linux/kernel/signal.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *              Changes to use preallocated sigqueue structures
  10 *              to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched/mm.h>
  17#include <linux/sched/user.h>
  18#include <linux/sched/debug.h>
  19#include <linux/sched/task.h>
  20#include <linux/sched/task_stack.h>
  21#include <linux/sched/cputime.h>
  22#include <linux/fs.h>
  23#include <linux/tty.h>
  24#include <linux/binfmts.h>
  25#include <linux/coredump.h>
  26#include <linux/security.h>
  27#include <linux/syscalls.h>
  28#include <linux/ptrace.h>
  29#include <linux/signal.h>
  30#include <linux/signalfd.h>
  31#include <linux/ratelimit.h>
  32#include <linux/tracehook.h>
  33#include <linux/capability.h>
  34#include <linux/freezer.h>
  35#include <linux/pid_namespace.h>
  36#include <linux/nsproxy.h>
  37#include <linux/user_namespace.h>
  38#include <linux/uprobes.h>
  39#include <linux/compat.h>
  40#include <linux/cn_proc.h>
  41#include <linux/compiler.h>
  42#include <linux/posix-timers.h>
  43
  44#define CREATE_TRACE_POINTS
  45#include <trace/events/signal.h>
  46
  47#include <asm/param.h>
  48#include <linux/uaccess.h>
  49#include <asm/unistd.h>
  50#include <asm/siginfo.h>
  51#include <asm/cacheflush.h>
  52#include "audit.h"      /* audit_signal_info() */
  53
  54/*
  55 * SLAB caches for signal bits.
  56 */
  57
  58static struct kmem_cache *sigqueue_cachep;
  59
  60int print_fatal_signals __read_mostly;
  61
  62static void __user *sig_handler(struct task_struct *t, int sig)
  63{
  64        return t->sighand->action[sig - 1].sa.sa_handler;
  65}
  66
  67static int sig_handler_ignored(void __user *handler, int sig)
  68{
  69        /* Is it explicitly or implicitly ignored? */
  70        return handler == SIG_IGN ||
  71                (handler == SIG_DFL && sig_kernel_ignore(sig));
  72}
  73
  74static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  75{
  76        void __user *handler;
  77
  78        handler = sig_handler(t, sig);
  79
  80        if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  81                        handler == SIG_DFL && !force)
  82                return 1;
  83
  84        return sig_handler_ignored(handler, sig);
  85}
  86
  87static int sig_ignored(struct task_struct *t, int sig, bool force)
  88{
  89        /*
  90         * Blocked signals are never ignored, since the
  91         * signal handler may change by the time it is
  92         * unblocked.
  93         */
  94        if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  95                return 0;
  96
  97        if (!sig_task_ignored(t, sig, force))
  98                return 0;
  99
 100        /*
 101         * Tracers may want to know about even ignored signals.
 102         */
 103        return !t->ptrace;
 104}
 105
 106/*
 107 * Re-calculate pending state from the set of locally pending
 108 * signals, globally pending signals, and blocked signals.
 109 */
 110static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 111{
 112        unsigned long ready;
 113        long i;
 114
 115        switch (_NSIG_WORDS) {
 116        default:
 117                for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 118                        ready |= signal->sig[i] &~ blocked->sig[i];
 119                break;
 120
 121        case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 122                ready |= signal->sig[2] &~ blocked->sig[2];
 123                ready |= signal->sig[1] &~ blocked->sig[1];
 124                ready |= signal->sig[0] &~ blocked->sig[0];
 125                break;
 126
 127        case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 128                ready |= signal->sig[0] &~ blocked->sig[0];
 129                break;
 130
 131        case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 132        }
 133        return ready != 0;
 134}
 135
 136#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 137
 138static int recalc_sigpending_tsk(struct task_struct *t)
 139{
 140        if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 141            PENDING(&t->pending, &t->blocked) ||
 142            PENDING(&t->signal->shared_pending, &t->blocked)) {
 143                set_tsk_thread_flag(t, TIF_SIGPENDING);
 144                return 1;
 145        }
 146        /*
 147         * We must never clear the flag in another thread, or in current
 148         * when it's possible the current syscall is returning -ERESTART*.
 149         * So we don't clear it here, and only callers who know they should do.
 150         */
 151        return 0;
 152}
 153
 154/*
 155 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 156 * This is superfluous when called on current, the wakeup is a harmless no-op.
 157 */
 158void recalc_sigpending_and_wake(struct task_struct *t)
 159{
 160        if (recalc_sigpending_tsk(t))
 161                signal_wake_up(t, 0);
 162}
 163
 164void recalc_sigpending(void)
 165{
 166        if (!recalc_sigpending_tsk(current) && !freezing(current))
 167                clear_thread_flag(TIF_SIGPENDING);
 168
 169}
 170
 171/* Given the mask, find the first available signal that should be serviced. */
 172
 173#define SYNCHRONOUS_MASK \
 174        (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 175         sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 176
 177int next_signal(struct sigpending *pending, sigset_t *mask)
 178{
 179        unsigned long i, *s, *m, x;
 180        int sig = 0;
 181
 182        s = pending->signal.sig;
 183        m = mask->sig;
 184
 185        /*
 186         * Handle the first word specially: it contains the
 187         * synchronous signals that need to be dequeued first.
 188         */
 189        x = *s &~ *m;
 190        if (x) {
 191                if (x & SYNCHRONOUS_MASK)
 192                        x &= SYNCHRONOUS_MASK;
 193                sig = ffz(~x) + 1;
 194                return sig;
 195        }
 196
 197        switch (_NSIG_WORDS) {
 198        default:
 199                for (i = 1; i < _NSIG_WORDS; ++i) {
 200                        x = *++s &~ *++m;
 201                        if (!x)
 202                                continue;
 203                        sig = ffz(~x) + i*_NSIG_BPW + 1;
 204                        break;
 205                }
 206                break;
 207
 208        case 2:
 209                x = s[1] &~ m[1];
 210                if (!x)
 211                        break;
 212                sig = ffz(~x) + _NSIG_BPW + 1;
 213                break;
 214
 215        case 1:
 216                /* Nothing to do */
 217                break;
 218        }
 219
 220        return sig;
 221}
 222
 223static inline void print_dropped_signal(int sig)
 224{
 225        static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 226
 227        if (!print_fatal_signals)
 228                return;
 229
 230        if (!__ratelimit(&ratelimit_state))
 231                return;
 232
 233        pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 234                                current->comm, current->pid, sig);
 235}
 236
 237/**
 238 * task_set_jobctl_pending - set jobctl pending bits
 239 * @task: target task
 240 * @mask: pending bits to set
 241 *
 242 * Clear @mask from @task->jobctl.  @mask must be subset of
 243 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 244 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 245 * cleared.  If @task is already being killed or exiting, this function
 246 * becomes noop.
 247 *
 248 * CONTEXT:
 249 * Must be called with @task->sighand->siglock held.
 250 *
 251 * RETURNS:
 252 * %true if @mask is set, %false if made noop because @task was dying.
 253 */
 254bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 255{
 256        BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 257                        JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 258        BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 259
 260        if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 261                return false;
 262
 263        if (mask & JOBCTL_STOP_SIGMASK)
 264                task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 265
 266        task->jobctl |= mask;
 267        return true;
 268}
 269
 270/**
 271 * task_clear_jobctl_trapping - clear jobctl trapping bit
 272 * @task: target task
 273 *
 274 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 275 * Clear it and wake up the ptracer.  Note that we don't need any further
 276 * locking.  @task->siglock guarantees that @task->parent points to the
 277 * ptracer.
 278 *
 279 * CONTEXT:
 280 * Must be called with @task->sighand->siglock held.
 281 */
 282void task_clear_jobctl_trapping(struct task_struct *task)
 283{
 284        if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 285                task->jobctl &= ~JOBCTL_TRAPPING;
 286                smp_mb();       /* advised by wake_up_bit() */
 287                wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 288        }
 289}
 290
 291/**
 292 * task_clear_jobctl_pending - clear jobctl pending bits
 293 * @task: target task
 294 * @mask: pending bits to clear
 295 *
 296 * Clear @mask from @task->jobctl.  @mask must be subset of
 297 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 298 * STOP bits are cleared together.
 299 *
 300 * If clearing of @mask leaves no stop or trap pending, this function calls
 301 * task_clear_jobctl_trapping().
 302 *
 303 * CONTEXT:
 304 * Must be called with @task->sighand->siglock held.
 305 */
 306void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 307{
 308        BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 309
 310        if (mask & JOBCTL_STOP_PENDING)
 311                mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 312
 313        task->jobctl &= ~mask;
 314
 315        if (!(task->jobctl & JOBCTL_PENDING_MASK))
 316                task_clear_jobctl_trapping(task);
 317}
 318
 319/**
 320 * task_participate_group_stop - participate in a group stop
 321 * @task: task participating in a group stop
 322 *
 323 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 324 * Group stop states are cleared and the group stop count is consumed if
 325 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 326 * stop, the appropriate %SIGNAL_* flags are set.
 327 *
 328 * CONTEXT:
 329 * Must be called with @task->sighand->siglock held.
 330 *
 331 * RETURNS:
 332 * %true if group stop completion should be notified to the parent, %false
 333 * otherwise.
 334 */
 335static bool task_participate_group_stop(struct task_struct *task)
 336{
 337        struct signal_struct *sig = task->signal;
 338        bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 339
 340        WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 341
 342        task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 343
 344        if (!consume)
 345                return false;
 346
 347        if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 348                sig->group_stop_count--;
 349
 350        /*
 351         * Tell the caller to notify completion iff we are entering into a
 352         * fresh group stop.  Read comment in do_signal_stop() for details.
 353         */
 354        if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 355                signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 356                return true;
 357        }
 358        return false;
 359}
 360
 361/*
 362 * allocate a new signal queue record
 363 * - this may be called without locks if and only if t == current, otherwise an
 364 *   appropriate lock must be held to stop the target task from exiting
 365 */
 366static struct sigqueue *
 367__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 368{
 369        struct sigqueue *q = NULL;
 370        struct user_struct *user;
 371
 372        /*
 373         * Protect access to @t credentials. This can go away when all
 374         * callers hold rcu read lock.
 375         */
 376        rcu_read_lock();
 377        user = get_uid(__task_cred(t)->user);
 378        atomic_inc(&user->sigpending);
 379        rcu_read_unlock();
 380
 381        if (override_rlimit ||
 382            atomic_read(&user->sigpending) <=
 383                        task_rlimit(t, RLIMIT_SIGPENDING)) {
 384                q = kmem_cache_alloc(sigqueue_cachep, flags);
 385        } else {
 386                print_dropped_signal(sig);
 387        }
 388
 389        if (unlikely(q == NULL)) {
 390                atomic_dec(&user->sigpending);
 391                free_uid(user);
 392        } else {
 393                INIT_LIST_HEAD(&q->list);
 394                q->flags = 0;
 395                q->user = user;
 396        }
 397
 398        return q;
 399}
 400
 401static void __sigqueue_free(struct sigqueue *q)
 402{
 403        if (q->flags & SIGQUEUE_PREALLOC)
 404                return;
 405        atomic_dec(&q->user->sigpending);
 406        free_uid(q->user);
 407        kmem_cache_free(sigqueue_cachep, q);
 408}
 409
 410void flush_sigqueue(struct sigpending *queue)
 411{
 412        struct sigqueue *q;
 413
 414        sigemptyset(&queue->signal);
 415        while (!list_empty(&queue->list)) {
 416                q = list_entry(queue->list.next, struct sigqueue , list);
 417                list_del_init(&q->list);
 418                __sigqueue_free(q);
 419        }
 420}
 421
 422/*
 423 * Flush all pending signals for this kthread.
 424 */
 425void flush_signals(struct task_struct *t)
 426{
 427        unsigned long flags;
 428
 429        spin_lock_irqsave(&t->sighand->siglock, flags);
 430        clear_tsk_thread_flag(t, TIF_SIGPENDING);
 431        flush_sigqueue(&t->pending);
 432        flush_sigqueue(&t->signal->shared_pending);
 433        spin_unlock_irqrestore(&t->sighand->siglock, flags);
 434}
 435
 436#ifdef CONFIG_POSIX_TIMERS
 437static void __flush_itimer_signals(struct sigpending *pending)
 438{
 439        sigset_t signal, retain;
 440        struct sigqueue *q, *n;
 441
 442        signal = pending->signal;
 443        sigemptyset(&retain);
 444
 445        list_for_each_entry_safe(q, n, &pending->list, list) {
 446                int sig = q->info.si_signo;
 447
 448                if (likely(q->info.si_code != SI_TIMER)) {
 449                        sigaddset(&retain, sig);
 450                } else {
 451                        sigdelset(&signal, sig);
 452                        list_del_init(&q->list);
 453                        __sigqueue_free(q);
 454                }
 455        }
 456
 457        sigorsets(&pending->signal, &signal, &retain);
 458}
 459
 460void flush_itimer_signals(void)
 461{
 462        struct task_struct *tsk = current;
 463        unsigned long flags;
 464
 465        spin_lock_irqsave(&tsk->sighand->siglock, flags);
 466        __flush_itimer_signals(&tsk->pending);
 467        __flush_itimer_signals(&tsk->signal->shared_pending);
 468        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 469}
 470#endif
 471
 472void ignore_signals(struct task_struct *t)
 473{
 474        int i;
 475
 476        for (i = 0; i < _NSIG; ++i)
 477                t->sighand->action[i].sa.sa_handler = SIG_IGN;
 478
 479        flush_signals(t);
 480}
 481
 482/*
 483 * Flush all handlers for a task.
 484 */
 485
 486void
 487flush_signal_handlers(struct task_struct *t, int force_default)
 488{
 489        int i;
 490        struct k_sigaction *ka = &t->sighand->action[0];
 491        for (i = _NSIG ; i != 0 ; i--) {
 492                if (force_default || ka->sa.sa_handler != SIG_IGN)
 493                        ka->sa.sa_handler = SIG_DFL;
 494                ka->sa.sa_flags = 0;
 495#ifdef __ARCH_HAS_SA_RESTORER
 496                ka->sa.sa_restorer = NULL;
 497#endif
 498                sigemptyset(&ka->sa.sa_mask);
 499                ka++;
 500        }
 501}
 502
 503int unhandled_signal(struct task_struct *tsk, int sig)
 504{
 505        void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 506        if (is_global_init(tsk))
 507                return 1;
 508        if (handler != SIG_IGN && handler != SIG_DFL)
 509                return 0;
 510        /* if ptraced, let the tracer determine */
 511        return !tsk->ptrace;
 512}
 513
 514static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
 515                           bool *resched_timer)
 516{
 517        struct sigqueue *q, *first = NULL;
 518
 519        /*
 520         * Collect the siginfo appropriate to this signal.  Check if
 521         * there is another siginfo for the same signal.
 522        */
 523        list_for_each_entry(q, &list->list, list) {
 524                if (q->info.si_signo == sig) {
 525                        if (first)
 526                                goto still_pending;
 527                        first = q;
 528                }
 529        }
 530
 531        sigdelset(&list->signal, sig);
 532
 533        if (first) {
 534still_pending:
 535                list_del_init(&first->list);
 536                copy_siginfo(info, &first->info);
 537
 538                *resched_timer =
 539                        (first->flags & SIGQUEUE_PREALLOC) &&
 540                        (info->si_code == SI_TIMER) &&
 541                        (info->si_sys_private);
 542
 543                __sigqueue_free(first);
 544        } else {
 545                /*
 546                 * Ok, it wasn't in the queue.  This must be
 547                 * a fast-pathed signal or we must have been
 548                 * out of queue space.  So zero out the info.
 549                 */
 550                info->si_signo = sig;
 551                info->si_errno = 0;
 552                info->si_code = SI_USER;
 553                info->si_pid = 0;
 554                info->si_uid = 0;
 555        }
 556}
 557
 558static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 559                        siginfo_t *info, bool *resched_timer)
 560{
 561        int sig = next_signal(pending, mask);
 562
 563        if (sig)
 564                collect_signal(sig, pending, info, resched_timer);
 565        return sig;
 566}
 567
 568/*
 569 * Dequeue a signal and return the element to the caller, which is
 570 * expected to free it.
 571 *
 572 * All callers have to hold the siglock.
 573 */
 574int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 575{
 576        bool resched_timer = false;
 577        int signr;
 578
 579        /* We only dequeue private signals from ourselves, we don't let
 580         * signalfd steal them
 581         */
 582        signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 583        if (!signr) {
 584                signr = __dequeue_signal(&tsk->signal->shared_pending,
 585                                         mask, info, &resched_timer);
 586#ifdef CONFIG_POSIX_TIMERS
 587                /*
 588                 * itimer signal ?
 589                 *
 590                 * itimers are process shared and we restart periodic
 591                 * itimers in the signal delivery path to prevent DoS
 592                 * attacks in the high resolution timer case. This is
 593                 * compliant with the old way of self-restarting
 594                 * itimers, as the SIGALRM is a legacy signal and only
 595                 * queued once. Changing the restart behaviour to
 596                 * restart the timer in the signal dequeue path is
 597                 * reducing the timer noise on heavy loaded !highres
 598                 * systems too.
 599                 */
 600                if (unlikely(signr == SIGALRM)) {
 601                        struct hrtimer *tmr = &tsk->signal->real_timer;
 602
 603                        if (!hrtimer_is_queued(tmr) &&
 604                            tsk->signal->it_real_incr != 0) {
 605                                hrtimer_forward(tmr, tmr->base->get_time(),
 606                                                tsk->signal->it_real_incr);
 607                                hrtimer_restart(tmr);
 608                        }
 609                }
 610#endif
 611        }
 612
 613        recalc_sigpending();
 614        if (!signr)
 615                return 0;
 616
 617        if (unlikely(sig_kernel_stop(signr))) {
 618                /*
 619                 * Set a marker that we have dequeued a stop signal.  Our
 620                 * caller might release the siglock and then the pending
 621                 * stop signal it is about to process is no longer in the
 622                 * pending bitmasks, but must still be cleared by a SIGCONT
 623                 * (and overruled by a SIGKILL).  So those cases clear this
 624                 * shared flag after we've set it.  Note that this flag may
 625                 * remain set after the signal we return is ignored or
 626                 * handled.  That doesn't matter because its only purpose
 627                 * is to alert stop-signal processing code when another
 628                 * processor has come along and cleared the flag.
 629                 */
 630                current->jobctl |= JOBCTL_STOP_DEQUEUED;
 631        }
 632#ifdef CONFIG_POSIX_TIMERS
 633        if (resched_timer) {
 634                /*
 635                 * Release the siglock to ensure proper locking order
 636                 * of timer locks outside of siglocks.  Note, we leave
 637                 * irqs disabled here, since the posix-timers code is
 638                 * about to disable them again anyway.
 639                 */
 640                spin_unlock(&tsk->sighand->siglock);
 641                posixtimer_rearm(info);
 642                spin_lock(&tsk->sighand->siglock);
 643        }
 644#endif
 645        return signr;
 646}
 647
 648/*
 649 * Tell a process that it has a new active signal..
 650 *
 651 * NOTE! we rely on the previous spin_lock to
 652 * lock interrupts for us! We can only be called with
 653 * "siglock" held, and the local interrupt must
 654 * have been disabled when that got acquired!
 655 *
 656 * No need to set need_resched since signal event passing
 657 * goes through ->blocked
 658 */
 659void signal_wake_up_state(struct task_struct *t, unsigned int state)
 660{
 661        set_tsk_thread_flag(t, TIF_SIGPENDING);
 662        /*
 663         * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 664         * case. We don't check t->state here because there is a race with it
 665         * executing another processor and just now entering stopped state.
 666         * By using wake_up_state, we ensure the process will wake up and
 667         * handle its death signal.
 668         */
 669        if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 670                kick_process(t);
 671}
 672
 673/*
 674 * Remove signals in mask from the pending set and queue.
 675 * Returns 1 if any signals were found.
 676 *
 677 * All callers must be holding the siglock.
 678 */
 679static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 680{
 681        struct sigqueue *q, *n;
 682        sigset_t m;
 683
 684        sigandsets(&m, mask, &s->signal);
 685        if (sigisemptyset(&m))
 686                return 0;
 687
 688        sigandnsets(&s->signal, &s->signal, mask);
 689        list_for_each_entry_safe(q, n, &s->list, list) {
 690                if (sigismember(mask, q->info.si_signo)) {
 691                        list_del_init(&q->list);
 692                        __sigqueue_free(q);
 693                }
 694        }
 695        return 1;
 696}
 697
 698static inline int is_si_special(const struct siginfo *info)
 699{
 700        return info <= SEND_SIG_FORCED;
 701}
 702
 703static inline bool si_fromuser(const struct siginfo *info)
 704{
 705        return info == SEND_SIG_NOINFO ||
 706                (!is_si_special(info) && SI_FROMUSER(info));
 707}
 708
 709/*
 710 * called with RCU read lock from check_kill_permission()
 711 */
 712static int kill_ok_by_cred(struct task_struct *t)
 713{
 714        const struct cred *cred = current_cred();
 715        const struct cred *tcred = __task_cred(t);
 716
 717        if (uid_eq(cred->euid, tcred->suid) ||
 718            uid_eq(cred->euid, tcred->uid)  ||
 719            uid_eq(cred->uid,  tcred->suid) ||
 720            uid_eq(cred->uid,  tcred->uid))
 721                return 1;
 722
 723        if (ns_capable(tcred->user_ns, CAP_KILL))
 724                return 1;
 725
 726        return 0;
 727}
 728
 729/*
 730 * Bad permissions for sending the signal
 731 * - the caller must hold the RCU read lock
 732 */
 733static int check_kill_permission(int sig, struct siginfo *info,
 734                                 struct task_struct *t)
 735{
 736        struct pid *sid;
 737        int error;
 738
 739        if (!valid_signal(sig))
 740                return -EINVAL;
 741
 742        if (!si_fromuser(info))
 743                return 0;
 744
 745        error = audit_signal_info(sig, t); /* Let audit system see the signal */
 746        if (error)
 747                return error;
 748
 749        if (!same_thread_group(current, t) &&
 750            !kill_ok_by_cred(t)) {
 751                switch (sig) {
 752                case SIGCONT:
 753                        sid = task_session(t);
 754                        /*
 755                         * We don't return the error if sid == NULL. The
 756                         * task was unhashed, the caller must notice this.
 757                         */
 758                        if (!sid || sid == task_session(current))
 759                                break;
 760                default:
 761                        return -EPERM;
 762                }
 763        }
 764
 765        return security_task_kill(t, info, sig, 0);
 766}
 767
 768/**
 769 * ptrace_trap_notify - schedule trap to notify ptracer
 770 * @t: tracee wanting to notify tracer
 771 *
 772 * This function schedules sticky ptrace trap which is cleared on the next
 773 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 774 * ptracer.
 775 *
 776 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 777 * ptracer is listening for events, tracee is woken up so that it can
 778 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 779 * eventually taken without returning to userland after the existing traps
 780 * are finished by PTRACE_CONT.
 781 *
 782 * CONTEXT:
 783 * Must be called with @task->sighand->siglock held.
 784 */
 785static void ptrace_trap_notify(struct task_struct *t)
 786{
 787        WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 788        assert_spin_locked(&t->sighand->siglock);
 789
 790        task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 791        ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 792}
 793
 794/*
 795 * Handle magic process-wide effects of stop/continue signals. Unlike
 796 * the signal actions, these happen immediately at signal-generation
 797 * time regardless of blocking, ignoring, or handling.  This does the
 798 * actual continuing for SIGCONT, but not the actual stopping for stop
 799 * signals. The process stop is done as a signal action for SIG_DFL.
 800 *
 801 * Returns true if the signal should be actually delivered, otherwise
 802 * it should be dropped.
 803 */
 804static bool prepare_signal(int sig, struct task_struct *p, bool force)
 805{
 806        struct signal_struct *signal = p->signal;
 807        struct task_struct *t;
 808        sigset_t flush;
 809
 810        if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 811                if (!(signal->flags & SIGNAL_GROUP_EXIT))
 812                        return sig == SIGKILL;
 813                /*
 814                 * The process is in the middle of dying, nothing to do.
 815                 */
 816        } else if (sig_kernel_stop(sig)) {
 817                /*
 818                 * This is a stop signal.  Remove SIGCONT from all queues.
 819                 */
 820                siginitset(&flush, sigmask(SIGCONT));
 821                flush_sigqueue_mask(&flush, &signal->shared_pending);
 822                for_each_thread(p, t)
 823                        flush_sigqueue_mask(&flush, &t->pending);
 824        } else if (sig == SIGCONT) {
 825                unsigned int why;
 826                /*
 827                 * Remove all stop signals from all queues, wake all threads.
 828                 */
 829                siginitset(&flush, SIG_KERNEL_STOP_MASK);
 830                flush_sigqueue_mask(&flush, &signal->shared_pending);
 831                for_each_thread(p, t) {
 832                        flush_sigqueue_mask(&flush, &t->pending);
 833                        task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 834                        if (likely(!(t->ptrace & PT_SEIZED)))
 835                                wake_up_state(t, __TASK_STOPPED);
 836                        else
 837                                ptrace_trap_notify(t);
 838                }
 839
 840                /*
 841                 * Notify the parent with CLD_CONTINUED if we were stopped.
 842                 *
 843                 * If we were in the middle of a group stop, we pretend it
 844                 * was already finished, and then continued. Since SIGCHLD
 845                 * doesn't queue we report only CLD_STOPPED, as if the next
 846                 * CLD_CONTINUED was dropped.
 847                 */
 848                why = 0;
 849                if (signal->flags & SIGNAL_STOP_STOPPED)
 850                        why |= SIGNAL_CLD_CONTINUED;
 851                else if (signal->group_stop_count)
 852                        why |= SIGNAL_CLD_STOPPED;
 853
 854                if (why) {
 855                        /*
 856                         * The first thread which returns from do_signal_stop()
 857                         * will take ->siglock, notice SIGNAL_CLD_MASK, and
 858                         * notify its parent. See get_signal_to_deliver().
 859                         */
 860                        signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 861                        signal->group_stop_count = 0;
 862                        signal->group_exit_code = 0;
 863                }
 864        }
 865
 866        return !sig_ignored(p, sig, force);
 867}
 868
 869/*
 870 * Test if P wants to take SIG.  After we've checked all threads with this,
 871 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 872 * blocking SIG were ruled out because they are not running and already
 873 * have pending signals.  Such threads will dequeue from the shared queue
 874 * as soon as they're available, so putting the signal on the shared queue
 875 * will be equivalent to sending it to one such thread.
 876 */
 877static inline int wants_signal(int sig, struct task_struct *p)
 878{
 879        if (sigismember(&p->blocked, sig))
 880                return 0;
 881        if (p->flags & PF_EXITING)
 882                return 0;
 883        if (sig == SIGKILL)
 884                return 1;
 885        if (task_is_stopped_or_traced(p))
 886                return 0;
 887        return task_curr(p) || !signal_pending(p);
 888}
 889
 890static void complete_signal(int sig, struct task_struct *p, int group)
 891{
 892        struct signal_struct *signal = p->signal;
 893        struct task_struct *t;
 894
 895        /*
 896         * Now find a thread we can wake up to take the signal off the queue.
 897         *
 898         * If the main thread wants the signal, it gets first crack.
 899         * Probably the least surprising to the average bear.
 900         */
 901        if (wants_signal(sig, p))
 902                t = p;
 903        else if (!group || thread_group_empty(p))
 904                /*
 905                 * There is just one thread and it does not need to be woken.
 906                 * It will dequeue unblocked signals before it runs again.
 907                 */
 908                return;
 909        else {
 910                /*
 911                 * Otherwise try to find a suitable thread.
 912                 */
 913                t = signal->curr_target;
 914                while (!wants_signal(sig, t)) {
 915                        t = next_thread(t);
 916                        if (t == signal->curr_target)
 917                                /*
 918                                 * No thread needs to be woken.
 919                                 * Any eligible threads will see
 920                                 * the signal in the queue soon.
 921                                 */
 922                                return;
 923                }
 924                signal->curr_target = t;
 925        }
 926
 927        /*
 928         * Found a killable thread.  If the signal will be fatal,
 929         * then start taking the whole group down immediately.
 930         */
 931        if (sig_fatal(p, sig) &&
 932            !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 933            !sigismember(&t->real_blocked, sig) &&
 934            (sig == SIGKILL || !t->ptrace)) {
 935                /*
 936                 * This signal will be fatal to the whole group.
 937                 */
 938                if (!sig_kernel_coredump(sig)) {
 939                        /*
 940                         * Start a group exit and wake everybody up.
 941                         * This way we don't have other threads
 942                         * running and doing things after a slower
 943                         * thread has the fatal signal pending.
 944                         */
 945                        signal->flags = SIGNAL_GROUP_EXIT;
 946                        signal->group_exit_code = sig;
 947                        signal->group_stop_count = 0;
 948                        t = p;
 949                        do {
 950                                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 951                                sigaddset(&t->pending.signal, SIGKILL);
 952                                signal_wake_up(t, 1);
 953                        } while_each_thread(p, t);
 954                        return;
 955                }
 956        }
 957
 958        /*
 959         * The signal is already in the shared-pending queue.
 960         * Tell the chosen thread to wake up and dequeue it.
 961         */
 962        signal_wake_up(t, sig == SIGKILL);
 963        return;
 964}
 965
 966static inline int legacy_queue(struct sigpending *signals, int sig)
 967{
 968        return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
 969}
 970
 971#ifdef CONFIG_USER_NS
 972static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 973{
 974        if (current_user_ns() == task_cred_xxx(t, user_ns))
 975                return;
 976
 977        if (SI_FROMKERNEL(info))
 978                return;
 979
 980        rcu_read_lock();
 981        info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
 982                                        make_kuid(current_user_ns(), info->si_uid));
 983        rcu_read_unlock();
 984}
 985#else
 986static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 987{
 988        return;
 989}
 990#endif
 991
 992static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
 993                        int group, int from_ancestor_ns)
 994{
 995        struct sigpending *pending;
 996        struct sigqueue *q;
 997        int override_rlimit;
 998        int ret = 0, result;
 999
1000        assert_spin_locked(&t->sighand->siglock);
1001
1002        result = TRACE_SIGNAL_IGNORED;
1003        if (!prepare_signal(sig, t,
1004                        from_ancestor_ns || (info == SEND_SIG_FORCED)))
1005                goto ret;
1006
1007        pending = group ? &t->signal->shared_pending : &t->pending;
1008        /*
1009         * Short-circuit ignored signals and support queuing
1010         * exactly one non-rt signal, so that we can get more
1011         * detailed information about the cause of the signal.
1012         */
1013        result = TRACE_SIGNAL_ALREADY_PENDING;
1014        if (legacy_queue(pending, sig))
1015                goto ret;
1016
1017        result = TRACE_SIGNAL_DELIVERED;
1018        /*
1019         * fast-pathed signals for kernel-internal things like SIGSTOP
1020         * or SIGKILL.
1021         */
1022        if (info == SEND_SIG_FORCED)
1023                goto out_set;
1024
1025        /*
1026         * Real-time signals must be queued if sent by sigqueue, or
1027         * some other real-time mechanism.  It is implementation
1028         * defined whether kill() does so.  We attempt to do so, on
1029         * the principle of least surprise, but since kill is not
1030         * allowed to fail with EAGAIN when low on memory we just
1031         * make sure at least one signal gets delivered and don't
1032         * pass on the info struct.
1033         */
1034        if (sig < SIGRTMIN)
1035                override_rlimit = (is_si_special(info) || info->si_code >= 0);
1036        else
1037                override_rlimit = 0;
1038
1039        q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1040                override_rlimit);
1041        if (q) {
1042                list_add_tail(&q->list, &pending->list);
1043                switch ((unsigned long) info) {
1044                case (unsigned long) SEND_SIG_NOINFO:
1045                        q->info.si_signo = sig;
1046                        q->info.si_errno = 0;
1047                        q->info.si_code = SI_USER;
1048                        q->info.si_pid = task_tgid_nr_ns(current,
1049                                                        task_active_pid_ns(t));
1050                        q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1051                        break;
1052                case (unsigned long) SEND_SIG_PRIV:
1053                        q->info.si_signo = sig;
1054                        q->info.si_errno = 0;
1055                        q->info.si_code = SI_KERNEL;
1056                        q->info.si_pid = 0;
1057                        q->info.si_uid = 0;
1058                        break;
1059                default:
1060                        copy_siginfo(&q->info, info);
1061                        if (from_ancestor_ns)
1062                                q->info.si_pid = 0;
1063                        break;
1064                }
1065
1066                userns_fixup_signal_uid(&q->info, t);
1067
1068        } else if (!is_si_special(info)) {
1069                if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1070                        /*
1071                         * Queue overflow, abort.  We may abort if the
1072                         * signal was rt and sent by user using something
1073                         * other than kill().
1074                         */
1075                        result = TRACE_SIGNAL_OVERFLOW_FAIL;
1076                        ret = -EAGAIN;
1077                        goto ret;
1078                } else {
1079                        /*
1080                         * This is a silent loss of information.  We still
1081                         * send the signal, but the *info bits are lost.
1082                         */
1083                        result = TRACE_SIGNAL_LOSE_INFO;
1084                }
1085        }
1086
1087out_set:
1088        signalfd_notify(t, sig);
1089        sigaddset(&pending->signal, sig);
1090        complete_signal(sig, t, group);
1091ret:
1092        trace_signal_generate(sig, info, t, group, result);
1093        return ret;
1094}
1095
1096static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1097                        int group)
1098{
1099        int from_ancestor_ns = 0;
1100
1101#ifdef CONFIG_PID_NS
1102        from_ancestor_ns = si_fromuser(info) &&
1103                           !task_pid_nr_ns(current, task_active_pid_ns(t));
1104#endif
1105
1106        return __send_signal(sig, info, t, group, from_ancestor_ns);
1107}
1108
1109static void print_fatal_signal(int signr)
1110{
1111        struct pt_regs *regs = signal_pt_regs();
1112        pr_info("potentially unexpected fatal signal %d.\n", signr);
1113
1114#if defined(__i386__) && !defined(__arch_um__)
1115        pr_info("code at %08lx: ", regs->ip);
1116        {
1117                int i;
1118                for (i = 0; i < 16; i++) {
1119                        unsigned char insn;
1120
1121                        if (get_user(insn, (unsigned char *)(regs->ip + i)))
1122                                break;
1123                        pr_cont("%02x ", insn);
1124                }
1125        }
1126        pr_cont("\n");
1127#endif
1128        preempt_disable();
1129        show_regs(regs);
1130        preempt_enable();
1131}
1132
1133static int __init setup_print_fatal_signals(char *str)
1134{
1135        get_option (&str, &print_fatal_signals);
1136
1137        return 1;
1138}
1139
1140__setup("print-fatal-signals=", setup_print_fatal_signals);
1141
1142int
1143__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1144{
1145        return send_signal(sig, info, p, 1);
1146}
1147
1148static int
1149specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1150{
1151        return send_signal(sig, info, t, 0);
1152}
1153
1154int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1155                        bool group)
1156{
1157        unsigned long flags;
1158        int ret = -ESRCH;
1159
1160        if (lock_task_sighand(p, &flags)) {
1161                ret = send_signal(sig, info, p, group);
1162                unlock_task_sighand(p, &flags);
1163        }
1164
1165        return ret;
1166}
1167
1168/*
1169 * Force a signal that the process can't ignore: if necessary
1170 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1171 *
1172 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1173 * since we do not want to have a signal handler that was blocked
1174 * be invoked when user space had explicitly blocked it.
1175 *
1176 * We don't want to have recursive SIGSEGV's etc, for example,
1177 * that is why we also clear SIGNAL_UNKILLABLE.
1178 */
1179int
1180force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1181{
1182        unsigned long int flags;
1183        int ret, blocked, ignored;
1184        struct k_sigaction *action;
1185
1186        spin_lock_irqsave(&t->sighand->siglock, flags);
1187        action = &t->sighand->action[sig-1];
1188        ignored = action->sa.sa_handler == SIG_IGN;
1189        blocked = sigismember(&t->blocked, sig);
1190        if (blocked || ignored) {
1191                action->sa.sa_handler = SIG_DFL;
1192                if (blocked) {
1193                        sigdelset(&t->blocked, sig);
1194                        recalc_sigpending_and_wake(t);
1195                }
1196        }
1197        /*
1198         * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1199         * debugging to leave init killable.
1200         */
1201        if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1202                t->signal->flags &= ~SIGNAL_UNKILLABLE;
1203        ret = specific_send_sig_info(sig, info, t);
1204        spin_unlock_irqrestore(&t->sighand->siglock, flags);
1205
1206        return ret;
1207}
1208
1209/*
1210 * Nuke all other threads in the group.
1211 */
1212int zap_other_threads(struct task_struct *p)
1213{
1214        struct task_struct *t = p;
1215        int count = 0;
1216
1217        p->signal->group_stop_count = 0;
1218
1219        while_each_thread(p, t) {
1220                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1221                count++;
1222
1223                /* Don't bother with already dead threads */
1224                if (t->exit_state)
1225                        continue;
1226                sigaddset(&t->pending.signal, SIGKILL);
1227                signal_wake_up(t, 1);
1228        }
1229
1230        return count;
1231}
1232
1233struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1234                                           unsigned long *flags)
1235{
1236        struct sighand_struct *sighand;
1237
1238        for (;;) {
1239                /*
1240                 * Disable interrupts early to avoid deadlocks.
1241                 * See rcu_read_unlock() comment header for details.
1242                 */
1243                local_irq_save(*flags);
1244                rcu_read_lock();
1245                sighand = rcu_dereference(tsk->sighand);
1246                if (unlikely(sighand == NULL)) {
1247                        rcu_read_unlock();
1248                        local_irq_restore(*flags);
1249                        break;
1250                }
1251                /*
1252                 * This sighand can be already freed and even reused, but
1253                 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1254                 * initializes ->siglock: this slab can't go away, it has
1255                 * the same object type, ->siglock can't be reinitialized.
1256                 *
1257                 * We need to ensure that tsk->sighand is still the same
1258                 * after we take the lock, we can race with de_thread() or
1259                 * __exit_signal(). In the latter case the next iteration
1260                 * must see ->sighand == NULL.
1261                 */
1262                spin_lock(&sighand->siglock);
1263                if (likely(sighand == tsk->sighand)) {
1264                        rcu_read_unlock();
1265                        break;
1266                }
1267                spin_unlock(&sighand->siglock);
1268                rcu_read_unlock();
1269                local_irq_restore(*flags);
1270        }
1271
1272        return sighand;
1273}
1274
1275/*
1276 * send signal info to all the members of a group
1277 */
1278int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1279{
1280        int ret;
1281
1282        rcu_read_lock();
1283        ret = check_kill_permission(sig, info, p);
1284        rcu_read_unlock();
1285
1286        if (!ret && sig)
1287                ret = do_send_sig_info(sig, info, p, true);
1288
1289        return ret;
1290}
1291
1292/*
1293 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1294 * control characters do (^C, ^Z etc)
1295 * - the caller must hold at least a readlock on tasklist_lock
1296 */
1297int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1298{
1299        struct task_struct *p = NULL;
1300        int retval, success;
1301
1302        success = 0;
1303        retval = -ESRCH;
1304        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1305                int err = group_send_sig_info(sig, info, p);
1306                success |= !err;
1307                retval = err;
1308        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1309        return success ? 0 : retval;
1310}
1311
1312int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1313{
1314        int error = -ESRCH;
1315        struct task_struct *p;
1316
1317        for (;;) {
1318                rcu_read_lock();
1319                p = pid_task(pid, PIDTYPE_PID);
1320                if (p)
1321                        error = group_send_sig_info(sig, info, p);
1322                rcu_read_unlock();
1323                if (likely(!p || error != -ESRCH))
1324                        return error;
1325
1326                /*
1327                 * The task was unhashed in between, try again.  If it
1328                 * is dead, pid_task() will return NULL, if we race with
1329                 * de_thread() it will find the new leader.
1330                 */
1331        }
1332}
1333
1334static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1335{
1336        int error;
1337        rcu_read_lock();
1338        error = kill_pid_info(sig, info, find_vpid(pid));
1339        rcu_read_unlock();
1340        return error;
1341}
1342
1343static int kill_as_cred_perm(const struct cred *cred,
1344                             struct task_struct *target)
1345{
1346        const struct cred *pcred = __task_cred(target);
1347        if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1348            !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1349                return 0;
1350        return 1;
1351}
1352
1353/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1354int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1355                         const struct cred *cred, u32 secid)
1356{
1357        int ret = -EINVAL;
1358        struct task_struct *p;
1359        unsigned long flags;
1360
1361        if (!valid_signal(sig))
1362                return ret;
1363
1364        rcu_read_lock();
1365        p = pid_task(pid, PIDTYPE_PID);
1366        if (!p) {
1367                ret = -ESRCH;
1368                goto out_unlock;
1369        }
1370        if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1371                ret = -EPERM;
1372                goto out_unlock;
1373        }
1374        ret = security_task_kill(p, info, sig, secid);
1375        if (ret)
1376                goto out_unlock;
1377
1378        if (sig) {
1379                if (lock_task_sighand(p, &flags)) {
1380                        ret = __send_signal(sig, info, p, 1, 0);
1381                        unlock_task_sighand(p, &flags);
1382                } else
1383                        ret = -ESRCH;
1384        }
1385out_unlock:
1386        rcu_read_unlock();
1387        return ret;
1388}
1389EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1390
1391/*
1392 * kill_something_info() interprets pid in interesting ways just like kill(2).
1393 *
1394 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1395 * is probably wrong.  Should make it like BSD or SYSV.
1396 */
1397
1398static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1399{
1400        int ret;
1401
1402        if (pid > 0) {
1403                rcu_read_lock();
1404                ret = kill_pid_info(sig, info, find_vpid(pid));
1405                rcu_read_unlock();
1406                return ret;
1407        }
1408
1409        /* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1410        if (pid == INT_MIN)
1411                return -ESRCH;
1412
1413        read_lock(&tasklist_lock);
1414        if (pid != -1) {
1415                ret = __kill_pgrp_info(sig, info,
1416                                pid ? find_vpid(-pid) : task_pgrp(current));
1417        } else {
1418                int retval = 0, count = 0;
1419                struct task_struct * p;
1420
1421                for_each_process(p) {
1422                        if (task_pid_vnr(p) > 1 &&
1423                                        !same_thread_group(p, current)) {
1424                                int err = group_send_sig_info(sig, info, p);
1425                                ++count;
1426                                if (err != -EPERM)
1427                                        retval = err;
1428                        }
1429                }
1430                ret = count ? retval : -ESRCH;
1431        }
1432        read_unlock(&tasklist_lock);
1433
1434        return ret;
1435}
1436
1437/*
1438 * These are for backward compatibility with the rest of the kernel source.
1439 */
1440
1441int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1442{
1443        /*
1444         * Make sure legacy kernel users don't send in bad values
1445         * (normal paths check this in check_kill_permission).
1446         */
1447        if (!valid_signal(sig))
1448                return -EINVAL;
1449
1450        return do_send_sig_info(sig, info, p, false);
1451}
1452
1453#define __si_special(priv) \
1454        ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1455
1456int
1457send_sig(int sig, struct task_struct *p, int priv)
1458{
1459        return send_sig_info(sig, __si_special(priv), p);
1460}
1461
1462void
1463force_sig(int sig, struct task_struct *p)
1464{
1465        force_sig_info(sig, SEND_SIG_PRIV, p);
1466}
1467
1468/*
1469 * When things go south during signal handling, we
1470 * will force a SIGSEGV. And if the signal that caused
1471 * the problem was already a SIGSEGV, we'll want to
1472 * make sure we don't even try to deliver the signal..
1473 */
1474int
1475force_sigsegv(int sig, struct task_struct *p)
1476{
1477        if (sig == SIGSEGV) {
1478                unsigned long flags;
1479                spin_lock_irqsave(&p->sighand->siglock, flags);
1480                p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1481                spin_unlock_irqrestore(&p->sighand->siglock, flags);
1482        }
1483        force_sig(SIGSEGV, p);
1484        return 0;
1485}
1486
1487int kill_pgrp(struct pid *pid, int sig, int priv)
1488{
1489        int ret;
1490
1491        read_lock(&tasklist_lock);
1492        ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1493        read_unlock(&tasklist_lock);
1494
1495        return ret;
1496}
1497EXPORT_SYMBOL(kill_pgrp);
1498
1499int kill_pid(struct pid *pid, int sig, int priv)
1500{
1501        return kill_pid_info(sig, __si_special(priv), pid);
1502}
1503EXPORT_SYMBOL(kill_pid);
1504
1505/*
1506 * These functions support sending signals using preallocated sigqueue
1507 * structures.  This is needed "because realtime applications cannot
1508 * afford to lose notifications of asynchronous events, like timer
1509 * expirations or I/O completions".  In the case of POSIX Timers
1510 * we allocate the sigqueue structure from the timer_create.  If this
1511 * allocation fails we are able to report the failure to the application
1512 * with an EAGAIN error.
1513 */
1514struct sigqueue *sigqueue_alloc(void)
1515{
1516        struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1517
1518        if (q)
1519                q->flags |= SIGQUEUE_PREALLOC;
1520
1521        return q;
1522}
1523
1524void sigqueue_free(struct sigqueue *q)
1525{
1526        unsigned long flags;
1527        spinlock_t *lock = &current->sighand->siglock;
1528
1529        BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1530        /*
1531         * We must hold ->siglock while testing q->list
1532         * to serialize with collect_signal() or with
1533         * __exit_signal()->flush_sigqueue().
1534         */
1535        spin_lock_irqsave(lock, flags);
1536        q->flags &= ~SIGQUEUE_PREALLOC;
1537        /*
1538         * If it is queued it will be freed when dequeued,
1539         * like the "regular" sigqueue.
1540         */
1541        if (!list_empty(&q->list))
1542                q = NULL;
1543        spin_unlock_irqrestore(lock, flags);
1544
1545        if (q)
1546                __sigqueue_free(q);
1547}
1548
1549int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1550{
1551        int sig = q->info.si_signo;
1552        struct sigpending *pending;
1553        unsigned long flags;
1554        int ret, result;
1555
1556        BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1557
1558        ret = -1;
1559        if (!likely(lock_task_sighand(t, &flags)))
1560                goto ret;
1561
1562        ret = 1; /* the signal is ignored */
1563        result = TRACE_SIGNAL_IGNORED;
1564        if (!prepare_signal(sig, t, false))
1565                goto out;
1566
1567        ret = 0;
1568        if (unlikely(!list_empty(&q->list))) {
1569                /*
1570                 * If an SI_TIMER entry is already queue just increment
1571                 * the overrun count.
1572                 */
1573                BUG_ON(q->info.si_code != SI_TIMER);
1574                q->info.si_overrun++;
1575                result = TRACE_SIGNAL_ALREADY_PENDING;
1576                goto out;
1577        }
1578        q->info.si_overrun = 0;
1579
1580        signalfd_notify(t, sig);
1581        pending = group ? &t->signal->shared_pending : &t->pending;
1582        list_add_tail(&q->list, &pending->list);
1583        sigaddset(&pending->signal, sig);
1584        complete_signal(sig, t, group);
1585        result = TRACE_SIGNAL_DELIVERED;
1586out:
1587        trace_signal_generate(sig, &q->info, t, group, result);
1588        unlock_task_sighand(t, &flags);
1589ret:
1590        return ret;
1591}
1592
1593/*
1594 * Let a parent know about the death of a child.
1595 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1596 *
1597 * Returns true if our parent ignored us and so we've switched to
1598 * self-reaping.
1599 */
1600bool do_notify_parent(struct task_struct *tsk, int sig)
1601{
1602        struct siginfo info;
1603        unsigned long flags;
1604        struct sighand_struct *psig;
1605        bool autoreap = false;
1606        u64 utime, stime;
1607
1608        BUG_ON(sig == -1);
1609
1610        /* do_notify_parent_cldstop should have been called instead.  */
1611        BUG_ON(task_is_stopped_or_traced(tsk));
1612
1613        BUG_ON(!tsk->ptrace &&
1614               (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1615
1616        if (sig != SIGCHLD) {
1617                /*
1618                 * This is only possible if parent == real_parent.
1619                 * Check if it has changed security domain.
1620                 */
1621                if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1622                        sig = SIGCHLD;
1623        }
1624
1625        info.si_signo = sig;
1626        info.si_errno = 0;
1627        /*
1628         * We are under tasklist_lock here so our parent is tied to
1629         * us and cannot change.
1630         *
1631         * task_active_pid_ns will always return the same pid namespace
1632         * until a task passes through release_task.
1633         *
1634         * write_lock() currently calls preempt_disable() which is the
1635         * same as rcu_read_lock(), but according to Oleg, this is not
1636         * correct to rely on this
1637         */
1638        rcu_read_lock();
1639        info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1640        info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1641                                       task_uid(tsk));
1642        rcu_read_unlock();
1643
1644        task_cputime(tsk, &utime, &stime);
1645        info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1646        info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1647
1648        info.si_status = tsk->exit_code & 0x7f;
1649        if (tsk->exit_code & 0x80)
1650                info.si_code = CLD_DUMPED;
1651        else if (tsk->exit_code & 0x7f)
1652                info.si_code = CLD_KILLED;
1653        else {
1654                info.si_code = CLD_EXITED;
1655                info.si_status = tsk->exit_code >> 8;
1656        }
1657
1658        psig = tsk->parent->sighand;
1659        spin_lock_irqsave(&psig->siglock, flags);
1660        if (!tsk->ptrace && sig == SIGCHLD &&
1661            (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1662             (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1663                /*
1664                 * We are exiting and our parent doesn't care.  POSIX.1
1665                 * defines special semantics for setting SIGCHLD to SIG_IGN
1666                 * or setting the SA_NOCLDWAIT flag: we should be reaped
1667                 * automatically and not left for our parent's wait4 call.
1668                 * Rather than having the parent do it as a magic kind of
1669                 * signal handler, we just set this to tell do_exit that we
1670                 * can be cleaned up without becoming a zombie.  Note that
1671                 * we still call __wake_up_parent in this case, because a
1672                 * blocked sys_wait4 might now return -ECHILD.
1673                 *
1674                 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1675                 * is implementation-defined: we do (if you don't want
1676                 * it, just use SIG_IGN instead).
1677                 */
1678                autoreap = true;
1679                if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1680                        sig = 0;
1681        }
1682        if (valid_signal(sig) && sig)
1683                __group_send_sig_info(sig, &info, tsk->parent);
1684        __wake_up_parent(tsk, tsk->parent);
1685        spin_unlock_irqrestore(&psig->siglock, flags);
1686
1687        return autoreap;
1688}
1689
1690/**
1691 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1692 * @tsk: task reporting the state change
1693 * @for_ptracer: the notification is for ptracer
1694 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1695 *
1696 * Notify @tsk's parent that the stopped/continued state has changed.  If
1697 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1698 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1699 *
1700 * CONTEXT:
1701 * Must be called with tasklist_lock at least read locked.
1702 */
1703static void do_notify_parent_cldstop(struct task_struct *tsk,
1704                                     bool for_ptracer, int why)
1705{
1706        struct siginfo info;
1707        unsigned long flags;
1708        struct task_struct *parent;
1709        struct sighand_struct *sighand;
1710        u64 utime, stime;
1711
1712        if (for_ptracer) {
1713                parent = tsk->parent;
1714        } else {
1715                tsk = tsk->group_leader;
1716                parent = tsk->real_parent;
1717        }
1718
1719        info.si_signo = SIGCHLD;
1720        info.si_errno = 0;
1721        /*
1722         * see comment in do_notify_parent() about the following 4 lines
1723         */
1724        rcu_read_lock();
1725        info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1726        info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1727        rcu_read_unlock();
1728
1729        task_cputime(tsk, &utime, &stime);
1730        info.si_utime = nsec_to_clock_t(utime);
1731        info.si_stime = nsec_to_clock_t(stime);
1732
1733        info.si_code = why;
1734        switch (why) {
1735        case CLD_CONTINUED:
1736                info.si_status = SIGCONT;
1737                break;
1738        case CLD_STOPPED:
1739                info.si_status = tsk->signal->group_exit_code & 0x7f;
1740                break;
1741        case CLD_TRAPPED:
1742                info.si_status = tsk->exit_code & 0x7f;
1743                break;
1744        default:
1745                BUG();
1746        }
1747
1748        sighand = parent->sighand;
1749        spin_lock_irqsave(&sighand->siglock, flags);
1750        if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1751            !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1752                __group_send_sig_info(SIGCHLD, &info, parent);
1753        /*
1754         * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1755         */
1756        __wake_up_parent(tsk, parent);
1757        spin_unlock_irqrestore(&sighand->siglock, flags);
1758}
1759
1760static inline int may_ptrace_stop(void)
1761{
1762        if (!likely(current->ptrace))
1763                return 0;
1764        /*
1765         * Are we in the middle of do_coredump?
1766         * If so and our tracer is also part of the coredump stopping
1767         * is a deadlock situation, and pointless because our tracer
1768         * is dead so don't allow us to stop.
1769         * If SIGKILL was already sent before the caller unlocked
1770         * ->siglock we must see ->core_state != NULL. Otherwise it
1771         * is safe to enter schedule().
1772         *
1773         * This is almost outdated, a task with the pending SIGKILL can't
1774         * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1775         * after SIGKILL was already dequeued.
1776         */
1777        if (unlikely(current->mm->core_state) &&
1778            unlikely(current->mm == current->parent->mm))
1779                return 0;
1780
1781        return 1;
1782}
1783
1784/*
1785 * Return non-zero if there is a SIGKILL that should be waking us up.
1786 * Called with the siglock held.
1787 */
1788static int sigkill_pending(struct task_struct *tsk)
1789{
1790        return  sigismember(&tsk->pending.signal, SIGKILL) ||
1791                sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1792}
1793
1794/*
1795 * This must be called with current->sighand->siglock held.
1796 *
1797 * This should be the path for all ptrace stops.
1798 * We always set current->last_siginfo while stopped here.
1799 * That makes it a way to test a stopped process for
1800 * being ptrace-stopped vs being job-control-stopped.
1801 *
1802 * If we actually decide not to stop at all because the tracer
1803 * is gone, we keep current->exit_code unless clear_code.
1804 */
1805static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1806        __releases(&current->sighand->siglock)
1807        __acquires(&current->sighand->siglock)
1808{
1809        bool gstop_done = false;
1810
1811        if (arch_ptrace_stop_needed(exit_code, info)) {
1812                /*
1813                 * The arch code has something special to do before a
1814                 * ptrace stop.  This is allowed to block, e.g. for faults
1815                 * on user stack pages.  We can't keep the siglock while
1816                 * calling arch_ptrace_stop, so we must release it now.
1817                 * To preserve proper semantics, we must do this before
1818                 * any signal bookkeeping like checking group_stop_count.
1819                 * Meanwhile, a SIGKILL could come in before we retake the
1820                 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1821                 * So after regaining the lock, we must check for SIGKILL.
1822                 */
1823                spin_unlock_irq(&current->sighand->siglock);
1824                arch_ptrace_stop(exit_code, info);
1825                spin_lock_irq(&current->sighand->siglock);
1826                if (sigkill_pending(current))
1827                        return;
1828        }
1829
1830        /*
1831         * We're committing to trapping.  TRACED should be visible before
1832         * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1833         * Also, transition to TRACED and updates to ->jobctl should be
1834         * atomic with respect to siglock and should be done after the arch
1835         * hook as siglock is released and regrabbed across it.
1836         */
1837        set_current_state(TASK_TRACED);
1838
1839        current->last_siginfo = info;
1840        current->exit_code = exit_code;
1841
1842        /*
1843         * If @why is CLD_STOPPED, we're trapping to participate in a group
1844         * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1845         * across siglock relocks since INTERRUPT was scheduled, PENDING
1846         * could be clear now.  We act as if SIGCONT is received after
1847         * TASK_TRACED is entered - ignore it.
1848         */
1849        if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1850                gstop_done = task_participate_group_stop(current);
1851
1852        /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1853        task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1854        if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1855                task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1856
1857        /* entering a trap, clear TRAPPING */
1858        task_clear_jobctl_trapping(current);
1859
1860        spin_unlock_irq(&current->sighand->siglock);
1861        read_lock(&tasklist_lock);
1862        if (may_ptrace_stop()) {
1863                /*
1864                 * Notify parents of the stop.
1865                 *
1866                 * While ptraced, there are two parents - the ptracer and
1867                 * the real_parent of the group_leader.  The ptracer should
1868                 * know about every stop while the real parent is only
1869                 * interested in the completion of group stop.  The states
1870                 * for the two don't interact with each other.  Notify
1871                 * separately unless they're gonna be duplicates.
1872                 */
1873                do_notify_parent_cldstop(current, true, why);
1874                if (gstop_done && ptrace_reparented(current))
1875                        do_notify_parent_cldstop(current, false, why);
1876
1877                /*
1878                 * Don't want to allow preemption here, because
1879                 * sys_ptrace() needs this task to be inactive.
1880                 *
1881                 * XXX: implement read_unlock_no_resched().
1882                 */
1883                preempt_disable();
1884                read_unlock(&tasklist_lock);
1885                preempt_enable_no_resched();
1886                freezable_schedule();
1887        } else {
1888                /*
1889                 * By the time we got the lock, our tracer went away.
1890                 * Don't drop the lock yet, another tracer may come.
1891                 *
1892                 * If @gstop_done, the ptracer went away between group stop
1893                 * completion and here.  During detach, it would have set
1894                 * JOBCTL_STOP_PENDING on us and we'll re-enter
1895                 * TASK_STOPPED in do_signal_stop() on return, so notifying
1896                 * the real parent of the group stop completion is enough.
1897                 */
1898                if (gstop_done)
1899                        do_notify_parent_cldstop(current, false, why);
1900
1901                /* tasklist protects us from ptrace_freeze_traced() */
1902                __set_current_state(TASK_RUNNING);
1903                if (clear_code)
1904                        current->exit_code = 0;
1905                read_unlock(&tasklist_lock);
1906        }
1907
1908        /*
1909         * We are back.  Now reacquire the siglock before touching
1910         * last_siginfo, so that we are sure to have synchronized with
1911         * any signal-sending on another CPU that wants to examine it.
1912         */
1913        spin_lock_irq(&current->sighand->siglock);
1914        current->last_siginfo = NULL;
1915
1916        /* LISTENING can be set only during STOP traps, clear it */
1917        current->jobctl &= ~JOBCTL_LISTENING;
1918
1919        /*
1920         * Queued signals ignored us while we were stopped for tracing.
1921         * So check for any that we should take before resuming user mode.
1922         * This sets TIF_SIGPENDING, but never clears it.
1923         */
1924        recalc_sigpending_tsk(current);
1925}
1926
1927static void ptrace_do_notify(int signr, int exit_code, int why)
1928{
1929        siginfo_t info;
1930
1931        memset(&info, 0, sizeof info);
1932        info.si_signo = signr;
1933        info.si_code = exit_code;
1934        info.si_pid = task_pid_vnr(current);
1935        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1936
1937        /* Let the debugger run.  */
1938        ptrace_stop(exit_code, why, 1, &info);
1939}
1940
1941void ptrace_notify(int exit_code)
1942{
1943        BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1944        if (unlikely(current->task_works))
1945                task_work_run();
1946
1947        spin_lock_irq(&current->sighand->siglock);
1948        ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1949        spin_unlock_irq(&current->sighand->siglock);
1950}
1951
1952/**
1953 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1954 * @signr: signr causing group stop if initiating
1955 *
1956 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1957 * and participate in it.  If already set, participate in the existing
1958 * group stop.  If participated in a group stop (and thus slept), %true is
1959 * returned with siglock released.
1960 *
1961 * If ptraced, this function doesn't handle stop itself.  Instead,
1962 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1963 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1964 * places afterwards.
1965 *
1966 * CONTEXT:
1967 * Must be called with @current->sighand->siglock held, which is released
1968 * on %true return.
1969 *
1970 * RETURNS:
1971 * %false if group stop is already cancelled or ptrace trap is scheduled.
1972 * %true if participated in group stop.
1973 */
1974static bool do_signal_stop(int signr)
1975        __releases(&current->sighand->siglock)
1976{
1977        struct signal_struct *sig = current->signal;
1978
1979        if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1980                unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1981                struct task_struct *t;
1982
1983                /* signr will be recorded in task->jobctl for retries */
1984                WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1985
1986                if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1987                    unlikely(signal_group_exit(sig)))
1988                        return false;
1989                /*
1990                 * There is no group stop already in progress.  We must
1991                 * initiate one now.
1992                 *
1993                 * While ptraced, a task may be resumed while group stop is
1994                 * still in effect and then receive a stop signal and
1995                 * initiate another group stop.  This deviates from the
1996                 * usual behavior as two consecutive stop signals can't
1997                 * cause two group stops when !ptraced.  That is why we
1998                 * also check !task_is_stopped(t) below.
1999                 *
2000                 * The condition can be distinguished by testing whether
2001                 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2002                 * group_exit_code in such case.
2003                 *
2004                 * This is not necessary for SIGNAL_STOP_CONTINUED because
2005                 * an intervening stop signal is required to cause two
2006                 * continued events regardless of ptrace.
2007                 */
2008                if (!(sig->flags & SIGNAL_STOP_STOPPED))
2009                        sig->group_exit_code = signr;
2010
2011                sig->group_stop_count = 0;
2012
2013                if (task_set_jobctl_pending(current, signr | gstop))
2014                        sig->group_stop_count++;
2015
2016                t = current;
2017                while_each_thread(current, t) {
2018                        /*
2019                         * Setting state to TASK_STOPPED for a group
2020                         * stop is always done with the siglock held,
2021                         * so this check has no races.
2022                         */
2023                        if (!task_is_stopped(t) &&
2024                            task_set_jobctl_pending(t, signr | gstop)) {
2025                                sig->group_stop_count++;
2026                                if (likely(!(t->ptrace & PT_SEIZED)))
2027                                        signal_wake_up(t, 0);
2028                                else
2029                                        ptrace_trap_notify(t);
2030                        }
2031                }
2032        }
2033
2034        if (likely(!current->ptrace)) {
2035                int notify = 0;
2036
2037                /*
2038                 * If there are no other threads in the group, or if there
2039                 * is a group stop in progress and we are the last to stop,
2040                 * report to the parent.
2041                 */
2042                if (task_participate_group_stop(current))
2043                        notify = CLD_STOPPED;
2044
2045                __set_current_state(TASK_STOPPED);
2046                spin_unlock_irq(&current->sighand->siglock);
2047
2048                /*
2049                 * Notify the parent of the group stop completion.  Because
2050                 * we're not holding either the siglock or tasklist_lock
2051                 * here, ptracer may attach inbetween; however, this is for
2052                 * group stop and should always be delivered to the real
2053                 * parent of the group leader.  The new ptracer will get
2054                 * its notification when this task transitions into
2055                 * TASK_TRACED.
2056                 */
2057                if (notify) {
2058                        read_lock(&tasklist_lock);
2059                        do_notify_parent_cldstop(current, false, notify);
2060                        read_unlock(&tasklist_lock);
2061                }
2062
2063                /* Now we don't run again until woken by SIGCONT or SIGKILL */
2064                freezable_schedule();
2065                return true;
2066        } else {
2067                /*
2068                 * While ptraced, group stop is handled by STOP trap.
2069                 * Schedule it and let the caller deal with it.
2070                 */
2071                task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2072                return false;
2073        }
2074}
2075
2076/**
2077 * do_jobctl_trap - take care of ptrace jobctl traps
2078 *
2079 * When PT_SEIZED, it's used for both group stop and explicit
2080 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2081 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2082 * the stop signal; otherwise, %SIGTRAP.
2083 *
2084 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2085 * number as exit_code and no siginfo.
2086 *
2087 * CONTEXT:
2088 * Must be called with @current->sighand->siglock held, which may be
2089 * released and re-acquired before returning with intervening sleep.
2090 */
2091static void do_jobctl_trap(void)
2092{
2093        struct signal_struct *signal = current->signal;
2094        int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2095
2096        if (current->ptrace & PT_SEIZED) {
2097                if (!signal->group_stop_count &&
2098                    !(signal->flags & SIGNAL_STOP_STOPPED))
2099                        signr = SIGTRAP;
2100                WARN_ON_ONCE(!signr);
2101                ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2102                                 CLD_STOPPED);
2103        } else {
2104                WARN_ON_ONCE(!signr);
2105                ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2106                current->exit_code = 0;
2107        }
2108}
2109
2110static int ptrace_signal(int signr, siginfo_t *info)
2111{
2112        /*
2113         * We do not check sig_kernel_stop(signr) but set this marker
2114         * unconditionally because we do not know whether debugger will
2115         * change signr. This flag has no meaning unless we are going
2116         * to stop after return from ptrace_stop(). In this case it will
2117         * be checked in do_signal_stop(), we should only stop if it was
2118         * not cleared by SIGCONT while we were sleeping. See also the
2119         * comment in dequeue_signal().
2120         */
2121        current->jobctl |= JOBCTL_STOP_DEQUEUED;
2122        ptrace_stop(signr, CLD_TRAPPED, 0, info);
2123
2124        /* We're back.  Did the debugger cancel the sig?  */
2125        signr = current->exit_code;
2126        if (signr == 0)
2127                return signr;
2128
2129        current->exit_code = 0;
2130
2131        /*
2132         * Update the siginfo structure if the signal has
2133         * changed.  If the debugger wanted something
2134         * specific in the siginfo structure then it should
2135         * have updated *info via PTRACE_SETSIGINFO.
2136         */
2137        if (signr != info->si_signo) {
2138                info->si_signo = signr;
2139                info->si_errno = 0;
2140                info->si_code = SI_USER;
2141                rcu_read_lock();
2142                info->si_pid = task_pid_vnr(current->parent);
2143                info->si_uid = from_kuid_munged(current_user_ns(),
2144                                                task_uid(current->parent));
2145                rcu_read_unlock();
2146        }
2147
2148        /* If the (new) signal is now blocked, requeue it.  */
2149        if (sigismember(&current->blocked, signr)) {
2150                specific_send_sig_info(signr, info, current);
2151                signr = 0;
2152        }
2153
2154        return signr;
2155}
2156
2157int get_signal(struct ksignal *ksig)
2158{
2159        struct sighand_struct *sighand = current->sighand;
2160        struct signal_struct *signal = current->signal;
2161        int signr;
2162
2163        if (unlikely(current->task_works))
2164                task_work_run();
2165
2166        if (unlikely(uprobe_deny_signal()))
2167                return 0;
2168
2169        /*
2170         * Do this once, we can't return to user-mode if freezing() == T.
2171         * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2172         * thus do not need another check after return.
2173         */
2174        try_to_freeze();
2175
2176relock:
2177        spin_lock_irq(&sighand->siglock);
2178        /*
2179         * Every stopped thread goes here after wakeup. Check to see if
2180         * we should notify the parent, prepare_signal(SIGCONT) encodes
2181         * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2182         */
2183        if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2184                int why;
2185
2186                if (signal->flags & SIGNAL_CLD_CONTINUED)
2187                        why = CLD_CONTINUED;
2188                else
2189                        why = CLD_STOPPED;
2190
2191                signal->flags &= ~SIGNAL_CLD_MASK;
2192
2193                spin_unlock_irq(&sighand->siglock);
2194
2195                /*
2196                 * Notify the parent that we're continuing.  This event is
2197                 * always per-process and doesn't make whole lot of sense
2198                 * for ptracers, who shouldn't consume the state via
2199                 * wait(2) either, but, for backward compatibility, notify
2200                 * the ptracer of the group leader too unless it's gonna be
2201                 * a duplicate.
2202                 */
2203                read_lock(&tasklist_lock);
2204                do_notify_parent_cldstop(current, false, why);
2205
2206                if (ptrace_reparented(current->group_leader))
2207                        do_notify_parent_cldstop(current->group_leader,
2208                                                true, why);
2209                read_unlock(&tasklist_lock);
2210
2211                goto relock;
2212        }
2213
2214        for (;;) {
2215                struct k_sigaction *ka;
2216
2217                if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2218                    do_signal_stop(0))
2219                        goto relock;
2220
2221                if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2222                        do_jobctl_trap();
2223                        spin_unlock_irq(&sighand->siglock);
2224                        goto relock;
2225                }
2226
2227                signr = dequeue_signal(current, &current->blocked, &ksig->info);
2228
2229                if (!signr)
2230                        break; /* will return 0 */
2231
2232                if (unlikely(current->ptrace) && signr != SIGKILL) {
2233                        signr = ptrace_signal(signr, &ksig->info);
2234                        if (!signr)
2235                                continue;
2236                }
2237
2238                ka = &sighand->action[signr-1];
2239
2240                /* Trace actually delivered signals. */
2241                trace_signal_deliver(signr, &ksig->info, ka);
2242
2243                if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2244                        continue;
2245                if (ka->sa.sa_handler != SIG_DFL) {
2246                        /* Run the handler.  */
2247                        ksig->ka = *ka;
2248
2249                        if (ka->sa.sa_flags & SA_ONESHOT)
2250                                ka->sa.sa_handler = SIG_DFL;
2251
2252                        break; /* will return non-zero "signr" value */
2253                }
2254
2255                /*
2256                 * Now we are doing the default action for this signal.
2257                 */
2258                if (sig_kernel_ignore(signr)) /* Default is nothing. */
2259                        continue;
2260
2261                /*
2262                 * Global init gets no signals it doesn't want.
2263                 * Container-init gets no signals it doesn't want from same
2264                 * container.
2265                 *
2266                 * Note that if global/container-init sees a sig_kernel_only()
2267                 * signal here, the signal must have been generated internally
2268                 * or must have come from an ancestor namespace. In either
2269                 * case, the signal cannot be dropped.
2270                 */
2271                if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2272                                !sig_kernel_only(signr))
2273                        continue;
2274
2275                if (sig_kernel_stop(signr)) {
2276                        /*
2277                         * The default action is to stop all threads in
2278                         * the thread group.  The job control signals
2279                         * do nothing in an orphaned pgrp, but SIGSTOP
2280                         * always works.  Note that siglock needs to be
2281                         * dropped during the call to is_orphaned_pgrp()
2282                         * because of lock ordering with tasklist_lock.
2283                         * This allows an intervening SIGCONT to be posted.
2284                         * We need to check for that and bail out if necessary.
2285                         */
2286                        if (signr != SIGSTOP) {
2287                                spin_unlock_irq(&sighand->siglock);
2288
2289                                /* signals can be posted during this window */
2290
2291                                if (is_current_pgrp_orphaned())
2292                                        goto relock;
2293
2294                                spin_lock_irq(&sighand->siglock);
2295                        }
2296
2297                        if (likely(do_signal_stop(ksig->info.si_signo))) {
2298                                /* It released the siglock.  */
2299                                goto relock;
2300                        }
2301
2302                        /*
2303                         * We didn't actually stop, due to a race
2304                         * with SIGCONT or something like that.
2305                         */
2306                        continue;
2307                }
2308
2309                spin_unlock_irq(&sighand->siglock);
2310
2311                /*
2312                 * Anything else is fatal, maybe with a core dump.
2313                 */
2314                current->flags |= PF_SIGNALED;
2315
2316                if (sig_kernel_coredump(signr)) {
2317                        if (print_fatal_signals)
2318                                print_fatal_signal(ksig->info.si_signo);
2319                        proc_coredump_connector(current);
2320                        /*
2321                         * If it was able to dump core, this kills all
2322                         * other threads in the group and synchronizes with
2323                         * their demise.  If we lost the race with another
2324                         * thread getting here, it set group_exit_code
2325                         * first and our do_group_exit call below will use
2326                         * that value and ignore the one we pass it.
2327                         */
2328                        do_coredump(&ksig->info);
2329                }
2330
2331                /*
2332                 * Death signals, no core dump.
2333                 */
2334                do_group_exit(ksig->info.si_signo);
2335                /* NOTREACHED */
2336        }
2337        spin_unlock_irq(&sighand->siglock);
2338
2339        ksig->sig = signr;
2340        return ksig->sig > 0;
2341}
2342
2343/**
2344 * signal_delivered - 
2345 * @ksig:               kernel signal struct
2346 * @stepping:           nonzero if debugger single-step or block-step in use
2347 *
2348 * This function should be called when a signal has successfully been
2349 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2350 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2351 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2352 */
2353static void signal_delivered(struct ksignal *ksig, int stepping)
2354{
2355        sigset_t blocked;
2356
2357        /* A signal was successfully delivered, and the
2358           saved sigmask was stored on the signal frame,
2359           and will be restored by sigreturn.  So we can
2360           simply clear the restore sigmask flag.  */
2361        clear_restore_sigmask();
2362
2363        sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2364        if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2365                sigaddset(&blocked, ksig->sig);
2366        set_current_blocked(&blocked);
2367        tracehook_signal_handler(stepping);
2368}
2369
2370void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2371{
2372        if (failed)
2373                force_sigsegv(ksig->sig, current);
2374        else
2375                signal_delivered(ksig, stepping);
2376}
2377
2378/*
2379 * It could be that complete_signal() picked us to notify about the
2380 * group-wide signal. Other threads should be notified now to take
2381 * the shared signals in @which since we will not.
2382 */
2383static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2384{
2385        sigset_t retarget;
2386        struct task_struct *t;
2387
2388        sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2389        if (sigisemptyset(&retarget))
2390                return;
2391
2392        t = tsk;
2393        while_each_thread(tsk, t) {
2394                if (t->flags & PF_EXITING)
2395                        continue;
2396
2397                if (!has_pending_signals(&retarget, &t->blocked))
2398                        continue;
2399                /* Remove the signals this thread can handle. */
2400                sigandsets(&retarget, &retarget, &t->blocked);
2401
2402                if (!signal_pending(t))
2403                        signal_wake_up(t, 0);
2404
2405                if (sigisemptyset(&retarget))
2406                        break;
2407        }
2408}
2409
2410void exit_signals(struct task_struct *tsk)
2411{
2412        int group_stop = 0;
2413        sigset_t unblocked;
2414
2415        /*
2416         * @tsk is about to have PF_EXITING set - lock out users which
2417         * expect stable threadgroup.
2418         */
2419        cgroup_threadgroup_change_begin(tsk);
2420
2421        if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2422                tsk->flags |= PF_EXITING;
2423                cgroup_threadgroup_change_end(tsk);
2424                return;
2425        }
2426
2427        spin_lock_irq(&tsk->sighand->siglock);
2428        /*
2429         * From now this task is not visible for group-wide signals,
2430         * see wants_signal(), do_signal_stop().
2431         */
2432        tsk->flags |= PF_EXITING;
2433
2434        cgroup_threadgroup_change_end(tsk);
2435
2436        if (!signal_pending(tsk))
2437                goto out;
2438
2439        unblocked = tsk->blocked;
2440        signotset(&unblocked);
2441        retarget_shared_pending(tsk, &unblocked);
2442
2443        if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2444            task_participate_group_stop(tsk))
2445                group_stop = CLD_STOPPED;
2446out:
2447        spin_unlock_irq(&tsk->sighand->siglock);
2448
2449        /*
2450         * If group stop has completed, deliver the notification.  This
2451         * should always go to the real parent of the group leader.
2452         */
2453        if (unlikely(group_stop)) {
2454                read_lock(&tasklist_lock);
2455                do_notify_parent_cldstop(tsk, false, group_stop);
2456                read_unlock(&tasklist_lock);
2457        }
2458}
2459
2460EXPORT_SYMBOL(recalc_sigpending);
2461EXPORT_SYMBOL_GPL(dequeue_signal);
2462EXPORT_SYMBOL(flush_signals);
2463EXPORT_SYMBOL(force_sig);
2464EXPORT_SYMBOL(send_sig);
2465EXPORT_SYMBOL(send_sig_info);
2466EXPORT_SYMBOL(sigprocmask);
2467
2468/*
2469 * System call entry points.
2470 */
2471
2472/**
2473 *  sys_restart_syscall - restart a system call
2474 */
2475SYSCALL_DEFINE0(restart_syscall)
2476{
2477        struct restart_block *restart = &current->restart_block;
2478        return restart->fn(restart);
2479}
2480
2481long do_no_restart_syscall(struct restart_block *param)
2482{
2483        return -EINTR;
2484}
2485
2486static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2487{
2488        if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2489                sigset_t newblocked;
2490                /* A set of now blocked but previously unblocked signals. */
2491                sigandnsets(&newblocked, newset, &current->blocked);
2492                retarget_shared_pending(tsk, &newblocked);
2493        }
2494        tsk->blocked = *newset;
2495        recalc_sigpending();
2496}
2497
2498/**
2499 * set_current_blocked - change current->blocked mask
2500 * @newset: new mask
2501 *
2502 * It is wrong to change ->blocked directly, this helper should be used
2503 * to ensure the process can't miss a shared signal we are going to block.
2504 */
2505void set_current_blocked(sigset_t *newset)
2506{
2507        sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2508        __set_current_blocked(newset);
2509}
2510
2511void __set_current_blocked(const sigset_t *newset)
2512{
2513        struct task_struct *tsk = current;
2514
2515        /*
2516         * In case the signal mask hasn't changed, there is nothing we need
2517         * to do. The current->blocked shouldn't be modified by other task.
2518         */
2519        if (sigequalsets(&tsk->blocked, newset))
2520                return;
2521
2522        spin_lock_irq(&tsk->sighand->siglock);
2523        __set_task_blocked(tsk, newset);
2524        spin_unlock_irq(&tsk->sighand->siglock);
2525}
2526
2527/*
2528 * This is also useful for kernel threads that want to temporarily
2529 * (or permanently) block certain signals.
2530 *
2531 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2532 * interface happily blocks "unblockable" signals like SIGKILL
2533 * and friends.
2534 */
2535int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2536{
2537        struct task_struct *tsk = current;
2538        sigset_t newset;
2539
2540        /* Lockless, only current can change ->blocked, never from irq */
2541        if (oldset)
2542                *oldset = tsk->blocked;
2543
2544        switch (how) {
2545        case SIG_BLOCK:
2546                sigorsets(&newset, &tsk->blocked, set);
2547                break;
2548        case SIG_UNBLOCK:
2549                sigandnsets(&newset, &tsk->blocked, set);
2550                break;
2551        case SIG_SETMASK:
2552                newset = *set;
2553                break;
2554        default:
2555                return -EINVAL;
2556        }
2557
2558        __set_current_blocked(&newset);
2559        return 0;
2560}
2561
2562/**
2563 *  sys_rt_sigprocmask - change the list of currently blocked signals
2564 *  @how: whether to add, remove, or set signals
2565 *  @nset: stores pending signals
2566 *  @oset: previous value of signal mask if non-null
2567 *  @sigsetsize: size of sigset_t type
2568 */
2569SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2570                sigset_t __user *, oset, size_t, sigsetsize)
2571{
2572        sigset_t old_set, new_set;
2573        int error;
2574
2575        /* XXX: Don't preclude handling different sized sigset_t's.  */
2576        if (sigsetsize != sizeof(sigset_t))
2577                return -EINVAL;
2578
2579        old_set = current->blocked;
2580
2581        if (nset) {
2582                if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2583                        return -EFAULT;
2584                sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2585
2586                error = sigprocmask(how, &new_set, NULL);
2587                if (error)
2588                        return error;
2589        }
2590
2591        if (oset) {
2592                if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2593                        return -EFAULT;
2594        }
2595
2596        return 0;
2597}
2598
2599#ifdef CONFIG_COMPAT
2600COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2601                compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2602{
2603#ifdef __BIG_ENDIAN
2604        sigset_t old_set = current->blocked;
2605
2606        /* XXX: Don't preclude handling different sized sigset_t's.  */
2607        if (sigsetsize != sizeof(sigset_t))
2608                return -EINVAL;
2609
2610        if (nset) {
2611                compat_sigset_t new32;
2612                sigset_t new_set;
2613                int error;
2614                if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2615                        return -EFAULT;
2616
2617                sigset_from_compat(&new_set, &new32);
2618                sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2619
2620                error = sigprocmask(how, &new_set, NULL);
2621                if (error)
2622                        return error;
2623        }
2624        if (oset) {
2625                compat_sigset_t old32;
2626                sigset_to_compat(&old32, &old_set);
2627                if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2628                        return -EFAULT;
2629        }
2630        return 0;
2631#else
2632        return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2633                                  (sigset_t __user *)oset, sigsetsize);
2634#endif
2635}
2636#endif
2637
2638static int do_sigpending(void *set, unsigned long sigsetsize)
2639{
2640        if (sigsetsize > sizeof(sigset_t))
2641                return -EINVAL;
2642
2643        spin_lock_irq(&current->sighand->siglock);
2644        sigorsets(set, &current->pending.signal,
2645                  &current->signal->shared_pending.signal);
2646        spin_unlock_irq(&current->sighand->siglock);
2647
2648        /* Outside the lock because only this thread touches it.  */
2649        sigandsets(set, &current->blocked, set);
2650        return 0;
2651}
2652
2653/**
2654 *  sys_rt_sigpending - examine a pending signal that has been raised
2655 *                      while blocked
2656 *  @uset: stores pending signals
2657 *  @sigsetsize: size of sigset_t type or larger
2658 */
2659SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2660{
2661        sigset_t set;
2662        int err = do_sigpending(&set, sigsetsize);
2663        if (!err && copy_to_user(uset, &set, sigsetsize))
2664                err = -EFAULT;
2665        return err;
2666}
2667
2668#ifdef CONFIG_COMPAT
2669COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2670                compat_size_t, sigsetsize)
2671{
2672#ifdef __BIG_ENDIAN
2673        sigset_t set;
2674        int err = do_sigpending(&set, sigsetsize);
2675        if (!err) {
2676                compat_sigset_t set32;
2677                sigset_to_compat(&set32, &set);
2678                /* we can get here only if sigsetsize <= sizeof(set) */
2679                if (copy_to_user(uset, &set32, sigsetsize))
2680                        err = -EFAULT;
2681        }
2682        return err;
2683#else
2684        return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2685#endif
2686}
2687#endif
2688
2689#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2690
2691int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2692{
2693        int err;
2694
2695        if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2696                return -EFAULT;
2697        if (from->si_code < 0)
2698                return __copy_to_user(to, from, sizeof(siginfo_t))
2699                        ? -EFAULT : 0;
2700        /*
2701         * If you change siginfo_t structure, please be sure
2702         * this code is fixed accordingly.
2703         * Please remember to update the signalfd_copyinfo() function
2704         * inside fs/signalfd.c too, in case siginfo_t changes.
2705         * It should never copy any pad contained in the structure
2706         * to avoid security leaks, but must copy the generic
2707         * 3 ints plus the relevant union member.
2708         */
2709        err = __put_user(from->si_signo, &to->si_signo);
2710        err |= __put_user(from->si_errno, &to->si_errno);
2711        err |= __put_user((short)from->si_code, &to->si_code);
2712        switch (from->si_code & __SI_MASK) {
2713        case __SI_KILL:
2714                err |= __put_user(from->si_pid, &to->si_pid);
2715                err |= __put_user(from->si_uid, &to->si_uid);
2716                break;
2717        case __SI_TIMER:
2718                 err |= __put_user(from->si_tid, &to->si_tid);
2719                 err |= __put_user(from->si_overrun, &to->si_overrun);
2720                 err |= __put_user(from->si_ptr, &to->si_ptr);
2721                break;
2722        case __SI_POLL:
2723                err |= __put_user(from->si_band, &to->si_band);
2724                err |= __put_user(from->si_fd, &to->si_fd);
2725                break;
2726        case __SI_FAULT:
2727                err |= __put_user(from->si_addr, &to->si_addr);
2728#ifdef __ARCH_SI_TRAPNO
2729                err |= __put_user(from->si_trapno, &to->si_trapno);
2730#endif
2731#ifdef BUS_MCEERR_AO
2732                /*
2733                 * Other callers might not initialize the si_lsb field,
2734                 * so check explicitly for the right codes here.
2735                 */
2736                if (from->si_signo == SIGBUS &&
2737                    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2738                        err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2739#endif
2740#ifdef SEGV_BNDERR
2741                if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2742                        err |= __put_user(from->si_lower, &to->si_lower);
2743                        err |= __put_user(from->si_upper, &to->si_upper);
2744                }
2745#endif
2746#ifdef SEGV_PKUERR
2747                if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2748                        err |= __put_user(from->si_pkey, &to->si_pkey);
2749#endif
2750                break;
2751        case __SI_CHLD:
2752                err |= __put_user(from->si_pid, &to->si_pid);
2753                err |= __put_user(from->si_uid, &to->si_uid);
2754                err |= __put_user(from->si_status, &to->si_status);
2755                err |= __put_user(from->si_utime, &to->si_utime);
2756                err |= __put_user(from->si_stime, &to->si_stime);
2757                break;
2758        case __SI_RT: /* This is not generated by the kernel as of now. */
2759        case __SI_MESGQ: /* But this is */
2760                err |= __put_user(from->si_pid, &to->si_pid);
2761                err |= __put_user(from->si_uid, &to->si_uid);
2762                err |= __put_user(from->si_ptr, &to->si_ptr);
2763                break;
2764#ifdef __ARCH_SIGSYS
2765        case __SI_SYS:
2766                err |= __put_user(from->si_call_addr, &to->si_call_addr);
2767                err |= __put_user(from->si_syscall, &to->si_syscall);
2768                err |= __put_user(from->si_arch, &to->si_arch);
2769                break;
2770#endif
2771        default: /* this is just in case for now ... */
2772                err |= __put_user(from->si_pid, &to->si_pid);
2773                err |= __put_user(from->si_uid, &to->si_uid);
2774                break;
2775        }
2776        return err;
2777}
2778
2779#endif
2780
2781/**
2782 *  do_sigtimedwait - wait for queued signals specified in @which
2783 *  @which: queued signals to wait for
2784 *  @info: if non-null, the signal's siginfo is returned here
2785 *  @ts: upper bound on process time suspension
2786 */
2787static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2788                    const struct timespec *ts)
2789{
2790        ktime_t *to = NULL, timeout = KTIME_MAX;
2791        struct task_struct *tsk = current;
2792        sigset_t mask = *which;
2793        int sig, ret = 0;
2794
2795        if (ts) {
2796                if (!timespec_valid(ts))
2797                        return -EINVAL;
2798                timeout = timespec_to_ktime(*ts);
2799                to = &timeout;
2800        }
2801
2802        /*
2803         * Invert the set of allowed signals to get those we want to block.
2804         */
2805        sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2806        signotset(&mask);
2807
2808        spin_lock_irq(&tsk->sighand->siglock);
2809        sig = dequeue_signal(tsk, &mask, info);
2810        if (!sig && timeout) {
2811                /*
2812                 * None ready, temporarily unblock those we're interested
2813                 * while we are sleeping in so that we'll be awakened when
2814                 * they arrive. Unblocking is always fine, we can avoid
2815                 * set_current_blocked().
2816                 */
2817                tsk->real_blocked = tsk->blocked;
2818                sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2819                recalc_sigpending();
2820                spin_unlock_irq(&tsk->sighand->siglock);
2821
2822                __set_current_state(TASK_INTERRUPTIBLE);
2823                ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2824                                                         HRTIMER_MODE_REL);
2825                spin_lock_irq(&tsk->sighand->siglock);
2826                __set_task_blocked(tsk, &tsk->real_blocked);
2827                sigemptyset(&tsk->real_blocked);
2828                sig = dequeue_signal(tsk, &mask, info);
2829        }
2830        spin_unlock_irq(&tsk->sighand->siglock);
2831
2832        if (sig)
2833                return sig;
2834        return ret ? -EINTR : -EAGAIN;
2835}
2836
2837/**
2838 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2839 *                      in @uthese
2840 *  @uthese: queued signals to wait for
2841 *  @uinfo: if non-null, the signal's siginfo is returned here
2842 *  @uts: upper bound on process time suspension
2843 *  @sigsetsize: size of sigset_t type
2844 */
2845SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2846                siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2847                size_t, sigsetsize)
2848{
2849        sigset_t these;
2850        struct timespec ts;
2851        siginfo_t info;
2852        int ret;
2853
2854        /* XXX: Don't preclude handling different sized sigset_t's.  */
2855        if (sigsetsize != sizeof(sigset_t))
2856                return -EINVAL;
2857
2858        if (copy_from_user(&these, uthese, sizeof(these)))
2859                return -EFAULT;
2860
2861        if (uts) {
2862                if (copy_from_user(&ts, uts, sizeof(ts)))
2863                        return -EFAULT;
2864        }
2865
2866        ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2867
2868        if (ret > 0 && uinfo) {
2869                if (copy_siginfo_to_user(uinfo, &info))
2870                        ret = -EFAULT;
2871        }
2872
2873        return ret;
2874}
2875
2876#ifdef CONFIG_COMPAT
2877COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
2878                struct compat_siginfo __user *, uinfo,
2879                struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
2880{
2881        compat_sigset_t s32;
2882        sigset_t s;
2883        struct timespec t;
2884        siginfo_t info;
2885        long ret;
2886
2887        if (sigsetsize != sizeof(sigset_t))
2888                return -EINVAL;
2889
2890        if (copy_from_user(&s32, uthese, sizeof(compat_sigset_t)))
2891                return -EFAULT;
2892        sigset_from_compat(&s, &s32);
2893
2894        if (uts) {
2895                if (compat_get_timespec(&t, uts))
2896                        return -EFAULT;
2897        }
2898
2899        ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
2900
2901        if (ret > 0 && uinfo) {
2902                if (copy_siginfo_to_user32(uinfo, &info))
2903                        ret = -EFAULT;
2904        }
2905
2906        return ret;
2907}
2908#endif
2909
2910/**
2911 *  sys_kill - send a signal to a process
2912 *  @pid: the PID of the process
2913 *  @sig: signal to be sent
2914 */
2915SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2916{
2917        struct siginfo info;
2918
2919        info.si_signo = sig;
2920        info.si_errno = 0;
2921        info.si_code = SI_USER;
2922        info.si_pid = task_tgid_vnr(current);
2923        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2924
2925        return kill_something_info(sig, &info, pid);
2926}
2927
2928static int
2929do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2930{
2931        struct task_struct *p;
2932        int error = -ESRCH;
2933
2934        rcu_read_lock();
2935        p = find_task_by_vpid(pid);
2936        if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2937                error = check_kill_permission(sig, info, p);
2938                /*
2939                 * The null signal is a permissions and process existence
2940                 * probe.  No signal is actually delivered.
2941                 */
2942                if (!error && sig) {
2943                        error = do_send_sig_info(sig, info, p, false);
2944                        /*
2945                         * If lock_task_sighand() failed we pretend the task
2946                         * dies after receiving the signal. The window is tiny,
2947                         * and the signal is private anyway.
2948                         */
2949                        if (unlikely(error == -ESRCH))
2950                                error = 0;
2951                }
2952        }
2953        rcu_read_unlock();
2954
2955        return error;
2956}
2957
2958static int do_tkill(pid_t tgid, pid_t pid, int sig)
2959{
2960        struct siginfo info = {};
2961
2962        info.si_signo = sig;
2963        info.si_errno = 0;
2964        info.si_code = SI_TKILL;
2965        info.si_pid = task_tgid_vnr(current);
2966        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2967
2968        return do_send_specific(tgid, pid, sig, &info);
2969}
2970
2971/**
2972 *  sys_tgkill - send signal to one specific thread
2973 *  @tgid: the thread group ID of the thread
2974 *  @pid: the PID of the thread
2975 *  @sig: signal to be sent
2976 *
2977 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2978 *  exists but it's not belonging to the target process anymore. This
2979 *  method solves the problem of threads exiting and PIDs getting reused.
2980 */
2981SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2982{
2983        /* This is only valid for single tasks */
2984        if (pid <= 0 || tgid <= 0)
2985                return -EINVAL;
2986
2987        return do_tkill(tgid, pid, sig);
2988}
2989
2990/**
2991 *  sys_tkill - send signal to one specific task
2992 *  @pid: the PID of the task
2993 *  @sig: signal to be sent
2994 *
2995 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2996 */
2997SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2998{
2999        /* This is only valid for single tasks */
3000        if (pid <= 0)
3001                return -EINVAL;
3002
3003        return do_tkill(0, pid, sig);
3004}
3005
3006static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3007{
3008        /* Not even root can pretend to send signals from the kernel.
3009         * Nor can they impersonate a kill()/tgkill(), which adds source info.
3010         */
3011        if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3012            (task_pid_vnr(current) != pid))
3013                return -EPERM;
3014
3015        info->si_signo = sig;
3016
3017        /* POSIX.1b doesn't mention process groups.  */
3018        return kill_proc_info(sig, info, pid);
3019}
3020
3021/**
3022 *  sys_rt_sigqueueinfo - send signal information to a signal
3023 *  @pid: the PID of the thread
3024 *  @sig: signal to be sent
3025 *  @uinfo: signal info to be sent
3026 */
3027SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3028                siginfo_t __user *, uinfo)
3029{
3030        siginfo_t info;
3031        if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3032                return -EFAULT;
3033        return do_rt_sigqueueinfo(pid, sig, &info);
3034}
3035
3036#ifdef CONFIG_COMPAT
3037COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3038                        compat_pid_t, pid,
3039                        int, sig,
3040                        struct compat_siginfo __user *, uinfo)
3041{
3042        siginfo_t info = {};
3043        int ret = copy_siginfo_from_user32(&info, uinfo);
3044        if (unlikely(ret))
3045                return ret;
3046        return do_rt_sigqueueinfo(pid, sig, &info);
3047}
3048#endif
3049
3050static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3051{
3052        /* This is only valid for single tasks */
3053        if (pid <= 0 || tgid <= 0)
3054                return -EINVAL;
3055
3056        /* Not even root can pretend to send signals from the kernel.
3057         * Nor can they impersonate a kill()/tgkill(), which adds source info.
3058         */
3059        if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3060            (task_pid_vnr(current) != pid))
3061                return -EPERM;
3062
3063        info->si_signo = sig;
3064
3065        return do_send_specific(tgid, pid, sig, info);
3066}
3067
3068SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3069                siginfo_t __user *, uinfo)
3070{
3071        siginfo_t info;
3072
3073        if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3074                return -EFAULT;
3075
3076        return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3077}
3078
3079#ifdef CONFIG_COMPAT
3080COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3081                        compat_pid_t, tgid,
3082                        compat_pid_t, pid,
3083                        int, sig,
3084                        struct compat_siginfo __user *, uinfo)
3085{
3086        siginfo_t info = {};
3087
3088        if (copy_siginfo_from_user32(&info, uinfo))
3089                return -EFAULT;
3090        return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3091}
3092#endif
3093
3094/*
3095 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3096 */
3097void kernel_sigaction(int sig, __sighandler_t action)
3098{
3099        spin_lock_irq(&current->sighand->siglock);
3100        current->sighand->action[sig - 1].sa.sa_handler = action;
3101        if (action == SIG_IGN) {
3102                sigset_t mask;
3103
3104                sigemptyset(&mask);
3105                sigaddset(&mask, sig);
3106
3107                flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3108                flush_sigqueue_mask(&mask, &current->pending);
3109                recalc_sigpending();
3110        }
3111        spin_unlock_irq(&current->sighand->siglock);
3112}
3113EXPORT_SYMBOL(kernel_sigaction);
3114
3115void __weak sigaction_compat_abi(struct k_sigaction *act,
3116                struct k_sigaction *oact)
3117{
3118}
3119
3120int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3121{
3122        struct task_struct *p = current, *t;
3123        struct k_sigaction *k;
3124        sigset_t mask;
3125
3126        if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3127                return -EINVAL;
3128
3129        k = &p->sighand->action[sig-1];
3130
3131        spin_lock_irq(&p->sighand->siglock);
3132        if (oact)
3133                *oact = *k;
3134
3135        sigaction_compat_abi(act, oact);
3136
3137        if (act) {
3138                sigdelsetmask(&act->sa.sa_mask,
3139                              sigmask(SIGKILL) | sigmask(SIGSTOP));
3140                *k = *act;
3141                /*
3142                 * POSIX 3.3.1.3:
3143                 *  "Setting a signal action to SIG_IGN for a signal that is
3144                 *   pending shall cause the pending signal to be discarded,
3145                 *   whether or not it is blocked."
3146                 *
3147                 *  "Setting a signal action to SIG_DFL for a signal that is
3148                 *   pending and whose default action is to ignore the signal
3149                 *   (for example, SIGCHLD), shall cause the pending signal to
3150                 *   be discarded, whether or not it is blocked"
3151                 */
3152                if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3153                        sigemptyset(&mask);
3154                        sigaddset(&mask, sig);
3155                        flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3156                        for_each_thread(p, t)
3157                                flush_sigqueue_mask(&mask, &t->pending);
3158                }
3159        }
3160
3161        spin_unlock_irq(&p->sighand->siglock);
3162        return 0;
3163}
3164
3165static int
3166do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp)
3167{
3168        struct task_struct *t = current;
3169
3170        if (oss) {
3171                memset(oss, 0, sizeof(stack_t));
3172                oss->ss_sp = (void __user *) t->sas_ss_sp;
3173                oss->ss_size = t->sas_ss_size;
3174                oss->ss_flags = sas_ss_flags(sp) |
3175                        (current->sas_ss_flags & SS_FLAG_BITS);
3176        }
3177
3178        if (ss) {
3179                void __user *ss_sp = ss->ss_sp;
3180                size_t ss_size = ss->ss_size;
3181                unsigned ss_flags = ss->ss_flags;
3182                int ss_mode;
3183
3184                if (unlikely(on_sig_stack(sp)))
3185                        return -EPERM;
3186
3187                ss_mode = ss_flags & ~SS_FLAG_BITS;
3188                if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3189                                ss_mode != 0))
3190                        return -EINVAL;
3191
3192                if (ss_mode == SS_DISABLE) {
3193                        ss_size = 0;
3194                        ss_sp = NULL;
3195                } else {
3196                        if (unlikely(ss_size < MINSIGSTKSZ))
3197                                return -ENOMEM;
3198                }
3199
3200                t->sas_ss_sp = (unsigned long) ss_sp;
3201                t->sas_ss_size = ss_size;
3202                t->sas_ss_flags = ss_flags;
3203        }
3204        return 0;
3205}
3206
3207SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3208{
3209        stack_t new, old;
3210        int err;
3211        if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3212                return -EFAULT;
3213        err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3214                              current_user_stack_pointer());
3215        if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3216                err = -EFAULT;
3217        return err;
3218}
3219
3220int restore_altstack(const stack_t __user *uss)
3221{
3222        stack_t new;
3223        if (copy_from_user(&new, uss, sizeof(stack_t)))
3224                return -EFAULT;
3225        (void)do_sigaltstack(&new, NULL, current_user_stack_pointer());
3226        /* squash all but EFAULT for now */
3227        return 0;
3228}
3229
3230int __save_altstack(stack_t __user *uss, unsigned long sp)
3231{
3232        struct task_struct *t = current;
3233        int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3234                __put_user(t->sas_ss_flags, &uss->ss_flags) |
3235                __put_user(t->sas_ss_size, &uss->ss_size);
3236        if (err)
3237                return err;
3238        if (t->sas_ss_flags & SS_AUTODISARM)
3239                sas_ss_reset(t);
3240        return 0;
3241}
3242
3243#ifdef CONFIG_COMPAT
3244COMPAT_SYSCALL_DEFINE2(sigaltstack,
3245                        const compat_stack_t __user *, uss_ptr,
3246                        compat_stack_t __user *, uoss_ptr)
3247{
3248        stack_t uss, uoss;
3249        int ret;
3250
3251        if (uss_ptr) {
3252                compat_stack_t uss32;
3253                if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3254                        return -EFAULT;
3255                uss.ss_sp = compat_ptr(uss32.ss_sp);
3256                uss.ss_flags = uss32.ss_flags;
3257                uss.ss_size = uss32.ss_size;
3258        }
3259        ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3260                             compat_user_stack_pointer());
3261        if (ret >= 0 && uoss_ptr)  {
3262                compat_stack_t old;
3263                memset(&old, 0, sizeof(old));
3264                old.ss_sp = ptr_to_compat(uoss.ss_sp);
3265                old.ss_flags = uoss.ss_flags;
3266                old.ss_size = uoss.ss_size;
3267                if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3268                        ret = -EFAULT;
3269        }
3270        return ret;
3271}
3272
3273int compat_restore_altstack(const compat_stack_t __user *uss)
3274{
3275        int err = compat_sys_sigaltstack(uss, NULL);
3276        /* squash all but -EFAULT for now */
3277        return err == -EFAULT ? err : 0;
3278}
3279
3280int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3281{
3282        int err;
3283        struct task_struct *t = current;
3284        err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3285                         &uss->ss_sp) |
3286                __put_user(t->sas_ss_flags, &uss->ss_flags) |
3287                __put_user(t->sas_ss_size, &uss->ss_size);
3288        if (err)
3289                return err;
3290        if (t->sas_ss_flags & SS_AUTODISARM)
3291                sas_ss_reset(t);
3292        return 0;
3293}
3294#endif
3295
3296#ifdef __ARCH_WANT_SYS_SIGPENDING
3297
3298/**
3299 *  sys_sigpending - examine pending signals
3300 *  @set: where mask of pending signal is returned
3301 */
3302SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3303{
3304        return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
3305}
3306
3307#ifdef CONFIG_COMPAT
3308COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3309{
3310#ifdef __BIG_ENDIAN
3311        sigset_t set;
3312        int err = do_sigpending(&set, sizeof(set.sig[0]));
3313        if (!err)
3314                err = put_user(set.sig[0], set32);
3315        return err;
3316#else
3317        return sys_rt_sigpending((sigset_t __user *)set32, sizeof(*set32));
3318#endif
3319}
3320#endif
3321
3322#endif
3323
3324#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3325/**
3326 *  sys_sigprocmask - examine and change blocked signals
3327 *  @how: whether to add, remove, or set signals
3328 *  @nset: signals to add or remove (if non-null)
3329 *  @oset: previous value of signal mask if non-null
3330 *
3331 * Some platforms have their own version with special arguments;
3332 * others support only sys_rt_sigprocmask.
3333 */
3334
3335SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3336                old_sigset_t __user *, oset)
3337{
3338        old_sigset_t old_set, new_set;
3339        sigset_t new_blocked;
3340
3341        old_set = current->blocked.sig[0];
3342
3343        if (nset) {
3344                if (copy_from_user(&new_set, nset, sizeof(*nset)))
3345                        return -EFAULT;
3346
3347                new_blocked = current->blocked;
3348
3349                switch (how) {
3350                case SIG_BLOCK:
3351                        sigaddsetmask(&new_blocked, new_set);
3352                        break;
3353                case SIG_UNBLOCK:
3354                        sigdelsetmask(&new_blocked, new_set);
3355                        break;
3356                case SIG_SETMASK:
3357                        new_blocked.sig[0] = new_set;
3358                        break;
3359                default:
3360                        return -EINVAL;
3361                }
3362
3363                set_current_blocked(&new_blocked);
3364        }
3365
3366        if (oset) {
3367                if (copy_to_user(oset, &old_set, sizeof(*oset)))
3368                        return -EFAULT;
3369        }
3370
3371        return 0;
3372}
3373#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3374
3375#ifndef CONFIG_ODD_RT_SIGACTION
3376/**
3377 *  sys_rt_sigaction - alter an action taken by a process
3378 *  @sig: signal to be sent
3379 *  @act: new sigaction
3380 *  @oact: used to save the previous sigaction
3381 *  @sigsetsize: size of sigset_t type
3382 */
3383SYSCALL_DEFINE4(rt_sigaction, int, sig,
3384                const struct sigaction __user *, act,
3385                struct sigaction __user *, oact,
3386                size_t, sigsetsize)
3387{
3388        struct k_sigaction new_sa, old_sa;
3389        int ret = -EINVAL;
3390
3391        /* XXX: Don't preclude handling different sized sigset_t's.  */
3392        if (sigsetsize != sizeof(sigset_t))
3393                goto out;
3394
3395        if (act) {
3396                if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3397                        return -EFAULT;
3398        }
3399
3400        ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3401
3402        if (!ret && oact) {
3403                if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3404                        return -EFAULT;
3405        }
3406out:
3407        return ret;
3408}
3409#ifdef CONFIG_COMPAT
3410COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3411                const struct compat_sigaction __user *, act,
3412                struct compat_sigaction __user *, oact,
3413                compat_size_t, sigsetsize)
3414{
3415        struct k_sigaction new_ka, old_ka;
3416        compat_sigset_t mask;
3417#ifdef __ARCH_HAS_SA_RESTORER
3418        compat_uptr_t restorer;
3419#endif
3420        int ret;
3421
3422        /* XXX: Don't preclude handling different sized sigset_t's.  */
3423        if (sigsetsize != sizeof(compat_sigset_t))
3424                return -EINVAL;
3425
3426        if (act) {
3427                compat_uptr_t handler;
3428                ret = get_user(handler, &act->sa_handler);
3429                new_ka.sa.sa_handler = compat_ptr(handler);
3430#ifdef __ARCH_HAS_SA_RESTORER
3431                ret |= get_user(restorer, &act->sa_restorer);
3432                new_ka.sa.sa_restorer = compat_ptr(restorer);
3433#endif
3434                ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3435                ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3436                if (ret)
3437                        return -EFAULT;
3438                sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3439        }
3440
3441        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3442        if (!ret && oact) {
3443                sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3444                ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3445                               &oact->sa_handler);
3446                ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3447                ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3448#ifdef __ARCH_HAS_SA_RESTORER
3449                ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3450                                &oact->sa_restorer);
3451#endif
3452        }
3453        return ret;
3454}
3455#endif
3456#endif /* !CONFIG_ODD_RT_SIGACTION */
3457
3458#ifdef CONFIG_OLD_SIGACTION
3459SYSCALL_DEFINE3(sigaction, int, sig,
3460                const struct old_sigaction __user *, act,
3461                struct old_sigaction __user *, oact)
3462{
3463        struct k_sigaction new_ka, old_ka;
3464        int ret;
3465
3466        if (act) {
3467                old_sigset_t mask;
3468                if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3469                    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3470                    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3471                    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3472                    __get_user(mask, &act->sa_mask))
3473                        return -EFAULT;
3474#ifdef __ARCH_HAS_KA_RESTORER
3475                new_ka.ka_restorer = NULL;
3476#endif
3477                siginitset(&new_ka.sa.sa_mask, mask);
3478        }
3479
3480        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3481
3482        if (!ret && oact) {
3483                if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3484                    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3485                    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3486                    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3487                    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3488                        return -EFAULT;
3489        }
3490
3491        return ret;
3492}
3493#endif
3494#ifdef CONFIG_COMPAT_OLD_SIGACTION
3495COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3496                const struct compat_old_sigaction __user *, act,
3497                struct compat_old_sigaction __user *, oact)
3498{
3499        struct k_sigaction new_ka, old_ka;
3500        int ret;
3501        compat_old_sigset_t mask;
3502        compat_uptr_t handler, restorer;
3503
3504        if (act) {
3505                if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3506                    __get_user(handler, &act->sa_handler) ||
3507                    __get_user(restorer, &act->sa_restorer) ||
3508                    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3509                    __get_user(mask, &act->sa_mask))
3510                        return -EFAULT;
3511
3512#ifdef __ARCH_HAS_KA_RESTORER
3513                new_ka.ka_restorer = NULL;
3514#endif
3515                new_ka.sa.sa_handler = compat_ptr(handler);
3516                new_ka.sa.sa_restorer = compat_ptr(restorer);
3517                siginitset(&new_ka.sa.sa_mask, mask);
3518        }
3519
3520        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3521
3522        if (!ret && oact) {
3523                if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3524                    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3525                               &oact->sa_handler) ||
3526                    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3527                               &oact->sa_restorer) ||
3528                    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3529                    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3530                        return -EFAULT;
3531        }
3532        return ret;
3533}
3534#endif
3535
3536#ifdef CONFIG_SGETMASK_SYSCALL
3537
3538/*
3539 * For backwards compatibility.  Functionality superseded by sigprocmask.
3540 */
3541SYSCALL_DEFINE0(sgetmask)
3542{
3543        /* SMP safe */
3544        return current->blocked.sig[0];
3545}
3546
3547SYSCALL_DEFINE1(ssetmask, int, newmask)
3548{
3549        int old = current->blocked.sig[0];
3550        sigset_t newset;
3551
3552        siginitset(&newset, newmask);
3553        set_current_blocked(&newset);
3554
3555        return old;
3556}
3557#endif /* CONFIG_SGETMASK_SYSCALL */
3558
3559#ifdef __ARCH_WANT_SYS_SIGNAL
3560/*
3561 * For backwards compatibility.  Functionality superseded by sigaction.
3562 */
3563SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3564{
3565        struct k_sigaction new_sa, old_sa;
3566        int ret;
3567
3568        new_sa.sa.sa_handler = handler;
3569        new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3570        sigemptyset(&new_sa.sa.sa_mask);
3571
3572        ret = do_sigaction(sig, &new_sa, &old_sa);
3573
3574        return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3575}
3576#endif /* __ARCH_WANT_SYS_SIGNAL */
3577
3578#ifdef __ARCH_WANT_SYS_PAUSE
3579
3580SYSCALL_DEFINE0(pause)
3581{
3582        while (!signal_pending(current)) {
3583                __set_current_state(TASK_INTERRUPTIBLE);
3584                schedule();
3585        }
3586        return -ERESTARTNOHAND;
3587}
3588
3589#endif
3590
3591static int sigsuspend(sigset_t *set)
3592{
3593        current->saved_sigmask = current->blocked;
3594        set_current_blocked(set);
3595
3596        while (!signal_pending(current)) {
3597                __set_current_state(TASK_INTERRUPTIBLE);
3598                schedule();
3599        }
3600        set_restore_sigmask();
3601        return -ERESTARTNOHAND;
3602}
3603
3604/**
3605 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3606 *      @unewset value until a signal is received
3607 *  @unewset: new signal mask value
3608 *  @sigsetsize: size of sigset_t type
3609 */
3610SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3611{
3612        sigset_t newset;
3613
3614        /* XXX: Don't preclude handling different sized sigset_t's.  */
3615        if (sigsetsize != sizeof(sigset_t))
3616                return -EINVAL;
3617
3618        if (copy_from_user(&newset, unewset, sizeof(newset)))
3619                return -EFAULT;
3620        return sigsuspend(&newset);
3621}
3622 
3623#ifdef CONFIG_COMPAT
3624COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3625{
3626#ifdef __BIG_ENDIAN
3627        sigset_t newset;
3628        compat_sigset_t newset32;
3629
3630        /* XXX: Don't preclude handling different sized sigset_t's.  */
3631        if (sigsetsize != sizeof(sigset_t))
3632                return -EINVAL;
3633
3634        if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3635                return -EFAULT;
3636        sigset_from_compat(&newset, &newset32);
3637        return sigsuspend(&newset);
3638#else
3639        /* on little-endian bitmaps don't care about granularity */
3640        return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3641#endif
3642}
3643#endif
3644
3645#ifdef CONFIG_OLD_SIGSUSPEND
3646SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3647{
3648        sigset_t blocked;
3649        siginitset(&blocked, mask);
3650        return sigsuspend(&blocked);
3651}
3652#endif
3653#ifdef CONFIG_OLD_SIGSUSPEND3
3654SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3655{
3656        sigset_t blocked;
3657        siginitset(&blocked, mask);
3658        return sigsuspend(&blocked);
3659}
3660#endif
3661
3662__weak const char *arch_vma_name(struct vm_area_struct *vma)
3663{
3664        return NULL;
3665}
3666
3667void __init signals_init(void)
3668{
3669        /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3670        BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3671                != offsetof(struct siginfo, _sifields._pad));
3672
3673        sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3674}
3675
3676#ifdef CONFIG_KGDB_KDB
3677#include <linux/kdb.h>
3678/*
3679 * kdb_send_sig_info - Allows kdb to send signals without exposing
3680 * signal internals.  This function checks if the required locks are
3681 * available before calling the main signal code, to avoid kdb
3682 * deadlocks.
3683 */
3684void
3685kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3686{
3687        static struct task_struct *kdb_prev_t;
3688        int sig, new_t;
3689        if (!spin_trylock(&t->sighand->siglock)) {
3690                kdb_printf("Can't do kill command now.\n"
3691                           "The sigmask lock is held somewhere else in "
3692                           "kernel, try again later\n");
3693                return;
3694        }
3695        spin_unlock(&t->sighand->siglock);
3696        new_t = kdb_prev_t != t;
3697        kdb_prev_t = t;
3698        if (t->state != TASK_RUNNING && new_t) {
3699                kdb_printf("Process is not RUNNING, sending a signal from "
3700                           "kdb risks deadlock\n"
3701                           "on the run queue locks. "
3702                           "The signal has _not_ been sent.\n"
3703                           "Reissue the kill command if you want to risk "
3704                           "the deadlock.\n");
3705                return;
3706        }
3707        sig = info->si_signo;
3708        if (send_sig_info(sig, info, t))
3709                kdb_printf("Fail to deliver Signal %d to process %d.\n",
3710                           sig, t->pid);
3711        else
3712                kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3713}
3714#endif  /* CONFIG_KGDB_KDB */
3715