linux/lib/radix-tree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Momchil Velikov
   3 * Portions Copyright (C) 2001 Christoph Hellwig
   4 * Copyright (C) 2005 SGI, Christoph Lameter
   5 * Copyright (C) 2006 Nick Piggin
   6 * Copyright (C) 2012 Konstantin Khlebnikov
   7 * Copyright (C) 2016 Intel, Matthew Wilcox
   8 * Copyright (C) 2016 Intel, Ross Zwisler
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2, or (at
  13 * your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#include <linux/bitmap.h>
  26#include <linux/bitops.h>
  27#include <linux/cpu.h>
  28#include <linux/errno.h>
  29#include <linux/export.h>
  30#include <linux/idr.h>
  31#include <linux/init.h>
  32#include <linux/kernel.h>
  33#include <linux/kmemleak.h>
  34#include <linux/percpu.h>
  35#include <linux/preempt.h>              /* in_interrupt() */
  36#include <linux/radix-tree.h>
  37#include <linux/rcupdate.h>
  38#include <linux/slab.h>
  39#include <linux/string.h>
  40
  41
  42/* Number of nodes in fully populated tree of given height */
  43static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
  44
  45/*
  46 * Radix tree node cache.
  47 */
  48static struct kmem_cache *radix_tree_node_cachep;
  49
  50/*
  51 * The radix tree is variable-height, so an insert operation not only has
  52 * to build the branch to its corresponding item, it also has to build the
  53 * branch to existing items if the size has to be increased (by
  54 * radix_tree_extend).
  55 *
  56 * The worst case is a zero height tree with just a single item at index 0,
  57 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  58 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  59 * Hence:
  60 */
  61#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  62
  63/*
  64 * The IDR does not have to be as high as the radix tree since it uses
  65 * signed integers, not unsigned longs.
  66 */
  67#define IDR_INDEX_BITS          (8 /* CHAR_BIT */ * sizeof(int) - 1)
  68#define IDR_MAX_PATH            (DIV_ROUND_UP(IDR_INDEX_BITS, \
  69                                                RADIX_TREE_MAP_SHIFT))
  70#define IDR_PRELOAD_SIZE        (IDR_MAX_PATH * 2 - 1)
  71
  72/*
  73 * The IDA is even shorter since it uses a bitmap at the last level.
  74 */
  75#define IDA_INDEX_BITS          (8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
  76#define IDA_MAX_PATH            (DIV_ROUND_UP(IDA_INDEX_BITS, \
  77                                                RADIX_TREE_MAP_SHIFT))
  78#define IDA_PRELOAD_SIZE        (IDA_MAX_PATH * 2 - 1)
  79
  80/*
  81 * Per-cpu pool of preloaded nodes
  82 */
  83struct radix_tree_preload {
  84        unsigned nr;
  85        /* nodes->parent points to next preallocated node */
  86        struct radix_tree_node *nodes;
  87};
  88static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
  89
  90static inline struct radix_tree_node *entry_to_node(void *ptr)
  91{
  92        return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
  93}
  94
  95static inline void *node_to_entry(void *ptr)
  96{
  97        return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
  98}
  99
 100#define RADIX_TREE_RETRY        node_to_entry(NULL)
 101
 102#ifdef CONFIG_RADIX_TREE_MULTIORDER
 103/* Sibling slots point directly to another slot in the same node */
 104static inline
 105bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
 106{
 107        void __rcu **ptr = node;
 108        return (parent->slots <= ptr) &&
 109                        (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
 110}
 111#else
 112static inline
 113bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
 114{
 115        return false;
 116}
 117#endif
 118
 119static inline unsigned long
 120get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
 121{
 122        return slot - parent->slots;
 123}
 124
 125static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
 126                        struct radix_tree_node **nodep, unsigned long index)
 127{
 128        unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
 129        void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
 130
 131#ifdef CONFIG_RADIX_TREE_MULTIORDER
 132        if (radix_tree_is_internal_node(entry)) {
 133                if (is_sibling_entry(parent, entry)) {
 134                        void __rcu **sibentry;
 135                        sibentry = (void __rcu **) entry_to_node(entry);
 136                        offset = get_slot_offset(parent, sibentry);
 137                        entry = rcu_dereference_raw(*sibentry);
 138                }
 139        }
 140#endif
 141
 142        *nodep = (void *)entry;
 143        return offset;
 144}
 145
 146static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
 147{
 148        return root->gfp_mask & __GFP_BITS_MASK;
 149}
 150
 151static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
 152                int offset)
 153{
 154        __set_bit(offset, node->tags[tag]);
 155}
 156
 157static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
 158                int offset)
 159{
 160        __clear_bit(offset, node->tags[tag]);
 161}
 162
 163static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
 164                int offset)
 165{
 166        return test_bit(offset, node->tags[tag]);
 167}
 168
 169static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
 170{
 171        root->gfp_mask |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
 172}
 173
 174static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
 175{
 176        root->gfp_mask &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
 177}
 178
 179static inline void root_tag_clear_all(struct radix_tree_root *root)
 180{
 181        root->gfp_mask &= (1 << ROOT_TAG_SHIFT) - 1;
 182}
 183
 184static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
 185{
 186        return (__force int)root->gfp_mask & (1 << (tag + ROOT_TAG_SHIFT));
 187}
 188
 189static inline unsigned root_tags_get(const struct radix_tree_root *root)
 190{
 191        return (__force unsigned)root->gfp_mask >> ROOT_TAG_SHIFT;
 192}
 193
 194static inline bool is_idr(const struct radix_tree_root *root)
 195{
 196        return !!(root->gfp_mask & ROOT_IS_IDR);
 197}
 198
 199/*
 200 * Returns 1 if any slot in the node has this tag set.
 201 * Otherwise returns 0.
 202 */
 203static inline int any_tag_set(const struct radix_tree_node *node,
 204                                                        unsigned int tag)
 205{
 206        unsigned idx;
 207        for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 208                if (node->tags[tag][idx])
 209                        return 1;
 210        }
 211        return 0;
 212}
 213
 214static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
 215{
 216        bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
 217}
 218
 219/**
 220 * radix_tree_find_next_bit - find the next set bit in a memory region
 221 *
 222 * @addr: The address to base the search on
 223 * @size: The bitmap size in bits
 224 * @offset: The bitnumber to start searching at
 225 *
 226 * Unrollable variant of find_next_bit() for constant size arrays.
 227 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 228 * Returns next bit offset, or size if nothing found.
 229 */
 230static __always_inline unsigned long
 231radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
 232                         unsigned long offset)
 233{
 234        const unsigned long *addr = node->tags[tag];
 235
 236        if (offset < RADIX_TREE_MAP_SIZE) {
 237                unsigned long tmp;
 238
 239                addr += offset / BITS_PER_LONG;
 240                tmp = *addr >> (offset % BITS_PER_LONG);
 241                if (tmp)
 242                        return __ffs(tmp) + offset;
 243                offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 244                while (offset < RADIX_TREE_MAP_SIZE) {
 245                        tmp = *++addr;
 246                        if (tmp)
 247                                return __ffs(tmp) + offset;
 248                        offset += BITS_PER_LONG;
 249                }
 250        }
 251        return RADIX_TREE_MAP_SIZE;
 252}
 253
 254static unsigned int iter_offset(const struct radix_tree_iter *iter)
 255{
 256        return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
 257}
 258
 259/*
 260 * The maximum index which can be stored in a radix tree
 261 */
 262static inline unsigned long shift_maxindex(unsigned int shift)
 263{
 264        return (RADIX_TREE_MAP_SIZE << shift) - 1;
 265}
 266
 267static inline unsigned long node_maxindex(const struct radix_tree_node *node)
 268{
 269        return shift_maxindex(node->shift);
 270}
 271
 272static unsigned long next_index(unsigned long index,
 273                                const struct radix_tree_node *node,
 274                                unsigned long offset)
 275{
 276        return (index & ~node_maxindex(node)) + (offset << node->shift);
 277}
 278
 279#ifndef __KERNEL__
 280static void dump_node(struct radix_tree_node *node, unsigned long index)
 281{
 282        unsigned long i;
 283
 284        pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
 285                node, node->offset, index, index | node_maxindex(node),
 286                node->parent,
 287                node->tags[0][0], node->tags[1][0], node->tags[2][0],
 288                node->shift, node->count, node->exceptional);
 289
 290        for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
 291                unsigned long first = index | (i << node->shift);
 292                unsigned long last = first | ((1UL << node->shift) - 1);
 293                void *entry = node->slots[i];
 294                if (!entry)
 295                        continue;
 296                if (entry == RADIX_TREE_RETRY) {
 297                        pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
 298                                        i, first, last, node);
 299                } else if (!radix_tree_is_internal_node(entry)) {
 300                        pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
 301                                        entry, i, first, last, node);
 302                } else if (is_sibling_entry(node, entry)) {
 303                        pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
 304                                        entry, i, first, last, node,
 305                                        *(void **)entry_to_node(entry));
 306                } else {
 307                        dump_node(entry_to_node(entry), first);
 308                }
 309        }
 310}
 311
 312/* For debug */
 313static void radix_tree_dump(struct radix_tree_root *root)
 314{
 315        pr_debug("radix root: %p rnode %p tags %x\n",
 316                        root, root->rnode,
 317                        root->gfp_mask >> ROOT_TAG_SHIFT);
 318        if (!radix_tree_is_internal_node(root->rnode))
 319                return;
 320        dump_node(entry_to_node(root->rnode), 0);
 321}
 322
 323static void dump_ida_node(void *entry, unsigned long index)
 324{
 325        unsigned long i;
 326
 327        if (!entry)
 328                return;
 329
 330        if (radix_tree_is_internal_node(entry)) {
 331                struct radix_tree_node *node = entry_to_node(entry);
 332
 333                pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n",
 334                        node, node->offset, index * IDA_BITMAP_BITS,
 335                        ((index | node_maxindex(node)) + 1) *
 336                                IDA_BITMAP_BITS - 1,
 337                        node->parent, node->tags[0][0], node->shift,
 338                        node->count);
 339                for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
 340                        dump_ida_node(node->slots[i],
 341                                        index | (i << node->shift));
 342        } else if (radix_tree_exceptional_entry(entry)) {
 343                pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n",
 344                                entry, (int)(index & RADIX_TREE_MAP_MASK),
 345                                index * IDA_BITMAP_BITS,
 346                                index * IDA_BITMAP_BITS + BITS_PER_LONG -
 347                                        RADIX_TREE_EXCEPTIONAL_SHIFT,
 348                                (unsigned long)entry >>
 349                                        RADIX_TREE_EXCEPTIONAL_SHIFT);
 350        } else {
 351                struct ida_bitmap *bitmap = entry;
 352
 353                pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap,
 354                                (int)(index & RADIX_TREE_MAP_MASK),
 355                                index * IDA_BITMAP_BITS,
 356                                (index + 1) * IDA_BITMAP_BITS - 1);
 357                for (i = 0; i < IDA_BITMAP_LONGS; i++)
 358                        pr_cont(" %lx", bitmap->bitmap[i]);
 359                pr_cont("\n");
 360        }
 361}
 362
 363static void ida_dump(struct ida *ida)
 364{
 365        struct radix_tree_root *root = &ida->ida_rt;
 366        pr_debug("ida: %p node %p free %d\n", ida, root->rnode,
 367                                root->gfp_mask >> ROOT_TAG_SHIFT);
 368        dump_ida_node(root->rnode, 0);
 369}
 370#endif
 371
 372/*
 373 * This assumes that the caller has performed appropriate preallocation, and
 374 * that the caller has pinned this thread of control to the current CPU.
 375 */
 376static struct radix_tree_node *
 377radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
 378                        struct radix_tree_root *root,
 379                        unsigned int shift, unsigned int offset,
 380                        unsigned int count, unsigned int exceptional)
 381{
 382        struct radix_tree_node *ret = NULL;
 383
 384        /*
 385         * Preload code isn't irq safe and it doesn't make sense to use
 386         * preloading during an interrupt anyway as all the allocations have
 387         * to be atomic. So just do normal allocation when in interrupt.
 388         */
 389        if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
 390                struct radix_tree_preload *rtp;
 391
 392                /*
 393                 * Even if the caller has preloaded, try to allocate from the
 394                 * cache first for the new node to get accounted to the memory
 395                 * cgroup.
 396                 */
 397                ret = kmem_cache_alloc(radix_tree_node_cachep,
 398                                       gfp_mask | __GFP_NOWARN);
 399                if (ret)
 400                        goto out;
 401
 402                /*
 403                 * Provided the caller has preloaded here, we will always
 404                 * succeed in getting a node here (and never reach
 405                 * kmem_cache_alloc)
 406                 */
 407                rtp = this_cpu_ptr(&radix_tree_preloads);
 408                if (rtp->nr) {
 409                        ret = rtp->nodes;
 410                        rtp->nodes = ret->parent;
 411                        rtp->nr--;
 412                }
 413                /*
 414                 * Update the allocation stack trace as this is more useful
 415                 * for debugging.
 416                 */
 417                kmemleak_update_trace(ret);
 418                goto out;
 419        }
 420        ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 421out:
 422        BUG_ON(radix_tree_is_internal_node(ret));
 423        if (ret) {
 424                ret->shift = shift;
 425                ret->offset = offset;
 426                ret->count = count;
 427                ret->exceptional = exceptional;
 428                ret->parent = parent;
 429                ret->root = root;
 430        }
 431        return ret;
 432}
 433
 434static void radix_tree_node_rcu_free(struct rcu_head *head)
 435{
 436        struct radix_tree_node *node =
 437                        container_of(head, struct radix_tree_node, rcu_head);
 438
 439        /*
 440         * Must only free zeroed nodes into the slab.  We can be left with
 441         * non-NULL entries by radix_tree_free_nodes, so clear the entries
 442         * and tags here.
 443         */
 444        memset(node->slots, 0, sizeof(node->slots));
 445        memset(node->tags, 0, sizeof(node->tags));
 446        INIT_LIST_HEAD(&node->private_list);
 447
 448        kmem_cache_free(radix_tree_node_cachep, node);
 449}
 450
 451static inline void
 452radix_tree_node_free(struct radix_tree_node *node)
 453{
 454        call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 455}
 456
 457/*
 458 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 459 * ensure that the addition of a single element in the tree cannot fail.  On
 460 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 461 * with preemption not disabled.
 462 *
 463 * To make use of this facility, the radix tree must be initialised without
 464 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 465 */
 466static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
 467{
 468        struct radix_tree_preload *rtp;
 469        struct radix_tree_node *node;
 470        int ret = -ENOMEM;
 471
 472        /*
 473         * Nodes preloaded by one cgroup can be be used by another cgroup, so
 474         * they should never be accounted to any particular memory cgroup.
 475         */
 476        gfp_mask &= ~__GFP_ACCOUNT;
 477
 478        preempt_disable();
 479        rtp = this_cpu_ptr(&radix_tree_preloads);
 480        while (rtp->nr < nr) {
 481                preempt_enable();
 482                node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 483                if (node == NULL)
 484                        goto out;
 485                preempt_disable();
 486                rtp = this_cpu_ptr(&radix_tree_preloads);
 487                if (rtp->nr < nr) {
 488                        node->parent = rtp->nodes;
 489                        rtp->nodes = node;
 490                        rtp->nr++;
 491                } else {
 492                        kmem_cache_free(radix_tree_node_cachep, node);
 493                }
 494        }
 495        ret = 0;
 496out:
 497        return ret;
 498}
 499
 500/*
 501 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 502 * ensure that the addition of a single element in the tree cannot fail.  On
 503 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 504 * with preemption not disabled.
 505 *
 506 * To make use of this facility, the radix tree must be initialised without
 507 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 508 */
 509int radix_tree_preload(gfp_t gfp_mask)
 510{
 511        /* Warn on non-sensical use... */
 512        WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 513        return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 514}
 515EXPORT_SYMBOL(radix_tree_preload);
 516
 517/*
 518 * The same as above function, except we don't guarantee preloading happens.
 519 * We do it, if we decide it helps. On success, return zero with preemption
 520 * disabled. On error, return -ENOMEM with preemption not disabled.
 521 */
 522int radix_tree_maybe_preload(gfp_t gfp_mask)
 523{
 524        if (gfpflags_allow_blocking(gfp_mask))
 525                return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 526        /* Preloading doesn't help anything with this gfp mask, skip it */
 527        preempt_disable();
 528        return 0;
 529}
 530EXPORT_SYMBOL(radix_tree_maybe_preload);
 531
 532#ifdef CONFIG_RADIX_TREE_MULTIORDER
 533/*
 534 * Preload with enough objects to ensure that we can split a single entry
 535 * of order @old_order into many entries of size @new_order
 536 */
 537int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
 538                                                        gfp_t gfp_mask)
 539{
 540        unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
 541        unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
 542                                (new_order / RADIX_TREE_MAP_SHIFT);
 543        unsigned nr = 0;
 544
 545        WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 546        BUG_ON(new_order >= old_order);
 547
 548        while (layers--)
 549                nr = nr * RADIX_TREE_MAP_SIZE + 1;
 550        return __radix_tree_preload(gfp_mask, top * nr);
 551}
 552#endif
 553
 554/*
 555 * The same as function above, but preload number of nodes required to insert
 556 * (1 << order) continuous naturally-aligned elements.
 557 */
 558int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
 559{
 560        unsigned long nr_subtrees;
 561        int nr_nodes, subtree_height;
 562
 563        /* Preloading doesn't help anything with this gfp mask, skip it */
 564        if (!gfpflags_allow_blocking(gfp_mask)) {
 565                preempt_disable();
 566                return 0;
 567        }
 568
 569        /*
 570         * Calculate number and height of fully populated subtrees it takes to
 571         * store (1 << order) elements.
 572         */
 573        nr_subtrees = 1 << order;
 574        for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
 575                        subtree_height++)
 576                nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
 577
 578        /*
 579         * The worst case is zero height tree with a single item at index 0 and
 580         * then inserting items starting at ULONG_MAX - (1 << order).
 581         *
 582         * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
 583         * 0-index item.
 584         */
 585        nr_nodes = RADIX_TREE_MAX_PATH;
 586
 587        /* Plus branch to fully populated subtrees. */
 588        nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
 589
 590        /* Root node is shared. */
 591        nr_nodes--;
 592
 593        /* Plus nodes required to build subtrees. */
 594        nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
 595
 596        return __radix_tree_preload(gfp_mask, nr_nodes);
 597}
 598
 599static unsigned radix_tree_load_root(const struct radix_tree_root *root,
 600                struct radix_tree_node **nodep, unsigned long *maxindex)
 601{
 602        struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
 603
 604        *nodep = node;
 605
 606        if (likely(radix_tree_is_internal_node(node))) {
 607                node = entry_to_node(node);
 608                *maxindex = node_maxindex(node);
 609                return node->shift + RADIX_TREE_MAP_SHIFT;
 610        }
 611
 612        *maxindex = 0;
 613        return 0;
 614}
 615
 616/*
 617 *      Extend a radix tree so it can store key @index.
 618 */
 619static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
 620                                unsigned long index, unsigned int shift)
 621{
 622        void *entry;
 623        unsigned int maxshift;
 624        int tag;
 625
 626        /* Figure out what the shift should be.  */
 627        maxshift = shift;
 628        while (index > shift_maxindex(maxshift))
 629                maxshift += RADIX_TREE_MAP_SHIFT;
 630
 631        entry = rcu_dereference_raw(root->rnode);
 632        if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
 633                goto out;
 634
 635        do {
 636                struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
 637                                                        root, shift, 0, 1, 0);
 638                if (!node)
 639                        return -ENOMEM;
 640
 641                if (is_idr(root)) {
 642                        all_tag_set(node, IDR_FREE);
 643                        if (!root_tag_get(root, IDR_FREE)) {
 644                                tag_clear(node, IDR_FREE, 0);
 645                                root_tag_set(root, IDR_FREE);
 646                        }
 647                } else {
 648                        /* Propagate the aggregated tag info to the new child */
 649                        for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 650                                if (root_tag_get(root, tag))
 651                                        tag_set(node, tag, 0);
 652                        }
 653                }
 654
 655                BUG_ON(shift > BITS_PER_LONG);
 656                if (radix_tree_is_internal_node(entry)) {
 657                        entry_to_node(entry)->parent = node;
 658                } else if (radix_tree_exceptional_entry(entry)) {
 659                        /* Moving an exceptional root->rnode to a node */
 660                        node->exceptional = 1;
 661                }
 662                /*
 663                 * entry was already in the radix tree, so we do not need
 664                 * rcu_assign_pointer here
 665                 */
 666                node->slots[0] = (void __rcu *)entry;
 667                entry = node_to_entry(node);
 668                rcu_assign_pointer(root->rnode, entry);
 669                shift += RADIX_TREE_MAP_SHIFT;
 670        } while (shift <= maxshift);
 671out:
 672        return maxshift + RADIX_TREE_MAP_SHIFT;
 673}
 674
 675/**
 676 *      radix_tree_shrink    -    shrink radix tree to minimum height
 677 *      @root           radix tree root
 678 */
 679static inline bool radix_tree_shrink(struct radix_tree_root *root,
 680                                     radix_tree_update_node_t update_node,
 681                                     void *private)
 682{
 683        bool shrunk = false;
 684
 685        for (;;) {
 686                struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
 687                struct radix_tree_node *child;
 688
 689                if (!radix_tree_is_internal_node(node))
 690                        break;
 691                node = entry_to_node(node);
 692
 693                /*
 694                 * The candidate node has more than one child, or its child
 695                 * is not at the leftmost slot, or the child is a multiorder
 696                 * entry, we cannot shrink.
 697                 */
 698                if (node->count != 1)
 699                        break;
 700                child = rcu_dereference_raw(node->slots[0]);
 701                if (!child)
 702                        break;
 703                if (!radix_tree_is_internal_node(child) && node->shift)
 704                        break;
 705
 706                if (radix_tree_is_internal_node(child))
 707                        entry_to_node(child)->parent = NULL;
 708
 709                /*
 710                 * We don't need rcu_assign_pointer(), since we are simply
 711                 * moving the node from one part of the tree to another: if it
 712                 * was safe to dereference the old pointer to it
 713                 * (node->slots[0]), it will be safe to dereference the new
 714                 * one (root->rnode) as far as dependent read barriers go.
 715                 */
 716                root->rnode = (void __rcu *)child;
 717                if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
 718                        root_tag_clear(root, IDR_FREE);
 719
 720                /*
 721                 * We have a dilemma here. The node's slot[0] must not be
 722                 * NULLed in case there are concurrent lookups expecting to
 723                 * find the item. However if this was a bottom-level node,
 724                 * then it may be subject to the slot pointer being visible
 725                 * to callers dereferencing it. If item corresponding to
 726                 * slot[0] is subsequently deleted, these callers would expect
 727                 * their slot to become empty sooner or later.
 728                 *
 729                 * For example, lockless pagecache will look up a slot, deref
 730                 * the page pointer, and if the page has 0 refcount it means it
 731                 * was concurrently deleted from pagecache so try the deref
 732                 * again. Fortunately there is already a requirement for logic
 733                 * to retry the entire slot lookup -- the indirect pointer
 734                 * problem (replacing direct root node with an indirect pointer
 735                 * also results in a stale slot). So tag the slot as indirect
 736                 * to force callers to retry.
 737                 */
 738                node->count = 0;
 739                if (!radix_tree_is_internal_node(child)) {
 740                        node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
 741                        if (update_node)
 742                                update_node(node, private);
 743                }
 744
 745                WARN_ON_ONCE(!list_empty(&node->private_list));
 746                radix_tree_node_free(node);
 747                shrunk = true;
 748        }
 749
 750        return shrunk;
 751}
 752
 753static bool delete_node(struct radix_tree_root *root,
 754                        struct radix_tree_node *node,
 755                        radix_tree_update_node_t update_node, void *private)
 756{
 757        bool deleted = false;
 758
 759        do {
 760                struct radix_tree_node *parent;
 761
 762                if (node->count) {
 763                        if (node_to_entry(node) ==
 764                                        rcu_dereference_raw(root->rnode))
 765                                deleted |= radix_tree_shrink(root, update_node,
 766                                                                private);
 767                        return deleted;
 768                }
 769
 770                parent = node->parent;
 771                if (parent) {
 772                        parent->slots[node->offset] = NULL;
 773                        parent->count--;
 774                } else {
 775                        /*
 776                         * Shouldn't the tags already have all been cleared
 777                         * by the caller?
 778                         */
 779                        if (!is_idr(root))
 780                                root_tag_clear_all(root);
 781                        root->rnode = NULL;
 782                }
 783
 784                WARN_ON_ONCE(!list_empty(&node->private_list));
 785                radix_tree_node_free(node);
 786                deleted = true;
 787
 788                node = parent;
 789        } while (node);
 790
 791        return deleted;
 792}
 793
 794/**
 795 *      __radix_tree_create     -       create a slot in a radix tree
 796 *      @root:          radix tree root
 797 *      @index:         index key
 798 *      @order:         index occupies 2^order aligned slots
 799 *      @nodep:         returns node
 800 *      @slotp:         returns slot
 801 *
 802 *      Create, if necessary, and return the node and slot for an item
 803 *      at position @index in the radix tree @root.
 804 *
 805 *      Until there is more than one item in the tree, no nodes are
 806 *      allocated and @root->rnode is used as a direct slot instead of
 807 *      pointing to a node, in which case *@nodep will be NULL.
 808 *
 809 *      Returns -ENOMEM, or 0 for success.
 810 */
 811int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
 812                        unsigned order, struct radix_tree_node **nodep,
 813                        void __rcu ***slotp)
 814{
 815        struct radix_tree_node *node = NULL, *child;
 816        void __rcu **slot = (void __rcu **)&root->rnode;
 817        unsigned long maxindex;
 818        unsigned int shift, offset = 0;
 819        unsigned long max = index | ((1UL << order) - 1);
 820        gfp_t gfp = root_gfp_mask(root);
 821
 822        shift = radix_tree_load_root(root, &child, &maxindex);
 823
 824        /* Make sure the tree is high enough.  */
 825        if (order > 0 && max == ((1UL << order) - 1))
 826                max++;
 827        if (max > maxindex) {
 828                int error = radix_tree_extend(root, gfp, max, shift);
 829                if (error < 0)
 830                        return error;
 831                shift = error;
 832                child = rcu_dereference_raw(root->rnode);
 833        }
 834
 835        while (shift > order) {
 836                shift -= RADIX_TREE_MAP_SHIFT;
 837                if (child == NULL) {
 838                        /* Have to add a child node.  */
 839                        child = radix_tree_node_alloc(gfp, node, root, shift,
 840                                                        offset, 0, 0);
 841                        if (!child)
 842                                return -ENOMEM;
 843                        rcu_assign_pointer(*slot, node_to_entry(child));
 844                        if (node)
 845                                node->count++;
 846                } else if (!radix_tree_is_internal_node(child))
 847                        break;
 848
 849                /* Go a level down */
 850                node = entry_to_node(child);
 851                offset = radix_tree_descend(node, &child, index);
 852                slot = &node->slots[offset];
 853        }
 854
 855        if (nodep)
 856                *nodep = node;
 857        if (slotp)
 858                *slotp = slot;
 859        return 0;
 860}
 861
 862/*
 863 * Free any nodes below this node.  The tree is presumed to not need
 864 * shrinking, and any user data in the tree is presumed to not need a
 865 * destructor called on it.  If we need to add a destructor, we can
 866 * add that functionality later.  Note that we may not clear tags or
 867 * slots from the tree as an RCU walker may still have a pointer into
 868 * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
 869 * but we'll still have to clear those in rcu_free.
 870 */
 871static void radix_tree_free_nodes(struct radix_tree_node *node)
 872{
 873        unsigned offset = 0;
 874        struct radix_tree_node *child = entry_to_node(node);
 875
 876        for (;;) {
 877                void *entry = rcu_dereference_raw(child->slots[offset]);
 878                if (radix_tree_is_internal_node(entry) &&
 879                                        !is_sibling_entry(child, entry)) {
 880                        child = entry_to_node(entry);
 881                        offset = 0;
 882                        continue;
 883                }
 884                offset++;
 885                while (offset == RADIX_TREE_MAP_SIZE) {
 886                        struct radix_tree_node *old = child;
 887                        offset = child->offset + 1;
 888                        child = child->parent;
 889                        WARN_ON_ONCE(!list_empty(&old->private_list));
 890                        radix_tree_node_free(old);
 891                        if (old == entry_to_node(node))
 892                                return;
 893                }
 894        }
 895}
 896
 897#ifdef CONFIG_RADIX_TREE_MULTIORDER
 898static inline int insert_entries(struct radix_tree_node *node,
 899                void __rcu **slot, void *item, unsigned order, bool replace)
 900{
 901        struct radix_tree_node *child;
 902        unsigned i, n, tag, offset, tags = 0;
 903
 904        if (node) {
 905                if (order > node->shift)
 906                        n = 1 << (order - node->shift);
 907                else
 908                        n = 1;
 909                offset = get_slot_offset(node, slot);
 910        } else {
 911                n = 1;
 912                offset = 0;
 913        }
 914
 915        if (n > 1) {
 916                offset = offset & ~(n - 1);
 917                slot = &node->slots[offset];
 918        }
 919        child = node_to_entry(slot);
 920
 921        for (i = 0; i < n; i++) {
 922                if (slot[i]) {
 923                        if (replace) {
 924                                node->count--;
 925                                for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 926                                        if (tag_get(node, tag, offset + i))
 927                                                tags |= 1 << tag;
 928                        } else
 929                                return -EEXIST;
 930                }
 931        }
 932
 933        for (i = 0; i < n; i++) {
 934                struct radix_tree_node *old = rcu_dereference_raw(slot[i]);
 935                if (i) {
 936                        rcu_assign_pointer(slot[i], child);
 937                        for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 938                                if (tags & (1 << tag))
 939                                        tag_clear(node, tag, offset + i);
 940                } else {
 941                        rcu_assign_pointer(slot[i], item);
 942                        for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 943                                if (tags & (1 << tag))
 944                                        tag_set(node, tag, offset);
 945                }
 946                if (radix_tree_is_internal_node(old) &&
 947                                        !is_sibling_entry(node, old) &&
 948                                        (old != RADIX_TREE_RETRY))
 949                        radix_tree_free_nodes(old);
 950                if (radix_tree_exceptional_entry(old))
 951                        node->exceptional--;
 952        }
 953        if (node) {
 954                node->count += n;
 955                if (radix_tree_exceptional_entry(item))
 956                        node->exceptional += n;
 957        }
 958        return n;
 959}
 960#else
 961static inline int insert_entries(struct radix_tree_node *node,
 962                void __rcu **slot, void *item, unsigned order, bool replace)
 963{
 964        if (*slot)
 965                return -EEXIST;
 966        rcu_assign_pointer(*slot, item);
 967        if (node) {
 968                node->count++;
 969                if (radix_tree_exceptional_entry(item))
 970                        node->exceptional++;
 971        }
 972        return 1;
 973}
 974#endif
 975
 976/**
 977 *      __radix_tree_insert    -    insert into a radix tree
 978 *      @root:          radix tree root
 979 *      @index:         index key
 980 *      @order:         key covers the 2^order indices around index
 981 *      @item:          item to insert
 982 *
 983 *      Insert an item into the radix tree at position @index.
 984 */
 985int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
 986                        unsigned order, void *item)
 987{
 988        struct radix_tree_node *node;
 989        void __rcu **slot;
 990        int error;
 991
 992        BUG_ON(radix_tree_is_internal_node(item));
 993
 994        error = __radix_tree_create(root, index, order, &node, &slot);
 995        if (error)
 996                return error;
 997
 998        error = insert_entries(node, slot, item, order, false);
 999        if (error < 0)
1000                return error;
1001
1002        if (node) {
1003                unsigned offset = get_slot_offset(node, slot);
1004                BUG_ON(tag_get(node, 0, offset));
1005                BUG_ON(tag_get(node, 1, offset));
1006                BUG_ON(tag_get(node, 2, offset));
1007        } else {
1008                BUG_ON(root_tags_get(root));
1009        }
1010
1011        return 0;
1012}
1013EXPORT_SYMBOL(__radix_tree_insert);
1014
1015/**
1016 *      __radix_tree_lookup     -       lookup an item in a radix tree
1017 *      @root:          radix tree root
1018 *      @index:         index key
1019 *      @nodep:         returns node
1020 *      @slotp:         returns slot
1021 *
1022 *      Lookup and return the item at position @index in the radix
1023 *      tree @root.
1024 *
1025 *      Until there is more than one item in the tree, no nodes are
1026 *      allocated and @root->rnode is used as a direct slot instead of
1027 *      pointing to a node, in which case *@nodep will be NULL.
1028 */
1029void *__radix_tree_lookup(const struct radix_tree_root *root,
1030                          unsigned long index, struct radix_tree_node **nodep,
1031                          void __rcu ***slotp)
1032{
1033        struct radix_tree_node *node, *parent;
1034        unsigned long maxindex;
1035        void __rcu **slot;
1036
1037 restart:
1038        parent = NULL;
1039        slot = (void __rcu **)&root->rnode;
1040        radix_tree_load_root(root, &node, &maxindex);
1041        if (index > maxindex)
1042                return NULL;
1043
1044        while (radix_tree_is_internal_node(node)) {
1045                unsigned offset;
1046
1047                if (node == RADIX_TREE_RETRY)
1048                        goto restart;
1049                parent = entry_to_node(node);
1050                offset = radix_tree_descend(parent, &node, index);
1051                slot = parent->slots + offset;
1052        }
1053
1054        if (nodep)
1055                *nodep = parent;
1056        if (slotp)
1057                *slotp = slot;
1058        return node;
1059}
1060
1061/**
1062 *      radix_tree_lookup_slot    -    lookup a slot in a radix tree
1063 *      @root:          radix tree root
1064 *      @index:         index key
1065 *
1066 *      Returns:  the slot corresponding to the position @index in the
1067 *      radix tree @root. This is useful for update-if-exists operations.
1068 *
1069 *      This function can be called under rcu_read_lock iff the slot is not
1070 *      modified by radix_tree_replace_slot, otherwise it must be called
1071 *      exclusive from other writers. Any dereference of the slot must be done
1072 *      using radix_tree_deref_slot.
1073 */
1074void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
1075                                unsigned long index)
1076{
1077        void __rcu **slot;
1078
1079        if (!__radix_tree_lookup(root, index, NULL, &slot))
1080                return NULL;
1081        return slot;
1082}
1083EXPORT_SYMBOL(radix_tree_lookup_slot);
1084
1085/**
1086 *      radix_tree_lookup    -    perform lookup operation on a radix tree
1087 *      @root:          radix tree root
1088 *      @index:         index key
1089 *
1090 *      Lookup the item at the position @index in the radix tree @root.
1091 *
1092 *      This function can be called under rcu_read_lock, however the caller
1093 *      must manage lifetimes of leaf nodes (eg. RCU may also be used to free
1094 *      them safely). No RCU barriers are required to access or modify the
1095 *      returned item, however.
1096 */
1097void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
1098{
1099        return __radix_tree_lookup(root, index, NULL, NULL);
1100}
1101EXPORT_SYMBOL(radix_tree_lookup);
1102
1103static inline void replace_sibling_entries(struct radix_tree_node *node,
1104                                void __rcu **slot, int count, int exceptional)
1105{
1106#ifdef CONFIG_RADIX_TREE_MULTIORDER
1107        void *ptr = node_to_entry(slot);
1108        unsigned offset = get_slot_offset(node, slot) + 1;
1109
1110        while (offset < RADIX_TREE_MAP_SIZE) {
1111                if (rcu_dereference_raw(node->slots[offset]) != ptr)
1112                        break;
1113                if (count < 0) {
1114                        node->slots[offset] = NULL;
1115                        node->count--;
1116                }
1117                node->exceptional += exceptional;
1118                offset++;
1119        }
1120#endif
1121}
1122
1123static void replace_slot(void __rcu **slot, void *item,
1124                struct radix_tree_node *node, int count, int exceptional)
1125{
1126        if (WARN_ON_ONCE(radix_tree_is_internal_node(item)))
1127                return;
1128
1129        if (node && (count || exceptional)) {
1130                node->count += count;
1131                node->exceptional += exceptional;
1132                replace_sibling_entries(node, slot, count, exceptional);
1133        }
1134
1135        rcu_assign_pointer(*slot, item);
1136}
1137
1138static bool node_tag_get(const struct radix_tree_root *root,
1139                                const struct radix_tree_node *node,
1140                                unsigned int tag, unsigned int offset)
1141{
1142        if (node)
1143                return tag_get(node, tag, offset);
1144        return root_tag_get(root, tag);
1145}
1146
1147/*
1148 * IDR users want to be able to store NULL in the tree, so if the slot isn't
1149 * free, don't adjust the count, even if it's transitioning between NULL and
1150 * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
1151 * have empty bits, but it only stores NULL in slots when they're being
1152 * deleted.
1153 */
1154static int calculate_count(struct radix_tree_root *root,
1155                                struct radix_tree_node *node, void __rcu **slot,
1156                                void *item, void *old)
1157{
1158        if (is_idr(root)) {
1159                unsigned offset = get_slot_offset(node, slot);
1160                bool free = node_tag_get(root, node, IDR_FREE, offset);
1161                if (!free)
1162                        return 0;
1163                if (!old)
1164                        return 1;
1165        }
1166        return !!item - !!old;
1167}
1168
1169/**
1170 * __radix_tree_replace         - replace item in a slot
1171 * @root:               radix tree root
1172 * @node:               pointer to tree node
1173 * @slot:               pointer to slot in @node
1174 * @item:               new item to store in the slot.
1175 * @update_node:        callback for changing leaf nodes
1176 * @private:            private data to pass to @update_node
1177 *
1178 * For use with __radix_tree_lookup().  Caller must hold tree write locked
1179 * across slot lookup and replacement.
1180 */
1181void __radix_tree_replace(struct radix_tree_root *root,
1182                          struct radix_tree_node *node,
1183                          void __rcu **slot, void *item,
1184                          radix_tree_update_node_t update_node, void *private)
1185{
1186        void *old = rcu_dereference_raw(*slot);
1187        int exceptional = !!radix_tree_exceptional_entry(item) -
1188                                !!radix_tree_exceptional_entry(old);
1189        int count = calculate_count(root, node, slot, item, old);
1190
1191        /*
1192         * This function supports replacing exceptional entries and
1193         * deleting entries, but that needs accounting against the
1194         * node unless the slot is root->rnode.
1195         */
1196        WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->rnode) &&
1197                        (count || exceptional));
1198        replace_slot(slot, item, node, count, exceptional);
1199
1200        if (!node)
1201                return;
1202
1203        if (update_node)
1204                update_node(node, private);
1205
1206        delete_node(root, node, update_node, private);
1207}
1208
1209/**
1210 * radix_tree_replace_slot      - replace item in a slot
1211 * @root:       radix tree root
1212 * @slot:       pointer to slot
1213 * @item:       new item to store in the slot.
1214 *
1215 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1216 * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
1217 * across slot lookup and replacement.
1218 *
1219 * NOTE: This cannot be used to switch between non-entries (empty slots),
1220 * regular entries, and exceptional entries, as that requires accounting
1221 * inside the radix tree node. When switching from one type of entry or
1222 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1223 * radix_tree_iter_replace().
1224 */
1225void radix_tree_replace_slot(struct radix_tree_root *root,
1226                             void __rcu **slot, void *item)
1227{
1228        __radix_tree_replace(root, NULL, slot, item, NULL, NULL);
1229}
1230EXPORT_SYMBOL(radix_tree_replace_slot);
1231
1232/**
1233 * radix_tree_iter_replace - replace item in a slot
1234 * @root:       radix tree root
1235 * @slot:       pointer to slot
1236 * @item:       new item to store in the slot.
1237 *
1238 * For use with radix_tree_split() and radix_tree_for_each_slot().
1239 * Caller must hold tree write locked across split and replacement.
1240 */
1241void radix_tree_iter_replace(struct radix_tree_root *root,
1242                                const struct radix_tree_iter *iter,
1243                                void __rcu **slot, void *item)
1244{
1245        __radix_tree_replace(root, iter->node, slot, item, NULL, NULL);
1246}
1247
1248#ifdef CONFIG_RADIX_TREE_MULTIORDER
1249/**
1250 * radix_tree_join - replace multiple entries with one multiorder entry
1251 * @root: radix tree root
1252 * @index: an index inside the new entry
1253 * @order: order of the new entry
1254 * @item: new entry
1255 *
1256 * Call this function to replace several entries with one larger entry.
1257 * The existing entries are presumed to not need freeing as a result of
1258 * this call.
1259 *
1260 * The replacement entry will have all the tags set on it that were set
1261 * on any of the entries it is replacing.
1262 */
1263int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1264                        unsigned order, void *item)
1265{
1266        struct radix_tree_node *node;
1267        void __rcu **slot;
1268        int error;
1269
1270        BUG_ON(radix_tree_is_internal_node(item));
1271
1272        error = __radix_tree_create(root, index, order, &node, &slot);
1273        if (!error)
1274                error = insert_entries(node, slot, item, order, true);
1275        if (error > 0)
1276                error = 0;
1277
1278        return error;
1279}
1280
1281/**
1282 * radix_tree_split - Split an entry into smaller entries
1283 * @root: radix tree root
1284 * @index: An index within the large entry
1285 * @order: Order of new entries
1286 *
1287 * Call this function as the first step in replacing a multiorder entry
1288 * with several entries of lower order.  After this function returns,
1289 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1290 * and call radix_tree_iter_replace() to set up each new entry.
1291 *
1292 * The tags from this entry are replicated to all the new entries.
1293 *
1294 * The radix tree should be locked against modification during the entire
1295 * replacement operation.  Lock-free lookups will see RADIX_TREE_RETRY which
1296 * should prompt RCU walkers to restart the lookup from the root.
1297 */
1298int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1299                                unsigned order)
1300{
1301        struct radix_tree_node *parent, *node, *child;
1302        void __rcu **slot;
1303        unsigned int offset, end;
1304        unsigned n, tag, tags = 0;
1305        gfp_t gfp = root_gfp_mask(root);
1306
1307        if (!__radix_tree_lookup(root, index, &parent, &slot))
1308                return -ENOENT;
1309        if (!parent)
1310                return -ENOENT;
1311
1312        offset = get_slot_offset(parent, slot);
1313
1314        for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1315                if (tag_get(parent, tag, offset))
1316                        tags |= 1 << tag;
1317
1318        for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1319                if (!is_sibling_entry(parent,
1320                                rcu_dereference_raw(parent->slots[end])))
1321                        break;
1322                for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1323                        if (tags & (1 << tag))
1324                                tag_set(parent, tag, end);
1325                /* rcu_assign_pointer ensures tags are set before RETRY */
1326                rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1327        }
1328        rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1329        parent->exceptional -= (end - offset);
1330
1331        if (order == parent->shift)
1332                return 0;
1333        if (order > parent->shift) {
1334                while (offset < end)
1335                        offset += insert_entries(parent, &parent->slots[offset],
1336                                        RADIX_TREE_RETRY, order, true);
1337                return 0;
1338        }
1339
1340        node = parent;
1341
1342        for (;;) {
1343                if (node->shift > order) {
1344                        child = radix_tree_node_alloc(gfp, node, root,
1345                                        node->shift - RADIX_TREE_MAP_SHIFT,
1346                                        offset, 0, 0);
1347                        if (!child)
1348                                goto nomem;
1349                        if (node != parent) {
1350                                node->count++;
1351                                rcu_assign_pointer(node->slots[offset],
1352                                                        node_to_entry(child));
1353                                for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1354                                        if (tags & (1 << tag))
1355                                                tag_set(node, tag, offset);
1356                        }
1357
1358                        node = child;
1359                        offset = 0;
1360                        continue;
1361                }
1362
1363                n = insert_entries(node, &node->slots[offset],
1364                                        RADIX_TREE_RETRY, order, false);
1365                BUG_ON(n > RADIX_TREE_MAP_SIZE);
1366
1367                for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1368                        if (tags & (1 << tag))
1369                                tag_set(node, tag, offset);
1370                offset += n;
1371
1372                while (offset == RADIX_TREE_MAP_SIZE) {
1373                        if (node == parent)
1374                                break;
1375                        offset = node->offset;
1376                        child = node;
1377                        node = node->parent;
1378                        rcu_assign_pointer(node->slots[offset],
1379                                                node_to_entry(child));
1380                        offset++;
1381                }
1382                if ((node == parent) && (offset == end))
1383                        return 0;
1384        }
1385
1386 nomem:
1387        /* Shouldn't happen; did user forget to preload? */
1388        /* TODO: free all the allocated nodes */
1389        WARN_ON(1);
1390        return -ENOMEM;
1391}
1392#endif
1393
1394static void node_tag_set(struct radix_tree_root *root,
1395                                struct radix_tree_node *node,
1396                                unsigned int tag, unsigned int offset)
1397{
1398        while (node) {
1399                if (tag_get(node, tag, offset))
1400                        return;
1401                tag_set(node, tag, offset);
1402                offset = node->offset;
1403                node = node->parent;
1404        }
1405
1406        if (!root_tag_get(root, tag))
1407                root_tag_set(root, tag);
1408}
1409
1410/**
1411 *      radix_tree_tag_set - set a tag on a radix tree node
1412 *      @root:          radix tree root
1413 *      @index:         index key
1414 *      @tag:           tag index
1415 *
1416 *      Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1417 *      corresponding to @index in the radix tree.  From
1418 *      the root all the way down to the leaf node.
1419 *
1420 *      Returns the address of the tagged item.  Setting a tag on a not-present
1421 *      item is a bug.
1422 */
1423void *radix_tree_tag_set(struct radix_tree_root *root,
1424                        unsigned long index, unsigned int tag)
1425{
1426        struct radix_tree_node *node, *parent;
1427        unsigned long maxindex;
1428
1429        radix_tree_load_root(root, &node, &maxindex);
1430        BUG_ON(index > maxindex);
1431
1432        while (radix_tree_is_internal_node(node)) {
1433                unsigned offset;
1434
1435                parent = entry_to_node(node);
1436                offset = radix_tree_descend(parent, &node, index);
1437                BUG_ON(!node);
1438
1439                if (!tag_get(parent, tag, offset))
1440                        tag_set(parent, tag, offset);
1441        }
1442
1443        /* set the root's tag bit */
1444        if (!root_tag_get(root, tag))
1445                root_tag_set(root, tag);
1446
1447        return node;
1448}
1449EXPORT_SYMBOL(radix_tree_tag_set);
1450
1451/**
1452 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1453 * @root:       radix tree root
1454 * @iter:       iterator state
1455 * @tag:        tag to set
1456 */
1457void radix_tree_iter_tag_set(struct radix_tree_root *root,
1458                        const struct radix_tree_iter *iter, unsigned int tag)
1459{
1460        node_tag_set(root, iter->node, tag, iter_offset(iter));
1461}
1462
1463static void node_tag_clear(struct radix_tree_root *root,
1464                                struct radix_tree_node *node,
1465                                unsigned int tag, unsigned int offset)
1466{
1467        while (node) {
1468                if (!tag_get(node, tag, offset))
1469                        return;
1470                tag_clear(node, tag, offset);
1471                if (any_tag_set(node, tag))
1472                        return;
1473
1474                offset = node->offset;
1475                node = node->parent;
1476        }
1477
1478        /* clear the root's tag bit */
1479        if (root_tag_get(root, tag))
1480                root_tag_clear(root, tag);
1481}
1482
1483/**
1484 *      radix_tree_tag_clear - clear a tag on a radix tree node
1485 *      @root:          radix tree root
1486 *      @index:         index key
1487 *      @tag:           tag index
1488 *
1489 *      Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1490 *      corresponding to @index in the radix tree.  If this causes
1491 *      the leaf node to have no tags set then clear the tag in the
1492 *      next-to-leaf node, etc.
1493 *
1494 *      Returns the address of the tagged item on success, else NULL.  ie:
1495 *      has the same return value and semantics as radix_tree_lookup().
1496 */
1497void *radix_tree_tag_clear(struct radix_tree_root *root,
1498                        unsigned long index, unsigned int tag)
1499{
1500        struct radix_tree_node *node, *parent;
1501        unsigned long maxindex;
1502        int uninitialized_var(offset);
1503
1504        radix_tree_load_root(root, &node, &maxindex);
1505        if (index > maxindex)
1506                return NULL;
1507
1508        parent = NULL;
1509
1510        while (radix_tree_is_internal_node(node)) {
1511                parent = entry_to_node(node);
1512                offset = radix_tree_descend(parent, &node, index);
1513        }
1514
1515        if (node)
1516                node_tag_clear(root, parent, tag, offset);
1517
1518        return node;
1519}
1520EXPORT_SYMBOL(radix_tree_tag_clear);
1521
1522/**
1523  * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1524  * @root: radix tree root
1525  * @iter: iterator state
1526  * @tag: tag to clear
1527  */
1528void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1529                        const struct radix_tree_iter *iter, unsigned int tag)
1530{
1531        node_tag_clear(root, iter->node, tag, iter_offset(iter));
1532}
1533
1534/**
1535 * radix_tree_tag_get - get a tag on a radix tree node
1536 * @root:               radix tree root
1537 * @index:              index key
1538 * @tag:                tag index (< RADIX_TREE_MAX_TAGS)
1539 *
1540 * Return values:
1541 *
1542 *  0: tag not present or not set
1543 *  1: tag set
1544 *
1545 * Note that the return value of this function may not be relied on, even if
1546 * the RCU lock is held, unless tag modification and node deletion are excluded
1547 * from concurrency.
1548 */
1549int radix_tree_tag_get(const struct radix_tree_root *root,
1550                        unsigned long index, unsigned int tag)
1551{
1552        struct radix_tree_node *node, *parent;
1553        unsigned long maxindex;
1554
1555        if (!root_tag_get(root, tag))
1556                return 0;
1557
1558        radix_tree_load_root(root, &node, &maxindex);
1559        if (index > maxindex)
1560                return 0;
1561
1562        while (radix_tree_is_internal_node(node)) {
1563                unsigned offset;
1564
1565                parent = entry_to_node(node);
1566                offset = radix_tree_descend(parent, &node, index);
1567
1568                if (!tag_get(parent, tag, offset))
1569                        return 0;
1570                if (node == RADIX_TREE_RETRY)
1571                        break;
1572        }
1573
1574        return 1;
1575}
1576EXPORT_SYMBOL(radix_tree_tag_get);
1577
1578static inline void __set_iter_shift(struct radix_tree_iter *iter,
1579                                        unsigned int shift)
1580{
1581#ifdef CONFIG_RADIX_TREE_MULTIORDER
1582        iter->shift = shift;
1583#endif
1584}
1585
1586/* Construct iter->tags bit-mask from node->tags[tag] array */
1587static void set_iter_tags(struct radix_tree_iter *iter,
1588                                struct radix_tree_node *node, unsigned offset,
1589                                unsigned tag)
1590{
1591        unsigned tag_long = offset / BITS_PER_LONG;
1592        unsigned tag_bit  = offset % BITS_PER_LONG;
1593
1594        if (!node) {
1595                iter->tags = 1;
1596                return;
1597        }
1598
1599        iter->tags = node->tags[tag][tag_long] >> tag_bit;
1600
1601        /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1602        if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1603                /* Pick tags from next element */
1604                if (tag_bit)
1605                        iter->tags |= node->tags[tag][tag_long + 1] <<
1606                                                (BITS_PER_LONG - tag_bit);
1607                /* Clip chunk size, here only BITS_PER_LONG tags */
1608                iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1609        }
1610}
1611
1612#ifdef CONFIG_RADIX_TREE_MULTIORDER
1613static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1614                        void __rcu **slot, struct radix_tree_iter *iter)
1615{
1616        void *sib = node_to_entry(slot - 1);
1617
1618        while (iter->index < iter->next_index) {
1619                *nodep = rcu_dereference_raw(*slot);
1620                if (*nodep && *nodep != sib)
1621                        return slot;
1622                slot++;
1623                iter->index = __radix_tree_iter_add(iter, 1);
1624                iter->tags >>= 1;
1625        }
1626
1627        *nodep = NULL;
1628        return NULL;
1629}
1630
1631void __rcu **__radix_tree_next_slot(void __rcu **slot,
1632                                struct radix_tree_iter *iter, unsigned flags)
1633{
1634        unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1635        struct radix_tree_node *node = rcu_dereference_raw(*slot);
1636
1637        slot = skip_siblings(&node, slot, iter);
1638
1639        while (radix_tree_is_internal_node(node)) {
1640                unsigned offset;
1641                unsigned long next_index;
1642
1643                if (node == RADIX_TREE_RETRY)
1644                        return slot;
1645                node = entry_to_node(node);
1646                iter->node = node;
1647                iter->shift = node->shift;
1648
1649                if (flags & RADIX_TREE_ITER_TAGGED) {
1650                        offset = radix_tree_find_next_bit(node, tag, 0);
1651                        if (offset == RADIX_TREE_MAP_SIZE)
1652                                return NULL;
1653                        slot = &node->slots[offset];
1654                        iter->index = __radix_tree_iter_add(iter, offset);
1655                        set_iter_tags(iter, node, offset, tag);
1656                        node = rcu_dereference_raw(*slot);
1657                } else {
1658                        offset = 0;
1659                        slot = &node->slots[0];
1660                        for (;;) {
1661                                node = rcu_dereference_raw(*slot);
1662                                if (node)
1663                                        break;
1664                                slot++;
1665                                offset++;
1666                                if (offset == RADIX_TREE_MAP_SIZE)
1667                                        return NULL;
1668                        }
1669                        iter->index = __radix_tree_iter_add(iter, offset);
1670                }
1671                if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1672                        goto none;
1673                next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1674                if (next_index < iter->next_index)
1675                        iter->next_index = next_index;
1676        }
1677
1678        return slot;
1679 none:
1680        iter->next_index = 0;
1681        return NULL;
1682}
1683EXPORT_SYMBOL(__radix_tree_next_slot);
1684#else
1685static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1686                        void __rcu **slot, struct radix_tree_iter *iter)
1687{
1688        return slot;
1689}
1690#endif
1691
1692void __rcu **radix_tree_iter_resume(void __rcu **slot,
1693                                        struct radix_tree_iter *iter)
1694{
1695        struct radix_tree_node *node;
1696
1697        slot++;
1698        iter->index = __radix_tree_iter_add(iter, 1);
1699        skip_siblings(&node, slot, iter);
1700        iter->next_index = iter->index;
1701        iter->tags = 0;
1702        return NULL;
1703}
1704EXPORT_SYMBOL(radix_tree_iter_resume);
1705
1706/**
1707 * radix_tree_next_chunk - find next chunk of slots for iteration
1708 *
1709 * @root:       radix tree root
1710 * @iter:       iterator state
1711 * @flags:      RADIX_TREE_ITER_* flags and tag index
1712 * Returns:     pointer to chunk first slot, or NULL if iteration is over
1713 */
1714void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1715                             struct radix_tree_iter *iter, unsigned flags)
1716{
1717        unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1718        struct radix_tree_node *node, *child;
1719        unsigned long index, offset, maxindex;
1720
1721        if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1722                return NULL;
1723
1724        /*
1725         * Catch next_index overflow after ~0UL. iter->index never overflows
1726         * during iterating; it can be zero only at the beginning.
1727         * And we cannot overflow iter->next_index in a single step,
1728         * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1729         *
1730         * This condition also used by radix_tree_next_slot() to stop
1731         * contiguous iterating, and forbid switching to the next chunk.
1732         */
1733        index = iter->next_index;
1734        if (!index && iter->index)
1735                return NULL;
1736
1737 restart:
1738        radix_tree_load_root(root, &child, &maxindex);
1739        if (index > maxindex)
1740                return NULL;
1741        if (!child)
1742                return NULL;
1743
1744        if (!radix_tree_is_internal_node(child)) {
1745                /* Single-slot tree */
1746                iter->index = index;
1747                iter->next_index = maxindex + 1;
1748                iter->tags = 1;
1749                iter->node = NULL;
1750                __set_iter_shift(iter, 0);
1751                return (void __rcu **)&root->rnode;
1752        }
1753
1754        do {
1755                node = entry_to_node(child);
1756                offset = radix_tree_descend(node, &child, index);
1757
1758                if ((flags & RADIX_TREE_ITER_TAGGED) ?
1759                                !tag_get(node, tag, offset) : !child) {
1760                        /* Hole detected */
1761                        if (flags & RADIX_TREE_ITER_CONTIG)
1762                                return NULL;
1763
1764                        if (flags & RADIX_TREE_ITER_TAGGED)
1765                                offset = radix_tree_find_next_bit(node, tag,
1766                                                offset + 1);
1767                        else
1768                                while (++offset < RADIX_TREE_MAP_SIZE) {
1769                                        void *slot = rcu_dereference_raw(
1770                                                        node->slots[offset]);
1771                                        if (is_sibling_entry(node, slot))
1772                                                continue;
1773                                        if (slot)
1774                                                break;
1775                                }
1776                        index &= ~node_maxindex(node);
1777                        index += offset << node->shift;
1778                        /* Overflow after ~0UL */
1779                        if (!index)
1780                                return NULL;
1781                        if (offset == RADIX_TREE_MAP_SIZE)
1782                                goto restart;
1783                        child = rcu_dereference_raw(node->slots[offset]);
1784                }
1785
1786                if (!child)
1787                        goto restart;
1788                if (child == RADIX_TREE_RETRY)
1789                        break;
1790        } while (radix_tree_is_internal_node(child));
1791
1792        /* Update the iterator state */
1793        iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1794        iter->next_index = (index | node_maxindex(node)) + 1;
1795        iter->node = node;
1796        __set_iter_shift(iter, node->shift);
1797
1798        if (flags & RADIX_TREE_ITER_TAGGED)
1799                set_iter_tags(iter, node, offset, tag);
1800
1801        return node->slots + offset;
1802}
1803EXPORT_SYMBOL(radix_tree_next_chunk);
1804
1805/**
1806 *      radix_tree_gang_lookup - perform multiple lookup on a radix tree
1807 *      @root:          radix tree root
1808 *      @results:       where the results of the lookup are placed
1809 *      @first_index:   start the lookup from this key
1810 *      @max_items:     place up to this many items at *results
1811 *
1812 *      Performs an index-ascending scan of the tree for present items.  Places
1813 *      them at *@results and returns the number of items which were placed at
1814 *      *@results.
1815 *
1816 *      The implementation is naive.
1817 *
1818 *      Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1819 *      rcu_read_lock. In this case, rather than the returned results being
1820 *      an atomic snapshot of the tree at a single point in time, the
1821 *      semantics of an RCU protected gang lookup are as though multiple
1822 *      radix_tree_lookups have been issued in individual locks, and results
1823 *      stored in 'results'.
1824 */
1825unsigned int
1826radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1827                        unsigned long first_index, unsigned int max_items)
1828{
1829        struct radix_tree_iter iter;
1830        void __rcu **slot;
1831        unsigned int ret = 0;
1832
1833        if (unlikely(!max_items))
1834                return 0;
1835
1836        radix_tree_for_each_slot(slot, root, &iter, first_index) {
1837                results[ret] = rcu_dereference_raw(*slot);
1838                if (!results[ret])
1839                        continue;
1840                if (radix_tree_is_internal_node(results[ret])) {
1841                        slot = radix_tree_iter_retry(&iter);
1842                        continue;
1843                }
1844                if (++ret == max_items)
1845                        break;
1846        }
1847
1848        return ret;
1849}
1850EXPORT_SYMBOL(radix_tree_gang_lookup);
1851
1852/**
1853 *      radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1854 *      @root:          radix tree root
1855 *      @results:       where the results of the lookup are placed
1856 *      @indices:       where their indices should be placed (but usually NULL)
1857 *      @first_index:   start the lookup from this key
1858 *      @max_items:     place up to this many items at *results
1859 *
1860 *      Performs an index-ascending scan of the tree for present items.  Places
1861 *      their slots at *@results and returns the number of items which were
1862 *      placed at *@results.
1863 *
1864 *      The implementation is naive.
1865 *
1866 *      Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1867 *      be dereferenced with radix_tree_deref_slot, and if using only RCU
1868 *      protection, radix_tree_deref_slot may fail requiring a retry.
1869 */
1870unsigned int
1871radix_tree_gang_lookup_slot(const struct radix_tree_root *root,
1872                        void __rcu ***results, unsigned long *indices,
1873                        unsigned long first_index, unsigned int max_items)
1874{
1875        struct radix_tree_iter iter;
1876        void __rcu **slot;
1877        unsigned int ret = 0;
1878
1879        if (unlikely(!max_items))
1880                return 0;
1881
1882        radix_tree_for_each_slot(slot, root, &iter, first_index) {
1883                results[ret] = slot;
1884                if (indices)
1885                        indices[ret] = iter.index;
1886                if (++ret == max_items)
1887                        break;
1888        }
1889
1890        return ret;
1891}
1892EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1893
1894/**
1895 *      radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1896 *                                   based on a tag
1897 *      @root:          radix tree root
1898 *      @results:       where the results of the lookup are placed
1899 *      @first_index:   start the lookup from this key
1900 *      @max_items:     place up to this many items at *results
1901 *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
1902 *
1903 *      Performs an index-ascending scan of the tree for present items which
1904 *      have the tag indexed by @tag set.  Places the items at *@results and
1905 *      returns the number of items which were placed at *@results.
1906 */
1907unsigned int
1908radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1909                unsigned long first_index, unsigned int max_items,
1910                unsigned int tag)
1911{
1912        struct radix_tree_iter iter;
1913        void __rcu **slot;
1914        unsigned int ret = 0;
1915
1916        if (unlikely(!max_items))
1917                return 0;
1918
1919        radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1920                results[ret] = rcu_dereference_raw(*slot);
1921                if (!results[ret])
1922                        continue;
1923                if (radix_tree_is_internal_node(results[ret])) {
1924                        slot = radix_tree_iter_retry(&iter);
1925                        continue;
1926                }
1927                if (++ret == max_items)
1928                        break;
1929        }
1930
1931        return ret;
1932}
1933EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1934
1935/**
1936 *      radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1937 *                                        radix tree based on a tag
1938 *      @root:          radix tree root
1939 *      @results:       where the results of the lookup are placed
1940 *      @first_index:   start the lookup from this key
1941 *      @max_items:     place up to this many items at *results
1942 *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
1943 *
1944 *      Performs an index-ascending scan of the tree for present items which
1945 *      have the tag indexed by @tag set.  Places the slots at *@results and
1946 *      returns the number of slots which were placed at *@results.
1947 */
1948unsigned int
1949radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1950                void __rcu ***results, unsigned long first_index,
1951                unsigned int max_items, unsigned int tag)
1952{
1953        struct radix_tree_iter iter;
1954        void __rcu **slot;
1955        unsigned int ret = 0;
1956
1957        if (unlikely(!max_items))
1958                return 0;
1959
1960        radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1961                results[ret] = slot;
1962                if (++ret == max_items)
1963                        break;
1964        }
1965
1966        return ret;
1967}
1968EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1969
1970/**
1971 *      __radix_tree_delete_node    -    try to free node after clearing a slot
1972 *      @root:          radix tree root
1973 *      @node:          node containing @index
1974 *      @update_node:   callback for changing leaf nodes
1975 *      @private:       private data to pass to @update_node
1976 *
1977 *      After clearing the slot at @index in @node from radix tree
1978 *      rooted at @root, call this function to attempt freeing the
1979 *      node and shrinking the tree.
1980 */
1981void __radix_tree_delete_node(struct radix_tree_root *root,
1982                              struct radix_tree_node *node,
1983                              radix_tree_update_node_t update_node,
1984                              void *private)
1985{
1986        delete_node(root, node, update_node, private);
1987}
1988
1989static bool __radix_tree_delete(struct radix_tree_root *root,
1990                                struct radix_tree_node *node, void __rcu **slot)
1991{
1992        void *old = rcu_dereference_raw(*slot);
1993        int exceptional = radix_tree_exceptional_entry(old) ? -1 : 0;
1994        unsigned offset = get_slot_offset(node, slot);
1995        int tag;
1996
1997        if (is_idr(root))
1998                node_tag_set(root, node, IDR_FREE, offset);
1999        else
2000                for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
2001                        node_tag_clear(root, node, tag, offset);
2002
2003        replace_slot(slot, NULL, node, -1, exceptional);
2004        return node && delete_node(root, node, NULL, NULL);
2005}
2006
2007/**
2008 * radix_tree_iter_delete - delete the entry at this iterator position
2009 * @root: radix tree root
2010 * @iter: iterator state
2011 * @slot: pointer to slot
2012 *
2013 * Delete the entry at the position currently pointed to by the iterator.
2014 * This may result in the current node being freed; if it is, the iterator
2015 * is advanced so that it will not reference the freed memory.  This
2016 * function may be called without any locking if there are no other threads
2017 * which can access this tree.
2018 */
2019void radix_tree_iter_delete(struct radix_tree_root *root,
2020                                struct radix_tree_iter *iter, void __rcu **slot)
2021{
2022        if (__radix_tree_delete(root, iter->node, slot))
2023                iter->index = iter->next_index;
2024}
2025
2026/**
2027 * radix_tree_delete_item - delete an item from a radix tree
2028 * @root: radix tree root
2029 * @index: index key
2030 * @item: expected item
2031 *
2032 * Remove @item at @index from the radix tree rooted at @root.
2033 *
2034 * Return: the deleted entry, or %NULL if it was not present
2035 * or the entry at the given @index was not @item.
2036 */
2037void *radix_tree_delete_item(struct radix_tree_root *root,
2038                             unsigned long index, void *item)
2039{
2040        struct radix_tree_node *node = NULL;
2041        void __rcu **slot;
2042        void *entry;
2043
2044        entry = __radix_tree_lookup(root, index, &node, &slot);
2045        if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
2046                                                get_slot_offset(node, slot))))
2047                return NULL;
2048
2049        if (item && entry != item)
2050                return NULL;
2051
2052        __radix_tree_delete(root, node, slot);
2053
2054        return entry;
2055}
2056EXPORT_SYMBOL(radix_tree_delete_item);
2057
2058/**
2059 * radix_tree_delete - delete an entry from a radix tree
2060 * @root: radix tree root
2061 * @index: index key
2062 *
2063 * Remove the entry at @index from the radix tree rooted at @root.
2064 *
2065 * Return: The deleted entry, or %NULL if it was not present.
2066 */
2067void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
2068{
2069        return radix_tree_delete_item(root, index, NULL);
2070}
2071EXPORT_SYMBOL(radix_tree_delete);
2072
2073void radix_tree_clear_tags(struct radix_tree_root *root,
2074                           struct radix_tree_node *node,
2075                           void __rcu **slot)
2076{
2077        if (node) {
2078                unsigned int tag, offset = get_slot_offset(node, slot);
2079                for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
2080                        node_tag_clear(root, node, tag, offset);
2081        } else {
2082                root_tag_clear_all(root);
2083        }
2084}
2085
2086/**
2087 *      radix_tree_tagged - test whether any items in the tree are tagged
2088 *      @root:          radix tree root
2089 *      @tag:           tag to test
2090 */
2091int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
2092{
2093        return root_tag_get(root, tag);
2094}
2095EXPORT_SYMBOL(radix_tree_tagged);
2096
2097/**
2098 * idr_preload - preload for idr_alloc()
2099 * @gfp_mask: allocation mask to use for preloading
2100 *
2101 * Preallocate memory to use for the next call to idr_alloc().  This function
2102 * returns with preemption disabled.  It will be enabled by idr_preload_end().
2103 */
2104void idr_preload(gfp_t gfp_mask)
2105{
2106        __radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE);
2107}
2108EXPORT_SYMBOL(idr_preload);
2109
2110/**
2111 * ida_pre_get - reserve resources for ida allocation
2112 * @ida: ida handle
2113 * @gfp: memory allocation flags
2114 *
2115 * This function should be called before calling ida_get_new_above().  If it
2116 * is unable to allocate memory, it will return %0.  On success, it returns %1.
2117 */
2118int ida_pre_get(struct ida *ida, gfp_t gfp)
2119{
2120        __radix_tree_preload(gfp, IDA_PRELOAD_SIZE);
2121        /*
2122         * The IDA API has no preload_end() equivalent.  Instead,
2123         * ida_get_new() can return -EAGAIN, prompting the caller
2124         * to return to the ida_pre_get() step.
2125         */
2126        preempt_enable();
2127
2128        if (!this_cpu_read(ida_bitmap)) {
2129                struct ida_bitmap *bitmap = kmalloc(sizeof(*bitmap), gfp);
2130                if (!bitmap)
2131                        return 0;
2132                if (this_cpu_cmpxchg(ida_bitmap, NULL, bitmap))
2133                        kfree(bitmap);
2134        }
2135
2136        return 1;
2137}
2138EXPORT_SYMBOL(ida_pre_get);
2139
2140void __rcu **idr_get_free(struct radix_tree_root *root,
2141                        struct radix_tree_iter *iter, gfp_t gfp, int end)
2142{
2143        struct radix_tree_node *node = NULL, *child;
2144        void __rcu **slot = (void __rcu **)&root->rnode;
2145        unsigned long maxindex, start = iter->next_index;
2146        unsigned long max = end > 0 ? end - 1 : INT_MAX;
2147        unsigned int shift, offset = 0;
2148
2149 grow:
2150        shift = radix_tree_load_root(root, &child, &maxindex);
2151        if (!radix_tree_tagged(root, IDR_FREE))
2152                start = max(start, maxindex + 1);
2153        if (start > max)
2154                return ERR_PTR(-ENOSPC);
2155
2156        if (start > maxindex) {
2157                int error = radix_tree_extend(root, gfp, start, shift);
2158                if (error < 0)
2159                        return ERR_PTR(error);
2160                shift = error;
2161                child = rcu_dereference_raw(root->rnode);
2162        }
2163
2164        while (shift) {
2165                shift -= RADIX_TREE_MAP_SHIFT;
2166                if (child == NULL) {
2167                        /* Have to add a child node.  */
2168                        child = radix_tree_node_alloc(gfp, node, root, shift,
2169                                                        offset, 0, 0);
2170                        if (!child)
2171                                return ERR_PTR(-ENOMEM);
2172                        all_tag_set(child, IDR_FREE);
2173                        rcu_assign_pointer(*slot, node_to_entry(child));
2174                        if (node)
2175                                node->count++;
2176                } else if (!radix_tree_is_internal_node(child))
2177                        break;
2178
2179                node = entry_to_node(child);
2180                offset = radix_tree_descend(node, &child, start);
2181                if (!tag_get(node, IDR_FREE, offset)) {
2182                        offset = radix_tree_find_next_bit(node, IDR_FREE,
2183                                                        offset + 1);
2184                        start = next_index(start, node, offset);
2185                        if (start > max)
2186                                return ERR_PTR(-ENOSPC);
2187                        while (offset == RADIX_TREE_MAP_SIZE) {
2188                                offset = node->offset + 1;
2189                                node = node->parent;
2190                                if (!node)
2191                                        goto grow;
2192                                shift = node->shift;
2193                        }
2194                        child = rcu_dereference_raw(node->slots[offset]);
2195                }
2196                slot = &node->slots[offset];
2197        }
2198
2199        iter->index = start;
2200        if (node)
2201                iter->next_index = 1 + min(max, (start | node_maxindex(node)));
2202        else
2203                iter->next_index = 1;
2204        iter->node = node;
2205        __set_iter_shift(iter, shift);
2206        set_iter_tags(iter, node, offset, IDR_FREE);
2207
2208        return slot;
2209}
2210
2211/**
2212 * idr_destroy - release all internal memory from an IDR
2213 * @idr: idr handle
2214 *
2215 * After this function is called, the IDR is empty, and may be reused or
2216 * the data structure containing it may be freed.
2217 *
2218 * A typical clean-up sequence for objects stored in an idr tree will use
2219 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
2220 * free the memory used to keep track of those objects.
2221 */
2222void idr_destroy(struct idr *idr)
2223{
2224        struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.rnode);
2225        if (radix_tree_is_internal_node(node))
2226                radix_tree_free_nodes(node);
2227        idr->idr_rt.rnode = NULL;
2228        root_tag_set(&idr->idr_rt, IDR_FREE);
2229}
2230EXPORT_SYMBOL(idr_destroy);
2231
2232static void
2233radix_tree_node_ctor(void *arg)
2234{
2235        struct radix_tree_node *node = arg;
2236
2237        memset(node, 0, sizeof(*node));
2238        INIT_LIST_HEAD(&node->private_list);
2239}
2240
2241static __init unsigned long __maxindex(unsigned int height)
2242{
2243        unsigned int width = height * RADIX_TREE_MAP_SHIFT;
2244        int shift = RADIX_TREE_INDEX_BITS - width;
2245
2246        if (shift < 0)
2247                return ~0UL;
2248        if (shift >= BITS_PER_LONG)
2249                return 0UL;
2250        return ~0UL >> shift;
2251}
2252
2253static __init void radix_tree_init_maxnodes(void)
2254{
2255        unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
2256        unsigned int i, j;
2257
2258        for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
2259                height_to_maxindex[i] = __maxindex(i);
2260        for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
2261                for (j = i; j > 0; j--)
2262                        height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
2263        }
2264}
2265
2266static int radix_tree_cpu_dead(unsigned int cpu)
2267{
2268        struct radix_tree_preload *rtp;
2269        struct radix_tree_node *node;
2270
2271        /* Free per-cpu pool of preloaded nodes */
2272        rtp = &per_cpu(radix_tree_preloads, cpu);
2273        while (rtp->nr) {
2274                node = rtp->nodes;
2275                rtp->nodes = node->parent;
2276                kmem_cache_free(radix_tree_node_cachep, node);
2277                rtp->nr--;
2278        }
2279        kfree(per_cpu(ida_bitmap, cpu));
2280        per_cpu(ida_bitmap, cpu) = NULL;
2281        return 0;
2282}
2283
2284void __init radix_tree_init(void)
2285{
2286        int ret;
2287
2288        BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
2289        radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
2290                        sizeof(struct radix_tree_node), 0,
2291                        SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
2292                        radix_tree_node_ctor);
2293        radix_tree_init_maxnodes();
2294        ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
2295                                        NULL, radix_tree_cpu_dead);
2296        WARN_ON(ret < 0);
2297}
2298