linux/kernel/sys.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/sys.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/export.h>
   8#include <linux/mm.h>
   9#include <linux/utsname.h>
  10#include <linux/mman.h>
  11#include <linux/reboot.h>
  12#include <linux/prctl.h>
  13#include <linux/highuid.h>
  14#include <linux/fs.h>
  15#include <linux/kmod.h>
  16#include <linux/perf_event.h>
  17#include <linux/resource.h>
  18#include <linux/kernel.h>
  19#include <linux/workqueue.h>
  20#include <linux/capability.h>
  21#include <linux/device.h>
  22#include <linux/key.h>
  23#include <linux/times.h>
  24#include <linux/posix-timers.h>
  25#include <linux/security.h>
  26#include <linux/dcookies.h>
  27#include <linux/suspend.h>
  28#include <linux/tty.h>
  29#include <linux/signal.h>
  30#include <linux/cn_proc.h>
  31#include <linux/getcpu.h>
  32#include <linux/task_io_accounting_ops.h>
  33#include <linux/seccomp.h>
  34#include <linux/cpu.h>
  35#include <linux/personality.h>
  36#include <linux/ptrace.h>
  37#include <linux/fs_struct.h>
  38#include <linux/file.h>
  39#include <linux/mount.h>
  40#include <linux/gfp.h>
  41#include <linux/syscore_ops.h>
  42#include <linux/version.h>
  43#include <linux/ctype.h>
  44
  45#include <linux/compat.h>
  46#include <linux/syscalls.h>
  47#include <linux/kprobes.h>
  48#include <linux/user_namespace.h>
  49#include <linux/binfmts.h>
  50
  51#include <linux/sched.h>
  52#include <linux/sched/autogroup.h>
  53#include <linux/sched/loadavg.h>
  54#include <linux/sched/stat.h>
  55#include <linux/sched/mm.h>
  56#include <linux/sched/coredump.h>
  57#include <linux/sched/task.h>
  58#include <linux/sched/cputime.h>
  59#include <linux/rcupdate.h>
  60#include <linux/uidgid.h>
  61#include <linux/cred.h>
  62
  63#include <linux/kmsg_dump.h>
  64/* Move somewhere else to avoid recompiling? */
  65#include <generated/utsrelease.h>
  66
  67#include <linux/uaccess.h>
  68#include <asm/io.h>
  69#include <asm/unistd.h>
  70
  71#ifndef SET_UNALIGN_CTL
  72# define SET_UNALIGN_CTL(a, b)  (-EINVAL)
  73#endif
  74#ifndef GET_UNALIGN_CTL
  75# define GET_UNALIGN_CTL(a, b)  (-EINVAL)
  76#endif
  77#ifndef SET_FPEMU_CTL
  78# define SET_FPEMU_CTL(a, b)    (-EINVAL)
  79#endif
  80#ifndef GET_FPEMU_CTL
  81# define GET_FPEMU_CTL(a, b)    (-EINVAL)
  82#endif
  83#ifndef SET_FPEXC_CTL
  84# define SET_FPEXC_CTL(a, b)    (-EINVAL)
  85#endif
  86#ifndef GET_FPEXC_CTL
  87# define GET_FPEXC_CTL(a, b)    (-EINVAL)
  88#endif
  89#ifndef GET_ENDIAN
  90# define GET_ENDIAN(a, b)       (-EINVAL)
  91#endif
  92#ifndef SET_ENDIAN
  93# define SET_ENDIAN(a, b)       (-EINVAL)
  94#endif
  95#ifndef GET_TSC_CTL
  96# define GET_TSC_CTL(a)         (-EINVAL)
  97#endif
  98#ifndef SET_TSC_CTL
  99# define SET_TSC_CTL(a)         (-EINVAL)
 100#endif
 101#ifndef MPX_ENABLE_MANAGEMENT
 102# define MPX_ENABLE_MANAGEMENT()        (-EINVAL)
 103#endif
 104#ifndef MPX_DISABLE_MANAGEMENT
 105# define MPX_DISABLE_MANAGEMENT()       (-EINVAL)
 106#endif
 107#ifndef GET_FP_MODE
 108# define GET_FP_MODE(a)         (-EINVAL)
 109#endif
 110#ifndef SET_FP_MODE
 111# define SET_FP_MODE(a,b)       (-EINVAL)
 112#endif
 113
 114/*
 115 * this is where the system-wide overflow UID and GID are defined, for
 116 * architectures that now have 32-bit UID/GID but didn't in the past
 117 */
 118
 119int overflowuid = DEFAULT_OVERFLOWUID;
 120int overflowgid = DEFAULT_OVERFLOWGID;
 121
 122EXPORT_SYMBOL(overflowuid);
 123EXPORT_SYMBOL(overflowgid);
 124
 125/*
 126 * the same as above, but for filesystems which can only store a 16-bit
 127 * UID and GID. as such, this is needed on all architectures
 128 */
 129
 130int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 131int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
 132
 133EXPORT_SYMBOL(fs_overflowuid);
 134EXPORT_SYMBOL(fs_overflowgid);
 135
 136/*
 137 * Returns true if current's euid is same as p's uid or euid,
 138 * or has CAP_SYS_NICE to p's user_ns.
 139 *
 140 * Called with rcu_read_lock, creds are safe
 141 */
 142static bool set_one_prio_perm(struct task_struct *p)
 143{
 144        const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 145
 146        if (uid_eq(pcred->uid,  cred->euid) ||
 147            uid_eq(pcred->euid, cred->euid))
 148                return true;
 149        if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
 150                return true;
 151        return false;
 152}
 153
 154/*
 155 * set the priority of a task
 156 * - the caller must hold the RCU read lock
 157 */
 158static int set_one_prio(struct task_struct *p, int niceval, int error)
 159{
 160        int no_nice;
 161
 162        if (!set_one_prio_perm(p)) {
 163                error = -EPERM;
 164                goto out;
 165        }
 166        if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 167                error = -EACCES;
 168                goto out;
 169        }
 170        no_nice = security_task_setnice(p, niceval);
 171        if (no_nice) {
 172                error = no_nice;
 173                goto out;
 174        }
 175        if (error == -ESRCH)
 176                error = 0;
 177        set_user_nice(p, niceval);
 178out:
 179        return error;
 180}
 181
 182SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 183{
 184        struct task_struct *g, *p;
 185        struct user_struct *user;
 186        const struct cred *cred = current_cred();
 187        int error = -EINVAL;
 188        struct pid *pgrp;
 189        kuid_t uid;
 190
 191        if (which > PRIO_USER || which < PRIO_PROCESS)
 192                goto out;
 193
 194        /* normalize: avoid signed division (rounding problems) */
 195        error = -ESRCH;
 196        if (niceval < MIN_NICE)
 197                niceval = MIN_NICE;
 198        if (niceval > MAX_NICE)
 199                niceval = MAX_NICE;
 200
 201        rcu_read_lock();
 202        read_lock(&tasklist_lock);
 203        switch (which) {
 204        case PRIO_PROCESS:
 205                if (who)
 206                        p = find_task_by_vpid(who);
 207                else
 208                        p = current;
 209                if (p)
 210                        error = set_one_prio(p, niceval, error);
 211                break;
 212        case PRIO_PGRP:
 213                if (who)
 214                        pgrp = find_vpid(who);
 215                else
 216                        pgrp = task_pgrp(current);
 217                do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 218                        error = set_one_prio(p, niceval, error);
 219                } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 220                break;
 221        case PRIO_USER:
 222                uid = make_kuid(cred->user_ns, who);
 223                user = cred->user;
 224                if (!who)
 225                        uid = cred->uid;
 226                else if (!uid_eq(uid, cred->uid)) {
 227                        user = find_user(uid);
 228                        if (!user)
 229                                goto out_unlock;        /* No processes for this user */
 230                }
 231                do_each_thread(g, p) {
 232                        if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
 233                                error = set_one_prio(p, niceval, error);
 234                } while_each_thread(g, p);
 235                if (!uid_eq(uid, cred->uid))
 236                        free_uid(user);         /* For find_user() */
 237                break;
 238        }
 239out_unlock:
 240        read_unlock(&tasklist_lock);
 241        rcu_read_unlock();
 242out:
 243        return error;
 244}
 245
 246/*
 247 * Ugh. To avoid negative return values, "getpriority()" will
 248 * not return the normal nice-value, but a negated value that
 249 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 250 * to stay compatible.
 251 */
 252SYSCALL_DEFINE2(getpriority, int, which, int, who)
 253{
 254        struct task_struct *g, *p;
 255        struct user_struct *user;
 256        const struct cred *cred = current_cred();
 257        long niceval, retval = -ESRCH;
 258        struct pid *pgrp;
 259        kuid_t uid;
 260
 261        if (which > PRIO_USER || which < PRIO_PROCESS)
 262                return -EINVAL;
 263
 264        rcu_read_lock();
 265        read_lock(&tasklist_lock);
 266        switch (which) {
 267        case PRIO_PROCESS:
 268                if (who)
 269                        p = find_task_by_vpid(who);
 270                else
 271                        p = current;
 272                if (p) {
 273                        niceval = nice_to_rlimit(task_nice(p));
 274                        if (niceval > retval)
 275                                retval = niceval;
 276                }
 277                break;
 278        case PRIO_PGRP:
 279                if (who)
 280                        pgrp = find_vpid(who);
 281                else
 282                        pgrp = task_pgrp(current);
 283                do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 284                        niceval = nice_to_rlimit(task_nice(p));
 285                        if (niceval > retval)
 286                                retval = niceval;
 287                } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 288                break;
 289        case PRIO_USER:
 290                uid = make_kuid(cred->user_ns, who);
 291                user = cred->user;
 292                if (!who)
 293                        uid = cred->uid;
 294                else if (!uid_eq(uid, cred->uid)) {
 295                        user = find_user(uid);
 296                        if (!user)
 297                                goto out_unlock;        /* No processes for this user */
 298                }
 299                do_each_thread(g, p) {
 300                        if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
 301                                niceval = nice_to_rlimit(task_nice(p));
 302                                if (niceval > retval)
 303                                        retval = niceval;
 304                        }
 305                } while_each_thread(g, p);
 306                if (!uid_eq(uid, cred->uid))
 307                        free_uid(user);         /* for find_user() */
 308                break;
 309        }
 310out_unlock:
 311        read_unlock(&tasklist_lock);
 312        rcu_read_unlock();
 313
 314        return retval;
 315}
 316
 317/*
 318 * Unprivileged users may change the real gid to the effective gid
 319 * or vice versa.  (BSD-style)
 320 *
 321 * If you set the real gid at all, or set the effective gid to a value not
 322 * equal to the real gid, then the saved gid is set to the new effective gid.
 323 *
 324 * This makes it possible for a setgid program to completely drop its
 325 * privileges, which is often a useful assertion to make when you are doing
 326 * a security audit over a program.
 327 *
 328 * The general idea is that a program which uses just setregid() will be
 329 * 100% compatible with BSD.  A program which uses just setgid() will be
 330 * 100% compatible with POSIX with saved IDs.
 331 *
 332 * SMP: There are not races, the GIDs are checked only by filesystem
 333 *      operations (as far as semantic preservation is concerned).
 334 */
 335#ifdef CONFIG_MULTIUSER
 336SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 337{
 338        struct user_namespace *ns = current_user_ns();
 339        const struct cred *old;
 340        struct cred *new;
 341        int retval;
 342        kgid_t krgid, kegid;
 343
 344        krgid = make_kgid(ns, rgid);
 345        kegid = make_kgid(ns, egid);
 346
 347        if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 348                return -EINVAL;
 349        if ((egid != (gid_t) -1) && !gid_valid(kegid))
 350                return -EINVAL;
 351
 352        new = prepare_creds();
 353        if (!new)
 354                return -ENOMEM;
 355        old = current_cred();
 356
 357        retval = -EPERM;
 358        if (rgid != (gid_t) -1) {
 359                if (gid_eq(old->gid, krgid) ||
 360                    gid_eq(old->egid, krgid) ||
 361                    ns_capable(old->user_ns, CAP_SETGID))
 362                        new->gid = krgid;
 363                else
 364                        goto error;
 365        }
 366        if (egid != (gid_t) -1) {
 367                if (gid_eq(old->gid, kegid) ||
 368                    gid_eq(old->egid, kegid) ||
 369                    gid_eq(old->sgid, kegid) ||
 370                    ns_capable(old->user_ns, CAP_SETGID))
 371                        new->egid = kegid;
 372                else
 373                        goto error;
 374        }
 375
 376        if (rgid != (gid_t) -1 ||
 377            (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
 378                new->sgid = new->egid;
 379        new->fsgid = new->egid;
 380
 381        return commit_creds(new);
 382
 383error:
 384        abort_creds(new);
 385        return retval;
 386}
 387
 388/*
 389 * setgid() is implemented like SysV w/ SAVED_IDS
 390 *
 391 * SMP: Same implicit races as above.
 392 */
 393SYSCALL_DEFINE1(setgid, gid_t, gid)
 394{
 395        struct user_namespace *ns = current_user_ns();
 396        const struct cred *old;
 397        struct cred *new;
 398        int retval;
 399        kgid_t kgid;
 400
 401        kgid = make_kgid(ns, gid);
 402        if (!gid_valid(kgid))
 403                return -EINVAL;
 404
 405        new = prepare_creds();
 406        if (!new)
 407                return -ENOMEM;
 408        old = current_cred();
 409
 410        retval = -EPERM;
 411        if (ns_capable(old->user_ns, CAP_SETGID))
 412                new->gid = new->egid = new->sgid = new->fsgid = kgid;
 413        else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
 414                new->egid = new->fsgid = kgid;
 415        else
 416                goto error;
 417
 418        return commit_creds(new);
 419
 420error:
 421        abort_creds(new);
 422        return retval;
 423}
 424
 425/*
 426 * change the user struct in a credentials set to match the new UID
 427 */
 428static int set_user(struct cred *new)
 429{
 430        struct user_struct *new_user;
 431
 432        new_user = alloc_uid(new->uid);
 433        if (!new_user)
 434                return -EAGAIN;
 435
 436        /*
 437         * We don't fail in case of NPROC limit excess here because too many
 438         * poorly written programs don't check set*uid() return code, assuming
 439         * it never fails if called by root.  We may still enforce NPROC limit
 440         * for programs doing set*uid()+execve() by harmlessly deferring the
 441         * failure to the execve() stage.
 442         */
 443        if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
 444                        new_user != INIT_USER)
 445                current->flags |= PF_NPROC_EXCEEDED;
 446        else
 447                current->flags &= ~PF_NPROC_EXCEEDED;
 448
 449        free_uid(new->user);
 450        new->user = new_user;
 451        return 0;
 452}
 453
 454/*
 455 * Unprivileged users may change the real uid to the effective uid
 456 * or vice versa.  (BSD-style)
 457 *
 458 * If you set the real uid at all, or set the effective uid to a value not
 459 * equal to the real uid, then the saved uid is set to the new effective uid.
 460 *
 461 * This makes it possible for a setuid program to completely drop its
 462 * privileges, which is often a useful assertion to make when you are doing
 463 * a security audit over a program.
 464 *
 465 * The general idea is that a program which uses just setreuid() will be
 466 * 100% compatible with BSD.  A program which uses just setuid() will be
 467 * 100% compatible with POSIX with saved IDs.
 468 */
 469SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 470{
 471        struct user_namespace *ns = current_user_ns();
 472        const struct cred *old;
 473        struct cred *new;
 474        int retval;
 475        kuid_t kruid, keuid;
 476
 477        kruid = make_kuid(ns, ruid);
 478        keuid = make_kuid(ns, euid);
 479
 480        if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 481                return -EINVAL;
 482        if ((euid != (uid_t) -1) && !uid_valid(keuid))
 483                return -EINVAL;
 484
 485        new = prepare_creds();
 486        if (!new)
 487                return -ENOMEM;
 488        old = current_cred();
 489
 490        retval = -EPERM;
 491        if (ruid != (uid_t) -1) {
 492                new->uid = kruid;
 493                if (!uid_eq(old->uid, kruid) &&
 494                    !uid_eq(old->euid, kruid) &&
 495                    !ns_capable(old->user_ns, CAP_SETUID))
 496                        goto error;
 497        }
 498
 499        if (euid != (uid_t) -1) {
 500                new->euid = keuid;
 501                if (!uid_eq(old->uid, keuid) &&
 502                    !uid_eq(old->euid, keuid) &&
 503                    !uid_eq(old->suid, keuid) &&
 504                    !ns_capable(old->user_ns, CAP_SETUID))
 505                        goto error;
 506        }
 507
 508        if (!uid_eq(new->uid, old->uid)) {
 509                retval = set_user(new);
 510                if (retval < 0)
 511                        goto error;
 512        }
 513        if (ruid != (uid_t) -1 ||
 514            (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
 515                new->suid = new->euid;
 516        new->fsuid = new->euid;
 517
 518        retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 519        if (retval < 0)
 520                goto error;
 521
 522        return commit_creds(new);
 523
 524error:
 525        abort_creds(new);
 526        return retval;
 527}
 528
 529/*
 530 * setuid() is implemented like SysV with SAVED_IDS
 531 *
 532 * Note that SAVED_ID's is deficient in that a setuid root program
 533 * like sendmail, for example, cannot set its uid to be a normal
 534 * user and then switch back, because if you're root, setuid() sets
 535 * the saved uid too.  If you don't like this, blame the bright people
 536 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 537 * will allow a root program to temporarily drop privileges and be able to
 538 * regain them by swapping the real and effective uid.
 539 */
 540SYSCALL_DEFINE1(setuid, uid_t, uid)
 541{
 542        struct user_namespace *ns = current_user_ns();
 543        const struct cred *old;
 544        struct cred *new;
 545        int retval;
 546        kuid_t kuid;
 547
 548        kuid = make_kuid(ns, uid);
 549        if (!uid_valid(kuid))
 550                return -EINVAL;
 551
 552        new = prepare_creds();
 553        if (!new)
 554                return -ENOMEM;
 555        old = current_cred();
 556
 557        retval = -EPERM;
 558        if (ns_capable(old->user_ns, CAP_SETUID)) {
 559                new->suid = new->uid = kuid;
 560                if (!uid_eq(kuid, old->uid)) {
 561                        retval = set_user(new);
 562                        if (retval < 0)
 563                                goto error;
 564                }
 565        } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
 566                goto error;
 567        }
 568
 569        new->fsuid = new->euid = kuid;
 570
 571        retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 572        if (retval < 0)
 573                goto error;
 574
 575        return commit_creds(new);
 576
 577error:
 578        abort_creds(new);
 579        return retval;
 580}
 581
 582
 583/*
 584 * This function implements a generic ability to update ruid, euid,
 585 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 586 */
 587SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 588{
 589        struct user_namespace *ns = current_user_ns();
 590        const struct cred *old;
 591        struct cred *new;
 592        int retval;
 593        kuid_t kruid, keuid, ksuid;
 594
 595        kruid = make_kuid(ns, ruid);
 596        keuid = make_kuid(ns, euid);
 597        ksuid = make_kuid(ns, suid);
 598
 599        if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 600                return -EINVAL;
 601
 602        if ((euid != (uid_t) -1) && !uid_valid(keuid))
 603                return -EINVAL;
 604
 605        if ((suid != (uid_t) -1) && !uid_valid(ksuid))
 606                return -EINVAL;
 607
 608        new = prepare_creds();
 609        if (!new)
 610                return -ENOMEM;
 611
 612        old = current_cred();
 613
 614        retval = -EPERM;
 615        if (!ns_capable(old->user_ns, CAP_SETUID)) {
 616                if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
 617                    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
 618                        goto error;
 619                if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
 620                    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
 621                        goto error;
 622                if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
 623                    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
 624                        goto error;
 625        }
 626
 627        if (ruid != (uid_t) -1) {
 628                new->uid = kruid;
 629                if (!uid_eq(kruid, old->uid)) {
 630                        retval = set_user(new);
 631                        if (retval < 0)
 632                                goto error;
 633                }
 634        }
 635        if (euid != (uid_t) -1)
 636                new->euid = keuid;
 637        if (suid != (uid_t) -1)
 638                new->suid = ksuid;
 639        new->fsuid = new->euid;
 640
 641        retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 642        if (retval < 0)
 643                goto error;
 644
 645        return commit_creds(new);
 646
 647error:
 648        abort_creds(new);
 649        return retval;
 650}
 651
 652SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
 653{
 654        const struct cred *cred = current_cred();
 655        int retval;
 656        uid_t ruid, euid, suid;
 657
 658        ruid = from_kuid_munged(cred->user_ns, cred->uid);
 659        euid = from_kuid_munged(cred->user_ns, cred->euid);
 660        suid = from_kuid_munged(cred->user_ns, cred->suid);
 661
 662        retval = put_user(ruid, ruidp);
 663        if (!retval) {
 664                retval = put_user(euid, euidp);
 665                if (!retval)
 666                        return put_user(suid, suidp);
 667        }
 668        return retval;
 669}
 670
 671/*
 672 * Same as above, but for rgid, egid, sgid.
 673 */
 674SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 675{
 676        struct user_namespace *ns = current_user_ns();
 677        const struct cred *old;
 678        struct cred *new;
 679        int retval;
 680        kgid_t krgid, kegid, ksgid;
 681
 682        krgid = make_kgid(ns, rgid);
 683        kegid = make_kgid(ns, egid);
 684        ksgid = make_kgid(ns, sgid);
 685
 686        if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 687                return -EINVAL;
 688        if ((egid != (gid_t) -1) && !gid_valid(kegid))
 689                return -EINVAL;
 690        if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
 691                return -EINVAL;
 692
 693        new = prepare_creds();
 694        if (!new)
 695                return -ENOMEM;
 696        old = current_cred();
 697
 698        retval = -EPERM;
 699        if (!ns_capable(old->user_ns, CAP_SETGID)) {
 700                if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
 701                    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
 702                        goto error;
 703                if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
 704                    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
 705                        goto error;
 706                if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
 707                    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
 708                        goto error;
 709        }
 710
 711        if (rgid != (gid_t) -1)
 712                new->gid = krgid;
 713        if (egid != (gid_t) -1)
 714                new->egid = kegid;
 715        if (sgid != (gid_t) -1)
 716                new->sgid = ksgid;
 717        new->fsgid = new->egid;
 718
 719        return commit_creds(new);
 720
 721error:
 722        abort_creds(new);
 723        return retval;
 724}
 725
 726SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
 727{
 728        const struct cred *cred = current_cred();
 729        int retval;
 730        gid_t rgid, egid, sgid;
 731
 732        rgid = from_kgid_munged(cred->user_ns, cred->gid);
 733        egid = from_kgid_munged(cred->user_ns, cred->egid);
 734        sgid = from_kgid_munged(cred->user_ns, cred->sgid);
 735
 736        retval = put_user(rgid, rgidp);
 737        if (!retval) {
 738                retval = put_user(egid, egidp);
 739                if (!retval)
 740                        retval = put_user(sgid, sgidp);
 741        }
 742
 743        return retval;
 744}
 745
 746
 747/*
 748 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 749 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 750 * whatever uid it wants to). It normally shadows "euid", except when
 751 * explicitly set by setfsuid() or for access..
 752 */
 753SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 754{
 755        const struct cred *old;
 756        struct cred *new;
 757        uid_t old_fsuid;
 758        kuid_t kuid;
 759
 760        old = current_cred();
 761        old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
 762
 763        kuid = make_kuid(old->user_ns, uid);
 764        if (!uid_valid(kuid))
 765                return old_fsuid;
 766
 767        new = prepare_creds();
 768        if (!new)
 769                return old_fsuid;
 770
 771        if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
 772            uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
 773            ns_capable(old->user_ns, CAP_SETUID)) {
 774                if (!uid_eq(kuid, old->fsuid)) {
 775                        new->fsuid = kuid;
 776                        if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 777                                goto change_okay;
 778                }
 779        }
 780
 781        abort_creds(new);
 782        return old_fsuid;
 783
 784change_okay:
 785        commit_creds(new);
 786        return old_fsuid;
 787}
 788
 789/*
 790 * Samma på svenska..
 791 */
 792SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 793{
 794        const struct cred *old;
 795        struct cred *new;
 796        gid_t old_fsgid;
 797        kgid_t kgid;
 798
 799        old = current_cred();
 800        old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
 801
 802        kgid = make_kgid(old->user_ns, gid);
 803        if (!gid_valid(kgid))
 804                return old_fsgid;
 805
 806        new = prepare_creds();
 807        if (!new)
 808                return old_fsgid;
 809
 810        if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
 811            gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
 812            ns_capable(old->user_ns, CAP_SETGID)) {
 813                if (!gid_eq(kgid, old->fsgid)) {
 814                        new->fsgid = kgid;
 815                        goto change_okay;
 816                }
 817        }
 818
 819        abort_creds(new);
 820        return old_fsgid;
 821
 822change_okay:
 823        commit_creds(new);
 824        return old_fsgid;
 825}
 826#endif /* CONFIG_MULTIUSER */
 827
 828/**
 829 * sys_getpid - return the thread group id of the current process
 830 *
 831 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 832 * the pid are identical unless CLONE_THREAD was specified on clone() in
 833 * which case the tgid is the same in all threads of the same group.
 834 *
 835 * This is SMP safe as current->tgid does not change.
 836 */
 837SYSCALL_DEFINE0(getpid)
 838{
 839        return task_tgid_vnr(current);
 840}
 841
 842/* Thread ID - the internal kernel "pid" */
 843SYSCALL_DEFINE0(gettid)
 844{
 845        return task_pid_vnr(current);
 846}
 847
 848/*
 849 * Accessing ->real_parent is not SMP-safe, it could
 850 * change from under us. However, we can use a stale
 851 * value of ->real_parent under rcu_read_lock(), see
 852 * release_task()->call_rcu(delayed_put_task_struct).
 853 */
 854SYSCALL_DEFINE0(getppid)
 855{
 856        int pid;
 857
 858        rcu_read_lock();
 859        pid = task_tgid_vnr(rcu_dereference(current->real_parent));
 860        rcu_read_unlock();
 861
 862        return pid;
 863}
 864
 865SYSCALL_DEFINE0(getuid)
 866{
 867        /* Only we change this so SMP safe */
 868        return from_kuid_munged(current_user_ns(), current_uid());
 869}
 870
 871SYSCALL_DEFINE0(geteuid)
 872{
 873        /* Only we change this so SMP safe */
 874        return from_kuid_munged(current_user_ns(), current_euid());
 875}
 876
 877SYSCALL_DEFINE0(getgid)
 878{
 879        /* Only we change this so SMP safe */
 880        return from_kgid_munged(current_user_ns(), current_gid());
 881}
 882
 883SYSCALL_DEFINE0(getegid)
 884{
 885        /* Only we change this so SMP safe */
 886        return from_kgid_munged(current_user_ns(), current_egid());
 887}
 888
 889static void do_sys_times(struct tms *tms)
 890{
 891        u64 tgutime, tgstime, cutime, cstime;
 892
 893        thread_group_cputime_adjusted(current, &tgutime, &tgstime);
 894        cutime = current->signal->cutime;
 895        cstime = current->signal->cstime;
 896        tms->tms_utime = nsec_to_clock_t(tgutime);
 897        tms->tms_stime = nsec_to_clock_t(tgstime);
 898        tms->tms_cutime = nsec_to_clock_t(cutime);
 899        tms->tms_cstime = nsec_to_clock_t(cstime);
 900}
 901
 902SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
 903{
 904        if (tbuf) {
 905                struct tms tmp;
 906
 907                do_sys_times(&tmp);
 908                if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
 909                        return -EFAULT;
 910        }
 911        force_successful_syscall_return();
 912        return (long) jiffies_64_to_clock_t(get_jiffies_64());
 913}
 914
 915#ifdef CONFIG_COMPAT
 916static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
 917{
 918        return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
 919}
 920
 921COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
 922{
 923        if (tbuf) {
 924                struct tms tms;
 925                struct compat_tms tmp;
 926
 927                do_sys_times(&tms);
 928                /* Convert our struct tms to the compat version. */
 929                tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
 930                tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
 931                tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
 932                tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
 933                if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
 934                        return -EFAULT;
 935        }
 936        force_successful_syscall_return();
 937        return compat_jiffies_to_clock_t(jiffies);
 938}
 939#endif
 940
 941/*
 942 * This needs some heavy checking ...
 943 * I just haven't the stomach for it. I also don't fully
 944 * understand sessions/pgrp etc. Let somebody who does explain it.
 945 *
 946 * OK, I think I have the protection semantics right.... this is really
 947 * only important on a multi-user system anyway, to make sure one user
 948 * can't send a signal to a process owned by another.  -TYT, 12/12/91
 949 *
 950 * !PF_FORKNOEXEC check to conform completely to POSIX.
 951 */
 952SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
 953{
 954        struct task_struct *p;
 955        struct task_struct *group_leader = current->group_leader;
 956        struct pid *pgrp;
 957        int err;
 958
 959        if (!pid)
 960                pid = task_pid_vnr(group_leader);
 961        if (!pgid)
 962                pgid = pid;
 963        if (pgid < 0)
 964                return -EINVAL;
 965        rcu_read_lock();
 966
 967        /* From this point forward we keep holding onto the tasklist lock
 968         * so that our parent does not change from under us. -DaveM
 969         */
 970        write_lock_irq(&tasklist_lock);
 971
 972        err = -ESRCH;
 973        p = find_task_by_vpid(pid);
 974        if (!p)
 975                goto out;
 976
 977        err = -EINVAL;
 978        if (!thread_group_leader(p))
 979                goto out;
 980
 981        if (same_thread_group(p->real_parent, group_leader)) {
 982                err = -EPERM;
 983                if (task_session(p) != task_session(group_leader))
 984                        goto out;
 985                err = -EACCES;
 986                if (!(p->flags & PF_FORKNOEXEC))
 987                        goto out;
 988        } else {
 989                err = -ESRCH;
 990                if (p != group_leader)
 991                        goto out;
 992        }
 993
 994        err = -EPERM;
 995        if (p->signal->leader)
 996                goto out;
 997
 998        pgrp = task_pid(p);
 999        if (pgid != pid) {
1000                struct task_struct *g;
1001
1002                pgrp = find_vpid(pgid);
1003                g = pid_task(pgrp, PIDTYPE_PGID);
1004                if (!g || task_session(g) != task_session(group_leader))
1005                        goto out;
1006        }
1007
1008        err = security_task_setpgid(p, pgid);
1009        if (err)
1010                goto out;
1011
1012        if (task_pgrp(p) != pgrp)
1013                change_pid(p, PIDTYPE_PGID, pgrp);
1014
1015        err = 0;
1016out:
1017        /* All paths lead to here, thus we are safe. -DaveM */
1018        write_unlock_irq(&tasklist_lock);
1019        rcu_read_unlock();
1020        return err;
1021}
1022
1023SYSCALL_DEFINE1(getpgid, pid_t, pid)
1024{
1025        struct task_struct *p;
1026        struct pid *grp;
1027        int retval;
1028
1029        rcu_read_lock();
1030        if (!pid)
1031                grp = task_pgrp(current);
1032        else {
1033                retval = -ESRCH;
1034                p = find_task_by_vpid(pid);
1035                if (!p)
1036                        goto out;
1037                grp = task_pgrp(p);
1038                if (!grp)
1039                        goto out;
1040
1041                retval = security_task_getpgid(p);
1042                if (retval)
1043                        goto out;
1044        }
1045        retval = pid_vnr(grp);
1046out:
1047        rcu_read_unlock();
1048        return retval;
1049}
1050
1051#ifdef __ARCH_WANT_SYS_GETPGRP
1052
1053SYSCALL_DEFINE0(getpgrp)
1054{
1055        return sys_getpgid(0);
1056}
1057
1058#endif
1059
1060SYSCALL_DEFINE1(getsid, pid_t, pid)
1061{
1062        struct task_struct *p;
1063        struct pid *sid;
1064        int retval;
1065
1066        rcu_read_lock();
1067        if (!pid)
1068                sid = task_session(current);
1069        else {
1070                retval = -ESRCH;
1071                p = find_task_by_vpid(pid);
1072                if (!p)
1073                        goto out;
1074                sid = task_session(p);
1075                if (!sid)
1076                        goto out;
1077
1078                retval = security_task_getsid(p);
1079                if (retval)
1080                        goto out;
1081        }
1082        retval = pid_vnr(sid);
1083out:
1084        rcu_read_unlock();
1085        return retval;
1086}
1087
1088static void set_special_pids(struct pid *pid)
1089{
1090        struct task_struct *curr = current->group_leader;
1091
1092        if (task_session(curr) != pid)
1093                change_pid(curr, PIDTYPE_SID, pid);
1094
1095        if (task_pgrp(curr) != pid)
1096                change_pid(curr, PIDTYPE_PGID, pid);
1097}
1098
1099SYSCALL_DEFINE0(setsid)
1100{
1101        struct task_struct *group_leader = current->group_leader;
1102        struct pid *sid = task_pid(group_leader);
1103        pid_t session = pid_vnr(sid);
1104        int err = -EPERM;
1105
1106        write_lock_irq(&tasklist_lock);
1107        /* Fail if I am already a session leader */
1108        if (group_leader->signal->leader)
1109                goto out;
1110
1111        /* Fail if a process group id already exists that equals the
1112         * proposed session id.
1113         */
1114        if (pid_task(sid, PIDTYPE_PGID))
1115                goto out;
1116
1117        group_leader->signal->leader = 1;
1118        set_special_pids(sid);
1119
1120        proc_clear_tty(group_leader);
1121
1122        err = session;
1123out:
1124        write_unlock_irq(&tasklist_lock);
1125        if (err > 0) {
1126                proc_sid_connector(group_leader);
1127                sched_autogroup_create_attach(group_leader);
1128        }
1129        return err;
1130}
1131
1132DECLARE_RWSEM(uts_sem);
1133
1134#ifdef COMPAT_UTS_MACHINE
1135#define override_architecture(name) \
1136        (personality(current->personality) == PER_LINUX32 && \
1137         copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1138                      sizeof(COMPAT_UTS_MACHINE)))
1139#else
1140#define override_architecture(name)     0
1141#endif
1142
1143/*
1144 * Work around broken programs that cannot handle "Linux 3.0".
1145 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1146 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1147 */
1148static int override_release(char __user *release, size_t len)
1149{
1150        int ret = 0;
1151
1152        if (current->personality & UNAME26) {
1153                const char *rest = UTS_RELEASE;
1154                char buf[65] = { 0 };
1155                int ndots = 0;
1156                unsigned v;
1157                size_t copy;
1158
1159                while (*rest) {
1160                        if (*rest == '.' && ++ndots >= 3)
1161                                break;
1162                        if (!isdigit(*rest) && *rest != '.')
1163                                break;
1164                        rest++;
1165                }
1166                v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1167                copy = clamp_t(size_t, len, 1, sizeof(buf));
1168                copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1169                ret = copy_to_user(release, buf, copy + 1);
1170        }
1171        return ret;
1172}
1173
1174SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1175{
1176        int errno = 0;
1177
1178        down_read(&uts_sem);
1179        if (copy_to_user(name, utsname(), sizeof *name))
1180                errno = -EFAULT;
1181        up_read(&uts_sem);
1182
1183        if (!errno && override_release(name->release, sizeof(name->release)))
1184                errno = -EFAULT;
1185        if (!errno && override_architecture(name))
1186                errno = -EFAULT;
1187        return errno;
1188}
1189
1190#ifdef __ARCH_WANT_SYS_OLD_UNAME
1191/*
1192 * Old cruft
1193 */
1194SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1195{
1196        int error = 0;
1197
1198        if (!name)
1199                return -EFAULT;
1200
1201        down_read(&uts_sem);
1202        if (copy_to_user(name, utsname(), sizeof(*name)))
1203                error = -EFAULT;
1204        up_read(&uts_sem);
1205
1206        if (!error && override_release(name->release, sizeof(name->release)))
1207                error = -EFAULT;
1208        if (!error && override_architecture(name))
1209                error = -EFAULT;
1210        return error;
1211}
1212
1213SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1214{
1215        int error;
1216
1217        if (!name)
1218                return -EFAULT;
1219        if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1220                return -EFAULT;
1221
1222        down_read(&uts_sem);
1223        error = __copy_to_user(&name->sysname, &utsname()->sysname,
1224                               __OLD_UTS_LEN);
1225        error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1226        error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1227                                __OLD_UTS_LEN);
1228        error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1229        error |= __copy_to_user(&name->release, &utsname()->release,
1230                                __OLD_UTS_LEN);
1231        error |= __put_user(0, name->release + __OLD_UTS_LEN);
1232        error |= __copy_to_user(&name->version, &utsname()->version,
1233                                __OLD_UTS_LEN);
1234        error |= __put_user(0, name->version + __OLD_UTS_LEN);
1235        error |= __copy_to_user(&name->machine, &utsname()->machine,
1236                                __OLD_UTS_LEN);
1237        error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1238        up_read(&uts_sem);
1239
1240        if (!error && override_architecture(name))
1241                error = -EFAULT;
1242        if (!error && override_release(name->release, sizeof(name->release)))
1243                error = -EFAULT;
1244        return error ? -EFAULT : 0;
1245}
1246#endif
1247
1248SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1249{
1250        int errno;
1251        char tmp[__NEW_UTS_LEN];
1252
1253        if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1254                return -EPERM;
1255
1256        if (len < 0 || len > __NEW_UTS_LEN)
1257                return -EINVAL;
1258        down_write(&uts_sem);
1259        errno = -EFAULT;
1260        if (!copy_from_user(tmp, name, len)) {
1261                struct new_utsname *u = utsname();
1262
1263                memcpy(u->nodename, tmp, len);
1264                memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1265                errno = 0;
1266                uts_proc_notify(UTS_PROC_HOSTNAME);
1267        }
1268        up_write(&uts_sem);
1269        return errno;
1270}
1271
1272#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1273
1274SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1275{
1276        int i, errno;
1277        struct new_utsname *u;
1278
1279        if (len < 0)
1280                return -EINVAL;
1281        down_read(&uts_sem);
1282        u = utsname();
1283        i = 1 + strlen(u->nodename);
1284        if (i > len)
1285                i = len;
1286        errno = 0;
1287        if (copy_to_user(name, u->nodename, i))
1288                errno = -EFAULT;
1289        up_read(&uts_sem);
1290        return errno;
1291}
1292
1293#endif
1294
1295/*
1296 * Only setdomainname; getdomainname can be implemented by calling
1297 * uname()
1298 */
1299SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1300{
1301        int errno;
1302        char tmp[__NEW_UTS_LEN];
1303
1304        if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1305                return -EPERM;
1306        if (len < 0 || len > __NEW_UTS_LEN)
1307                return -EINVAL;
1308
1309        down_write(&uts_sem);
1310        errno = -EFAULT;
1311        if (!copy_from_user(tmp, name, len)) {
1312                struct new_utsname *u = utsname();
1313
1314                memcpy(u->domainname, tmp, len);
1315                memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1316                errno = 0;
1317                uts_proc_notify(UTS_PROC_DOMAINNAME);
1318        }
1319        up_write(&uts_sem);
1320        return errno;
1321}
1322
1323SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1324{
1325        struct rlimit value;
1326        int ret;
1327
1328        ret = do_prlimit(current, resource, NULL, &value);
1329        if (!ret)
1330                ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1331
1332        return ret;
1333}
1334
1335#ifdef CONFIG_COMPAT
1336
1337COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1338                       struct compat_rlimit __user *, rlim)
1339{
1340        struct rlimit r;
1341        struct compat_rlimit r32;
1342
1343        if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1344                return -EFAULT;
1345
1346        if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1347                r.rlim_cur = RLIM_INFINITY;
1348        else
1349                r.rlim_cur = r32.rlim_cur;
1350        if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1351                r.rlim_max = RLIM_INFINITY;
1352        else
1353                r.rlim_max = r32.rlim_max;
1354        return do_prlimit(current, resource, &r, NULL);
1355}
1356
1357COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1358                       struct compat_rlimit __user *, rlim)
1359{
1360        struct rlimit r;
1361        int ret;
1362
1363        ret = do_prlimit(current, resource, NULL, &r);
1364        if (!ret) {
1365                struct compat_rlimit r32;
1366                if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1367                        r32.rlim_cur = COMPAT_RLIM_INFINITY;
1368                else
1369                        r32.rlim_cur = r.rlim_cur;
1370                if (r.rlim_max > COMPAT_RLIM_INFINITY)
1371                        r32.rlim_max = COMPAT_RLIM_INFINITY;
1372                else
1373                        r32.rlim_max = r.rlim_max;
1374
1375                if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1376                        return -EFAULT;
1377        }
1378        return ret;
1379}
1380
1381#endif
1382
1383#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1384
1385/*
1386 *      Back compatibility for getrlimit. Needed for some apps.
1387 */
1388SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1389                struct rlimit __user *, rlim)
1390{
1391        struct rlimit x;
1392        if (resource >= RLIM_NLIMITS)
1393                return -EINVAL;
1394
1395        task_lock(current->group_leader);
1396        x = current->signal->rlim[resource];
1397        task_unlock(current->group_leader);
1398        if (x.rlim_cur > 0x7FFFFFFF)
1399                x.rlim_cur = 0x7FFFFFFF;
1400        if (x.rlim_max > 0x7FFFFFFF)
1401                x.rlim_max = 0x7FFFFFFF;
1402        return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1403}
1404
1405#ifdef CONFIG_COMPAT
1406COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1407                       struct compat_rlimit __user *, rlim)
1408{
1409        struct rlimit r;
1410
1411        if (resource >= RLIM_NLIMITS)
1412                return -EINVAL;
1413
1414        task_lock(current->group_leader);
1415        r = current->signal->rlim[resource];
1416        task_unlock(current->group_leader);
1417        if (r.rlim_cur > 0x7FFFFFFF)
1418                r.rlim_cur = 0x7FFFFFFF;
1419        if (r.rlim_max > 0x7FFFFFFF)
1420                r.rlim_max = 0x7FFFFFFF;
1421
1422        if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1423            put_user(r.rlim_max, &rlim->rlim_max))
1424                return -EFAULT;
1425        return 0;
1426}
1427#endif
1428
1429#endif
1430
1431static inline bool rlim64_is_infinity(__u64 rlim64)
1432{
1433#if BITS_PER_LONG < 64
1434        return rlim64 >= ULONG_MAX;
1435#else
1436        return rlim64 == RLIM64_INFINITY;
1437#endif
1438}
1439
1440static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1441{
1442        if (rlim->rlim_cur == RLIM_INFINITY)
1443                rlim64->rlim_cur = RLIM64_INFINITY;
1444        else
1445                rlim64->rlim_cur = rlim->rlim_cur;
1446        if (rlim->rlim_max == RLIM_INFINITY)
1447                rlim64->rlim_max = RLIM64_INFINITY;
1448        else
1449                rlim64->rlim_max = rlim->rlim_max;
1450}
1451
1452static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1453{
1454        if (rlim64_is_infinity(rlim64->rlim_cur))
1455                rlim->rlim_cur = RLIM_INFINITY;
1456        else
1457                rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1458        if (rlim64_is_infinity(rlim64->rlim_max))
1459                rlim->rlim_max = RLIM_INFINITY;
1460        else
1461                rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1462}
1463
1464/* make sure you are allowed to change @tsk limits before calling this */
1465int do_prlimit(struct task_struct *tsk, unsigned int resource,
1466                struct rlimit *new_rlim, struct rlimit *old_rlim)
1467{
1468        struct rlimit *rlim;
1469        int retval = 0;
1470
1471        if (resource >= RLIM_NLIMITS)
1472                return -EINVAL;
1473        if (new_rlim) {
1474                if (new_rlim->rlim_cur > new_rlim->rlim_max)
1475                        return -EINVAL;
1476                if (resource == RLIMIT_NOFILE &&
1477                                new_rlim->rlim_max > sysctl_nr_open)
1478                        return -EPERM;
1479        }
1480
1481        /* protect tsk->signal and tsk->sighand from disappearing */
1482        read_lock(&tasklist_lock);
1483        if (!tsk->sighand) {
1484                retval = -ESRCH;
1485                goto out;
1486        }
1487
1488        rlim = tsk->signal->rlim + resource;
1489        task_lock(tsk->group_leader);
1490        if (new_rlim) {
1491                /* Keep the capable check against init_user_ns until
1492                   cgroups can contain all limits */
1493                if (new_rlim->rlim_max > rlim->rlim_max &&
1494                                !capable(CAP_SYS_RESOURCE))
1495                        retval = -EPERM;
1496                if (!retval)
1497                        retval = security_task_setrlimit(tsk, resource, new_rlim);
1498                if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1499                        /*
1500                         * The caller is asking for an immediate RLIMIT_CPU
1501                         * expiry.  But we use the zero value to mean "it was
1502                         * never set".  So let's cheat and make it one second
1503                         * instead
1504                         */
1505                        new_rlim->rlim_cur = 1;
1506                }
1507        }
1508        if (!retval) {
1509                if (old_rlim)
1510                        *old_rlim = *rlim;
1511                if (new_rlim)
1512                        *rlim = *new_rlim;
1513        }
1514        task_unlock(tsk->group_leader);
1515
1516        /*
1517         * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1518         * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1519         * very long-standing error, and fixing it now risks breakage of
1520         * applications, so we live with it
1521         */
1522         if (!retval && new_rlim && resource == RLIMIT_CPU &&
1523             new_rlim->rlim_cur != RLIM_INFINITY &&
1524             IS_ENABLED(CONFIG_POSIX_TIMERS))
1525                update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1526out:
1527        read_unlock(&tasklist_lock);
1528        return retval;
1529}
1530
1531/* rcu lock must be held */
1532static int check_prlimit_permission(struct task_struct *task,
1533                                    unsigned int flags)
1534{
1535        const struct cred *cred = current_cred(), *tcred;
1536        bool id_match;
1537
1538        if (current == task)
1539                return 0;
1540
1541        tcred = __task_cred(task);
1542        id_match = (uid_eq(cred->uid, tcred->euid) &&
1543                    uid_eq(cred->uid, tcred->suid) &&
1544                    uid_eq(cred->uid, tcred->uid)  &&
1545                    gid_eq(cred->gid, tcred->egid) &&
1546                    gid_eq(cred->gid, tcred->sgid) &&
1547                    gid_eq(cred->gid, tcred->gid));
1548        if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1549                return -EPERM;
1550
1551        return security_task_prlimit(cred, tcred, flags);
1552}
1553
1554SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1555                const struct rlimit64 __user *, new_rlim,
1556                struct rlimit64 __user *, old_rlim)
1557{
1558        struct rlimit64 old64, new64;
1559        struct rlimit old, new;
1560        struct task_struct *tsk;
1561        unsigned int checkflags = 0;
1562        int ret;
1563
1564        if (old_rlim)
1565                checkflags |= LSM_PRLIMIT_READ;
1566
1567        if (new_rlim) {
1568                if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1569                        return -EFAULT;
1570                rlim64_to_rlim(&new64, &new);
1571                checkflags |= LSM_PRLIMIT_WRITE;
1572        }
1573
1574        rcu_read_lock();
1575        tsk = pid ? find_task_by_vpid(pid) : current;
1576        if (!tsk) {
1577                rcu_read_unlock();
1578                return -ESRCH;
1579        }
1580        ret = check_prlimit_permission(tsk, checkflags);
1581        if (ret) {
1582                rcu_read_unlock();
1583                return ret;
1584        }
1585        get_task_struct(tsk);
1586        rcu_read_unlock();
1587
1588        ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1589                        old_rlim ? &old : NULL);
1590
1591        if (!ret && old_rlim) {
1592                rlim_to_rlim64(&old, &old64);
1593                if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1594                        ret = -EFAULT;
1595        }
1596
1597        put_task_struct(tsk);
1598        return ret;
1599}
1600
1601SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1602{
1603        struct rlimit new_rlim;
1604
1605        if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1606                return -EFAULT;
1607        return do_prlimit(current, resource, &new_rlim, NULL);
1608}
1609
1610/*
1611 * It would make sense to put struct rusage in the task_struct,
1612 * except that would make the task_struct be *really big*.  After
1613 * task_struct gets moved into malloc'ed memory, it would
1614 * make sense to do this.  It will make moving the rest of the information
1615 * a lot simpler!  (Which we're not doing right now because we're not
1616 * measuring them yet).
1617 *
1618 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1619 * races with threads incrementing their own counters.  But since word
1620 * reads are atomic, we either get new values or old values and we don't
1621 * care which for the sums.  We always take the siglock to protect reading
1622 * the c* fields from p->signal from races with exit.c updating those
1623 * fields when reaping, so a sample either gets all the additions of a
1624 * given child after it's reaped, or none so this sample is before reaping.
1625 *
1626 * Locking:
1627 * We need to take the siglock for CHILDEREN, SELF and BOTH
1628 * for  the cases current multithreaded, non-current single threaded
1629 * non-current multithreaded.  Thread traversal is now safe with
1630 * the siglock held.
1631 * Strictly speaking, we donot need to take the siglock if we are current and
1632 * single threaded,  as no one else can take our signal_struct away, no one
1633 * else can  reap the  children to update signal->c* counters, and no one else
1634 * can race with the signal-> fields. If we do not take any lock, the
1635 * signal-> fields could be read out of order while another thread was just
1636 * exiting. So we should  place a read memory barrier when we avoid the lock.
1637 * On the writer side,  write memory barrier is implied in  __exit_signal
1638 * as __exit_signal releases  the siglock spinlock after updating the signal->
1639 * fields. But we don't do this yet to keep things simple.
1640 *
1641 */
1642
1643static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1644{
1645        r->ru_nvcsw += t->nvcsw;
1646        r->ru_nivcsw += t->nivcsw;
1647        r->ru_minflt += t->min_flt;
1648        r->ru_majflt += t->maj_flt;
1649        r->ru_inblock += task_io_get_inblock(t);
1650        r->ru_oublock += task_io_get_oublock(t);
1651}
1652
1653void getrusage(struct task_struct *p, int who, struct rusage *r)
1654{
1655        struct task_struct *t;
1656        unsigned long flags;
1657        u64 tgutime, tgstime, utime, stime;
1658        unsigned long maxrss = 0;
1659
1660        memset((char *)r, 0, sizeof (*r));
1661        utime = stime = 0;
1662
1663        if (who == RUSAGE_THREAD) {
1664                task_cputime_adjusted(current, &utime, &stime);
1665                accumulate_thread_rusage(p, r);
1666                maxrss = p->signal->maxrss;
1667                goto out;
1668        }
1669
1670        if (!lock_task_sighand(p, &flags))
1671                return;
1672
1673        switch (who) {
1674        case RUSAGE_BOTH:
1675        case RUSAGE_CHILDREN:
1676                utime = p->signal->cutime;
1677                stime = p->signal->cstime;
1678                r->ru_nvcsw = p->signal->cnvcsw;
1679                r->ru_nivcsw = p->signal->cnivcsw;
1680                r->ru_minflt = p->signal->cmin_flt;
1681                r->ru_majflt = p->signal->cmaj_flt;
1682                r->ru_inblock = p->signal->cinblock;
1683                r->ru_oublock = p->signal->coublock;
1684                maxrss = p->signal->cmaxrss;
1685
1686                if (who == RUSAGE_CHILDREN)
1687                        break;
1688
1689        case RUSAGE_SELF:
1690                thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1691                utime += tgutime;
1692                stime += tgstime;
1693                r->ru_nvcsw += p->signal->nvcsw;
1694                r->ru_nivcsw += p->signal->nivcsw;
1695                r->ru_minflt += p->signal->min_flt;
1696                r->ru_majflt += p->signal->maj_flt;
1697                r->ru_inblock += p->signal->inblock;
1698                r->ru_oublock += p->signal->oublock;
1699                if (maxrss < p->signal->maxrss)
1700                        maxrss = p->signal->maxrss;
1701                t = p;
1702                do {
1703                        accumulate_thread_rusage(t, r);
1704                } while_each_thread(p, t);
1705                break;
1706
1707        default:
1708                BUG();
1709        }
1710        unlock_task_sighand(p, &flags);
1711
1712out:
1713        r->ru_utime = ns_to_timeval(utime);
1714        r->ru_stime = ns_to_timeval(stime);
1715
1716        if (who != RUSAGE_CHILDREN) {
1717                struct mm_struct *mm = get_task_mm(p);
1718
1719                if (mm) {
1720                        setmax_mm_hiwater_rss(&maxrss, mm);
1721                        mmput(mm);
1722                }
1723        }
1724        r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1725}
1726
1727SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1728{
1729        struct rusage r;
1730
1731        if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1732            who != RUSAGE_THREAD)
1733                return -EINVAL;
1734
1735        getrusage(current, who, &r);
1736        return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1737}
1738
1739#ifdef CONFIG_COMPAT
1740COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1741{
1742        struct rusage r;
1743
1744        if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1745            who != RUSAGE_THREAD)
1746                return -EINVAL;
1747
1748        getrusage(current, who, &r);
1749        return put_compat_rusage(&r, ru);
1750}
1751#endif
1752
1753SYSCALL_DEFINE1(umask, int, mask)
1754{
1755        mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1756        return mask;
1757}
1758
1759static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1760{
1761        struct fd exe;
1762        struct file *old_exe, *exe_file;
1763        struct inode *inode;
1764        int err;
1765
1766        exe = fdget(fd);
1767        if (!exe.file)
1768                return -EBADF;
1769
1770        inode = file_inode(exe.file);
1771
1772        /*
1773         * Because the original mm->exe_file points to executable file, make
1774         * sure that this one is executable as well, to avoid breaking an
1775         * overall picture.
1776         */
1777        err = -EACCES;
1778        if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1779                goto exit;
1780
1781        err = inode_permission(inode, MAY_EXEC);
1782        if (err)
1783                goto exit;
1784
1785        /*
1786         * Forbid mm->exe_file change if old file still mapped.
1787         */
1788        exe_file = get_mm_exe_file(mm);
1789        err = -EBUSY;
1790        if (exe_file) {
1791                struct vm_area_struct *vma;
1792
1793                down_read(&mm->mmap_sem);
1794                for (vma = mm->mmap; vma; vma = vma->vm_next) {
1795                        if (!vma->vm_file)
1796                                continue;
1797                        if (path_equal(&vma->vm_file->f_path,
1798                                       &exe_file->f_path))
1799                                goto exit_err;
1800                }
1801
1802                up_read(&mm->mmap_sem);
1803                fput(exe_file);
1804        }
1805
1806        err = 0;
1807        /* set the new file, lockless */
1808        get_file(exe.file);
1809        old_exe = xchg(&mm->exe_file, exe.file);
1810        if (old_exe)
1811                fput(old_exe);
1812exit:
1813        fdput(exe);
1814        return err;
1815exit_err:
1816        up_read(&mm->mmap_sem);
1817        fput(exe_file);
1818        goto exit;
1819}
1820
1821/*
1822 * WARNING: we don't require any capability here so be very careful
1823 * in what is allowed for modification from userspace.
1824 */
1825static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1826{
1827        unsigned long mmap_max_addr = TASK_SIZE;
1828        struct mm_struct *mm = current->mm;
1829        int error = -EINVAL, i;
1830
1831        static const unsigned char offsets[] = {
1832                offsetof(struct prctl_mm_map, start_code),
1833                offsetof(struct prctl_mm_map, end_code),
1834                offsetof(struct prctl_mm_map, start_data),
1835                offsetof(struct prctl_mm_map, end_data),
1836                offsetof(struct prctl_mm_map, start_brk),
1837                offsetof(struct prctl_mm_map, brk),
1838                offsetof(struct prctl_mm_map, start_stack),
1839                offsetof(struct prctl_mm_map, arg_start),
1840                offsetof(struct prctl_mm_map, arg_end),
1841                offsetof(struct prctl_mm_map, env_start),
1842                offsetof(struct prctl_mm_map, env_end),
1843        };
1844
1845        /*
1846         * Make sure the members are not somewhere outside
1847         * of allowed address space.
1848         */
1849        for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1850                u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1851
1852                if ((unsigned long)val >= mmap_max_addr ||
1853                    (unsigned long)val < mmap_min_addr)
1854                        goto out;
1855        }
1856
1857        /*
1858         * Make sure the pairs are ordered.
1859         */
1860#define __prctl_check_order(__m1, __op, __m2)                           \
1861        ((unsigned long)prctl_map->__m1 __op                            \
1862         (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1863        error  = __prctl_check_order(start_code, <, end_code);
1864        error |= __prctl_check_order(start_data, <, end_data);
1865        error |= __prctl_check_order(start_brk, <=, brk);
1866        error |= __prctl_check_order(arg_start, <=, arg_end);
1867        error |= __prctl_check_order(env_start, <=, env_end);
1868        if (error)
1869                goto out;
1870#undef __prctl_check_order
1871
1872        error = -EINVAL;
1873
1874        /*
1875         * @brk should be after @end_data in traditional maps.
1876         */
1877        if (prctl_map->start_brk <= prctl_map->end_data ||
1878            prctl_map->brk <= prctl_map->end_data)
1879                goto out;
1880
1881        /*
1882         * Neither we should allow to override limits if they set.
1883         */
1884        if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1885                              prctl_map->start_brk, prctl_map->end_data,
1886                              prctl_map->start_data))
1887                        goto out;
1888
1889        /*
1890         * Someone is trying to cheat the auxv vector.
1891         */
1892        if (prctl_map->auxv_size) {
1893                if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1894                        goto out;
1895        }
1896
1897        /*
1898         * Finally, make sure the caller has the rights to
1899         * change /proc/pid/exe link: only local root should
1900         * be allowed to.
1901         */
1902        if (prctl_map->exe_fd != (u32)-1) {
1903                struct user_namespace *ns = current_user_ns();
1904                const struct cred *cred = current_cred();
1905
1906                if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1907                    !gid_eq(cred->gid, make_kgid(ns, 0)))
1908                        goto out;
1909        }
1910
1911        error = 0;
1912out:
1913        return error;
1914}
1915
1916#ifdef CONFIG_CHECKPOINT_RESTORE
1917static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1918{
1919        struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1920        unsigned long user_auxv[AT_VECTOR_SIZE];
1921        struct mm_struct *mm = current->mm;
1922        int error;
1923
1924        BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1925        BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1926
1927        if (opt == PR_SET_MM_MAP_SIZE)
1928                return put_user((unsigned int)sizeof(prctl_map),
1929                                (unsigned int __user *)addr);
1930
1931        if (data_size != sizeof(prctl_map))
1932                return -EINVAL;
1933
1934        if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1935                return -EFAULT;
1936
1937        error = validate_prctl_map(&prctl_map);
1938        if (error)
1939                return error;
1940
1941        if (prctl_map.auxv_size) {
1942                memset(user_auxv, 0, sizeof(user_auxv));
1943                if (copy_from_user(user_auxv,
1944                                   (const void __user *)prctl_map.auxv,
1945                                   prctl_map.auxv_size))
1946                        return -EFAULT;
1947
1948                /* Last entry must be AT_NULL as specification requires */
1949                user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1950                user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1951        }
1952
1953        if (prctl_map.exe_fd != (u32)-1) {
1954                error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
1955                if (error)
1956                        return error;
1957        }
1958
1959        down_write(&mm->mmap_sem);
1960
1961        /*
1962         * We don't validate if these members are pointing to
1963         * real present VMAs because application may have correspond
1964         * VMAs already unmapped and kernel uses these members for statistics
1965         * output in procfs mostly, except
1966         *
1967         *  - @start_brk/@brk which are used in do_brk but kernel lookups
1968         *    for VMAs when updating these memvers so anything wrong written
1969         *    here cause kernel to swear at userspace program but won't lead
1970         *    to any problem in kernel itself
1971         */
1972
1973        mm->start_code  = prctl_map.start_code;
1974        mm->end_code    = prctl_map.end_code;
1975        mm->start_data  = prctl_map.start_data;
1976        mm->end_data    = prctl_map.end_data;
1977        mm->start_brk   = prctl_map.start_brk;
1978        mm->brk         = prctl_map.brk;
1979        mm->start_stack = prctl_map.start_stack;
1980        mm->arg_start   = prctl_map.arg_start;
1981        mm->arg_end     = prctl_map.arg_end;
1982        mm->env_start   = prctl_map.env_start;
1983        mm->env_end     = prctl_map.env_end;
1984
1985        /*
1986         * Note this update of @saved_auxv is lockless thus
1987         * if someone reads this member in procfs while we're
1988         * updating -- it may get partly updated results. It's
1989         * known and acceptable trade off: we leave it as is to
1990         * not introduce additional locks here making the kernel
1991         * more complex.
1992         */
1993        if (prctl_map.auxv_size)
1994                memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1995
1996        up_write(&mm->mmap_sem);
1997        return 0;
1998}
1999#endif /* CONFIG_CHECKPOINT_RESTORE */
2000
2001static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2002                          unsigned long len)
2003{
2004        /*
2005         * This doesn't move the auxiliary vector itself since it's pinned to
2006         * mm_struct, but it permits filling the vector with new values.  It's
2007         * up to the caller to provide sane values here, otherwise userspace
2008         * tools which use this vector might be unhappy.
2009         */
2010        unsigned long user_auxv[AT_VECTOR_SIZE];
2011
2012        if (len > sizeof(user_auxv))
2013                return -EINVAL;
2014
2015        if (copy_from_user(user_auxv, (const void __user *)addr, len))
2016                return -EFAULT;
2017
2018        /* Make sure the last entry is always AT_NULL */
2019        user_auxv[AT_VECTOR_SIZE - 2] = 0;
2020        user_auxv[AT_VECTOR_SIZE - 1] = 0;
2021
2022        BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2023
2024        task_lock(current);
2025        memcpy(mm->saved_auxv, user_auxv, len);
2026        task_unlock(current);
2027
2028        return 0;
2029}
2030
2031static int prctl_set_mm(int opt, unsigned long addr,
2032                        unsigned long arg4, unsigned long arg5)
2033{
2034        struct mm_struct *mm = current->mm;
2035        struct prctl_mm_map prctl_map;
2036        struct vm_area_struct *vma;
2037        int error;
2038
2039        if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2040                              opt != PR_SET_MM_MAP &&
2041                              opt != PR_SET_MM_MAP_SIZE)))
2042                return -EINVAL;
2043
2044#ifdef CONFIG_CHECKPOINT_RESTORE
2045        if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2046                return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2047#endif
2048
2049        if (!capable(CAP_SYS_RESOURCE))
2050                return -EPERM;
2051
2052        if (opt == PR_SET_MM_EXE_FILE)
2053                return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2054
2055        if (opt == PR_SET_MM_AUXV)
2056                return prctl_set_auxv(mm, addr, arg4);
2057
2058        if (addr >= TASK_SIZE || addr < mmap_min_addr)
2059                return -EINVAL;
2060
2061        error = -EINVAL;
2062
2063        down_write(&mm->mmap_sem);
2064        vma = find_vma(mm, addr);
2065
2066        prctl_map.start_code    = mm->start_code;
2067        prctl_map.end_code      = mm->end_code;
2068        prctl_map.start_data    = mm->start_data;
2069        prctl_map.end_data      = mm->end_data;
2070        prctl_map.start_brk     = mm->start_brk;
2071        prctl_map.brk           = mm->brk;
2072        prctl_map.start_stack   = mm->start_stack;
2073        prctl_map.arg_start     = mm->arg_start;
2074        prctl_map.arg_end       = mm->arg_end;
2075        prctl_map.env_start     = mm->env_start;
2076        prctl_map.env_end       = mm->env_end;
2077        prctl_map.auxv          = NULL;
2078        prctl_map.auxv_size     = 0;
2079        prctl_map.exe_fd        = -1;
2080
2081        switch (opt) {
2082        case PR_SET_MM_START_CODE:
2083                prctl_map.start_code = addr;
2084                break;
2085        case PR_SET_MM_END_CODE:
2086                prctl_map.end_code = addr;
2087                break;
2088        case PR_SET_MM_START_DATA:
2089                prctl_map.start_data = addr;
2090                break;
2091        case PR_SET_MM_END_DATA:
2092                prctl_map.end_data = addr;
2093                break;
2094        case PR_SET_MM_START_STACK:
2095                prctl_map.start_stack = addr;
2096                break;
2097        case PR_SET_MM_START_BRK:
2098                prctl_map.start_brk = addr;
2099                break;
2100        case PR_SET_MM_BRK:
2101                prctl_map.brk = addr;
2102                break;
2103        case PR_SET_MM_ARG_START:
2104                prctl_map.arg_start = addr;
2105                break;
2106        case PR_SET_MM_ARG_END:
2107                prctl_map.arg_end = addr;
2108                break;
2109        case PR_SET_MM_ENV_START:
2110                prctl_map.env_start = addr;
2111                break;
2112        case PR_SET_MM_ENV_END:
2113                prctl_map.env_end = addr;
2114                break;
2115        default:
2116                goto out;
2117        }
2118
2119        error = validate_prctl_map(&prctl_map);
2120        if (error)
2121                goto out;
2122
2123        switch (opt) {
2124        /*
2125         * If command line arguments and environment
2126         * are placed somewhere else on stack, we can
2127         * set them up here, ARG_START/END to setup
2128         * command line argumets and ENV_START/END
2129         * for environment.
2130         */
2131        case PR_SET_MM_START_STACK:
2132        case PR_SET_MM_ARG_START:
2133        case PR_SET_MM_ARG_END:
2134        case PR_SET_MM_ENV_START:
2135        case PR_SET_MM_ENV_END:
2136                if (!vma) {
2137                        error = -EFAULT;
2138                        goto out;
2139                }
2140        }
2141
2142        mm->start_code  = prctl_map.start_code;
2143        mm->end_code    = prctl_map.end_code;
2144        mm->start_data  = prctl_map.start_data;
2145        mm->end_data    = prctl_map.end_data;
2146        mm->start_brk   = prctl_map.start_brk;
2147        mm->brk         = prctl_map.brk;
2148        mm->start_stack = prctl_map.start_stack;
2149        mm->arg_start   = prctl_map.arg_start;
2150        mm->arg_end     = prctl_map.arg_end;
2151        mm->env_start   = prctl_map.env_start;
2152        mm->env_end     = prctl_map.env_end;
2153
2154        error = 0;
2155out:
2156        up_write(&mm->mmap_sem);
2157        return error;
2158}
2159
2160#ifdef CONFIG_CHECKPOINT_RESTORE
2161static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2162{
2163        return put_user(me->clear_child_tid, tid_addr);
2164}
2165#else
2166static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2167{
2168        return -EINVAL;
2169}
2170#endif
2171
2172static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2173{
2174        /*
2175         * If task has has_child_subreaper - all its decendants
2176         * already have these flag too and new decendants will
2177         * inherit it on fork, skip them.
2178         *
2179         * If we've found child_reaper - skip descendants in
2180         * it's subtree as they will never get out pidns.
2181         */
2182        if (p->signal->has_child_subreaper ||
2183            is_child_reaper(task_pid(p)))
2184                return 0;
2185
2186        p->signal->has_child_subreaper = 1;
2187        return 1;
2188}
2189
2190SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2191                unsigned long, arg4, unsigned long, arg5)
2192{
2193        struct task_struct *me = current;
2194        unsigned char comm[sizeof(me->comm)];
2195        long error;
2196
2197        error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2198        if (error != -ENOSYS)
2199                return error;
2200
2201        error = 0;
2202        switch (option) {
2203        case PR_SET_PDEATHSIG:
2204                if (!valid_signal(arg2)) {
2205                        error = -EINVAL;
2206                        break;
2207                }
2208                me->pdeath_signal = arg2;
2209                break;
2210        case PR_GET_PDEATHSIG:
2211                error = put_user(me->pdeath_signal, (int __user *)arg2);
2212                break;
2213        case PR_GET_DUMPABLE:
2214                error = get_dumpable(me->mm);
2215                break;
2216        case PR_SET_DUMPABLE:
2217                if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2218                        error = -EINVAL;
2219                        break;
2220                }
2221                set_dumpable(me->mm, arg2);
2222                break;
2223
2224        case PR_SET_UNALIGN:
2225                error = SET_UNALIGN_CTL(me, arg2);
2226                break;
2227        case PR_GET_UNALIGN:
2228                error = GET_UNALIGN_CTL(me, arg2);
2229                break;
2230        case PR_SET_FPEMU:
2231                error = SET_FPEMU_CTL(me, arg2);
2232                break;
2233        case PR_GET_FPEMU:
2234                error = GET_FPEMU_CTL(me, arg2);
2235                break;
2236        case PR_SET_FPEXC:
2237                error = SET_FPEXC_CTL(me, arg2);
2238                break;
2239        case PR_GET_FPEXC:
2240                error = GET_FPEXC_CTL(me, arg2);
2241                break;
2242        case PR_GET_TIMING:
2243                error = PR_TIMING_STATISTICAL;
2244                break;
2245        case PR_SET_TIMING:
2246                if (arg2 != PR_TIMING_STATISTICAL)
2247                        error = -EINVAL;
2248                break;
2249        case PR_SET_NAME:
2250                comm[sizeof(me->comm) - 1] = 0;
2251                if (strncpy_from_user(comm, (char __user *)arg2,
2252                                      sizeof(me->comm) - 1) < 0)
2253                        return -EFAULT;
2254                set_task_comm(me, comm);
2255                proc_comm_connector(me);
2256                break;
2257        case PR_GET_NAME:
2258                get_task_comm(comm, me);
2259                if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2260                        return -EFAULT;
2261                break;
2262        case PR_GET_ENDIAN:
2263                error = GET_ENDIAN(me, arg2);
2264                break;
2265        case PR_SET_ENDIAN:
2266                error = SET_ENDIAN(me, arg2);
2267                break;
2268        case PR_GET_SECCOMP:
2269                error = prctl_get_seccomp();
2270                break;
2271        case PR_SET_SECCOMP:
2272                error = prctl_set_seccomp(arg2, (char __user *)arg3);
2273                break;
2274        case PR_GET_TSC:
2275                error = GET_TSC_CTL(arg2);
2276                break;
2277        case PR_SET_TSC:
2278                error = SET_TSC_CTL(arg2);
2279                break;
2280        case PR_TASK_PERF_EVENTS_DISABLE:
2281                error = perf_event_task_disable();
2282                break;
2283        case PR_TASK_PERF_EVENTS_ENABLE:
2284                error = perf_event_task_enable();
2285                break;
2286        case PR_GET_TIMERSLACK:
2287                if (current->timer_slack_ns > ULONG_MAX)
2288                        error = ULONG_MAX;
2289                else
2290                        error = current->timer_slack_ns;
2291                break;
2292        case PR_SET_TIMERSLACK:
2293                if (arg2 <= 0)
2294                        current->timer_slack_ns =
2295                                        current->default_timer_slack_ns;
2296                else
2297                        current->timer_slack_ns = arg2;
2298                break;
2299        case PR_MCE_KILL:
2300                if (arg4 | arg5)
2301                        return -EINVAL;
2302                switch (arg2) {
2303                case PR_MCE_KILL_CLEAR:
2304                        if (arg3 != 0)
2305                                return -EINVAL;
2306                        current->flags &= ~PF_MCE_PROCESS;
2307                        break;
2308                case PR_MCE_KILL_SET:
2309                        current->flags |= PF_MCE_PROCESS;
2310                        if (arg3 == PR_MCE_KILL_EARLY)
2311                                current->flags |= PF_MCE_EARLY;
2312                        else if (arg3 == PR_MCE_KILL_LATE)
2313                                current->flags &= ~PF_MCE_EARLY;
2314                        else if (arg3 == PR_MCE_KILL_DEFAULT)
2315                                current->flags &=
2316                                                ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2317                        else
2318                                return -EINVAL;
2319                        break;
2320                default:
2321                        return -EINVAL;
2322                }
2323                break;
2324        case PR_MCE_KILL_GET:
2325                if (arg2 | arg3 | arg4 | arg5)
2326                        return -EINVAL;
2327                if (current->flags & PF_MCE_PROCESS)
2328                        error = (current->flags & PF_MCE_EARLY) ?
2329                                PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2330                else
2331                        error = PR_MCE_KILL_DEFAULT;
2332                break;
2333        case PR_SET_MM:
2334                error = prctl_set_mm(arg2, arg3, arg4, arg5);
2335                break;
2336        case PR_GET_TID_ADDRESS:
2337                error = prctl_get_tid_address(me, (int __user **)arg2);
2338                break;
2339        case PR_SET_CHILD_SUBREAPER:
2340                me->signal->is_child_subreaper = !!arg2;
2341                if (!arg2)
2342                        break;
2343
2344                walk_process_tree(me, propagate_has_child_subreaper, NULL);
2345                break;
2346        case PR_GET_CHILD_SUBREAPER:
2347                error = put_user(me->signal->is_child_subreaper,
2348                                 (int __user *)arg2);
2349                break;
2350        case PR_SET_NO_NEW_PRIVS:
2351                if (arg2 != 1 || arg3 || arg4 || arg5)
2352                        return -EINVAL;
2353
2354                task_set_no_new_privs(current);
2355                break;
2356        case PR_GET_NO_NEW_PRIVS:
2357                if (arg2 || arg3 || arg4 || arg5)
2358                        return -EINVAL;
2359                return task_no_new_privs(current) ? 1 : 0;
2360        case PR_GET_THP_DISABLE:
2361                if (arg2 || arg3 || arg4 || arg5)
2362                        return -EINVAL;
2363                error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2364                break;
2365        case PR_SET_THP_DISABLE:
2366                if (arg3 || arg4 || arg5)
2367                        return -EINVAL;
2368                if (down_write_killable(&me->mm->mmap_sem))
2369                        return -EINTR;
2370                if (arg2)
2371                        set_bit(MMF_DISABLE_THP, &me->mm->flags);
2372                else
2373                        clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2374                up_write(&me->mm->mmap_sem);
2375                break;
2376        case PR_MPX_ENABLE_MANAGEMENT:
2377                if (arg2 || arg3 || arg4 || arg5)
2378                        return -EINVAL;
2379                error = MPX_ENABLE_MANAGEMENT();
2380                break;
2381        case PR_MPX_DISABLE_MANAGEMENT:
2382                if (arg2 || arg3 || arg4 || arg5)
2383                        return -EINVAL;
2384                error = MPX_DISABLE_MANAGEMENT();
2385                break;
2386        case PR_SET_FP_MODE:
2387                error = SET_FP_MODE(me, arg2);
2388                break;
2389        case PR_GET_FP_MODE:
2390                error = GET_FP_MODE(me);
2391                break;
2392        default:
2393                error = -EINVAL;
2394                break;
2395        }
2396        return error;
2397}
2398
2399SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2400                struct getcpu_cache __user *, unused)
2401{
2402        int err = 0;
2403        int cpu = raw_smp_processor_id();
2404
2405        if (cpup)
2406                err |= put_user(cpu, cpup);
2407        if (nodep)
2408                err |= put_user(cpu_to_node(cpu), nodep);
2409        return err ? -EFAULT : 0;
2410}
2411
2412/**
2413 * do_sysinfo - fill in sysinfo struct
2414 * @info: pointer to buffer to fill
2415 */
2416static int do_sysinfo(struct sysinfo *info)
2417{
2418        unsigned long mem_total, sav_total;
2419        unsigned int mem_unit, bitcount;
2420        struct timespec tp;
2421
2422        memset(info, 0, sizeof(struct sysinfo));
2423
2424        get_monotonic_boottime(&tp);
2425        info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2426
2427        get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2428
2429        info->procs = nr_threads;
2430
2431        si_meminfo(info);
2432        si_swapinfo(info);
2433
2434        /*
2435         * If the sum of all the available memory (i.e. ram + swap)
2436         * is less than can be stored in a 32 bit unsigned long then
2437         * we can be binary compatible with 2.2.x kernels.  If not,
2438         * well, in that case 2.2.x was broken anyways...
2439         *
2440         *  -Erik Andersen <andersee@debian.org>
2441         */
2442
2443        mem_total = info->totalram + info->totalswap;
2444        if (mem_total < info->totalram || mem_total < info->totalswap)
2445                goto out;
2446        bitcount = 0;
2447        mem_unit = info->mem_unit;
2448        while (mem_unit > 1) {
2449                bitcount++;
2450                mem_unit >>= 1;
2451                sav_total = mem_total;
2452                mem_total <<= 1;
2453                if (mem_total < sav_total)
2454                        goto out;
2455        }
2456
2457        /*
2458         * If mem_total did not overflow, multiply all memory values by
2459         * info->mem_unit and set it to 1.  This leaves things compatible
2460         * with 2.2.x, and also retains compatibility with earlier 2.4.x
2461         * kernels...
2462         */
2463
2464        info->mem_unit = 1;
2465        info->totalram <<= bitcount;
2466        info->freeram <<= bitcount;
2467        info->sharedram <<= bitcount;
2468        info->bufferram <<= bitcount;
2469        info->totalswap <<= bitcount;
2470        info->freeswap <<= bitcount;
2471        info->totalhigh <<= bitcount;
2472        info->freehigh <<= bitcount;
2473
2474out:
2475        return 0;
2476}
2477
2478SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2479{
2480        struct sysinfo val;
2481
2482        do_sysinfo(&val);
2483
2484        if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2485                return -EFAULT;
2486
2487        return 0;
2488}
2489
2490#ifdef CONFIG_COMPAT
2491struct compat_sysinfo {
2492        s32 uptime;
2493        u32 loads[3];
2494        u32 totalram;
2495        u32 freeram;
2496        u32 sharedram;
2497        u32 bufferram;
2498        u32 totalswap;
2499        u32 freeswap;
2500        u16 procs;
2501        u16 pad;
2502        u32 totalhigh;
2503        u32 freehigh;
2504        u32 mem_unit;
2505        char _f[20-2*sizeof(u32)-sizeof(int)];
2506};
2507
2508COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2509{
2510        struct sysinfo s;
2511
2512        do_sysinfo(&s);
2513
2514        /* Check to see if any memory value is too large for 32-bit and scale
2515         *  down if needed
2516         */
2517        if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2518                int bitcount = 0;
2519
2520                while (s.mem_unit < PAGE_SIZE) {
2521                        s.mem_unit <<= 1;
2522                        bitcount++;
2523                }
2524
2525                s.totalram >>= bitcount;
2526                s.freeram >>= bitcount;
2527                s.sharedram >>= bitcount;
2528                s.bufferram >>= bitcount;
2529                s.totalswap >>= bitcount;
2530                s.freeswap >>= bitcount;
2531                s.totalhigh >>= bitcount;
2532                s.freehigh >>= bitcount;
2533        }
2534
2535        if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2536            __put_user(s.uptime, &info->uptime) ||
2537            __put_user(s.loads[0], &info->loads[0]) ||
2538            __put_user(s.loads[1], &info->loads[1]) ||
2539            __put_user(s.loads[2], &info->loads[2]) ||
2540            __put_user(s.totalram, &info->totalram) ||
2541            __put_user(s.freeram, &info->freeram) ||
2542            __put_user(s.sharedram, &info->sharedram) ||
2543            __put_user(s.bufferram, &info->bufferram) ||
2544            __put_user(s.totalswap, &info->totalswap) ||
2545            __put_user(s.freeswap, &info->freeswap) ||
2546            __put_user(s.procs, &info->procs) ||
2547            __put_user(s.totalhigh, &info->totalhigh) ||
2548            __put_user(s.freehigh, &info->freehigh) ||
2549            __put_user(s.mem_unit, &info->mem_unit))
2550                return -EFAULT;
2551
2552        return 0;
2553}
2554#endif /* CONFIG_COMPAT */
2555