187
4188/*
4189 * Dump out the structure of the rcu_node combining tree associated
4190 * with the rcu_state structure referenced by rsp.
4191 */
4192static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4193{
4194        int level = 0;
4195        struct rcu_node *rnp;
4196
4197        pr_info("rcu_node tree layout dump\n");
4198        pr_info(" ");
4199        rcu_for_each_node_breadth_first(rsp, rnp) {
4200                if (rnp->level != level) {
4201                        pr_cont("\n");
4202                        pr_info(" ");
4203                        level = rnp->level;
4204                }
4205                pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4206        }
4207        pr_cont("\n");
4208}
4209
4210void __init rcu_init(void)
4211{
4212        int cpu;
4213
4214        rcu_early_boot_tests();
4215
4216        rcu_bootup_announce();
4217        rcu_init_geometry();
4218        rcu_init_one(&rcu_bh_state);
4219        rcu_init_one(&rcu_sched_state);
4220        if (dump_tree)
4221                rcu_dump_rcu_node_tree(&rcu_sched_state);
4222        __rcu_init_preempt();
4223        open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4224
4225        /*
4226         * We don't need protection against CPU-hotplug here because
4227         * this is called early in boot, before either interrupts
4228         * or the scheduler are operational.
4229         */
4230        pm_notifier(rcu_pm_notify, 0);
4231        for_each_online_cpu(cpu) {
4232                rcutree_prepare_cpu(cpu);
4233                rcu_cpu_starting(cpu);
4234                if (IS_ENABLED(CONFIG_TREE_SRCU))
4235                        srcu_online_cpu(cpu);
4236        }
4237}
4238
4239#include "tree_exp.h"
4240#include "tree_plugin.h"
4241