linux/kernel/time/posix-cpu-timers.c
<<
>>
Prefs
   1/*
   2 * Implement CPU time clocks for the POSIX clock interface.
   3 */
   4
   5#include <linux/sched/signal.h>
   6#include <linux/sched/cputime.h>
   7#include <linux/posix-timers.h>
   8#include <linux/errno.h>
   9#include <linux/math64.h>
  10#include <linux/uaccess.h>
  11#include <linux/kernel_stat.h>
  12#include <trace/events/timer.h>
  13#include <linux/tick.h>
  14#include <linux/workqueue.h>
  15#include <linux/compat.h>
  16
  17#include "posix-timers.h"
  18
  19static void posix_cpu_timer_rearm(struct k_itimer *timer);
  20
  21/*
  22 * Called after updating RLIMIT_CPU to run cpu timer and update
  23 * tsk->signal->cputime_expires expiration cache if necessary. Needs
  24 * siglock protection since other code may update expiration cache as
  25 * well.
  26 */
  27void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
  28{
  29        u64 nsecs = rlim_new * NSEC_PER_SEC;
  30
  31        spin_lock_irq(&task->sighand->siglock);
  32        set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
  33        spin_unlock_irq(&task->sighand->siglock);
  34}
  35
  36static int check_clock(const clockid_t which_clock)
  37{
  38        int error = 0;
  39        struct task_struct *p;
  40        const pid_t pid = CPUCLOCK_PID(which_clock);
  41
  42        if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
  43                return -EINVAL;
  44
  45        if (pid == 0)
  46                return 0;
  47
  48        rcu_read_lock();
  49        p = find_task_by_vpid(pid);
  50        if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
  51                   same_thread_group(p, current) : has_group_leader_pid(p))) {
  52                error = -EINVAL;
  53        }
  54        rcu_read_unlock();
  55
  56        return error;
  57}
  58
  59/*
  60 * Update expiry time from increment, and increase overrun count,
  61 * given the current clock sample.
  62 */
  63static void bump_cpu_timer(struct k_itimer *timer, u64 now)
  64{
  65        int i;
  66        u64 delta, incr;
  67
  68        if (timer->it.cpu.incr == 0)
  69                return;
  70
  71        if (now < timer->it.cpu.expires)
  72                return;
  73
  74        incr = timer->it.cpu.incr;
  75        delta = now + incr - timer->it.cpu.expires;
  76
  77        /* Don't use (incr*2 < delta), incr*2 might overflow. */
  78        for (i = 0; incr < delta - incr; i++)
  79                incr = incr << 1;
  80
  81        for (; i >= 0; incr >>= 1, i--) {
  82                if (delta < incr)
  83                        continue;
  84
  85                timer->it.cpu.expires += incr;
  86                timer->it_overrun += 1 << i;
  87                delta -= incr;
  88        }
  89}
  90
  91/**
  92 * task_cputime_zero - Check a task_cputime struct for all zero fields.
  93 *
  94 * @cputime:    The struct to compare.
  95 *
  96 * Checks @cputime to see if all fields are zero.  Returns true if all fields
  97 * are zero, false if any field is nonzero.
  98 */
  99static inline int task_cputime_zero(const struct task_cputime *cputime)
 100{
 101        if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
 102                return 1;
 103        return 0;
 104}
 105
 106static inline u64 prof_ticks(struct task_struct *p)
 107{
 108        u64 utime, stime;
 109
 110        task_cputime(p, &utime, &stime);
 111
 112        return utime + stime;
 113}
 114static inline u64 virt_ticks(struct task_struct *p)
 115{
 116        u64 utime, stime;
 117
 118        task_cputime(p, &utime, &stime);
 119
 120        return utime;
 121}
 122
 123static int
 124posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
 125{
 126        int error = check_clock(which_clock);
 127        if (!error) {
 128                tp->tv_sec = 0;
 129                tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 130                if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 131                        /*
 132                         * If sched_clock is using a cycle counter, we
 133                         * don't have any idea of its true resolution
 134                         * exported, but it is much more than 1s/HZ.
 135                         */
 136                        tp->tv_nsec = 1;
 137                }
 138        }
 139        return error;
 140}
 141
 142static int
 143posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp)
 144{
 145        /*
 146         * You can never reset a CPU clock, but we check for other errors
 147         * in the call before failing with EPERM.
 148         */
 149        int error = check_clock(which_clock);
 150        if (error == 0) {
 151                error = -EPERM;
 152        }
 153        return error;
 154}
 155
 156
 157/*
 158 * Sample a per-thread clock for the given task.
 159 */
 160static int cpu_clock_sample(const clockid_t which_clock,
 161                            struct task_struct *p, u64 *sample)
 162{
 163        switch (CPUCLOCK_WHICH(which_clock)) {
 164        default:
 165                return -EINVAL;
 166        case CPUCLOCK_PROF:
 167                *sample = prof_ticks(p);
 168                break;
 169        case CPUCLOCK_VIRT:
 170                *sample = virt_ticks(p);
 171                break;
 172        case CPUCLOCK_SCHED:
 173                *sample = task_sched_runtime(p);
 174                break;
 175        }
 176        return 0;
 177}
 178
 179/*
 180 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
 181 * to avoid race conditions with concurrent updates to cputime.
 182 */
 183static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
 184{
 185        u64 curr_cputime;
 186retry:
 187        curr_cputime = atomic64_read(cputime);
 188        if (sum_cputime > curr_cputime) {
 189                if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
 190                        goto retry;
 191        }
 192}
 193
 194static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
 195{
 196        __update_gt_cputime(&cputime_atomic->utime, sum->utime);
 197        __update_gt_cputime(&cputime_atomic->stime, sum->stime);
 198        __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
 199}
 200
 201/* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
 202static inline void sample_cputime_atomic(struct task_cputime *times,
 203                                         struct task_cputime_atomic *atomic_times)
 204{
 205        times->utime = atomic64_read(&atomic_times->utime);
 206        times->stime = atomic64_read(&atomic_times->stime);
 207        times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
 208}
 209
 210void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
 211{
 212        struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 213        struct task_cputime sum;
 214
 215        /* Check if cputimer isn't running. This is accessed without locking. */
 216        if (!READ_ONCE(cputimer->running)) {
 217                /*
 218                 * The POSIX timer interface allows for absolute time expiry
 219                 * values through the TIMER_ABSTIME flag, therefore we have
 220                 * to synchronize the timer to the clock every time we start it.
 221                 */
 222                thread_group_cputime(tsk, &sum);
 223                update_gt_cputime(&cputimer->cputime_atomic, &sum);
 224
 225                /*
 226                 * We're setting cputimer->running without a lock. Ensure
 227                 * this only gets written to in one operation. We set
 228                 * running after update_gt_cputime() as a small optimization,
 229                 * but barriers are not required because update_gt_cputime()
 230                 * can handle concurrent updates.
 231                 */
 232                WRITE_ONCE(cputimer->running, true);
 233        }
 234        sample_cputime_atomic(times, &cputimer->cputime_atomic);
 235}
 236
 237/*
 238 * Sample a process (thread group) clock for the given group_leader task.
 239 * Must be called with task sighand lock held for safe while_each_thread()
 240 * traversal.
 241 */
 242static int cpu_clock_sample_group(const clockid_t which_clock,
 243                                  struct task_struct *p,
 244                                  u64 *sample)
 245{
 246        struct task_cputime cputime;
 247
 248        switch (CPUCLOCK_WHICH(which_clock)) {
 249        default:
 250                return -EINVAL;
 251        case CPUCLOCK_PROF:
 252                thread_group_cputime(p, &cputime);
 253                *sample = cputime.utime + cputime.stime;
 254                break;
 255        case CPUCLOCK_VIRT:
 256                thread_group_cputime(p, &cputime);
 257                *sample = cputime.utime;
 258                break;
 259        case CPUCLOCK_SCHED:
 260                thread_group_cputime(p, &cputime);
 261                *sample = cputime.sum_exec_runtime;
 262                break;
 263        }
 264        return 0;
 265}
 266
 267static int posix_cpu_clock_get_task(struct task_struct *tsk,
 268                                    const clockid_t which_clock,
 269                                    struct timespec64 *tp)
 270{
 271        int err = -EINVAL;
 272        u64 rtn;
 273
 274        if (CPUCLOCK_PERTHREAD(which_clock)) {
 275                if (same_thread_group(tsk, current))
 276                        err = cpu_clock_sample(which_clock, tsk, &rtn);
 277        } else {
 278                if (tsk == current || thread_group_leader(tsk))
 279                        err = cpu_clock_sample_group(which_clock, tsk, &rtn);
 280        }
 281
 282        if (!err)
 283                *tp = ns_to_timespec64(rtn);
 284
 285        return err;
 286}
 287
 288
 289static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
 290{
 291        const pid_t pid = CPUCLOCK_PID(which_clock);
 292        int err = -EINVAL;
 293
 294        if (pid == 0) {
 295                /*
 296                 * Special case constant value for our own clocks.
 297                 * We don't have to do any lookup to find ourselves.
 298                 */
 299                err = posix_cpu_clock_get_task(current, which_clock, tp);
 300        } else {
 301                /*
 302                 * Find the given PID, and validate that the caller
 303                 * should be able to see it.
 304                 */
 305                struct task_struct *p;
 306                rcu_read_lock();
 307                p = find_task_by_vpid(pid);
 308                if (p)
 309                        err = posix_cpu_clock_get_task(p, which_clock, tp);
 310                rcu_read_unlock();
 311        }
 312
 313        return err;
 314}
 315
 316/*
 317 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 318 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
 319 * new timer already all-zeros initialized.
 320 */
 321static int posix_cpu_timer_create(struct k_itimer *new_timer)
 322{
 323        int ret = 0;
 324        const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
 325        struct task_struct *p;
 326
 327        if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
 328                return -EINVAL;
 329
 330        new_timer->kclock = &clock_posix_cpu;
 331
 332        INIT_LIST_HEAD(&new_timer->it.cpu.entry);
 333
 334        rcu_read_lock();
 335        if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
 336                if (pid == 0) {
 337                        p = current;
 338                } else {
 339                        p = find_task_by_vpid(pid);
 340                        if (p && !same_thread_group(p, current))
 341                                p = NULL;
 342                }
 343        } else {
 344                if (pid == 0) {
 345                        p = current->group_leader;
 346                } else {
 347                        p = find_task_by_vpid(pid);
 348                        if (p && !has_group_leader_pid(p))
 349                                p = NULL;
 350                }
 351        }
 352        new_timer->it.cpu.task = p;
 353        if (p) {
 354                get_task_struct(p);
 355        } else {
 356                ret = -EINVAL;
 357        }
 358        rcu_read_unlock();
 359
 360        return ret;
 361}
 362
 363/*
 364 * Clean up a CPU-clock timer that is about to be destroyed.
 365 * This is called from timer deletion with the timer already locked.
 366 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 367 * and try again.  (This happens when the timer is in the middle of firing.)
 368 */
 369static int posix_cpu_timer_del(struct k_itimer *timer)
 370{
 371        int ret = 0;
 372        unsigned long flags;
 373        struct sighand_struct *sighand;
 374        struct task_struct *p = timer->it.cpu.task;
 375
 376        WARN_ON_ONCE(p == NULL);
 377
 378        /*
 379         * Protect against sighand release/switch in exit/exec and process/
 380         * thread timer list entry concurrent read/writes.
 381         */
 382        sighand = lock_task_sighand(p, &flags);
 383        if (unlikely(sighand == NULL)) {
 384                /*
 385                 * We raced with the reaping of the task.
 386                 * The deletion should have cleared us off the list.
 387                 */
 388                WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
 389        } else {
 390                if (timer->it.cpu.firing)
 391                        ret = TIMER_RETRY;
 392                else
 393                        list_del(&timer->it.cpu.entry);
 394
 395                unlock_task_sighand(p, &flags);
 396        }
 397
 398        if (!ret)
 399                put_task_struct(p);
 400
 401        return ret;
 402}
 403
 404static void cleanup_timers_list(struct list_head *head)
 405{
 406        struct cpu_timer_list *timer, *next;
 407
 408        list_for_each_entry_safe(timer, next, head, entry)
 409                list_del_init(&timer->entry);
 410}
 411
 412/*
 413 * Clean out CPU timers still ticking when a thread exited.  The task
 414 * pointer is cleared, and the expiry time is replaced with the residual
 415 * time for later timer_gettime calls to return.
 416 * This must be called with the siglock held.
 417 */
 418static void cleanup_timers(struct list_head *head)
 419{
 420        cleanup_timers_list(head);
 421        cleanup_timers_list(++head);
 422        cleanup_timers_list(++head);
 423}
 424
 425/*
 426 * These are both called with the siglock held, when the current thread
 427 * is being reaped.  When the final (leader) thread in the group is reaped,
 428 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 429 */
 430void posix_cpu_timers_exit(struct task_struct *tsk)
 431{
 432        cleanup_timers(tsk->cpu_timers);
 433}
 434void posix_cpu_timers_exit_group(struct task_struct *tsk)
 435{
 436        cleanup_timers(tsk->signal->cpu_timers);
 437}
 438
 439static inline int expires_gt(u64 expires, u64 new_exp)
 440{
 441        return expires == 0 || expires > new_exp;
 442}
 443
 444/*
 445 * Insert the timer on the appropriate list before any timers that
 446 * expire later.  This must be called with the sighand lock held.
 447 */
 448static void arm_timer(struct k_itimer *timer)
 449{
 450        struct task_struct *p = timer->it.cpu.task;
 451        struct list_head *head, *listpos;
 452        struct task_cputime *cputime_expires;
 453        struct cpu_timer_list *const nt = &timer->it.cpu;
 454        struct cpu_timer_list *next;
 455
 456        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 457                head = p->cpu_timers;
 458                cputime_expires = &p->cputime_expires;
 459        } else {
 460                head = p->signal->cpu_timers;
 461                cputime_expires = &p->signal->cputime_expires;
 462        }
 463        head += CPUCLOCK_WHICH(timer->it_clock);
 464
 465        listpos = head;
 466        list_for_each_entry(next, head, entry) {
 467                if (nt->expires < next->expires)
 468                        break;
 469                listpos = &next->entry;
 470        }
 471        list_add(&nt->entry, listpos);
 472
 473        if (listpos == head) {
 474                u64 exp = nt->expires;
 475
 476                /*
 477                 * We are the new earliest-expiring POSIX 1.b timer, hence
 478                 * need to update expiration cache. Take into account that
 479                 * for process timers we share expiration cache with itimers
 480                 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
 481                 */
 482
 483                switch (CPUCLOCK_WHICH(timer->it_clock)) {
 484                case CPUCLOCK_PROF:
 485                        if (expires_gt(cputime_expires->prof_exp, exp))
 486                                cputime_expires->prof_exp = exp;
 487                        break;
 488                case CPUCLOCK_VIRT:
 489                        if (expires_gt(cputime_expires->virt_exp, exp))
 490                                cputime_expires->virt_exp = exp;
 491                        break;
 492                case CPUCLOCK_SCHED:
 493                        if (expires_gt(cputime_expires->sched_exp, exp))
 494                                cputime_expires->sched_exp = exp;
 495                        break;
 496                }
 497                if (CPUCLOCK_PERTHREAD(timer->it_clock))
 498                        tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
 499                else
 500                        tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
 501        }
 502}
 503
 504/*
 505 * The timer is locked, fire it and arrange for its reload.
 506 */
 507static void cpu_timer_fire(struct k_itimer *timer)
 508{
 509        if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
 510                /*
 511                 * User don't want any signal.
 512                 */
 513                timer->it.cpu.expires = 0;
 514        } else if (unlikely(timer->sigq == NULL)) {
 515                /*
 516                 * This a special case for clock_nanosleep,
 517                 * not a normal timer from sys_timer_create.
 518                 */
 519                wake_up_process(timer->it_process);
 520                timer->it.cpu.expires = 0;
 521        } else if (timer->it.cpu.incr == 0) {
 522                /*
 523                 * One-shot timer.  Clear it as soon as it's fired.
 524                 */
 525                posix_timer_event(timer, 0);
 526                timer->it.cpu.expires = 0;
 527        } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
 528                /*
 529                 * The signal did not get queued because the signal
 530                 * was ignored, so we won't get any callback to
 531                 * reload the timer.  But we need to keep it
 532                 * ticking in case the signal is deliverable next time.
 533                 */
 534                posix_cpu_timer_rearm(timer);
 535                ++timer->it_requeue_pending;
 536        }
 537}
 538
 539/*
 540 * Sample a process (thread group) timer for the given group_leader task.
 541 * Must be called with task sighand lock held for safe while_each_thread()
 542 * traversal.
 543 */
 544static int cpu_timer_sample_group(const clockid_t which_clock,
 545                                  struct task_struct *p, u64 *sample)
 546{
 547        struct task_cputime cputime;
 548
 549        thread_group_cputimer(p, &cputime);
 550        switch (CPUCLOCK_WHICH(which_clock)) {
 551        default:
 552                return -EINVAL;
 553        case CPUCLOCK_PROF:
 554                *sample = cputime.utime + cputime.stime;
 555                break;
 556        case CPUCLOCK_VIRT:
 557                *sample = cputime.utime;
 558                break;
 559        case CPUCLOCK_SCHED:
 560                *sample = cputime.sum_exec_runtime;
 561                break;
 562        }
 563        return 0;
 564}
 565
 566/*
 567 * Guts of sys_timer_settime for CPU timers.
 568 * This is called with the timer locked and interrupts disabled.
 569 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 570 * and try again.  (This happens when the timer is in the middle of firing.)
 571 */
 572static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
 573                               struct itimerspec64 *new, struct itimerspec64 *old)
 574{
 575        unsigned long flags;
 576        struct sighand_struct *sighand;
 577        struct task_struct *p = timer->it.cpu.task;
 578        u64 old_expires, new_expires, old_incr, val;
 579        int ret;
 580
 581        WARN_ON_ONCE(p == NULL);
 582
 583        /*
 584         * Use the to_ktime conversion because that clamps the maximum
 585         * value to KTIME_MAX and avoid multiplication overflows.
 586         */
 587        new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
 588
 589        /*
 590         * Protect against sighand release/switch in exit/exec and p->cpu_timers
 591         * and p->signal->cpu_timers read/write in arm_timer()
 592         */
 593        sighand = lock_task_sighand(p, &flags);
 594        /*
 595         * If p has just been reaped, we can no
 596         * longer get any information about it at all.
 597         */
 598        if (unlikely(sighand == NULL)) {
 599                return -ESRCH;
 600        }
 601
 602        /*
 603         * Disarm any old timer after extracting its expiry time.
 604         */
 605        WARN_ON_ONCE(!irqs_disabled());
 606
 607        ret = 0;
 608        old_incr = timer->it.cpu.incr;
 609        old_expires = timer->it.cpu.expires;
 610        if (unlikely(timer->it.cpu.firing)) {
 611                timer->it.cpu.firing = -1;
 612                ret = TIMER_RETRY;
 613        } else
 614                list_del_init(&timer->it.cpu.entry);
 615
 616        /*
 617         * We need to sample the current value to convert the new
 618         * value from to relative and absolute, and to convert the
 619         * old value from absolute to relative.  To set a process
 620         * timer, we need a sample to balance the thread expiry
 621         * times (in arm_timer).  With an absolute time, we must
 622         * check if it's already passed.  In short, we need a sample.
 623         */
 624        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 625                cpu_clock_sample(timer->it_clock, p, &val);
 626        } else {
 627                cpu_timer_sample_group(timer->it_clock, p, &val);
 628        }
 629
 630        if (old) {
 631                if (old_expires == 0) {
 632                        old->it_value.tv_sec = 0;
 633                        old->it_value.tv_nsec = 0;
 634                } else {
 635                        /*
 636                         * Update the timer in case it has
 637                         * overrun already.  If it has,
 638                         * we'll report it as having overrun
 639                         * and with the next reloaded timer
 640                         * already ticking, though we are
 641                         * swallowing that pending
 642                         * notification here to install the
 643                         * new setting.
 644                         */
 645                        bump_cpu_timer(timer, val);
 646                        if (val < timer->it.cpu.expires) {
 647                                old_expires = timer->it.cpu.expires - val;
 648                                old->it_value = ns_to_timespec64(old_expires);
 649                        } else {
 650                                old->it_value.tv_nsec = 1;
 651                                old->it_value.tv_sec = 0;
 652                        }
 653                }
 654        }
 655
 656        if (unlikely(ret)) {
 657                /*
 658                 * We are colliding with the timer actually firing.
 659                 * Punt after filling in the timer's old value, and
 660                 * disable this firing since we are already reporting
 661                 * it as an overrun (thanks to bump_cpu_timer above).
 662                 */
 663                unlock_task_sighand(p, &flags);
 664                goto out;
 665        }
 666
 667        if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
 668                new_expires += val;
 669        }
 670
 671        /*
 672         * Install the new expiry time (or zero).
 673         * For a timer with no notification action, we don't actually
 674         * arm the timer (we'll just fake it for timer_gettime).
 675         */
 676        timer->it.cpu.expires = new_expires;
 677        if (new_expires != 0 && val < new_expires) {
 678                arm_timer(timer);
 679        }
 680
 681        unlock_task_sighand(p, &flags);
 682        /*
 683         * Install the new reload setting, and
 684         * set up the signal and overrun bookkeeping.
 685         */
 686        timer->it.cpu.incr = timespec64_to_ns(&new->it_interval);
 687
 688        /*
 689         * This acts as a modification timestamp for the timer,
 690         * so any automatic reload attempt will punt on seeing
 691         * that we have reset the timer manually.
 692         */
 693        timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
 694                ~REQUEUE_PENDING;
 695        timer->it_overrun_last = 0;
 696        timer->it_overrun = -1;
 697
 698        if (new_expires != 0 && !(val < new_expires)) {
 699                /*
 700                 * The designated time already passed, so we notify
 701                 * immediately, even if the thread never runs to
 702                 * accumulate more time on this clock.
 703                 */
 704                cpu_timer_fire(timer);
 705        }
 706
 707        ret = 0;
 708 out:
 709        if (old)
 710                old->it_interval = ns_to_timespec64(old_incr);
 711
 712        return ret;
 713}
 714
 715static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
 716{
 717        u64 now;
 718        struct task_struct *p = timer->it.cpu.task;
 719
 720        WARN_ON_ONCE(p == NULL);
 721
 722        /*
 723         * Easy part: convert the reload time.
 724         */
 725        itp->it_interval = ns_to_timespec64(timer->it.cpu.incr);
 726
 727        if (!timer->it.cpu.expires)
 728                return;
 729
 730        /*
 731         * Sample the clock to take the difference with the expiry time.
 732         */
 733        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 734                cpu_clock_sample(timer->it_clock, p, &now);
 735        } else {
 736                struct sighand_struct *sighand;
 737                unsigned long flags;
 738
 739                /*
 740                 * Protect against sighand release/switch in exit/exec and
 741                 * also make timer sampling safe if it ends up calling
 742                 * thread_group_cputime().
 743                 */
 744                sighand = lock_task_sighand(p, &flags);
 745                if (unlikely(sighand == NULL)) {
 746                        /*
 747                         * The process has been reaped.
 748                         * We can't even collect a sample any more.
 749                         * Call the timer disarmed, nothing else to do.
 750                         */
 751                        timer->it.cpu.expires = 0;
 752                        return;
 753                } else {
 754                        cpu_timer_sample_group(timer->it_clock, p, &now);
 755                        unlock_task_sighand(p, &flags);
 756                }
 757        }
 758
 759        if (now < timer->it.cpu.expires) {
 760                itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
 761        } else {
 762                /*
 763                 * The timer should have expired already, but the firing
 764                 * hasn't taken place yet.  Say it's just about to expire.
 765                 */
 766                itp->it_value.tv_nsec = 1;
 767                itp->it_value.tv_sec = 0;
 768        }
 769}
 770
 771static unsigned long long
 772check_timers_list(struct list_head *timers,
 773                  struct list_head *firing,
 774                  unsigned long long curr)
 775{
 776        int maxfire = 20;
 777
 778        while (!list_empty(timers)) {
 779                struct cpu_timer_list *t;
 780
 781                t = list_first_entry(timers, struct cpu_timer_list, entry);
 782
 783                if (!--maxfire || curr < t->expires)
 784                        return t->expires;
 785
 786                t->firing = 1;
 787                list_move_tail(&t->entry, firing);
 788        }
 789
 790        return 0;
 791}
 792
 793/*
 794 * Check for any per-thread CPU timers that have fired and move them off
 795 * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 796 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 797 */
 798static void check_thread_timers(struct task_struct *tsk,
 799                                struct list_head *firing)
 800{
 801        struct list_head *timers = tsk->cpu_timers;
 802        struct signal_struct *const sig = tsk->signal;
 803        struct task_cputime *tsk_expires = &tsk->cputime_expires;
 804        u64 expires;
 805        unsigned long soft;
 806
 807        /*
 808         * If cputime_expires is zero, then there are no active
 809         * per thread CPU timers.
 810         */
 811        if (task_cputime_zero(&tsk->cputime_expires))
 812                return;
 813
 814        expires = check_timers_list(timers, firing, prof_ticks(tsk));
 815        tsk_expires->prof_exp = expires;
 816
 817        expires = check_timers_list(++timers, firing, virt_ticks(tsk));
 818        tsk_expires->virt_exp = expires;
 819
 820        tsk_expires->sched_exp = check_timers_list(++timers, firing,
 821                                                   tsk->se.sum_exec_runtime);
 822
 823        /*
 824         * Check for the special case thread timers.
 825         */
 826        soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
 827        if (soft != RLIM_INFINITY) {
 828                unsigned long hard =
 829                        READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
 830
 831                if (hard != RLIM_INFINITY &&
 832                    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
 833                        /*
 834                         * At the hard limit, we just die.
 835                         * No need to calculate anything else now.
 836                         */
 837                        if (print_fatal_signals) {
 838                                pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
 839                                        tsk->comm, task_pid_nr(tsk));
 840                        }
 841                        __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 842                        return;
 843                }
 844                if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
 845                        /*
 846                         * At the soft limit, send a SIGXCPU every second.
 847                         */
 848                        if (soft < hard) {
 849                                soft += USEC_PER_SEC;
 850                                sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
 851                        }
 852                        if (print_fatal_signals) {
 853                                pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
 854                                        tsk->comm, task_pid_nr(tsk));
 855                        }
 856                        __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 857                }
 858        }
 859        if (task_cputime_zero(tsk_expires))
 860                tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
 861}
 862
 863static inline void stop_process_timers(struct signal_struct *sig)
 864{
 865        struct thread_group_cputimer *cputimer = &sig->cputimer;
 866
 867        /* Turn off cputimer->running. This is done without locking. */
 868        WRITE_ONCE(cputimer->running, false);
 869        tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
 870}
 871
 872static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
 873                             u64 *expires, u64 cur_time, int signo)
 874{
 875        if (!it->expires)
 876                return;
 877
 878        if (cur_time >= it->expires) {
 879                if (it->incr)
 880                        it->expires += it->incr;
 881                else
 882                        it->expires = 0;
 883
 884                trace_itimer_expire(signo == SIGPROF ?
 885                                    ITIMER_PROF : ITIMER_VIRTUAL,
 886                                    tsk->signal->leader_pid, cur_time);
 887                __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
 888        }
 889
 890        if (it->expires && (!*expires || it->expires < *expires))
 891                *expires = it->expires;
 892}
 893
 894/*
 895 * Check for any per-thread CPU timers that have fired and move them
 896 * off the tsk->*_timers list onto the firing list.  Per-thread timers
 897 * have already been taken off.
 898 */
 899static void check_process_timers(struct task_struct *tsk,
 900                                 struct list_head *firing)
 901{
 902        struct signal_struct *const sig = tsk->signal;
 903        u64 utime, ptime, virt_expires, prof_expires;
 904        u64 sum_sched_runtime, sched_expires;
 905        struct list_head *timers = sig->cpu_timers;
 906        struct task_cputime cputime;
 907        unsigned long soft;
 908
 909        /*
 910         * If cputimer is not running, then there are no active
 911         * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
 912         */
 913        if (!READ_ONCE(tsk->signal->cputimer.running))
 914                return;
 915
 916        /*
 917         * Signify that a thread is checking for process timers.
 918         * Write access to this field is protected by the sighand lock.
 919         */
 920        sig->cputimer.checking_timer = true;
 921
 922        /*
 923         * Collect the current process totals.
 924         */
 925        thread_group_cputimer(tsk, &cputime);
 926        utime = cputime.utime;
 927        ptime = utime + cputime.stime;
 928        sum_sched_runtime = cputime.sum_exec_runtime;
 929
 930        prof_expires = check_timers_list(timers, firing, ptime);
 931        virt_expires = check_timers_list(++timers, firing, utime);
 932        sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
 933
 934        /*
 935         * Check for the special case process timers.
 936         */
 937        check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
 938                         SIGPROF);
 939        check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
 940                         SIGVTALRM);
 941        soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
 942        if (soft != RLIM_INFINITY) {
 943                unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
 944                unsigned long hard =
 945                        READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
 946                u64 x;
 947                if (psecs >= hard) {
 948                        /*
 949                         * At the hard limit, we just die.
 950                         * No need to calculate anything else now.
 951                         */
 952                        if (print_fatal_signals) {
 953                                pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
 954                                        tsk->comm, task_pid_nr(tsk));
 955                        }
 956                        __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 957                        return;
 958                }
 959                if (psecs >= soft) {
 960                        /*
 961                         * At the soft limit, send a SIGXCPU every second.
 962                         */
 963                        if (print_fatal_signals) {
 964                                pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
 965                                        tsk->comm, task_pid_nr(tsk));
 966                        }
 967                        __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 968                        if (soft < hard) {
 969                                soft++;
 970                                sig->rlim[RLIMIT_CPU].rlim_cur = soft;
 971                        }
 972                }
 973                x = soft * NSEC_PER_SEC;
 974                if (!prof_expires || x < prof_expires)
 975                        prof_expires = x;
 976        }
 977
 978        sig->cputime_expires.prof_exp = prof_expires;
 979        sig->cputime_expires.virt_exp = virt_expires;
 980        sig->cputime_expires.sched_exp = sched_expires;
 981        if (task_cputime_zero(&sig->cputime_expires))
 982                stop_process_timers(sig);
 983
 984        sig->cputimer.checking_timer = false;
 985}
 986
 987/*
 988 * This is called from the signal code (via posixtimer_rearm)
 989 * when the last timer signal was delivered and we have to reload the timer.
 990 */
 991static void posix_cpu_timer_rearm(struct k_itimer *timer)
 992{
 993        struct sighand_struct *sighand;
 994        unsigned long flags;
 995        struct task_struct *p = timer->it.cpu.task;
 996        u64 now;
 997
 998        WARN_ON_ONCE(p == NULL);
 999
1000        /*
1001         * Fetch the current sample and update the timer's expiry time.
1002         */
1003        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1004                cpu_clock_sample(timer->it_clock, p, &now);
1005                bump_cpu_timer(timer, now);
1006                if (unlikely(p->exit_state))
1007                        return;
1008
1009                /* Protect timer list r/w in arm_timer() */
1010                sighand = lock_task_sighand(p, &flags);
1011                if (!sighand)
1012                        return;
1013        } else {
1014                /*
1015                 * Protect arm_timer() and timer sampling in case of call to
1016                 * thread_group_cputime().
1017                 */
1018                sighand = lock_task_sighand(p, &flags);
1019                if (unlikely(sighand == NULL)) {
1020                        /*
1021                         * The process has been reaped.
1022                         * We can't even collect a sample any more.
1023                         */
1024                        timer->it.cpu.expires = 0;
1025                        return;
1026                } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1027                        /* If the process is dying, no need to rearm */
1028                        goto unlock;
1029                }
1030                cpu_timer_sample_group(timer->it_clock, p, &now);
1031                bump_cpu_timer(timer, now);
1032                /* Leave the sighand locked for the call below.  */
1033        }
1034
1035        /*
1036         * Now re-arm for the new expiry time.
1037         */
1038        WARN_ON_ONCE(!irqs_disabled());
1039        arm_timer(timer);
1040unlock:
1041        unlock_task_sighand(p, &flags);
1042}
1043
1044/**
1045 * task_cputime_expired - Compare two task_cputime entities.
1046 *
1047 * @sample:     The task_cputime structure to be checked for expiration.
1048 * @expires:    Expiration times, against which @sample will be checked.
1049 *
1050 * Checks @sample against @expires to see if any field of @sample has expired.
1051 * Returns true if any field of the former is greater than the corresponding
1052 * field of the latter if the latter field is set.  Otherwise returns false.
1053 */
1054static inline int task_cputime_expired(const struct task_cputime *sample,
1055                                        const struct task_cputime *expires)
1056{
1057        if (expires->utime && sample->utime >= expires->utime)
1058                return 1;
1059        if (expires->stime && sample->utime + sample->stime >= expires->stime)
1060                return 1;
1061        if (expires->sum_exec_runtime != 0 &&
1062            sample->sum_exec_runtime >= expires->sum_exec_runtime)
1063                return 1;
1064        return 0;
1065}
1066
1067/**
1068 * fastpath_timer_check - POSIX CPU timers fast path.
1069 *
1070 * @tsk:        The task (thread) being checked.
1071 *
1072 * Check the task and thread group timers.  If both are zero (there are no
1073 * timers set) return false.  Otherwise snapshot the task and thread group
1074 * timers and compare them with the corresponding expiration times.  Return
1075 * true if a timer has expired, else return false.
1076 */
1077static inline int fastpath_timer_check(struct task_struct *tsk)
1078{
1079        struct signal_struct *sig;
1080
1081        if (!task_cputime_zero(&tsk->cputime_expires)) {
1082                struct task_cputime task_sample;
1083
1084                task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1085                task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1086                if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1087                        return 1;
1088        }
1089
1090        sig = tsk->signal;
1091        /*
1092         * Check if thread group timers expired when the cputimer is
1093         * running and no other thread in the group is already checking
1094         * for thread group cputimers. These fields are read without the
1095         * sighand lock. However, this is fine because this is meant to
1096         * be a fastpath heuristic to determine whether we should try to
1097         * acquire the sighand lock to check/handle timers.
1098         *
1099         * In the worst case scenario, if 'running' or 'checking_timer' gets
1100         * set but the current thread doesn't see the change yet, we'll wait
1101         * until the next thread in the group gets a scheduler interrupt to
1102         * handle the timer. This isn't an issue in practice because these
1103         * types of delays with signals actually getting sent are expected.
1104         */
1105        if (READ_ONCE(sig->cputimer.running) &&
1106            !READ_ONCE(sig->cputimer.checking_timer)) {
1107                struct task_cputime group_sample;
1108
1109                sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1110
1111                if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1112                        return 1;
1113        }
1114
1115        return 0;
1116}
1117
1118/*
1119 * This is called from the timer interrupt handler.  The irq handler has
1120 * already updated our counts.  We need to check if any timers fire now.
1121 * Interrupts are disabled.
1122 */
1123void run_posix_cpu_timers(struct task_struct *tsk)
1124{
1125        LIST_HEAD(firing);
1126        struct k_itimer *timer, *next;
1127        unsigned long flags;
1128
1129        WARN_ON_ONCE(!irqs_disabled());
1130
1131        /*
1132         * The fast path checks that there are no expired thread or thread
1133         * group timers.  If that's so, just return.
1134         */
1135        if (!fastpath_timer_check(tsk))
1136                return;
1137
1138        if (!lock_task_sighand(tsk, &flags))
1139                return;
1140        /*
1141         * Here we take off tsk->signal->cpu_timers[N] and
1142         * tsk->cpu_timers[N] all the timers that are firing, and
1143         * put them on the firing list.
1144         */
1145        check_thread_timers(tsk, &firing);
1146
1147        check_process_timers(tsk, &firing);
1148
1149        /*
1150         * We must release these locks before taking any timer's lock.
1151         * There is a potential race with timer deletion here, as the
1152         * siglock now protects our private firing list.  We have set
1153         * the firing flag in each timer, so that a deletion attempt
1154         * that gets the timer lock before we do will give it up and
1155         * spin until we've taken care of that timer below.
1156         */
1157        unlock_task_sighand(tsk, &flags);
1158
1159        /*
1160         * Now that all the timers on our list have the firing flag,
1161         * no one will touch their list entries but us.  We'll take
1162         * each timer's lock before clearing its firing flag, so no
1163         * timer call will interfere.
1164         */
1165        list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1166                int cpu_firing;
1167
1168                spin_lock(&timer->it_lock);
1169                list_del_init(&timer->it.cpu.entry);
1170                cpu_firing = timer->it.cpu.firing;
1171                timer->it.cpu.firing = 0;
1172                /*
1173                 * The firing flag is -1 if we collided with a reset
1174                 * of the timer, which already reported this
1175                 * almost-firing as an overrun.  So don't generate an event.
1176                 */
1177                if (likely(cpu_firing >= 0))
1178                        cpu_timer_fire(timer);
1179                spin_unlock(&timer->it_lock);
1180        }
1181}
1182
1183/*
1184 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1185 * The tsk->sighand->siglock must be held by the caller.
1186 */
1187void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1188                           u64 *newval, u64 *oldval)
1189{
1190        u64 now;
1191
1192        WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1193        cpu_timer_sample_group(clock_idx, tsk, &now);
1194
1195        if (oldval) {
1196                /*
1197                 * We are setting itimer. The *oldval is absolute and we update
1198                 * it to be relative, *newval argument is relative and we update
1199                 * it to be absolute.
1200                 */
1201                if (*oldval) {
1202                        if (*oldval <= now) {
1203                                /* Just about to fire. */
1204                                *oldval = TICK_NSEC;
1205                        } else {
1206                                *oldval -= now;
1207                        }
1208                }
1209
1210                if (!*newval)
1211                        return;
1212                *newval += now;
1213        }
1214
1215        /*
1216         * Update expiration cache if we are the earliest timer, or eventually
1217         * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1218         */
1219        switch (clock_idx) {
1220        case CPUCLOCK_PROF:
1221                if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1222                        tsk->signal->cputime_expires.prof_exp = *newval;
1223                break;
1224        case CPUCLOCK_VIRT:
1225                if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1226                        tsk->signal->cputime_expires.virt_exp = *newval;
1227                break;
1228        }
1229
1230        tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1231}
1232
1233static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1234                            const struct timespec64 *rqtp)
1235{
1236        struct itimerspec64 it;
1237        struct k_itimer timer;
1238        u64 expires;
1239        int error;
1240
1241        /*
1242         * Set up a temporary timer and then wait for it to go off.
1243         */
1244        memset(&timer, 0, sizeof timer);
1245        spin_lock_init(&timer.it_lock);
1246        timer.it_clock = which_clock;
1247        timer.it_overrun = -1;
1248        error = posix_cpu_timer_create(&timer);
1249        timer.it_process = current;
1250        if (!error) {
1251                static struct itimerspec64 zero_it;
1252                struct restart_block *restart;
1253
1254                memset(&it, 0, sizeof(it));
1255                it.it_value = *rqtp;
1256
1257                spin_lock_irq(&timer.it_lock);
1258                error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1259                if (error) {
1260                        spin_unlock_irq(&timer.it_lock);
1261                        return error;
1262                }
1263
1264                while (!signal_pending(current)) {
1265                        if (timer.it.cpu.expires == 0) {
1266                                /*
1267                                 * Our timer fired and was reset, below
1268                                 * deletion can not fail.
1269                                 */
1270                                posix_cpu_timer_del(&timer);
1271                                spin_unlock_irq(&timer.it_lock);
1272                                return 0;
1273                        }
1274
1275                        /*
1276                         * Block until cpu_timer_fire (or a signal) wakes us.
1277                         */
1278                        __set_current_state(TASK_INTERRUPTIBLE);
1279                        spin_unlock_irq(&timer.it_lock);
1280                        schedule();
1281                        spin_lock_irq(&timer.it_lock);
1282                }
1283
1284                /*
1285                 * We were interrupted by a signal.
1286                 */
1287                expires = timer.it.cpu.expires;
1288                error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1289                if (!error) {
1290                        /*
1291                         * Timer is now unarmed, deletion can not fail.
1292                         */
1293                        posix_cpu_timer_del(&timer);
1294                }
1295                spin_unlock_irq(&timer.it_lock);
1296
1297                while (error == TIMER_RETRY) {
1298                        /*
1299                         * We need to handle case when timer was or is in the
1300                         * middle of firing. In other cases we already freed
1301                         * resources.
1302                         */
1303                        spin_lock_irq(&timer.it_lock);
1304                        error = posix_cpu_timer_del(&timer);
1305                        spin_unlock_irq(&timer.it_lock);
1306                }
1307
1308                if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1309                        /*
1310                         * It actually did fire already.
1311                         */
1312                        return 0;
1313                }
1314
1315                error = -ERESTART_RESTARTBLOCK;
1316                /*
1317                 * Report back to the user the time still remaining.
1318                 */
1319                restart = &current->restart_block;
1320                restart->nanosleep.expires = expires;
1321                if (restart->nanosleep.type != TT_NONE)
1322                        error = nanosleep_copyout(restart, &it.it_value);
1323        }
1324
1325        return error;
1326}
1327
1328static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1329
1330static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1331                            const struct timespec64 *rqtp)
1332{
1333        struct restart_block *restart_block = &current->restart_block;
1334        int error;
1335
1336        /*
1337         * Diagnose required errors first.
1338         */
1339        if (CPUCLOCK_PERTHREAD(which_clock) &&
1340            (CPUCLOCK_PID(which_clock) == 0 ||
1341             CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1342                return -EINVAL;
1343
1344        error = do_cpu_nanosleep(which_clock, flags, rqtp);
1345
1346        if (error == -ERESTART_RESTARTBLOCK) {
1347
1348                if (flags & TIMER_ABSTIME)
1349                        return -ERESTARTNOHAND;
1350
1351                restart_block->fn = posix_cpu_nsleep_restart;
1352                restart_block->nanosleep.clockid = which_clock;
1353        }
1354        return error;
1355}
1356
1357static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1358{
1359        clockid_t which_clock = restart_block->nanosleep.clockid;
1360        struct timespec64 t;
1361
1362        t = ns_to_timespec64(restart_block->nanosleep.expires);
1363
1364        return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1365}
1366
1367#define PROCESS_CLOCK   MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1368#define THREAD_CLOCK    MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1369
1370static int process_cpu_clock_getres(const clockid_t which_clock,
1371                                    struct timespec64 *tp)
1372{
1373        return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1374}
1375static int process_cpu_clock_get(const clockid_t which_clock,
1376                                 struct timespec64 *tp)
1377{
1378        return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1379}
1380static int process_cpu_timer_create(struct k_itimer *timer)
1381{
1382        timer->it_clock = PROCESS_CLOCK;
1383        return posix_cpu_timer_create(timer);
1384}
1385static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1386                              const struct timespec64 *rqtp)
1387{
1388        return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1389}
1390static int thread_cpu_clock_getres(const clockid_t which_clock,
1391                                   struct timespec64 *tp)
1392{
1393        return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1394}
1395static int thread_cpu_clock_get(const clockid_t which_clock,
1396                                struct timespec64 *tp)
1397{
1398        return posix_cpu_clock_get(THREAD_CLOCK, tp);
1399}
1400static int thread_cpu_timer_create(struct k_itimer *timer)
1401{
1402        timer->it_clock = THREAD_CLOCK;
1403        return posix_cpu_timer_create(timer);
1404}
1405
1406const struct k_clock clock_posix_cpu = {
1407        .clock_getres   = posix_cpu_clock_getres,
1408        .clock_set      = posix_cpu_clock_set,
1409        .clock_get      = posix_cpu_clock_get,
1410        .timer_create   = posix_cpu_timer_create,
1411        .nsleep         = posix_cpu_nsleep,
1412        .timer_set      = posix_cpu_timer_set,
1413        .timer_del      = posix_cpu_timer_del,
1414        .timer_get      = posix_cpu_timer_get,
1415        .timer_rearm    = posix_cpu_timer_rearm,
1416};
1417
1418const struct k_clock clock_process = {
1419        .clock_getres   = process_cpu_clock_getres,
1420        .clock_get      = process_cpu_clock_get,
1421        .timer_create   = process_cpu_timer_create,
1422        .nsleep         = process_cpu_nsleep,
1423};
1424
1425const struct k_clock clock_thread = {
1426        .clock_getres   = thread_cpu_clock_getres,
1427        .clock_get      = thread_cpu_clock_get,
1428        .timer_create   = thread_cpu_timer_create,
1429};
1430