linux/kernel/time/tick-sched.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/time/tick-sched.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  No idle tick implementation for low and high resolution timers
   9 *
  10 *  Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 *  Distribute under GPLv2.
  13 */
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/percpu.h>
  20#include <linux/nmi.h>
  21#include <linux/profile.h>
  22#include <linux/sched/signal.h>
  23#include <linux/sched/clock.h>
  24#include <linux/sched/stat.h>
  25#include <linux/sched/nohz.h>
  26#include <linux/module.h>
  27#include <linux/irq_work.h>
  28#include <linux/posix-timers.h>
  29#include <linux/context_tracking.h>
  30
  31#include <asm/irq_regs.h>
  32
  33#include "tick-internal.h"
  34
  35#include <trace/events/timer.h>
  36
  37/*
  38 * Per-CPU nohz control structure
  39 */
  40static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  41
  42struct tick_sched *tick_get_tick_sched(int cpu)
  43{
  44        return &per_cpu(tick_cpu_sched, cpu);
  45}
  46
  47#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  48/*
  49 * The time, when the last jiffy update happened. Protected by jiffies_lock.
  50 */
  51static ktime_t last_jiffies_update;
  52
  53/*
  54 * Must be called with interrupts disabled !
  55 */
  56static void tick_do_update_jiffies64(ktime_t now)
  57{
  58        unsigned long ticks = 0;
  59        ktime_t delta;
  60
  61        /*
  62         * Do a quick check without holding jiffies_lock:
  63         */
  64        delta = ktime_sub(now, last_jiffies_update);
  65        if (delta < tick_period)
  66                return;
  67
  68        /* Reevaluate with jiffies_lock held */
  69        write_seqlock(&jiffies_lock);
  70
  71        delta = ktime_sub(now, last_jiffies_update);
  72        if (delta >= tick_period) {
  73
  74                delta = ktime_sub(delta, tick_period);
  75                last_jiffies_update = ktime_add(last_jiffies_update,
  76                                                tick_period);
  77
  78                /* Slow path for long timeouts */
  79                if (unlikely(delta >= tick_period)) {
  80                        s64 incr = ktime_to_ns(tick_period);
  81
  82                        ticks = ktime_divns(delta, incr);
  83
  84                        last_jiffies_update = ktime_add_ns(last_jiffies_update,
  85                                                           incr * ticks);
  86                }
  87                do_timer(++ticks);
  88
  89                /* Keep the tick_next_period variable up to date */
  90                tick_next_period = ktime_add(last_jiffies_update, tick_period);
  91        } else {
  92                write_sequnlock(&jiffies_lock);
  93                return;
  94        }
  95        write_sequnlock(&jiffies_lock);
  96        update_wall_time();
  97}
  98
  99/*
 100 * Initialize and return retrieve the jiffies update.
 101 */
 102static ktime_t tick_init_jiffy_update(void)
 103{
 104        ktime_t period;
 105
 106        write_seqlock(&jiffies_lock);
 107        /* Did we start the jiffies update yet ? */
 108        if (last_jiffies_update == 0)
 109                last_jiffies_update = tick_next_period;
 110        period = last_jiffies_update;
 111        write_sequnlock(&jiffies_lock);
 112        return period;
 113}
 114
 115
 116static void tick_sched_do_timer(ktime_t now)
 117{
 118        int cpu = smp_processor_id();
 119
 120#ifdef CONFIG_NO_HZ_COMMON
 121        /*
 122         * Check if the do_timer duty was dropped. We don't care about
 123         * concurrency: This happens only when the CPU in charge went
 124         * into a long sleep. If two CPUs happen to assign themselves to
 125         * this duty, then the jiffies update is still serialized by
 126         * jiffies_lock.
 127         */
 128        if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 129            && !tick_nohz_full_cpu(cpu))
 130                tick_do_timer_cpu = cpu;
 131#endif
 132
 133        /* Check, if the jiffies need an update */
 134        if (tick_do_timer_cpu == cpu)
 135                tick_do_update_jiffies64(now);
 136}
 137
 138static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 139{
 140#ifdef CONFIG_NO_HZ_COMMON
 141        /*
 142         * When we are idle and the tick is stopped, we have to touch
 143         * the watchdog as we might not schedule for a really long
 144         * time. This happens on complete idle SMP systems while
 145         * waiting on the login prompt. We also increment the "start of
 146         * idle" jiffy stamp so the idle accounting adjustment we do
 147         * when we go busy again does not account too much ticks.
 148         */
 149        if (ts->tick_stopped) {
 150                touch_softlockup_watchdog_sched();
 151                if (is_idle_task(current))
 152                        ts->idle_jiffies++;
 153                /*
 154                 * In case the current tick fired too early past its expected
 155                 * expiration, make sure we don't bypass the next clock reprogramming
 156                 * to the same deadline.
 157                 */
 158                ts->next_tick = 0;
 159        }
 160#endif
 161        update_process_times(user_mode(regs));
 162        profile_tick(CPU_PROFILING);
 163}
 164#endif
 165
 166#ifdef CONFIG_NO_HZ_FULL
 167cpumask_var_t tick_nohz_full_mask;
 168cpumask_var_t housekeeping_mask;
 169bool tick_nohz_full_running;
 170static atomic_t tick_dep_mask;
 171
 172static bool check_tick_dependency(atomic_t *dep)
 173{
 174        int val = atomic_read(dep);
 175
 176        if (val & TICK_DEP_MASK_POSIX_TIMER) {
 177                trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 178                return true;
 179        }
 180
 181        if (val & TICK_DEP_MASK_PERF_EVENTS) {
 182                trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 183                return true;
 184        }
 185
 186        if (val & TICK_DEP_MASK_SCHED) {
 187                trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 188                return true;
 189        }
 190
 191        if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 192                trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 193                return true;
 194        }
 195
 196        return false;
 197}
 198
 199static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 200{
 201        WARN_ON_ONCE(!irqs_disabled());
 202
 203        if (unlikely(!cpu_online(cpu)))
 204                return false;
 205
 206        if (check_tick_dependency(&tick_dep_mask))
 207                return false;
 208
 209        if (check_tick_dependency(&ts->tick_dep_mask))
 210                return false;
 211
 212        if (check_tick_dependency(&current->tick_dep_mask))
 213                return false;
 214
 215        if (check_tick_dependency(&current->signal->tick_dep_mask))
 216                return false;
 217
 218        return true;
 219}
 220
 221static void nohz_full_kick_func(struct irq_work *work)
 222{
 223        /* Empty, the tick restart happens on tick_nohz_irq_exit() */
 224}
 225
 226static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
 227        .func = nohz_full_kick_func,
 228};
 229
 230/*
 231 * Kick this CPU if it's full dynticks in order to force it to
 232 * re-evaluate its dependency on the tick and restart it if necessary.
 233 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 234 * is NMI safe.
 235 */
 236static void tick_nohz_full_kick(void)
 237{
 238        if (!tick_nohz_full_cpu(smp_processor_id()))
 239                return;
 240
 241        irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 242}
 243
 244/*
 245 * Kick the CPU if it's full dynticks in order to force it to
 246 * re-evaluate its dependency on the tick and restart it if necessary.
 247 */
 248void tick_nohz_full_kick_cpu(int cpu)
 249{
 250        if (!tick_nohz_full_cpu(cpu))
 251                return;
 252
 253        irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 254}
 255
 256/*
 257 * Kick all full dynticks CPUs in order to force these to re-evaluate
 258 * their dependency on the tick and restart it if necessary.
 259 */
 260static void tick_nohz_full_kick_all(void)
 261{
 262        int cpu;
 263
 264        if (!tick_nohz_full_running)
 265                return;
 266
 267        preempt_disable();
 268        for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 269                tick_nohz_full_kick_cpu(cpu);
 270        preempt_enable();
 271}
 272
 273static void tick_nohz_dep_set_all(atomic_t *dep,
 274                                  enum tick_dep_bits bit)
 275{
 276        int prev;
 277
 278        prev = atomic_fetch_or(BIT(bit), dep);
 279        if (!prev)
 280                tick_nohz_full_kick_all();
 281}
 282
 283/*
 284 * Set a global tick dependency. Used by perf events that rely on freq and
 285 * by unstable clock.
 286 */
 287void tick_nohz_dep_set(enum tick_dep_bits bit)
 288{
 289        tick_nohz_dep_set_all(&tick_dep_mask, bit);
 290}
 291
 292void tick_nohz_dep_clear(enum tick_dep_bits bit)
 293{
 294        atomic_andnot(BIT(bit), &tick_dep_mask);
 295}
 296
 297/*
 298 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 299 * manage events throttling.
 300 */
 301void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 302{
 303        int prev;
 304        struct tick_sched *ts;
 305
 306        ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 307
 308        prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 309        if (!prev) {
 310                preempt_disable();
 311                /* Perf needs local kick that is NMI safe */
 312                if (cpu == smp_processor_id()) {
 313                        tick_nohz_full_kick();
 314                } else {
 315                        /* Remote irq work not NMI-safe */
 316                        if (!WARN_ON_ONCE(in_nmi()))
 317                                tick_nohz_full_kick_cpu(cpu);
 318                }
 319                preempt_enable();
 320        }
 321}
 322
 323void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 324{
 325        struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 326
 327        atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 328}
 329
 330/*
 331 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
 332 * per task timers.
 333 */
 334void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 335{
 336        /*
 337         * We could optimize this with just kicking the target running the task
 338         * if that noise matters for nohz full users.
 339         */
 340        tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
 341}
 342
 343void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 344{
 345        atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 346}
 347
 348/*
 349 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 350 * per process timers.
 351 */
 352void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 353{
 354        tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
 355}
 356
 357void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 358{
 359        atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 360}
 361
 362/*
 363 * Re-evaluate the need for the tick as we switch the current task.
 364 * It might need the tick due to per task/process properties:
 365 * perf events, posix CPU timers, ...
 366 */
 367void __tick_nohz_task_switch(void)
 368{
 369        unsigned long flags;
 370        struct tick_sched *ts;
 371
 372        local_irq_save(flags);
 373
 374        if (!tick_nohz_full_cpu(smp_processor_id()))
 375                goto out;
 376
 377        ts = this_cpu_ptr(&tick_cpu_sched);
 378
 379        if (ts->tick_stopped) {
 380                if (atomic_read(&current->tick_dep_mask) ||
 381                    atomic_read(&current->signal->tick_dep_mask))
 382                        tick_nohz_full_kick();
 383        }
 384out:
 385        local_irq_restore(flags);
 386}
 387
 388/* Parse the boot-time nohz CPU list from the kernel parameters. */
 389static int __init tick_nohz_full_setup(char *str)
 390{
 391        alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 392        if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
 393                pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
 394                free_bootmem_cpumask_var(tick_nohz_full_mask);
 395                return 1;
 396        }
 397        tick_nohz_full_running = true;
 398
 399        return 1;
 400}
 401__setup("nohz_full=", tick_nohz_full_setup);
 402
 403static int tick_nohz_cpu_down(unsigned int cpu)
 404{
 405        /*
 406         * The boot CPU handles housekeeping duty (unbound timers,
 407         * workqueues, timekeeping, ...) on behalf of full dynticks
 408         * CPUs. It must remain online when nohz full is enabled.
 409         */
 410        if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 411                return -EBUSY;
 412        return 0;
 413}
 414
 415static int tick_nohz_init_all(void)
 416{
 417        int err = -1;
 418
 419#ifdef CONFIG_NO_HZ_FULL_ALL
 420        if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
 421                WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
 422                return err;
 423        }
 424        err = 0;
 425        cpumask_setall(tick_nohz_full_mask);
 426        tick_nohz_full_running = true;
 427#endif
 428        return err;
 429}
 430
 431void __init tick_nohz_init(void)
 432{
 433        int cpu, ret;
 434
 435        if (!tick_nohz_full_running) {
 436                if (tick_nohz_init_all() < 0)
 437                        return;
 438        }
 439
 440        if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
 441                WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
 442                cpumask_clear(tick_nohz_full_mask);
 443                tick_nohz_full_running = false;
 444                return;
 445        }
 446
 447        /*
 448         * Full dynticks uses irq work to drive the tick rescheduling on safe
 449         * locking contexts. But then we need irq work to raise its own
 450         * interrupts to avoid circular dependency on the tick
 451         */
 452        if (!arch_irq_work_has_interrupt()) {
 453                pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 454                cpumask_clear(tick_nohz_full_mask);
 455                cpumask_copy(housekeeping_mask, cpu_possible_mask);
 456                tick_nohz_full_running = false;
 457                return;
 458        }
 459
 460        cpu = smp_processor_id();
 461
 462        if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 463                pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
 464                        cpu);
 465                cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 466        }
 467
 468        cpumask_andnot(housekeeping_mask,
 469                       cpu_possible_mask, tick_nohz_full_mask);
 470
 471        for_each_cpu(cpu, tick_nohz_full_mask)
 472                context_tracking_cpu_set(cpu);
 473
 474        ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 475                                        "kernel/nohz:predown", NULL,
 476                                        tick_nohz_cpu_down);
 477        WARN_ON(ret < 0);
 478        pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 479                cpumask_pr_args(tick_nohz_full_mask));
 480
 481        /*
 482         * We need at least one CPU to handle housekeeping work such
 483         * as timekeeping, unbound timers, workqueues, ...
 484         */
 485        WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
 486}
 487#endif
 488
 489/*
 490 * NOHZ - aka dynamic tick functionality
 491 */
 492#ifdef CONFIG_NO_HZ_COMMON
 493/*
 494 * NO HZ enabled ?
 495 */
 496bool tick_nohz_enabled __read_mostly  = true;
 497unsigned long tick_nohz_active  __read_mostly;
 498/*
 499 * Enable / Disable tickless mode
 500 */
 501static int __init setup_tick_nohz(char *str)
 502{
 503        return (kstrtobool(str, &tick_nohz_enabled) == 0);
 504}
 505
 506__setup("nohz=", setup_tick_nohz);
 507
 508int tick_nohz_tick_stopped(void)
 509{
 510        return __this_cpu_read(tick_cpu_sched.tick_stopped);
 511}
 512
 513/**
 514 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 515 *
 516 * Called from interrupt entry when the CPU was idle
 517 *
 518 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 519 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 520 * value. We do this unconditionally on any CPU, as we don't know whether the
 521 * CPU, which has the update task assigned is in a long sleep.
 522 */
 523static void tick_nohz_update_jiffies(ktime_t now)
 524{
 525        unsigned long flags;
 526
 527        __this_cpu_write(tick_cpu_sched.idle_waketime, now);
 528
 529        local_irq_save(flags);
 530        tick_do_update_jiffies64(now);
 531        local_irq_restore(flags);
 532
 533        touch_softlockup_watchdog_sched();
 534}
 535
 536/*
 537 * Updates the per-CPU time idle statistics counters
 538 */
 539static void
 540update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 541{
 542        ktime_t delta;
 543
 544        if (ts->idle_active) {
 545                delta = ktime_sub(now, ts->idle_entrytime);
 546                if (nr_iowait_cpu(cpu) > 0)
 547                        ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 548                else
 549                        ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 550                ts->idle_entrytime = now;
 551        }
 552
 553        if (last_update_time)
 554                *last_update_time = ktime_to_us(now);
 555
 556}
 557
 558static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 559{
 560        update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 561        ts->idle_active = 0;
 562
 563        sched_clock_idle_wakeup_event();
 564}
 565
 566static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
 567{
 568        ktime_t now = ktime_get();
 569
 570        ts->idle_entrytime = now;
 571        ts->idle_active = 1;
 572        sched_clock_idle_sleep_event();
 573        return now;
 574}
 575
 576/**
 577 * get_cpu_idle_time_us - get the total idle time of a CPU
 578 * @cpu: CPU number to query
 579 * @last_update_time: variable to store update time in. Do not update
 580 * counters if NULL.
 581 *
 582 * Return the cumulative idle time (since boot) for a given
 583 * CPU, in microseconds.
 584 *
 585 * This time is measured via accounting rather than sampling,
 586 * and is as accurate as ktime_get() is.
 587 *
 588 * This function returns -1 if NOHZ is not enabled.
 589 */
 590u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 591{
 592        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 593        ktime_t now, idle;
 594
 595        if (!tick_nohz_active)
 596                return -1;
 597
 598        now = ktime_get();
 599        if (last_update_time) {
 600                update_ts_time_stats(cpu, ts, now, last_update_time);
 601                idle = ts->idle_sleeptime;
 602        } else {
 603                if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 604                        ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 605
 606                        idle = ktime_add(ts->idle_sleeptime, delta);
 607                } else {
 608                        idle = ts->idle_sleeptime;
 609                }
 610        }
 611
 612        return ktime_to_us(idle);
 613
 614}
 615EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 616
 617/**
 618 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 619 * @cpu: CPU number to query
 620 * @last_update_time: variable to store update time in. Do not update
 621 * counters if NULL.
 622 *
 623 * Return the cumulative iowait time (since boot) for a given
 624 * CPU, in microseconds.
 625 *
 626 * This time is measured via accounting rather than sampling,
 627 * and is as accurate as ktime_get() is.
 628 *
 629 * This function returns -1 if NOHZ is not enabled.
 630 */
 631u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 632{
 633        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 634        ktime_t now, iowait;
 635
 636        if (!tick_nohz_active)
 637                return -1;
 638
 639        now = ktime_get();
 640        if (last_update_time) {
 641                update_ts_time_stats(cpu, ts, now, last_update_time);
 642                iowait = ts->iowait_sleeptime;
 643        } else {
 644                if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 645                        ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 646
 647                        iowait = ktime_add(ts->iowait_sleeptime, delta);
 648                } else {
 649                        iowait = ts->iowait_sleeptime;
 650                }
 651        }
 652
 653        return ktime_to_us(iowait);
 654}
 655EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 656
 657static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 658{
 659        hrtimer_cancel(&ts->sched_timer);
 660        hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 661
 662        /* Forward the time to expire in the future */
 663        hrtimer_forward(&ts->sched_timer, now, tick_period);
 664
 665        if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 666                hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
 667        else
 668                tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 669
 670        /*
 671         * Reset to make sure next tick stop doesn't get fooled by past
 672         * cached clock deadline.
 673         */
 674        ts->next_tick = 0;
 675}
 676
 677static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
 678                                         ktime_t now, int cpu)
 679{
 680        struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 681        u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 682        unsigned long seq, basejiff;
 683        ktime_t tick;
 684
 685        /* Read jiffies and the time when jiffies were updated last */
 686        do {
 687                seq = read_seqbegin(&jiffies_lock);
 688                basemono = last_jiffies_update;
 689                basejiff = jiffies;
 690        } while (read_seqretry(&jiffies_lock, seq));
 691        ts->last_jiffies = basejiff;
 692
 693        if (rcu_needs_cpu(basemono, &next_rcu) ||
 694            arch_needs_cpu() || irq_work_needs_cpu()) {
 695                next_tick = basemono + TICK_NSEC;
 696        } else {
 697                /*
 698                 * Get the next pending timer. If high resolution
 699                 * timers are enabled this only takes the timer wheel
 700                 * timers into account. If high resolution timers are
 701                 * disabled this also looks at the next expiring
 702                 * hrtimer.
 703                 */
 704                next_tmr = get_next_timer_interrupt(basejiff, basemono);
 705                ts->next_timer = next_tmr;
 706                /* Take the next rcu event into account */
 707                next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 708        }
 709
 710        /*
 711         * If the tick is due in the next period, keep it ticking or
 712         * force prod the timer.
 713         */
 714        delta = next_tick - basemono;
 715        if (delta <= (u64)TICK_NSEC) {
 716                /*
 717                 * Tell the timer code that the base is not idle, i.e. undo
 718                 * the effect of get_next_timer_interrupt():
 719                 */
 720                timer_clear_idle();
 721                /*
 722                 * We've not stopped the tick yet, and there's a timer in the
 723                 * next period, so no point in stopping it either, bail.
 724                 */
 725                if (!ts->tick_stopped) {
 726                        tick = 0;
 727                        goto out;
 728                }
 729        }
 730
 731        /*
 732         * If this CPU is the one which updates jiffies, then give up
 733         * the assignment and let it be taken by the CPU which runs
 734         * the tick timer next, which might be this CPU as well. If we
 735         * don't drop this here the jiffies might be stale and
 736         * do_timer() never invoked. Keep track of the fact that it
 737         * was the one which had the do_timer() duty last. If this CPU
 738         * is the one which had the do_timer() duty last, we limit the
 739         * sleep time to the timekeeping max_deferment value.
 740         * Otherwise we can sleep as long as we want.
 741         */
 742        delta = timekeeping_max_deferment();
 743        if (cpu == tick_do_timer_cpu) {
 744                tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 745                ts->do_timer_last = 1;
 746        } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 747                delta = KTIME_MAX;
 748                ts->do_timer_last = 0;
 749        } else if (!ts->do_timer_last) {
 750                delta = KTIME_MAX;
 751        }
 752
 753#ifdef CONFIG_NO_HZ_FULL
 754        /* Limit the tick delta to the maximum scheduler deferment */
 755        if (!ts->inidle)
 756                delta = min(delta, scheduler_tick_max_deferment());
 757#endif
 758
 759        /* Calculate the next expiry time */
 760        if (delta < (KTIME_MAX - basemono))
 761                expires = basemono + delta;
 762        else
 763                expires = KTIME_MAX;
 764
 765        expires = min_t(u64, expires, next_tick);
 766        tick = expires;
 767
 768        /* Skip reprogram of event if its not changed */
 769        if (ts->tick_stopped && (expires == ts->next_tick)) {
 770                /* Sanity check: make sure clockevent is actually programmed */
 771                if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 772                        goto out;
 773
 774                WARN_ON_ONCE(1);
 775                printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 776                            basemono, ts->next_tick, dev->next_event,
 777                            hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 778        }
 779
 780        /*
 781         * nohz_stop_sched_tick can be called several times before
 782         * the nohz_restart_sched_tick is called. This happens when
 783         * interrupts arrive which do not cause a reschedule. In the
 784         * first call we save the current tick time, so we can restart
 785         * the scheduler tick in nohz_restart_sched_tick.
 786         */
 787        if (!ts->tick_stopped) {
 788                calc_load_nohz_start();
 789                cpu_load_update_nohz_start();
 790
 791                ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 792                ts->tick_stopped = 1;
 793                trace_tick_stop(1, TICK_DEP_MASK_NONE);
 794        }
 795
 796        ts->next_tick = tick;
 797
 798        /*
 799         * If the expiration time == KTIME_MAX, then we simply stop
 800         * the tick timer.
 801         */
 802        if (unlikely(expires == KTIME_MAX)) {
 803                if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 804                        hrtimer_cancel(&ts->sched_timer);
 805                goto out;
 806        }
 807
 808        hrtimer_set_expires(&ts->sched_timer, tick);
 809
 810        if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 811                hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
 812        else
 813                tick_program_event(tick, 1);
 814out:
 815        /*
 816         * Update the estimated sleep length until the next timer
 817         * (not only the tick).
 818         */
 819        ts->sleep_length = ktime_sub(dev->next_event, now);
 820        return tick;
 821}
 822
 823static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 824{
 825        /* Update jiffies first */
 826        tick_do_update_jiffies64(now);
 827        cpu_load_update_nohz_stop();
 828
 829        /*
 830         * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 831         * the clock forward checks in the enqueue path:
 832         */
 833        timer_clear_idle();
 834
 835        calc_load_nohz_stop();
 836        touch_softlockup_watchdog_sched();
 837        /*
 838         * Cancel the scheduled timer and restore the tick
 839         */
 840        ts->tick_stopped  = 0;
 841        ts->idle_exittime = now;
 842
 843        tick_nohz_restart(ts, now);
 844}
 845
 846static void tick_nohz_full_update_tick(struct tick_sched *ts)
 847{
 848#ifdef CONFIG_NO_HZ_FULL
 849        int cpu = smp_processor_id();
 850
 851        if (!tick_nohz_full_cpu(cpu))
 852                return;
 853
 854        if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 855                return;
 856
 857        if (can_stop_full_tick(cpu, ts))
 858                tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
 859        else if (ts->tick_stopped)
 860                tick_nohz_restart_sched_tick(ts, ktime_get());
 861#endif
 862}
 863
 864static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 865{
 866        /*
 867         * If this CPU is offline and it is the one which updates
 868         * jiffies, then give up the assignment and let it be taken by
 869         * the CPU which runs the tick timer next. If we don't drop
 870         * this here the jiffies might be stale and do_timer() never
 871         * invoked.
 872         */
 873        if (unlikely(!cpu_online(cpu))) {
 874                if (cpu == tick_do_timer_cpu)
 875                        tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 876                /*
 877                 * Make sure the CPU doesn't get fooled by obsolete tick
 878                 * deadline if it comes back online later.
 879                 */
 880                ts->next_tick = 0;
 881                return false;
 882        }
 883
 884        if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
 885                ts->sleep_length = NSEC_PER_SEC / HZ;
 886                return false;
 887        }
 888
 889        if (need_resched())
 890                return false;
 891
 892        if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
 893                static int ratelimit;
 894
 895                if (ratelimit < 10 &&
 896                    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 897                        pr_warn("NOHZ: local_softirq_pending %02x\n",
 898                                (unsigned int) local_softirq_pending());
 899                        ratelimit++;
 900                }
 901                return false;
 902        }
 903
 904        if (tick_nohz_full_enabled()) {
 905                /*
 906                 * Keep the tick alive to guarantee timekeeping progression
 907                 * if there are full dynticks CPUs around
 908                 */
 909                if (tick_do_timer_cpu == cpu)
 910                        return false;
 911                /*
 912                 * Boot safety: make sure the timekeeping duty has been
 913                 * assigned before entering dyntick-idle mode,
 914                 */
 915                if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 916                        return false;
 917        }
 918
 919        return true;
 920}
 921
 922static void __tick_nohz_idle_enter(struct tick_sched *ts)
 923{
 924        ktime_t now, expires;
 925        int cpu = smp_processor_id();
 926
 927        now = tick_nohz_start_idle(ts);
 928
 929        if (can_stop_idle_tick(cpu, ts)) {
 930                int was_stopped = ts->tick_stopped;
 931
 932                ts->idle_calls++;
 933
 934                expires = tick_nohz_stop_sched_tick(ts, now, cpu);
 935                if (expires > 0LL) {
 936                        ts->idle_sleeps++;
 937                        ts->idle_expires = expires;
 938                }
 939
 940                if (!was_stopped && ts->tick_stopped) {
 941                        ts->idle_jiffies = ts->last_jiffies;
 942                        nohz_balance_enter_idle(cpu);
 943                }
 944        }
 945}
 946
 947/**
 948 * tick_nohz_idle_enter - stop the idle tick from the idle task
 949 *
 950 * When the next event is more than a tick into the future, stop the idle tick
 951 * Called when we start the idle loop.
 952 *
 953 * The arch is responsible of calling:
 954 *
 955 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 956 *  to sleep.
 957 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
 958 */
 959void tick_nohz_idle_enter(void)
 960{
 961        struct tick_sched *ts;
 962
 963        WARN_ON_ONCE(irqs_disabled());
 964
 965        /*
 966         * Update the idle state in the scheduler domain hierarchy
 967         * when tick_nohz_stop_sched_tick() is called from the idle loop.
 968         * State will be updated to busy during the first busy tick after
 969         * exiting idle.
 970         */
 971        set_cpu_sd_state_idle();
 972
 973        local_irq_disable();
 974
 975        ts = this_cpu_ptr(&tick_cpu_sched);
 976        ts->inidle = 1;
 977        __tick_nohz_idle_enter(ts);
 978
 979        local_irq_enable();
 980}
 981
 982/**
 983 * tick_nohz_irq_exit - update next tick event from interrupt exit
 984 *
 985 * When an interrupt fires while we are idle and it doesn't cause
 986 * a reschedule, it may still add, modify or delete a timer, enqueue
 987 * an RCU callback, etc...
 988 * So we need to re-calculate and reprogram the next tick event.
 989 */
 990void tick_nohz_irq_exit(void)
 991{
 992        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 993
 994        if (ts->inidle)
 995                __tick_nohz_idle_enter(ts);
 996        else
 997                tick_nohz_full_update_tick(ts);
 998}
 999
1000/**
1001 * tick_nohz_get_sleep_length - return the length of the current sleep
1002 *
1003 * Called from power state control code with interrupts disabled
1004 */
1005ktime_t tick_nohz_get_sleep_length(void)
1006{
1007        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1008
1009        return ts->sleep_length;
1010}
1011
1012/**
1013 * tick_nohz_get_idle_calls - return the current idle calls counter value
1014 *
1015 * Called from the schedutil frequency scaling governor in scheduler context.
1016 */
1017unsigned long tick_nohz_get_idle_calls(void)
1018{
1019        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1020
1021        return ts->idle_calls;
1022}
1023
1024static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1025{
1026#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1027        unsigned long ticks;
1028
1029        if (vtime_accounting_cpu_enabled())
1030                return;
1031        /*
1032         * We stopped the tick in idle. Update process times would miss the
1033         * time we slept as update_process_times does only a 1 tick
1034         * accounting. Enforce that this is accounted to idle !
1035         */
1036        ticks = jiffies - ts->idle_jiffies;
1037        /*
1038         * We might be one off. Do not randomly account a huge number of ticks!
1039         */
1040        if (ticks && ticks < LONG_MAX)
1041                account_idle_ticks(ticks);
1042#endif
1043}
1044
1045/**
1046 * tick_nohz_idle_exit - restart the idle tick from the idle task
1047 *
1048 * Restart the idle tick when the CPU is woken up from idle
1049 * This also exit the RCU extended quiescent state. The CPU
1050 * can use RCU again after this function is called.
1051 */
1052void tick_nohz_idle_exit(void)
1053{
1054        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1055        ktime_t now;
1056
1057        local_irq_disable();
1058
1059        WARN_ON_ONCE(!ts->inidle);
1060
1061        ts->inidle = 0;
1062
1063        if (ts->idle_active || ts->tick_stopped)
1064                now = ktime_get();
1065
1066        if (ts->idle_active)
1067                tick_nohz_stop_idle(ts, now);
1068
1069        if (ts->tick_stopped) {
1070                tick_nohz_restart_sched_tick(ts, now);
1071                tick_nohz_account_idle_ticks(ts);
1072        }
1073
1074        local_irq_enable();
1075}
1076
1077/*
1078 * The nohz low res interrupt handler
1079 */
1080static void tick_nohz_handler(struct clock_event_device *dev)
1081{
1082        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1083        struct pt_regs *regs = get_irq_regs();
1084        ktime_t now = ktime_get();
1085
1086        dev->next_event = KTIME_MAX;
1087
1088        tick_sched_do_timer(now);
1089        tick_sched_handle(ts, regs);
1090
1091        /* No need to reprogram if we are running tickless  */
1092        if (unlikely(ts->tick_stopped))
1093                return;
1094
1095        hrtimer_forward(&ts->sched_timer, now, tick_period);
1096        tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1097}
1098
1099static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1100{
1101        if (!tick_nohz_enabled)
1102                return;
1103        ts->nohz_mode = mode;
1104        /* One update is enough */
1105        if (!test_and_set_bit(0, &tick_nohz_active))
1106                timers_update_migration(true);
1107}
1108
1109/**
1110 * tick_nohz_switch_to_nohz - switch to nohz mode
1111 */
1112static void tick_nohz_switch_to_nohz(void)
1113{
1114        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1115        ktime_t next;
1116
1117        if (!tick_nohz_enabled)
1118                return;
1119
1120        if (tick_switch_to_oneshot(tick_nohz_handler))
1121                return;
1122
1123        /*
1124         * Recycle the hrtimer in ts, so we can share the
1125         * hrtimer_forward with the highres code.
1126         */
1127        hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1128        /* Get the next period */
1129        next = tick_init_jiffy_update();
1130
1131        hrtimer_set_expires(&ts->sched_timer, next);
1132        hrtimer_forward_now(&ts->sched_timer, tick_period);
1133        tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1134        tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1135}
1136
1137static inline void tick_nohz_irq_enter(void)
1138{
1139        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1140        ktime_t now;
1141
1142        if (!ts->idle_active && !ts->tick_stopped)
1143                return;
1144        now = ktime_get();
1145        if (ts->idle_active)
1146                tick_nohz_stop_idle(ts, now);
1147        if (ts->tick_stopped)
1148                tick_nohz_update_jiffies(now);
1149}
1150
1151#else
1152
1153static inline void tick_nohz_switch_to_nohz(void) { }
1154static inline void tick_nohz_irq_enter(void) { }
1155static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1156
1157#endif /* CONFIG_NO_HZ_COMMON */
1158
1159/*
1160 * Called from irq_enter to notify about the possible interruption of idle()
1161 */
1162void tick_irq_enter(void)
1163{
1164        tick_check_oneshot_broadcast_this_cpu();
1165        tick_nohz_irq_enter();
1166}
1167
1168/*
1169 * High resolution timer specific code
1170 */
1171#ifdef CONFIG_HIGH_RES_TIMERS
1172/*
1173 * We rearm the timer until we get disabled by the idle code.
1174 * Called with interrupts disabled.
1175 */
1176static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1177{
1178        struct tick_sched *ts =
1179                container_of(timer, struct tick_sched, sched_timer);
1180        struct pt_regs *regs = get_irq_regs();
1181        ktime_t now = ktime_get();
1182
1183        tick_sched_do_timer(now);
1184
1185        /*
1186         * Do not call, when we are not in irq context and have
1187         * no valid regs pointer
1188         */
1189        if (regs)
1190                tick_sched_handle(ts, regs);
1191        else
1192                ts->next_tick = 0;
1193
1194        /* No need to reprogram if we are in idle or full dynticks mode */
1195        if (unlikely(ts->tick_stopped))
1196                return HRTIMER_NORESTART;
1197
1198        hrtimer_forward(timer, now, tick_period);
1199
1200        return HRTIMER_RESTART;
1201}
1202
1203static int sched_skew_tick;
1204
1205static int __init skew_tick(char *str)
1206{
1207        get_option(&str, &sched_skew_tick);
1208
1209        return 0;
1210}
1211early_param("skew_tick", skew_tick);
1212
1213/**
1214 * tick_setup_sched_timer - setup the tick emulation timer
1215 */
1216void tick_setup_sched_timer(void)
1217{
1218        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1219        ktime_t now = ktime_get();
1220
1221        /*
1222         * Emulate tick processing via per-CPU hrtimers:
1223         */
1224        hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1225        ts->sched_timer.function = tick_sched_timer;
1226
1227        /* Get the next period (per-CPU) */
1228        hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1229
1230        /* Offset the tick to avert jiffies_lock contention. */
1231        if (sched_skew_tick) {
1232                u64 offset = ktime_to_ns(tick_period) >> 1;
1233                do_div(offset, num_possible_cpus());
1234                offset *= smp_processor_id();
1235                hrtimer_add_expires_ns(&ts->sched_timer, offset);
1236        }
1237
1238        hrtimer_forward(&ts->sched_timer, now, tick_period);
1239        hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1240        tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1241}
1242#endif /* HIGH_RES_TIMERS */
1243
1244#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1245void tick_cancel_sched_timer(int cpu)
1246{
1247        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1248
1249# ifdef CONFIG_HIGH_RES_TIMERS
1250        if (ts->sched_timer.base)
1251                hrtimer_cancel(&ts->sched_timer);
1252# endif
1253
1254        memset(ts, 0, sizeof(*ts));
1255}
1256#endif
1257
1258/**
1259 * Async notification about clocksource changes
1260 */
1261void tick_clock_notify(void)
1262{
1263        int cpu;
1264
1265        for_each_possible_cpu(cpu)
1266                set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1267}
1268
1269/*
1270 * Async notification about clock event changes
1271 */
1272void tick_oneshot_notify(void)
1273{
1274        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1275
1276        set_bit(0, &ts->check_clocks);
1277}
1278
1279/**
1280 * Check, if a change happened, which makes oneshot possible.
1281 *
1282 * Called cyclic from the hrtimer softirq (driven by the timer
1283 * softirq) allow_nohz signals, that we can switch into low-res nohz
1284 * mode, because high resolution timers are disabled (either compile
1285 * or runtime). Called with interrupts disabled.
1286 */
1287int tick_check_oneshot_change(int allow_nohz)
1288{
1289        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1290
1291        if (!test_and_clear_bit(0, &ts->check_clocks))
1292                return 0;
1293
1294        if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1295                return 0;
1296
1297        if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1298                return 0;
1299
1300        if (!allow_nohz)
1301                return 1;
1302
1303        tick_nohz_switch_to_nohz();
1304        return 0;
1305}
1306