linux/kernel/time/posix-timers.c
<<
>>
Prefs
   1/*
   2 * linux/kernel/posix-timers.c
   3 *
   4 *
   5 * 2002-10-15  Posix Clocks & timers
   6 *                           by George Anzinger george@mvista.com
   7 *
   8 *                           Copyright (C) 2002 2003 by MontaVista Software.
   9 *
  10 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
  11 *                           Copyright (C) 2004 Boris Hu
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or (at
  16 * your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful, but
  19 * WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  21 * General Public License for more details.
  22
  23 * You should have received a copy of the GNU General Public License
  24 * along with this program; if not, write to the Free Software
  25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  26 *
  27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
  28 */
  29
  30/* These are all the functions necessary to implement
  31 * POSIX clocks & timers
  32 */
  33#include <linux/mm.h>
  34#include <linux/interrupt.h>
  35#include <linux/slab.h>
  36#include <linux/time.h>
  37#include <linux/mutex.h>
  38#include <linux/sched/task.h>
  39
  40#include <linux/uaccess.h>
  41#include <linux/list.h>
  42#include <linux/init.h>
  43#include <linux/compiler.h>
  44#include <linux/hash.h>
  45#include <linux/posix-clock.h>
  46#include <linux/posix-timers.h>
  47#include <linux/syscalls.h>
  48#include <linux/wait.h>
  49#include <linux/workqueue.h>
  50#include <linux/export.h>
  51#include <linux/hashtable.h>
  52#include <linux/compat.h>
  53
  54#include "timekeeping.h"
  55#include "posix-timers.h"
  56
  57/*
  58 * Management arrays for POSIX timers. Timers are now kept in static hash table
  59 * with 512 entries.
  60 * Timer ids are allocated by local routine, which selects proper hash head by
  61 * key, constructed from current->signal address and per signal struct counter.
  62 * This keeps timer ids unique per process, but now they can intersect between
  63 * processes.
  64 */
  65
  66/*
  67 * Lets keep our timers in a slab cache :-)
  68 */
  69static struct kmem_cache *posix_timers_cache;
  70
  71static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
  72static DEFINE_SPINLOCK(hash_lock);
  73
  74static const struct k_clock * const posix_clocks[];
  75static const struct k_clock *clockid_to_kclock(const clockid_t id);
  76static const struct k_clock clock_realtime, clock_monotonic;
  77
  78/*
  79 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
  80 * SIGEV values.  Here we put out an error if this assumption fails.
  81 */
  82#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
  83                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
  84#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
  85#endif
  86
  87/*
  88 * parisc wants ENOTSUP instead of EOPNOTSUPP
  89 */
  90#ifndef ENOTSUP
  91# define ENANOSLEEP_NOTSUP EOPNOTSUPP
  92#else
  93# define ENANOSLEEP_NOTSUP ENOTSUP
  94#endif
  95
  96/*
  97 * The timer ID is turned into a timer address by idr_find().
  98 * Verifying a valid ID consists of:
  99 *
 100 * a) checking that idr_find() returns other than -1.
 101 * b) checking that the timer id matches the one in the timer itself.
 102 * c) that the timer owner is in the callers thread group.
 103 */
 104
 105/*
 106 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
 107 *          to implement others.  This structure defines the various
 108 *          clocks.
 109 *
 110 * RESOLUTION: Clock resolution is used to round up timer and interval
 111 *          times, NOT to report clock times, which are reported with as
 112 *          much resolution as the system can muster.  In some cases this
 113 *          resolution may depend on the underlying clock hardware and
 114 *          may not be quantifiable until run time, and only then is the
 115 *          necessary code is written.  The standard says we should say
 116 *          something about this issue in the documentation...
 117 *
 118 * FUNCTIONS: The CLOCKs structure defines possible functions to
 119 *          handle various clock functions.
 120 *
 121 *          The standard POSIX timer management code assumes the
 122 *          following: 1.) The k_itimer struct (sched.h) is used for
 123 *          the timer.  2.) The list, it_lock, it_clock, it_id and
 124 *          it_pid fields are not modified by timer code.
 125 *
 126 * Permissions: It is assumed that the clock_settime() function defined
 127 *          for each clock will take care of permission checks.  Some
 128 *          clocks may be set able by any user (i.e. local process
 129 *          clocks) others not.  Currently the only set able clock we
 130 *          have is CLOCK_REALTIME and its high res counter part, both of
 131 *          which we beg off on and pass to do_sys_settimeofday().
 132 */
 133static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
 134
 135#define lock_timer(tid, flags)                                             \
 136({      struct k_itimer *__timr;                                           \
 137        __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
 138        __timr;                                                            \
 139})
 140
 141static int hash(struct signal_struct *sig, unsigned int nr)
 142{
 143        return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
 144}
 145
 146static struct k_itimer *__posix_timers_find(struct hlist_head *head,
 147                                            struct signal_struct *sig,
 148                                            timer_t id)
 149{
 150        struct k_itimer *timer;
 151
 152        hlist_for_each_entry_rcu(timer, head, t_hash) {
 153                if ((timer->it_signal == sig) && (timer->it_id == id))
 154                        return timer;
 155        }
 156        return NULL;
 157}
 158
 159static struct k_itimer *posix_timer_by_id(timer_t id)
 160{
 161        struct signal_struct *sig = current->signal;
 162        struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
 163
 164        return __posix_timers_find(head, sig, id);
 165}
 166
 167static int posix_timer_add(struct k_itimer *timer)
 168{
 169        struct signal_struct *sig = current->signal;
 170        int first_free_id = sig->posix_timer_id;
 171        struct hlist_head *head;
 172        int ret = -ENOENT;
 173
 174        do {
 175                spin_lock(&hash_lock);
 176                head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
 177                if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
 178                        hlist_add_head_rcu(&timer->t_hash, head);
 179                        ret = sig->posix_timer_id;
 180                }
 181                if (++sig->posix_timer_id < 0)
 182                        sig->posix_timer_id = 0;
 183                if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
 184                        /* Loop over all possible ids completed */
 185                        ret = -EAGAIN;
 186                spin_unlock(&hash_lock);
 187        } while (ret == -ENOENT);
 188        return ret;
 189}
 190
 191static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
 192{
 193        spin_unlock_irqrestore(&timr->it_lock, flags);
 194}
 195
 196/* Get clock_realtime */
 197static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
 198{
 199        ktime_get_real_ts64(tp);
 200        return 0;
 201}
 202
 203/* Set clock_realtime */
 204static int posix_clock_realtime_set(const clockid_t which_clock,
 205                                    const struct timespec64 *tp)
 206{
 207        return do_sys_settimeofday64(tp, NULL);
 208}
 209
 210static int posix_clock_realtime_adj(const clockid_t which_clock,
 211                                    struct timex *t)
 212{
 213        return do_adjtimex(t);
 214}
 215
 216/*
 217 * Get monotonic time for posix timers
 218 */
 219static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
 220{
 221        ktime_get_ts64(tp);
 222        return 0;
 223}
 224
 225/*
 226 * Get monotonic-raw time for posix timers
 227 */
 228static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
 229{
 230        getrawmonotonic64(tp);
 231        return 0;
 232}
 233
 234
 235static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
 236{
 237        *tp = current_kernel_time64();
 238        return 0;
 239}
 240
 241static int posix_get_monotonic_coarse(clockid_t which_clock,
 242                                                struct timespec64 *tp)
 243{
 244        *tp = get_monotonic_coarse64();
 245        return 0;
 246}
 247
 248static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
 249{
 250        *tp = ktime_to_timespec64(KTIME_LOW_RES);
 251        return 0;
 252}
 253
 254static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
 255{
 256        get_monotonic_boottime64(tp);
 257        return 0;
 258}
 259
 260static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
 261{
 262        timekeeping_clocktai64(tp);
 263        return 0;
 264}
 265
 266static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
 267{
 268        tp->tv_sec = 0;
 269        tp->tv_nsec = hrtimer_resolution;
 270        return 0;
 271}
 272
 273/*
 274 * Initialize everything, well, just everything in Posix clocks/timers ;)
 275 */
 276static __init int init_posix_timers(void)
 277{
 278        posix_timers_cache = kmem_cache_create("posix_timers_cache",
 279                                        sizeof (struct k_itimer), 0, SLAB_PANIC,
 280                                        NULL);
 281        return 0;
 282}
 283__initcall(init_posix_timers);
 284
 285static void common_hrtimer_rearm(struct k_itimer *timr)
 286{
 287        struct hrtimer *timer = &timr->it.real.timer;
 288
 289        if (!timr->it_interval)
 290                return;
 291
 292        timr->it_overrun += (unsigned int) hrtimer_forward(timer,
 293                                                timer->base->get_time(),
 294                                                timr->it_interval);
 295        hrtimer_restart(timer);
 296}
 297
 298/*
 299 * This function is exported for use by the signal deliver code.  It is
 300 * called just prior to the info block being released and passes that
 301 * block to us.  It's function is to update the overrun entry AND to
 302 * restart the timer.  It should only be called if the timer is to be
 303 * restarted (i.e. we have flagged this in the sys_private entry of the
 304 * info block).
 305 *
 306 * To protect against the timer going away while the interrupt is queued,
 307 * we require that the it_requeue_pending flag be set.
 308 */
 309void posixtimer_rearm(struct siginfo *info)
 310{
 311        struct k_itimer *timr;
 312        unsigned long flags;
 313
 314        timr = lock_timer(info->si_tid, &flags);
 315        if (!timr)
 316                return;
 317
 318        if (timr->it_requeue_pending == info->si_sys_private) {
 319                timr->kclock->timer_rearm(timr);
 320
 321                timr->it_active = 1;
 322                timr->it_overrun_last = timr->it_overrun;
 323                timr->it_overrun = -1;
 324                ++timr->it_requeue_pending;
 325
 326                info->si_overrun += timr->it_overrun_last;
 327        }
 328
 329        unlock_timer(timr, flags);
 330}
 331
 332int posix_timer_event(struct k_itimer *timr, int si_private)
 333{
 334        struct task_struct *task;
 335        int shared, ret = -1;
 336        /*
 337         * FIXME: if ->sigq is queued we can race with
 338         * dequeue_signal()->posixtimer_rearm().
 339         *
 340         * If dequeue_signal() sees the "right" value of
 341         * si_sys_private it calls posixtimer_rearm().
 342         * We re-queue ->sigq and drop ->it_lock().
 343         * posixtimer_rearm() locks the timer
 344         * and re-schedules it while ->sigq is pending.
 345         * Not really bad, but not that we want.
 346         */
 347        timr->sigq->info.si_sys_private = si_private;
 348
 349        rcu_read_lock();
 350        task = pid_task(timr->it_pid, PIDTYPE_PID);
 351        if (task) {
 352                shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
 353                ret = send_sigqueue(timr->sigq, task, shared);
 354        }
 355        rcu_read_unlock();
 356        /* If we failed to send the signal the timer stops. */
 357        return ret > 0;
 358}
 359
 360/*
 361 * This function gets called when a POSIX.1b interval timer expires.  It
 362 * is used as a callback from the kernel internal timer.  The
 363 * run_timer_list code ALWAYS calls with interrupts on.
 364
 365 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 366 */
 367static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
 368{
 369        struct k_itimer *timr;
 370        unsigned long flags;
 371        int si_private = 0;
 372        enum hrtimer_restart ret = HRTIMER_NORESTART;
 373
 374        timr = container_of(timer, struct k_itimer, it.real.timer);
 375        spin_lock_irqsave(&timr->it_lock, flags);
 376
 377        timr->it_active = 0;
 378        if (timr->it_interval != 0)
 379                si_private = ++timr->it_requeue_pending;
 380
 381        if (posix_timer_event(timr, si_private)) {
 382                /*
 383                 * signal was not sent because of sig_ignor
 384                 * we will not get a call back to restart it AND
 385                 * it should be restarted.
 386                 */
 387                if (timr->it_interval != 0) {
 388                        ktime_t now = hrtimer_cb_get_time(timer);
 389
 390                        /*
 391                         * FIXME: What we really want, is to stop this
 392                         * timer completely and restart it in case the
 393                         * SIG_IGN is removed. This is a non trivial
 394                         * change which involves sighand locking
 395                         * (sigh !), which we don't want to do late in
 396                         * the release cycle.
 397                         *
 398                         * For now we just let timers with an interval
 399                         * less than a jiffie expire every jiffie to
 400                         * avoid softirq starvation in case of SIG_IGN
 401                         * and a very small interval, which would put
 402                         * the timer right back on the softirq pending
 403                         * list. By moving now ahead of time we trick
 404                         * hrtimer_forward() to expire the timer
 405                         * later, while we still maintain the overrun
 406                         * accuracy, but have some inconsistency in
 407                         * the timer_gettime() case. This is at least
 408                         * better than a starved softirq. A more
 409                         * complex fix which solves also another related
 410                         * inconsistency is already in the pipeline.
 411                         */
 412#ifdef CONFIG_HIGH_RES_TIMERS
 413                        {
 414                                ktime_t kj = NSEC_PER_SEC / HZ;
 415
 416                                if (timr->it_interval < kj)
 417                                        now = ktime_add(now, kj);
 418                        }
 419#endif
 420                        timr->it_overrun += (unsigned int)
 421                                hrtimer_forward(timer, now,
 422                                                timr->it_interval);
 423                        ret = HRTIMER_RESTART;
 424                        ++timr->it_requeue_pending;
 425                        timr->it_active = 1;
 426                }
 427        }
 428
 429        unlock_timer(timr, flags);
 430        return ret;
 431}
 432
 433static struct pid *good_sigevent(sigevent_t * event)
 434{
 435        struct task_struct *rtn = current->group_leader;
 436
 437        if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
 438                (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
 439                 !same_thread_group(rtn, current) ||
 440                 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
 441                return NULL;
 442
 443        if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
 444            ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
 445                return NULL;
 446
 447        return task_pid(rtn);
 448}
 449
 450static struct k_itimer * alloc_posix_timer(void)
 451{
 452        struct k_itimer *tmr;
 453        tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
 454        if (!tmr)
 455                return tmr;
 456        if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
 457                kmem_cache_free(posix_timers_cache, tmr);
 458                return NULL;
 459        }
 460        memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
 461        return tmr;
 462}
 463
 464static void k_itimer_rcu_free(struct rcu_head *head)
 465{
 466        struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
 467
 468        kmem_cache_free(posix_timers_cache, tmr);
 469}
 470
 471#define IT_ID_SET       1
 472#define IT_ID_NOT_SET   0
 473static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
 474{
 475        if (it_id_set) {
 476                unsigned long flags;
 477                spin_lock_irqsave(&hash_lock, flags);
 478                hlist_del_rcu(&tmr->t_hash);
 479                spin_unlock_irqrestore(&hash_lock, flags);
 480        }
 481        put_pid(tmr->it_pid);
 482        sigqueue_free(tmr->sigq);
 483        call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
 484}
 485
 486static int common_timer_create(struct k_itimer *new_timer)
 487{
 488        hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
 489        return 0;
 490}
 491
 492/* Create a POSIX.1b interval timer. */
 493static int do_timer_create(clockid_t which_clock, struct sigevent *event,
 494                           timer_t __user *created_timer_id)
 495{
 496        const struct k_clock *kc = clockid_to_kclock(which_clock);
 497        struct k_itimer *new_timer;
 498        int error, new_timer_id;
 499        int it_id_set = IT_ID_NOT_SET;
 500
 501        if (!kc)
 502                return -EINVAL;
 503        if (!kc->timer_create)
 504                return -EOPNOTSUPP;
 505
 506        new_timer = alloc_posix_timer();
 507        if (unlikely(!new_timer))
 508                return -EAGAIN;
 509
 510        spin_lock_init(&new_timer->it_lock);
 511        new_timer_id = posix_timer_add(new_timer);
 512        if (new_timer_id < 0) {
 513                error = new_timer_id;
 514                goto out;
 515        }
 516
 517        it_id_set = IT_ID_SET;
 518        new_timer->it_id = (timer_t) new_timer_id;
 519        new_timer->it_clock = which_clock;
 520        new_timer->kclock = kc;
 521        new_timer->it_overrun = -1;
 522
 523        if (event) {
 524                rcu_read_lock();
 525                new_timer->it_pid = get_pid(good_sigevent(event));
 526                rcu_read_unlock();
 527                if (!new_timer->it_pid) {
 528                        error = -EINVAL;
 529                        goto out;
 530                }
 531                new_timer->it_sigev_notify     = event->sigev_notify;
 532                new_timer->sigq->info.si_signo = event->sigev_signo;
 533                new_timer->sigq->info.si_value = event->sigev_value;
 534        } else {
 535                new_timer->it_sigev_notify     = SIGEV_SIGNAL;
 536                new_timer->sigq->info.si_signo = SIGALRM;
 537                memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
 538                new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
 539                new_timer->it_pid = get_pid(task_tgid(current));
 540        }
 541
 542        new_timer->sigq->info.si_tid   = new_timer->it_id;
 543        new_timer->sigq->info.si_code  = SI_TIMER;
 544
 545        if (copy_to_user(created_timer_id,
 546                         &new_timer_id, sizeof (new_timer_id))) {
 547                error = -EFAULT;
 548                goto out;
 549        }
 550
 551        error = kc->timer_create(new_timer);
 552        if (error)
 553                goto out;
 554
 555        spin_lock_irq(&current->sighand->siglock);
 556        new_timer->it_signal = current->signal;
 557        list_add(&new_timer->list, &current->signal->posix_timers);
 558        spin_unlock_irq(&current->sighand->siglock);
 559
 560        return 0;
 561        /*
 562         * In the case of the timer belonging to another task, after
 563         * the task is unlocked, the timer is owned by the other task
 564         * and may cease to exist at any time.  Don't use or modify
 565         * new_timer after the unlock call.
 566         */
 567out:
 568        release_posix_timer(new_timer, it_id_set);
 569        return error;
 570}
 571
 572SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
 573                struct sigevent __user *, timer_event_spec,
 574                timer_t __user *, created_timer_id)
 575{
 576        if (timer_event_spec) {
 577                sigevent_t event;
 578
 579                if (copy_from_user(&event, timer_event_spec, sizeof (event)))
 580                        return -EFAULT;
 581                return do_timer_create(which_clock, &event, created_timer_id);
 582        }
 583        return do_timer_create(which_clock, NULL, created_timer_id);
 584}
 585
 586#ifdef CONFIG_COMPAT
 587COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
 588                       struct compat_sigevent __user *, timer_event_spec,
 589                       timer_t __user *, created_timer_id)
 590{
 591        if (timer_event_spec) {
 592                sigevent_t event;
 593
 594                if (get_compat_sigevent(&event, timer_event_spec))
 595                        return -EFAULT;
 596                return do_timer_create(which_clock, &event, created_timer_id);
 597        }
 598        return do_timer_create(which_clock, NULL, created_timer_id);
 599}
 600#endif
 601
 602/*
 603 * Locking issues: We need to protect the result of the id look up until
 604 * we get the timer locked down so it is not deleted under us.  The
 605 * removal is done under the idr spinlock so we use that here to bridge
 606 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 607 * be release with out holding the timer lock.
 608 */
 609static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
 610{
 611        struct k_itimer *timr;
 612
 613        /*
 614         * timer_t could be any type >= int and we want to make sure any
 615         * @timer_id outside positive int range fails lookup.
 616         */
 617        if ((unsigned long long)timer_id > INT_MAX)
 618                return NULL;
 619
 620        rcu_read_lock();
 621        timr = posix_timer_by_id(timer_id);
 622        if (timr) {
 623                spin_lock_irqsave(&timr->it_lock, *flags);
 624                if (timr->it_signal == current->signal) {
 625                        rcu_read_unlock();
 626                        return timr;
 627                }
 628                spin_unlock_irqrestore(&timr->it_lock, *flags);
 629        }
 630        rcu_read_unlock();
 631
 632        return NULL;
 633}
 634
 635static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
 636{
 637        struct hrtimer *timer = &timr->it.real.timer;
 638
 639        return __hrtimer_expires_remaining_adjusted(timer, now);
 640}
 641
 642static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
 643{
 644        struct hrtimer *timer = &timr->it.real.timer;
 645
 646        return (int)hrtimer_forward(timer, now, timr->it_interval);
 647}
 648
 649/*
 650 * Get the time remaining on a POSIX.1b interval timer.  This function
 651 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 652 * mess with irq.
 653 *
 654 * We have a couple of messes to clean up here.  First there is the case
 655 * of a timer that has a requeue pending.  These timers should appear to
 656 * be in the timer list with an expiry as if we were to requeue them
 657 * now.
 658 *
 659 * The second issue is the SIGEV_NONE timer which may be active but is
 660 * not really ever put in the timer list (to save system resources).
 661 * This timer may be expired, and if so, we will do it here.  Otherwise
 662 * it is the same as a requeue pending timer WRT to what we should
 663 * report.
 664 */
 665void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
 666{
 667        const struct k_clock *kc = timr->kclock;
 668        ktime_t now, remaining, iv;
 669        struct timespec64 ts64;
 670        bool sig_none;
 671
 672        sig_none = (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE;
 673        iv = timr->it_interval;
 674
 675        /* interval timer ? */
 676        if (iv) {
 677                cur_setting->it_interval = ktime_to_timespec64(iv);
 678        } else if (!timr->it_active) {
 679                /*
 680                 * SIGEV_NONE oneshot timers are never queued. Check them
 681                 * below.
 682                 */
 683                if (!sig_none)
 684                        return;
 685        }
 686
 687        /*
 688         * The timespec64 based conversion is suboptimal, but it's not
 689         * worth to implement yet another callback.
 690         */
 691        kc->clock_get(timr->it_clock, &ts64);
 692        now = timespec64_to_ktime(ts64);
 693
 694        /*
 695         * When a requeue is pending or this is a SIGEV_NONE timer move the
 696         * expiry time forward by intervals, so expiry is > now.
 697         */
 698        if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
 699                timr->it_overrun += kc->timer_forward(timr, now);
 700
 701        remaining = kc->timer_remaining(timr, now);
 702        /* Return 0 only, when the timer is expired and not pending */
 703        if (remaining <= 0) {
 704                /*
 705                 * A single shot SIGEV_NONE timer must return 0, when
 706                 * it is expired !
 707                 */
 708                if (!sig_none)
 709                        cur_setting->it_value.tv_nsec = 1;
 710        } else {
 711                cur_setting->it_value = ktime_to_timespec64(remaining);
 712        }
 713}
 714
 715/* Get the time remaining on a POSIX.1b interval timer. */
 716static int do_timer_gettime(timer_t timer_id,  struct itimerspec64 *setting)
 717{
 718        struct k_itimer *timr;
 719        const struct k_clock *kc;
 720        unsigned long flags;
 721        int ret = 0;
 722
 723        timr = lock_timer(timer_id, &flags);
 724        if (!timr)
 725                return -EINVAL;
 726
 727        memset(setting, 0, sizeof(*setting));
 728        kc = timr->kclock;
 729        if (WARN_ON_ONCE(!kc || !kc->timer_get))
 730                ret = -EINVAL;
 731        else
 732                kc->timer_get(timr, setting);
 733
 734        unlock_timer(timr, flags);
 735        return ret;
 736}
 737
 738/* Get the time remaining on a POSIX.1b interval timer. */
 739SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
 740                struct itimerspec __user *, setting)
 741{
 742        struct itimerspec64 cur_setting;
 743
 744        int ret = do_timer_gettime(timer_id, &cur_setting);
 745        if (!ret) {
 746                if (put_itimerspec64(&cur_setting, setting))
 747                        ret = -EFAULT;
 748        }
 749        return ret;
 750}
 751
 752#ifdef CONFIG_COMPAT
 753COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
 754                       struct compat_itimerspec __user *, setting)
 755{
 756        struct itimerspec64 cur_setting;
 757
 758        int ret = do_timer_gettime(timer_id, &cur_setting);
 759        if (!ret) {
 760                if (put_compat_itimerspec64(&cur_setting, setting))
 761                        ret = -EFAULT;
 762        }
 763        return ret;
 764}
 765#endif
 766
 767/*
 768 * Get the number of overruns of a POSIX.1b interval timer.  This is to
 769 * be the overrun of the timer last delivered.  At the same time we are
 770 * accumulating overruns on the next timer.  The overrun is frozen when
 771 * the signal is delivered, either at the notify time (if the info block
 772 * is not queued) or at the actual delivery time (as we are informed by
 773 * the call back to posixtimer_rearm().  So all we need to do is
 774 * to pick up the frozen overrun.
 775 */
 776SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
 777{
 778        struct k_itimer *timr;
 779        int overrun;
 780        unsigned long flags;
 781
 782        timr = lock_timer(timer_id, &flags);
 783        if (!timr)
 784                return -EINVAL;
 785
 786        overrun = timr->it_overrun_last;
 787        unlock_timer(timr, flags);
 788
 789        return overrun;
 790}
 791
 792static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
 793                               bool absolute, bool sigev_none)
 794{
 795        struct hrtimer *timer = &timr->it.real.timer;
 796        enum hrtimer_mode mode;
 797
 798        mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
 799        /*
 800         * Posix magic: Relative CLOCK_REALTIME timers are not affected by
 801         * clock modifications, so they become CLOCK_MONOTONIC based under the
 802         * hood. See hrtimer_init(). Update timr->kclock, so the generic
 803         * functions which use timr->kclock->clock_get() work.
 804         *
 805         * Note: it_clock stays unmodified, because the next timer_set() might
 806         * use ABSTIME, so it needs to switch back.
 807         */
 808        if (timr->it_clock == CLOCK_REALTIME)
 809                timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
 810
 811        hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
 812        timr->it.real.timer.function = posix_timer_fn;
 813
 814        if (!absolute)
 815                expires = ktime_add_safe(expires, timer->base->get_time());
 816        hrtimer_set_expires(timer, expires);
 817
 818        if (!sigev_none)
 819                hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
 820}
 821
 822static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
 823{
 824        return hrtimer_try_to_cancel(&timr->it.real.timer);
 825}
 826
 827/* Set a POSIX.1b interval timer. */
 828int common_timer_set(struct k_itimer *timr, int flags,
 829                     struct itimerspec64 *new_setting,
 830                     struct itimerspec64 *old_setting)
 831{
 832        const struct k_clock *kc = timr->kclock;
 833        bool sigev_none;
 834        ktime_t expires;
 835
 836        if (old_setting)
 837                common_timer_get(timr, old_setting);
 838
 839        /* Prevent rearming by clearing the interval */
 840        timr->it_interval = 0;
 841        /*
 842         * Careful here. On SMP systems the timer expiry function could be
 843         * active and spinning on timr->it_lock.
 844         */
 845        if (kc->timer_try_to_cancel(timr) < 0)
 846                return TIMER_RETRY;
 847
 848        timr->it_active = 0;
 849        timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
 850                ~REQUEUE_PENDING;
 851        timr->it_overrun_last = 0;
 852
 853        /* Switch off the timer when it_value is zero */
 854        if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
 855                return 0;
 856
 857        timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
 858        expires = timespec64_to_ktime(new_setting->it_value);
 859        sigev_none = (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE;
 860
 861        kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
 862        timr->it_active = !sigev_none;
 863        return 0;
 864}
 865
 866static int do_timer_settime(timer_t timer_id, int flags,
 867                            struct itimerspec64 *new_spec64,
 868                            struct itimerspec64 *old_spec64)
 869{
 870        const struct k_clock *kc;
 871        struct k_itimer *timr;
 872        unsigned long flag;
 873        int error = 0;
 874
 875        if (!timespec64_valid(&new_spec64->it_interval) ||
 876            !timespec64_valid(&new_spec64->it_value))
 877                return -EINVAL;
 878
 879        if (old_spec64)
 880                memset(old_spec64, 0, sizeof(*old_spec64));
 881retry:
 882        timr = lock_timer(timer_id, &flag);
 883        if (!timr)
 884                return -EINVAL;
 885
 886        kc = timr->kclock;
 887        if (WARN_ON_ONCE(!kc || !kc->timer_set))
 888                error = -EINVAL;
 889        else
 890                error = kc->timer_set(timr, flags, new_spec64, old_spec64);
 891
 892        unlock_timer(timr, flag);
 893        if (error == TIMER_RETRY) {
 894                old_spec64 = NULL;      // We already got the old time...
 895                goto retry;
 896        }
 897
 898        return error;
 899}
 900
 901/* Set a POSIX.1b interval timer */
 902SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
 903                const struct itimerspec __user *, new_setting,
 904                struct itimerspec __user *, old_setting)
 905{
 906        struct itimerspec64 new_spec, old_spec;
 907        struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
 908        int error = 0;
 909
 910        if (!new_setting)
 911                return -EINVAL;
 912
 913        if (get_itimerspec64(&new_spec, new_setting))
 914                return -EFAULT;
 915
 916        error = do_timer_settime(timer_id, flags, &new_spec, rtn);
 917        if (!error && old_setting) {
 918                if (put_itimerspec64(&old_spec, old_setting))
 919                        error = -EFAULT;
 920        }
 921        return error;
 922}
 923
 924#ifdef CONFIG_COMPAT
 925COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
 926                       struct compat_itimerspec __user *, new,
 927                       struct compat_itimerspec __user *, old)
 928{
 929        struct itimerspec64 new_spec, old_spec;
 930        struct itimerspec64 *rtn = old ? &old_spec : NULL;
 931        int error = 0;
 932
 933        if (!new)
 934                return -EINVAL;
 935        if (get_compat_itimerspec64(&new_spec, new))
 936                return -EFAULT;
 937
 938        error = do_timer_settime(timer_id, flags, &new_spec, rtn);
 939        if (!error && old) {
 940                if (put_compat_itimerspec64(&old_spec, old))
 941                        error = -EFAULT;
 942        }
 943        return error;
 944}
 945#endif
 946
 947int common_timer_del(struct k_itimer *timer)
 948{
 949        const struct k_clock *kc = timer->kclock;
 950
 951        timer->it_interval = 0;
 952        if (kc->timer_try_to_cancel(timer) < 0)
 953                return TIMER_RETRY;
 954        timer->it_active = 0;
 955        return 0;
 956}
 957
 958static inline int timer_delete_hook(struct k_itimer *timer)
 959{
 960        const struct k_clock *kc = timer->kclock;
 961
 962        if (WARN_ON_ONCE(!kc || !kc->timer_del))
 963                return -EINVAL;
 964        return kc->timer_del(timer);
 965}
 966
 967/* Delete a POSIX.1b interval timer. */
 968SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
 969{
 970        struct k_itimer *timer;
 971        unsigned long flags;
 972
 973retry_delete:
 974        timer = lock_timer(timer_id, &flags);
 975        if (!timer)
 976                return -EINVAL;
 977
 978        if (timer_delete_hook(timer) == TIMER_RETRY) {
 979                unlock_timer(timer, flags);
 980                goto retry_delete;
 981        }
 982
 983        spin_lock(&current->sighand->siglock);
 984        list_del(&timer->list);
 985        spin_unlock(&current->sighand->siglock);
 986        /*
 987         * This keeps any tasks waiting on the spin lock from thinking
 988         * they got something (see the lock code above).
 989         */
 990        timer->it_signal = NULL;
 991
 992        unlock_timer(timer, flags);
 993        release_posix_timer(timer, IT_ID_SET);
 994        return 0;
 995}
 996
 997/*
 998 * return timer owned by the process, used by exit_itimers
 999 */
1000static void itimer_delete(struct k_itimer *timer)
1001{
1002        unsigned long flags;
1003
1004retry_delete:
1005        spin_lock_irqsave(&timer->it_lock, flags);
1006
1007        if (timer_delete_hook(timer) == TIMER_RETRY) {
1008                unlock_timer(timer, flags);
1009                goto retry_delete;
1010        }
1011        list_del(&timer->list);
1012        /*
1013         * This keeps any tasks waiting on the spin lock from thinking
1014         * they got something (see the lock code above).
1015         */
1016        timer->it_signal = NULL;
1017
1018        unlock_timer(timer, flags);
1019        release_posix_timer(timer, IT_ID_SET);
1020}
1021
1022/*
1023 * This is called by do_exit or de_thread, only when there are no more
1024 * references to the shared signal_struct.
1025 */
1026void exit_itimers(struct signal_struct *sig)
1027{
1028        struct k_itimer *tmr;
1029
1030        while (!list_empty(&sig->posix_timers)) {
1031                tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1032                itimer_delete(tmr);
1033        }
1034}
1035
1036SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1037                const struct timespec __user *, tp)
1038{
1039        const struct k_clock *kc = clockid_to_kclock(which_clock);
1040        struct timespec64 new_tp;
1041
1042        if (!kc || !kc->clock_set)
1043                return -EINVAL;
1044
1045        if (get_timespec64(&new_tp, tp))
1046                return -EFAULT;
1047
1048        return kc->clock_set(which_clock, &new_tp);
1049}
1050
1051SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1052                struct timespec __user *,tp)
1053{
1054        const struct k_clock *kc = clockid_to_kclock(which_clock);
1055        struct timespec64 kernel_tp;
1056        int error;
1057
1058        if (!kc)
1059                return -EINVAL;
1060
1061        error = kc->clock_get(which_clock, &kernel_tp);
1062
1063        if (!error && put_timespec64(&kernel_tp, tp))
1064                error = -EFAULT;
1065
1066        return error;
1067}
1068
1069SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1070                struct timex __user *, utx)
1071{
1072        const struct k_clock *kc = clockid_to_kclock(which_clock);
1073        struct timex ktx;
1074        int err;
1075
1076        if (!kc)
1077                return -EINVAL;
1078        if (!kc->clock_adj)
1079                return -EOPNOTSUPP;
1080
1081        if (copy_from_user(&ktx, utx, sizeof(ktx)))
1082                return -EFAULT;
1083
1084        err = kc->clock_adj(which_clock, &ktx);
1085
1086        if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1087                return -EFAULT;
1088
1089        return err;
1090}
1091
1092SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1093                struct timespec __user *, tp)
1094{
1095        const struct k_clock *kc = clockid_to_kclock(which_clock);
1096        struct timespec64 rtn_tp;
1097        int error;
1098
1099        if (!kc)
1100                return -EINVAL;
1101
1102        error = kc->clock_getres(which_clock, &rtn_tp);
1103
1104        if (!error && tp && put_timespec64(&rtn_tp, tp))
1105                error = -EFAULT;
1106
1107        return error;
1108}
1109
1110#ifdef CONFIG_COMPAT
1111
1112COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1113                       struct compat_timespec __user *, tp)
1114{
1115        const struct k_clock *kc = clockid_to_kclock(which_clock);
1116        struct timespec64 ts;
1117
1118        if (!kc || !kc->clock_set)
1119                return -EINVAL;
1120
1121        if (compat_get_timespec64(&ts, tp))
1122                return -EFAULT;
1123
1124        return kc->clock_set(which_clock, &ts);
1125}
1126
1127COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1128                       struct compat_timespec __user *, tp)
1129{
1130        const struct k_clock *kc = clockid_to_kclock(which_clock);
1131        struct timespec64 ts;
1132        int err;
1133
1134        if (!kc)
1135                return -EINVAL;
1136
1137        err = kc->clock_get(which_clock, &ts);
1138
1139        if (!err && compat_put_timespec64(&ts, tp))
1140                err = -EFAULT;
1141
1142        return err;
1143}
1144
1145COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1146                       struct compat_timex __user *, utp)
1147{
1148        const struct k_clock *kc = clockid_to_kclock(which_clock);
1149        struct timex ktx;
1150        int err;
1151
1152        if (!kc)
1153                return -EINVAL;
1154        if (!kc->clock_adj)
1155                return -EOPNOTSUPP;
1156
1157        err = compat_get_timex(&ktx, utp);
1158        if (err)
1159                return err;
1160
1161        err = kc->clock_adj(which_clock, &ktx);
1162
1163        if (err >= 0)
1164                err = compat_put_timex(utp, &ktx);
1165
1166        return err;
1167}
1168
1169COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1170                       struct compat_timespec __user *, tp)
1171{
1172        const struct k_clock *kc = clockid_to_kclock(which_clock);
1173        struct timespec64 ts;
1174        int err;
1175
1176        if (!kc)
1177                return -EINVAL;
1178
1179        err = kc->clock_getres(which_clock, &ts);
1180        if (!err && tp && compat_put_timespec64(&ts, tp))
1181                return -EFAULT;
1182
1183        return err;
1184}
1185
1186#endif
1187
1188/*
1189 * nanosleep for monotonic and realtime clocks
1190 */
1191static int common_nsleep(const clockid_t which_clock, int flags,
1192                         const struct timespec64 *rqtp)
1193{
1194        return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
1195                                 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1196                                 which_clock);
1197}
1198
1199SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1200                const struct timespec __user *, rqtp,
1201                struct timespec __user *, rmtp)
1202{
1203        const struct k_clock *kc = clockid_to_kclock(which_clock);
1204        struct timespec64 t;
1205
1206        if (!kc)
1207                return -EINVAL;
1208        if (!kc->nsleep)
1209                return -ENANOSLEEP_NOTSUP;
1210
1211        if (get_timespec64(&t, rqtp))
1212                return -EFAULT;
1213
1214        if (!timespec64_valid(&t))
1215                return -EINVAL;
1216        if (flags & TIMER_ABSTIME)
1217                rmtp = NULL;
1218        current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1219        current->restart_block.nanosleep.rmtp = rmtp;
1220
1221        return kc->nsleep(which_clock, flags, &t);
1222}
1223
1224#ifdef CONFIG_COMPAT
1225COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1226                       struct compat_timespec __user *, rqtp,
1227                       struct compat_timespec __user *, rmtp)
1228{
1229        const struct k_clock *kc = clockid_to_kclock(which_clock);
1230        struct timespec64 t;
1231
1232        if (!kc)
1233                return -EINVAL;
1234        if (!kc->nsleep)
1235                return -ENANOSLEEP_NOTSUP;
1236
1237        if (compat_get_timespec64(&t, rqtp))
1238                return -EFAULT;
1239
1240        if (!timespec64_valid(&t))
1241                return -EINVAL;
1242        if (flags & TIMER_ABSTIME)
1243                rmtp = NULL;
1244        current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1245        current->restart_block.nanosleep.compat_rmtp = rmtp;
1246
1247        return kc->nsleep(which_clock, flags, &t);
1248}
1249#endif
1250
1251static const struct k_clock clock_realtime = {
1252        .clock_getres           = posix_get_hrtimer_res,
1253        .clock_get              = posix_clock_realtime_get,
1254        .clock_set              = posix_clock_realtime_set,
1255        .clock_adj              = posix_clock_realtime_adj,
1256        .nsleep                 = common_nsleep,
1257        .timer_create           = common_timer_create,
1258        .timer_set              = common_timer_set,
1259        .timer_get              = common_timer_get,
1260        .timer_del              = common_timer_del,
1261        .timer_rearm            = common_hrtimer_rearm,
1262        .timer_forward          = common_hrtimer_forward,
1263        .timer_remaining        = common_hrtimer_remaining,
1264        .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
1265        .timer_arm              = common_hrtimer_arm,
1266};
1267
1268static const struct k_clock clock_monotonic = {
1269        .clock_getres           = posix_get_hrtimer_res,
1270        .clock_get              = posix_ktime_get_ts,
1271        .nsleep                 = common_nsleep,
1272        .timer_create           = common_timer_create,
1273        .timer_set              = common_timer_set,
1274        .timer_get              = common_timer_get,
1275        .timer_del              = common_timer_del,
1276        .timer_rearm            = common_hrtimer_rearm,
1277        .timer_forward          = common_hrtimer_forward,
1278        .timer_remaining        = common_hrtimer_remaining,
1279        .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
1280        .timer_arm              = common_hrtimer_arm,
1281};
1282
1283static const struct k_clock clock_monotonic_raw = {
1284        .clock_getres           = posix_get_hrtimer_res,
1285        .clock_get              = posix_get_monotonic_raw,
1286};
1287
1288static const struct k_clock clock_realtime_coarse = {
1289        .clock_getres           = posix_get_coarse_res,
1290        .clock_get              = posix_get_realtime_coarse,
1291};
1292
1293static const struct k_clock clock_monotonic_coarse = {
1294        .clock_getres           = posix_get_coarse_res,
1295        .clock_get              = posix_get_monotonic_coarse,
1296};
1297
1298static const struct k_clock clock_tai = {
1299        .clock_getres           = posix_get_hrtimer_res,
1300        .clock_get              = posix_get_tai,
1301        .nsleep                 = common_nsleep,
1302        .timer_create           = common_timer_create,
1303        .timer_set              = common_timer_set,
1304        .timer_get              = common_timer_get,
1305        .timer_del              = common_timer_del,
1306        .timer_rearm            = common_hrtimer_rearm,
1307        .timer_forward          = common_hrtimer_forward,
1308        .timer_remaining        = common_hrtimer_remaining,
1309        .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
1310        .timer_arm              = common_hrtimer_arm,
1311};
1312
1313static const struct k_clock clock_boottime = {
1314        .clock_getres           = posix_get_hrtimer_res,
1315        .clock_get              = posix_get_boottime,
1316        .nsleep                 = common_nsleep,
1317        .timer_create           = common_timer_create,
1318        .timer_set              = common_timer_set,
1319        .timer_get              = common_timer_get,
1320        .timer_del              = common_timer_del,
1321        .timer_rearm            = common_hrtimer_rearm,
1322        .timer_forward          = common_hrtimer_forward,
1323        .timer_remaining        = common_hrtimer_remaining,
1324        .timer_try_to_cancel    = common_hrtimer_try_to_cancel,
1325        .timer_arm              = common_hrtimer_arm,
1326};
1327
1328static const struct k_clock * const posix_clocks[] = {
1329        [CLOCK_REALTIME]                = &clock_realtime,
1330        [CLOCK_MONOTONIC]               = &clock_monotonic,
1331        [CLOCK_PROCESS_CPUTIME_ID]      = &clock_process,
1332        [CLOCK_THREAD_CPUTIME_ID]       = &clock_thread,
1333        [CLOCK_MONOTONIC_RAW]           = &clock_monotonic_raw,
1334        [CLOCK_REALTIME_COARSE]         = &clock_realtime_coarse,
1335        [CLOCK_MONOTONIC_COARSE]        = &clock_monotonic_coarse,
1336        [CLOCK_BOOTTIME]                = &clock_boottime,
1337        [CLOCK_REALTIME_ALARM]          = &alarm_clock,
1338        [CLOCK_BOOTTIME_ALARM]          = &alarm_clock,
1339        [CLOCK_TAI]                     = &clock_tai,
1340};
1341
1342static const struct k_clock *clockid_to_kclock(const clockid_t id)
1343{
1344        if (id < 0)
1345                return (id & CLOCKFD_MASK) == CLOCKFD ?
1346                        &clock_posix_dynamic : &clock_posix_cpu;
1347
1348        if (id >= ARRAY_SIZE(posix_clocks) || !posix_clocks[id])
1349                return NULL;
1350        return posix_clocks[id];
1351}
1352