linux/mm/migrate.c
<<
>>
Prefs
   1/*
   2 * Memory Migration functionality - linux/mm/migrate.c
   3 *
   4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   5 *
   6 * Page migration was first developed in the context of the memory hotplug
   7 * project. The main authors of the migration code are:
   8 *
   9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  10 * Hirokazu Takahashi <taka@valinux.co.jp>
  11 * Dave Hansen <haveblue@us.ibm.com>
  12 * Christoph Lameter
  13 */
  14
  15#include <linux/migrate.h>
  16#include <linux/export.h>
  17#include <linux/swap.h>
  18#include <linux/swapops.h>
  19#include <linux/pagemap.h>
  20#include <linux/buffer_head.h>
  21#include <linux/mm_inline.h>
  22#include <linux/nsproxy.h>
  23#include <linux/pagevec.h>
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/topology.h>
  27#include <linux/cpu.h>
  28#include <linux/cpuset.h>
  29#include <linux/writeback.h>
  30#include <linux/mempolicy.h>
  31#include <linux/vmalloc.h>
  32#include <linux/security.h>
  33#include <linux/backing-dev.h>
  34#include <linux/compaction.h>
  35#include <linux/syscalls.h>
  36#include <linux/hugetlb.h>
  37#include <linux/hugetlb_cgroup.h>
  38#include <linux/gfp.h>
  39#include <linux/balloon_compaction.h>
  40#include <linux/mmu_notifier.h>
  41#include <linux/page_idle.h>
  42#include <linux/page_owner.h>
  43#include <linux/sched/mm.h>
  44#include <linux/ptrace.h>
  45
  46#include <asm/tlbflush.h>
  47
  48#define CREATE_TRACE_POINTS
  49#include <trace/events/migrate.h>
  50
  51#include "internal.h"
  52
  53/*
  54 * migrate_prep() needs to be called before we start compiling a list of pages
  55 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  56 * undesirable, use migrate_prep_local()
  57 */
  58int migrate_prep(void)
  59{
  60        /*
  61         * Clear the LRU lists so pages can be isolated.
  62         * Note that pages may be moved off the LRU after we have
  63         * drained them. Those pages will fail to migrate like other
  64         * pages that may be busy.
  65         */
  66        lru_add_drain_all();
  67
  68        return 0;
  69}
  70
  71/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  72int migrate_prep_local(void)
  73{
  74        lru_add_drain();
  75
  76        return 0;
  77}
  78
  79int isolate_movable_page(struct page *page, isolate_mode_t mode)
  80{
  81        struct address_space *mapping;
  82
  83        /*
  84         * Avoid burning cycles with pages that are yet under __free_pages(),
  85         * or just got freed under us.
  86         *
  87         * In case we 'win' a race for a movable page being freed under us and
  88         * raise its refcount preventing __free_pages() from doing its job
  89         * the put_page() at the end of this block will take care of
  90         * release this page, thus avoiding a nasty leakage.
  91         */
  92        if (unlikely(!get_page_unless_zero(page)))
  93                goto out;
  94
  95        /*
  96         * Check PageMovable before holding a PG_lock because page's owner
  97         * assumes anybody doesn't touch PG_lock of newly allocated page
  98         * so unconditionally grapping the lock ruins page's owner side.
  99         */
 100        if (unlikely(!__PageMovable(page)))
 101                goto out_putpage;
 102        /*
 103         * As movable pages are not isolated from LRU lists, concurrent
 104         * compaction threads can race against page migration functions
 105         * as well as race against the releasing a page.
 106         *
 107         * In order to avoid having an already isolated movable page
 108         * being (wrongly) re-isolated while it is under migration,
 109         * or to avoid attempting to isolate pages being released,
 110         * lets be sure we have the page lock
 111         * before proceeding with the movable page isolation steps.
 112         */
 113        if (unlikely(!trylock_page(page)))
 114                goto out_putpage;
 115
 116        if (!PageMovable(page) || PageIsolated(page))
 117                goto out_no_isolated;
 118
 119        mapping = page_mapping(page);
 120        VM_BUG_ON_PAGE(!mapping, page);
 121
 122        if (!mapping->a_ops->isolate_page(page, mode))
 123                goto out_no_isolated;
 124
 125        /* Driver shouldn't use PG_isolated bit of page->flags */
 126        WARN_ON_ONCE(PageIsolated(page));
 127        __SetPageIsolated(page);
 128        unlock_page(page);
 129
 130        return 0;
 131
 132out_no_isolated:
 133        unlock_page(page);
 134out_putpage:
 135        put_page(page);
 136out:
 137        return -EBUSY;
 138}
 139
 140/* It should be called on page which is PG_movable */
 141void putback_movable_page(struct page *page)
 142{
 143        struct address_space *mapping;
 144
 145        VM_BUG_ON_PAGE(!PageLocked(page), page);
 146        VM_BUG_ON_PAGE(!PageMovable(page), page);
 147        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 148
 149        mapping = page_mapping(page);
 150        mapping->a_ops->putback_page(page);
 151        __ClearPageIsolated(page);
 152}
 153
 154/*
 155 * Put previously isolated pages back onto the appropriate lists
 156 * from where they were once taken off for compaction/migration.
 157 *
 158 * This function shall be used whenever the isolated pageset has been
 159 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 160 * and isolate_huge_page().
 161 */
 162void putback_movable_pages(struct list_head *l)
 163{
 164        struct page *page;
 165        struct page *page2;
 166
 167        list_for_each_entry_safe(page, page2, l, lru) {
 168                if (unlikely(PageHuge(page))) {
 169                        putback_active_hugepage(page);
 170                        continue;
 171                }
 172                list_del(&page->lru);
 173                /*
 174                 * We isolated non-lru movable page so here we can use
 175                 * __PageMovable because LRU page's mapping cannot have
 176                 * PAGE_MAPPING_MOVABLE.
 177                 */
 178                if (unlikely(__PageMovable(page))) {
 179                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 180                        lock_page(page);
 181                        if (PageMovable(page))
 182                                putback_movable_page(page);
 183                        else
 184                                __ClearPageIsolated(page);
 185                        unlock_page(page);
 186                        put_page(page);
 187                } else {
 188                        dec_node_page_state(page, NR_ISOLATED_ANON +
 189                                        page_is_file_cache(page));
 190                        putback_lru_page(page);
 191                }
 192        }
 193}
 194
 195/*
 196 * Restore a potential migration pte to a working pte entry
 197 */
 198static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
 199                                 unsigned long addr, void *old)
 200{
 201        struct page_vma_mapped_walk pvmw = {
 202                .page = old,
 203                .vma = vma,
 204                .address = addr,
 205                .flags = PVMW_SYNC | PVMW_MIGRATION,
 206        };
 207        struct page *new;
 208        pte_t pte;
 209        swp_entry_t entry;
 210
 211        VM_BUG_ON_PAGE(PageTail(page), page);
 212        while (page_vma_mapped_walk(&pvmw)) {
 213                if (PageKsm(page))
 214                        new = page;
 215                else
 216                        new = page - pvmw.page->index +
 217                                linear_page_index(vma, pvmw.address);
 218
 219                get_page(new);
 220                pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 221                if (pte_swp_soft_dirty(*pvmw.pte))
 222                        pte = pte_mksoft_dirty(pte);
 223
 224                /*
 225                 * Recheck VMA as permissions can change since migration started
 226                 */
 227                entry = pte_to_swp_entry(*pvmw.pte);
 228                if (is_write_migration_entry(entry))
 229                        pte = maybe_mkwrite(pte, vma);
 230
 231                flush_dcache_page(new);
 232#ifdef CONFIG_HUGETLB_PAGE
 233                if (PageHuge(new)) {
 234                        pte = pte_mkhuge(pte);
 235                        pte = arch_make_huge_pte(pte, vma, new, 0);
 236                        set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 237                        if (PageAnon(new))
 238                                hugepage_add_anon_rmap(new, vma, pvmw.address);
 239                        else
 240                                page_dup_rmap(new, true);
 241                } else
 242#endif
 243                {
 244                        set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 245
 246                        if (PageAnon(new))
 247                                page_add_anon_rmap(new, vma, pvmw.address, false);
 248                        else
 249                                page_add_file_rmap(new, false);
 250                }
 251                if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 252                        mlock_vma_page(new);
 253
 254                /* No need to invalidate - it was non-present before */
 255                update_mmu_cache(vma, pvmw.address, pvmw.pte);
 256        }
 257
 258        return true;
 259}
 260
 261/*
 262 * Get rid of all migration entries and replace them by
 263 * references to the indicated page.
 264 */
 265void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 266{
 267        struct rmap_walk_control rwc = {
 268                .rmap_one = remove_migration_pte,
 269                .arg = old,
 270        };
 271
 272        if (locked)
 273                rmap_walk_locked(new, &rwc);
 274        else
 275                rmap_walk(new, &rwc);
 276}
 277
 278/*
 279 * Something used the pte of a page under migration. We need to
 280 * get to the page and wait until migration is finished.
 281 * When we return from this function the fault will be retried.
 282 */
 283void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 284                                spinlock_t *ptl)
 285{
 286        pte_t pte;
 287        swp_entry_t entry;
 288        struct page *page;
 289
 290        spin_lock(ptl);
 291        pte = *ptep;
 292        if (!is_swap_pte(pte))
 293                goto out;
 294
 295        entry = pte_to_swp_entry(pte);
 296        if (!is_migration_entry(entry))
 297                goto out;
 298
 299        page = migration_entry_to_page(entry);
 300
 301        /*
 302         * Once radix-tree replacement of page migration started, page_count
 303         * *must* be zero. And, we don't want to call wait_on_page_locked()
 304         * against a page without get_page().
 305         * So, we use get_page_unless_zero(), here. Even failed, page fault
 306         * will occur again.
 307         */
 308        if (!get_page_unless_zero(page))
 309                goto out;
 310        pte_unmap_unlock(ptep, ptl);
 311        wait_on_page_locked(page);
 312        put_page(page);
 313        return;
 314out:
 315        pte_unmap_unlock(ptep, ptl);
 316}
 317
 318void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 319                                unsigned long address)
 320{
 321        spinlock_t *ptl = pte_lockptr(mm, pmd);
 322        pte_t *ptep = pte_offset_map(pmd, address);
 323        __migration_entry_wait(mm, ptep, ptl);
 324}
 325
 326void migration_entry_wait_huge(struct vm_area_struct *vma,
 327                struct mm_struct *mm, pte_t *pte)
 328{
 329        spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 330        __migration_entry_wait(mm, pte, ptl);
 331}
 332
 333#ifdef CONFIG_BLOCK
 334/* Returns true if all buffers are successfully locked */
 335static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 336                                                        enum migrate_mode mode)
 337{
 338        struct buffer_head *bh = head;
 339
 340        /* Simple case, sync compaction */
 341        if (mode != MIGRATE_ASYNC) {
 342                do {
 343                        get_bh(bh);
 344                        lock_buffer(bh);
 345                        bh = bh->b_this_page;
 346
 347                } while (bh != head);
 348
 349                return true;
 350        }
 351
 352        /* async case, we cannot block on lock_buffer so use trylock_buffer */
 353        do {
 354                get_bh(bh);
 355                if (!trylock_buffer(bh)) {
 356                        /*
 357                         * We failed to lock the buffer and cannot stall in
 358                         * async migration. Release the taken locks
 359                         */
 360                        struct buffer_head *failed_bh = bh;
 361                        put_bh(failed_bh);
 362                        bh = head;
 363                        while (bh != failed_bh) {
 364                                unlock_buffer(bh);
 365                                put_bh(bh);
 366                                bh = bh->b_this_page;
 367                        }
 368                        return false;
 369                }
 370
 371                bh = bh->b_this_page;
 372        } while (bh != head);
 373        return true;
 374}
 375#else
 376static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
 377                                                        enum migrate_mode mode)
 378{
 379        return true;
 380}
 381#endif /* CONFIG_BLOCK */
 382
 383/*
 384 * Replace the page in the mapping.
 385 *
 386 * The number of remaining references must be:
 387 * 1 for anonymous pages without a mapping
 388 * 2 for pages with a mapping
 389 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 390 */
 391int migrate_page_move_mapping(struct address_space *mapping,
 392                struct page *newpage, struct page *page,
 393                struct buffer_head *head, enum migrate_mode mode,
 394                int extra_count)
 395{
 396        struct zone *oldzone, *newzone;
 397        int dirty;
 398        int expected_count = 1 + extra_count;
 399        void **pslot;
 400
 401        if (!mapping) {
 402                /* Anonymous page without mapping */
 403                if (page_count(page) != expected_count)
 404                        return -EAGAIN;
 405
 406                /* No turning back from here */
 407                newpage->index = page->index;
 408                newpage->mapping = page->mapping;
 409                if (PageSwapBacked(page))
 410                        __SetPageSwapBacked(newpage);
 411
 412                return MIGRATEPAGE_SUCCESS;
 413        }
 414
 415        oldzone = page_zone(page);
 416        newzone = page_zone(newpage);
 417
 418        spin_lock_irq(&mapping->tree_lock);
 419
 420        pslot = radix_tree_lookup_slot(&mapping->page_tree,
 421                                        page_index(page));
 422
 423        expected_count += 1 + page_has_private(page);
 424        if (page_count(page) != expected_count ||
 425                radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 426                spin_unlock_irq(&mapping->tree_lock);
 427                return -EAGAIN;
 428        }
 429
 430        if (!page_ref_freeze(page, expected_count)) {
 431                spin_unlock_irq(&mapping->tree_lock);
 432                return -EAGAIN;
 433        }
 434
 435        /*
 436         * In the async migration case of moving a page with buffers, lock the
 437         * buffers using trylock before the mapping is moved. If the mapping
 438         * was moved, we later failed to lock the buffers and could not move
 439         * the mapping back due to an elevated page count, we would have to
 440         * block waiting on other references to be dropped.
 441         */
 442        if (mode == MIGRATE_ASYNC && head &&
 443                        !buffer_migrate_lock_buffers(head, mode)) {
 444                page_ref_unfreeze(page, expected_count);
 445                spin_unlock_irq(&mapping->tree_lock);
 446                return -EAGAIN;
 447        }
 448
 449        /*
 450         * Now we know that no one else is looking at the page:
 451         * no turning back from here.
 452         */
 453        newpage->index = page->index;
 454        newpage->mapping = page->mapping;
 455        get_page(newpage);      /* add cache reference */
 456        if (PageSwapBacked(page)) {
 457                __SetPageSwapBacked(newpage);
 458                if (PageSwapCache(page)) {
 459                        SetPageSwapCache(newpage);
 460                        set_page_private(newpage, page_private(page));
 461                }
 462        } else {
 463                VM_BUG_ON_PAGE(PageSwapCache(page), page);
 464        }
 465
 466        /* Move dirty while page refs frozen and newpage not yet exposed */
 467        dirty = PageDirty(page);
 468        if (dirty) {
 469                ClearPageDirty(page);
 470                SetPageDirty(newpage);
 471        }
 472
 473        radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
 474
 475        /*
 476         * Drop cache reference from old page by unfreezing
 477         * to one less reference.
 478         * We know this isn't the last reference.
 479         */
 480        page_ref_unfreeze(page, expected_count - 1);
 481
 482        spin_unlock(&mapping->tree_lock);
 483        /* Leave irq disabled to prevent preemption while updating stats */
 484
 485        /*
 486         * If moved to a different zone then also account
 487         * the page for that zone. Other VM counters will be
 488         * taken care of when we establish references to the
 489         * new page and drop references to the old page.
 490         *
 491         * Note that anonymous pages are accounted for
 492         * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 493         * are mapped to swap space.
 494         */
 495        if (newzone != oldzone) {
 496                __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
 497                __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
 498                if (PageSwapBacked(page) && !PageSwapCache(page)) {
 499                        __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
 500                        __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
 501                }
 502                if (dirty && mapping_cap_account_dirty(mapping)) {
 503                        __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
 504                        __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
 505                        __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
 506                        __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
 507                }
 508        }
 509        local_irq_enable();
 510
 511        return MIGRATEPAGE_SUCCESS;
 512}
 513EXPORT_SYMBOL(migrate_page_move_mapping);
 514
 515/*
 516 * The expected number of remaining references is the same as that
 517 * of migrate_page_move_mapping().
 518 */
 519int migrate_huge_page_move_mapping(struct address_space *mapping,
 520                                   struct page *newpage, struct page *page)
 521{
 522        int expected_count;
 523        void **pslot;
 524
 525        spin_lock_irq(&mapping->tree_lock);
 526
 527        pslot = radix_tree_lookup_slot(&mapping->page_tree,
 528                                        page_index(page));
 529
 530        expected_count = 2 + page_has_private(page);
 531        if (page_count(page) != expected_count ||
 532                radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 533                spin_unlock_irq(&mapping->tree_lock);
 534                return -EAGAIN;
 535        }
 536
 537        if (!page_ref_freeze(page, expected_count)) {
 538                spin_unlock_irq(&mapping->tree_lock);
 539                return -EAGAIN;
 540        }
 541
 542        newpage->index = page->index;
 543        newpage->mapping = page->mapping;
 544
 545        get_page(newpage);
 546
 547        radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
 548
 549        page_ref_unfreeze(page, expected_count - 1);
 550
 551        spin_unlock_irq(&mapping->tree_lock);
 552
 553        return MIGRATEPAGE_SUCCESS;
 554}
 555
 556/*
 557 * Gigantic pages are so large that we do not guarantee that page++ pointer
 558 * arithmetic will work across the entire page.  We need something more
 559 * specialized.
 560 */
 561static void __copy_gigantic_page(struct page *dst, struct page *src,
 562                                int nr_pages)
 563{
 564        int i;
 565        struct page *dst_base = dst;
 566        struct page *src_base = src;
 567
 568        for (i = 0; i < nr_pages; ) {
 569                cond_resched();
 570                copy_highpage(dst, src);
 571
 572                i++;
 573                dst = mem_map_next(dst, dst_base, i);
 574                src = mem_map_next(src, src_base, i);
 575        }
 576}
 577
 578static void copy_huge_page(struct page *dst, struct page *src)
 579{
 580        int i;
 581        int nr_pages;
 582
 583        if (PageHuge(src)) {
 584                /* hugetlbfs page */
 585                struct hstate *h = page_hstate(src);
 586                nr_pages = pages_per_huge_page(h);
 587
 588                if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 589                        __copy_gigantic_page(dst, src, nr_pages);
 590                        return;
 591                }
 592        } else {
 593                /* thp page */
 594                BUG_ON(!PageTransHuge(src));
 595                nr_pages = hpage_nr_pages(src);
 596        }
 597
 598        for (i = 0; i < nr_pages; i++) {
 599                cond_resched();
 600                copy_highpage(dst + i, src + i);
 601        }
 602}
 603
 604/*
 605 * Copy the page to its new location
 606 */
 607void migrate_page_copy(struct page *newpage, struct page *page)
 608{
 609        int cpupid;
 610
 611        if (PageHuge(page) || PageTransHuge(page))
 612                copy_huge_page(newpage, page);
 613        else
 614                copy_highpage(newpage, page);
 615
 616        if (PageError(page))
 617                SetPageError(newpage);
 618        if (PageReferenced(page))
 619                SetPageReferenced(newpage);
 620        if (PageUptodate(page))
 621                SetPageUptodate(newpage);
 622        if (TestClearPageActive(page)) {
 623                VM_BUG_ON_PAGE(PageUnevictable(page), page);
 624                SetPageActive(newpage);
 625        } else if (TestClearPageUnevictable(page))
 626                SetPageUnevictable(newpage);
 627        if (PageChecked(page))
 628                SetPageChecked(newpage);
 629        if (PageMappedToDisk(page))
 630                SetPageMappedToDisk(newpage);
 631
 632        /* Move dirty on pages not done by migrate_page_move_mapping() */
 633        if (PageDirty(page))
 634                SetPageDirty(newpage);
 635
 636        if (page_is_young(page))
 637                set_page_young(newpage);
 638        if (page_is_idle(page))
 639                set_page_idle(newpage);
 640
 641        /*
 642         * Copy NUMA information to the new page, to prevent over-eager
 643         * future migrations of this same page.
 644         */
 645        cpupid = page_cpupid_xchg_last(page, -1);
 646        page_cpupid_xchg_last(newpage, cpupid);
 647
 648        ksm_migrate_page(newpage, page);
 649        /*
 650         * Please do not reorder this without considering how mm/ksm.c's
 651         * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 652         */
 653        if (PageSwapCache(page))
 654                ClearPageSwapCache(page);
 655        ClearPagePrivate(page);
 656        set_page_private(page, 0);
 657
 658        /*
 659         * If any waiters have accumulated on the new page then
 660         * wake them up.
 661         */
 662        if (PageWriteback(newpage))
 663                end_page_writeback(newpage);
 664
 665        copy_page_owner(page, newpage);
 666
 667        mem_cgroup_migrate(page, newpage);
 668}
 669EXPORT_SYMBOL(migrate_page_copy);
 670
 671/************************************************************
 672 *                    Migration functions
 673 ***********************************************************/
 674
 675/*
 676 * Common logic to directly migrate a single LRU page suitable for
 677 * pages that do not use PagePrivate/PagePrivate2.
 678 *
 679 * Pages are locked upon entry and exit.
 680 */
 681int migrate_page(struct address_space *mapping,
 682                struct page *newpage, struct page *page,
 683                enum migrate_mode mode)
 684{
 685        int rc;
 686
 687        BUG_ON(PageWriteback(page));    /* Writeback must be complete */
 688
 689        rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
 690
 691        if (rc != MIGRATEPAGE_SUCCESS)
 692                return rc;
 693
 694        migrate_page_copy(newpage, page);
 695        return MIGRATEPAGE_SUCCESS;
 696}
 697EXPORT_SYMBOL(migrate_page);
 698
 699#ifdef CONFIG_BLOCK
 700/*
 701 * Migration function for pages with buffers. This function can only be used
 702 * if the underlying filesystem guarantees that no other references to "page"
 703 * exist.
 704 */
 705int buffer_migrate_page(struct address_space *mapping,
 706                struct page *newpage, struct page *page, enum migrate_mode mode)
 707{
 708        struct buffer_head *bh, *head;
 709        int rc;
 710
 711        if (!page_has_buffers(page))
 712                return migrate_page(mapping, newpage, page, mode);
 713
 714        head = page_buffers(page);
 715
 716        rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
 717
 718        if (rc != MIGRATEPAGE_SUCCESS)
 719                return rc;
 720
 721        /*
 722         * In the async case, migrate_page_move_mapping locked the buffers
 723         * with an IRQ-safe spinlock held. In the sync case, the buffers
 724         * need to be locked now
 725         */
 726        if (mode != MIGRATE_ASYNC)
 727                BUG_ON(!buffer_migrate_lock_buffers(head, mode));
 728
 729        ClearPagePrivate(page);
 730        set_page_private(newpage, page_private(page));
 731        set_page_private(page, 0);
 732        put_page(page);
 733        get_page(newpage);
 734
 735        bh = head;
 736        do {
 737                set_bh_page(bh, newpage, bh_offset(bh));
 738                bh = bh->b_this_page;
 739
 740        } while (bh != head);
 741
 742        SetPagePrivate(newpage);
 743
 744        migrate_page_copy(newpage, page);
 745
 746        bh = head;
 747        do {
 748                unlock_buffer(bh);
 749                put_bh(bh);
 750                bh = bh->b_this_page;
 751
 752        } while (bh != head);
 753
 754        return MIGRATEPAGE_SUCCESS;
 755}
 756EXPORT_SYMBOL(buffer_migrate_page);
 757#endif
 758
 759/*
 760 * Writeback a page to clean the dirty state
 761 */
 762static int writeout(struct address_space *mapping, struct page *page)
 763{
 764        struct writeback_control wbc = {
 765                .sync_mode = WB_SYNC_NONE,
 766                .nr_to_write = 1,
 767                .range_start = 0,
 768                .range_end = LLONG_MAX,
 769                .for_reclaim = 1
 770        };
 771        int rc;
 772
 773        if (!mapping->a_ops->writepage)
 774                /* No write method for the address space */
 775                return -EINVAL;
 776
 777        if (!clear_page_dirty_for_io(page))
 778                /* Someone else already triggered a write */
 779                return -EAGAIN;
 780
 781        /*
 782         * A dirty page may imply that the underlying filesystem has
 783         * the page on some queue. So the page must be clean for
 784         * migration. Writeout may mean we loose the lock and the
 785         * page state is no longer what we checked for earlier.
 786         * At this point we know that the migration attempt cannot
 787         * be successful.
 788         */
 789        remove_migration_ptes(page, page, false);
 790
 791        rc = mapping->a_ops->writepage(page, &wbc);
 792
 793        if (rc != AOP_WRITEPAGE_ACTIVATE)
 794                /* unlocked. Relock */
 795                lock_page(page);
 796
 797        return (rc < 0) ? -EIO : -EAGAIN;
 798}
 799
 800/*
 801 * Default handling if a filesystem does not provide a migration function.
 802 */
 803static int fallback_migrate_page(struct address_space *mapping,
 804        struct page *newpage, struct page *page, enum migrate_mode mode)
 805{
 806        if (PageDirty(page)) {
 807                /* Only writeback pages in full synchronous migration */
 808                if (mode != MIGRATE_SYNC)
 809                        return -EBUSY;
 810                return writeout(mapping, page);
 811        }
 812
 813        /*
 814         * Buffers may be managed in a filesystem specific way.
 815         * We must have no buffers or drop them.
 816         */
 817        if (page_has_private(page) &&
 818            !try_to_release_page(page, GFP_KERNEL))
 819                return -EAGAIN;
 820
 821        return migrate_page(mapping, newpage, page, mode);
 822}
 823
 824/*
 825 * Move a page to a newly allocated page
 826 * The page is locked and all ptes have been successfully removed.
 827 *
 828 * The new page will have replaced the old page if this function
 829 * is successful.
 830 *
 831 * Return value:
 832 *   < 0 - error code
 833 *  MIGRATEPAGE_SUCCESS - success
 834 */
 835static int move_to_new_page(struct page *newpage, struct page *page,
 836                                enum migrate_mode mode)
 837{
 838        struct address_space *mapping;
 839        int rc = -EAGAIN;
 840        bool is_lru = !__PageMovable(page);
 841
 842        VM_BUG_ON_PAGE(!PageLocked(page), page);
 843        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 844
 845        mapping = page_mapping(page);
 846
 847        if (likely(is_lru)) {
 848                if (!mapping)
 849                        rc = migrate_page(mapping, newpage, page, mode);
 850                else if (mapping->a_ops->migratepage)
 851                        /*
 852                         * Most pages have a mapping and most filesystems
 853                         * provide a migratepage callback. Anonymous pages
 854                         * are part of swap space which also has its own
 855                         * migratepage callback. This is the most common path
 856                         * for page migration.
 857                         */
 858                        rc = mapping->a_ops->migratepage(mapping, newpage,
 859                                                        page, mode);
 860                else
 861                        rc = fallback_migrate_page(mapping, newpage,
 862                                                        page, mode);
 863        } else {
 864                /*
 865                 * In case of non-lru page, it could be released after
 866                 * isolation step. In that case, we shouldn't try migration.
 867                 */
 868                VM_BUG_ON_PAGE(!PageIsolated(page), page);
 869                if (!PageMovable(page)) {
 870                        rc = MIGRATEPAGE_SUCCESS;
 871                        __ClearPageIsolated(page);
 872                        goto out;
 873                }
 874
 875                rc = mapping->a_ops->migratepage(mapping, newpage,
 876                                                page, mode);
 877                WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 878                        !PageIsolated(page));
 879        }
 880
 881        /*
 882         * When successful, old pagecache page->mapping must be cleared before
 883         * page is freed; but stats require that PageAnon be left as PageAnon.
 884         */
 885        if (rc == MIGRATEPAGE_SUCCESS) {
 886                if (__PageMovable(page)) {
 887                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 888
 889                        /*
 890                         * We clear PG_movable under page_lock so any compactor
 891                         * cannot try to migrate this page.
 892                         */
 893                        __ClearPageIsolated(page);
 894                }
 895
 896                /*
 897                 * Anonymous and movable page->mapping will be cleard by
 898                 * free_pages_prepare so don't reset it here for keeping
 899                 * the type to work PageAnon, for example.
 900                 */
 901                if (!PageMappingFlags(page))
 902                        page->mapping = NULL;
 903        }
 904out:
 905        return rc;
 906}
 907
 908static int __unmap_and_move(struct page *page, struct page *newpage,
 909                                int force, enum migrate_mode mode)
 910{
 911        int rc = -EAGAIN;
 912        int page_was_mapped = 0;
 913        struct anon_vma *anon_vma = NULL;
 914        bool is_lru = !__PageMovable(page);
 915
 916        if (!trylock_page(page)) {
 917                if (!force || mode == MIGRATE_ASYNC)
 918                        goto out;
 919
 920                /*
 921                 * It's not safe for direct compaction to call lock_page.
 922                 * For example, during page readahead pages are added locked
 923                 * to the LRU. Later, when the IO completes the pages are
 924                 * marked uptodate and unlocked. However, the queueing
 925                 * could be merging multiple pages for one bio (e.g.
 926                 * mpage_readpages). If an allocation happens for the
 927                 * second or third page, the process can end up locking
 928                 * the same page twice and deadlocking. Rather than
 929                 * trying to be clever about what pages can be locked,
 930                 * avoid the use of lock_page for direct compaction
 931                 * altogether.
 932                 */
 933                if (current->flags & PF_MEMALLOC)
 934                        goto out;
 935
 936                lock_page(page);
 937        }
 938
 939        if (PageWriteback(page)) {
 940                /*
 941                 * Only in the case of a full synchronous migration is it
 942                 * necessary to wait for PageWriteback. In the async case,
 943                 * the retry loop is too short and in the sync-light case,
 944                 * the overhead of stalling is too much
 945                 */
 946                if (mode != MIGRATE_SYNC) {
 947                        rc = -EBUSY;
 948                        goto out_unlock;
 949                }
 950                if (!force)
 951                        goto out_unlock;
 952                wait_on_page_writeback(page);
 953        }
 954
 955        /*
 956         * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
 957         * we cannot notice that anon_vma is freed while we migrates a page.
 958         * This get_anon_vma() delays freeing anon_vma pointer until the end
 959         * of migration. File cache pages are no problem because of page_lock()
 960         * File Caches may use write_page() or lock_page() in migration, then,
 961         * just care Anon page here.
 962         *
 963         * Only page_get_anon_vma() understands the subtleties of
 964         * getting a hold on an anon_vma from outside one of its mms.
 965         * But if we cannot get anon_vma, then we won't need it anyway,
 966         * because that implies that the anon page is no longer mapped
 967         * (and cannot be remapped so long as we hold the page lock).
 968         */
 969        if (PageAnon(page) && !PageKsm(page))
 970                anon_vma = page_get_anon_vma(page);
 971
 972        /*
 973         * Block others from accessing the new page when we get around to
 974         * establishing additional references. We are usually the only one
 975         * holding a reference to newpage at this point. We used to have a BUG
 976         * here if trylock_page(newpage) fails, but would like to allow for
 977         * cases where there might be a race with the previous use of newpage.
 978         * This is much like races on refcount of oldpage: just don't BUG().
 979         */
 980        if (unlikely(!trylock_page(newpage)))
 981                goto out_unlock;
 982
 983        if (unlikely(!is_lru)) {
 984                rc = move_to_new_page(newpage, page, mode);
 985                goto out_unlock_both;
 986        }
 987
 988        /*
 989         * Corner case handling:
 990         * 1. When a new swap-cache page is read into, it is added to the LRU
 991         * and treated as swapcache but it has no rmap yet.
 992         * Calling try_to_unmap() against a page->mapping==NULL page will
 993         * trigger a BUG.  So handle it here.
 994         * 2. An orphaned page (see truncate_complete_page) might have
 995         * fs-private metadata. The page can be picked up due to memory
 996         * offlining.  Everywhere else except page reclaim, the page is
 997         * invisible to the vm, so the page can not be migrated.  So try to
 998         * free the metadata, so the page can be freed.
 999         */
1000        if (!page->mapping) {
1001                VM_BUG_ON_PAGE(PageAnon(page), page);
1002                if (page_has_private(page)) {
1003                        try_to_free_buffers(page);
1004                        goto out_unlock_both;
1005                }
1006        } else if (page_mapped(page)) {
1007                /* Establish migration ptes */
1008                VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1009                                page);
1010                try_to_unmap(page,
1011                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1012                page_was_mapped = 1;
1013        }
1014
1015        if (!page_mapped(page))
1016                rc = move_to_new_page(newpage, page, mode);
1017
1018        if (page_was_mapped)
1019                remove_migration_ptes(page,
1020                        rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1021
1022out_unlock_both:
1023        unlock_page(newpage);
1024out_unlock:
1025        /* Drop an anon_vma reference if we took one */
1026        if (anon_vma)
1027                put_anon_vma(anon_vma);
1028        unlock_page(page);
1029out:
1030        /*
1031         * If migration is successful, decrease refcount of the newpage
1032         * which will not free the page because new page owner increased
1033         * refcounter. As well, if it is LRU page, add the page to LRU
1034         * list in here.
1035         */
1036        if (rc == MIGRATEPAGE_SUCCESS) {
1037                if (unlikely(__PageMovable(newpage)))
1038                        put_page(newpage);
1039                else
1040                        putback_lru_page(newpage);
1041        }
1042
1043        return rc;
1044}
1045
1046/*
1047 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1048 * around it.
1049 */
1050#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1051#define ICE_noinline noinline
1052#else
1053#define ICE_noinline
1054#endif
1055
1056/*
1057 * Obtain the lock on page, remove all ptes and migrate the page
1058 * to the newly allocated page in newpage.
1059 */
1060static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1061                                   free_page_t put_new_page,
1062                                   unsigned long private, struct page *page,
1063                                   int force, enum migrate_mode mode,
1064                                   enum migrate_reason reason)
1065{
1066        int rc = MIGRATEPAGE_SUCCESS;
1067        int *result = NULL;
1068        struct page *newpage;
1069
1070        newpage = get_new_page(page, private, &result);
1071        if (!newpage)
1072                return -ENOMEM;
1073
1074        if (page_count(page) == 1) {
1075                /* page was freed from under us. So we are done. */
1076                ClearPageActive(page);
1077                ClearPageUnevictable(page);
1078                if (unlikely(__PageMovable(page))) {
1079                        lock_page(page);
1080                        if (!PageMovable(page))
1081                                __ClearPageIsolated(page);
1082                        unlock_page(page);
1083                }
1084                if (put_new_page)
1085                        put_new_page(newpage, private);
1086                else
1087                        put_page(newpage);
1088                goto out;
1089        }
1090
1091        if (unlikely(PageTransHuge(page))) {
1092                lock_page(page);
1093                rc = split_huge_page(page);
1094                unlock_page(page);
1095                if (rc)
1096                        goto out;
1097        }
1098
1099        rc = __unmap_and_move(page, newpage, force, mode);
1100        if (rc == MIGRATEPAGE_SUCCESS)
1101                set_page_owner_migrate_reason(newpage, reason);
1102
1103out:
1104        if (rc != -EAGAIN) {
1105                /*
1106                 * A page that has been migrated has all references
1107                 * removed and will be freed. A page that has not been
1108                 * migrated will have kepts its references and be
1109                 * restored.
1110                 */
1111                list_del(&page->lru);
1112
1113                /*
1114                 * Compaction can migrate also non-LRU pages which are
1115                 * not accounted to NR_ISOLATED_*. They can be recognized
1116                 * as __PageMovable
1117                 */
1118                if (likely(!__PageMovable(page)))
1119                        dec_node_page_state(page, NR_ISOLATED_ANON +
1120                                        page_is_file_cache(page));
1121        }
1122
1123        /*
1124         * If migration is successful, releases reference grabbed during
1125         * isolation. Otherwise, restore the page to right list unless
1126         * we want to retry.
1127         */
1128        if (rc == MIGRATEPAGE_SUCCESS) {
1129                put_page(page);
1130                if (reason == MR_MEMORY_FAILURE) {
1131                        /*
1132                         * Set PG_HWPoison on just freed page
1133                         * intentionally. Although it's rather weird,
1134                         * it's how HWPoison flag works at the moment.
1135                         */
1136                        if (!test_set_page_hwpoison(page))
1137                                num_poisoned_pages_inc();
1138                }
1139        } else {
1140                if (rc != -EAGAIN) {
1141                        if (likely(!__PageMovable(page))) {
1142                                putback_lru_page(page);
1143                                goto put_new;
1144                        }
1145
1146                        lock_page(page);
1147                        if (PageMovable(page))
1148                                putback_movable_page(page);
1149                        else
1150                                __ClearPageIsolated(page);
1151                        unlock_page(page);
1152                        put_page(page);
1153                }
1154put_new:
1155                if (put_new_page)
1156                        put_new_page(newpage, private);
1157                else
1158                        put_page(newpage);
1159        }
1160
1161        if (result) {
1162                if (rc)
1163                        *result = rc;
1164                else
1165                        *result = page_to_nid(newpage);
1166        }
1167        return rc;
1168}
1169
1170/*
1171 * Counterpart of unmap_and_move_page() for hugepage migration.
1172 *
1173 * This function doesn't wait the completion of hugepage I/O
1174 * because there is no race between I/O and migration for hugepage.
1175 * Note that currently hugepage I/O occurs only in direct I/O
1176 * where no lock is held and PG_writeback is irrelevant,
1177 * and writeback status of all subpages are counted in the reference
1178 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1179 * under direct I/O, the reference of the head page is 512 and a bit more.)
1180 * This means that when we try to migrate hugepage whose subpages are
1181 * doing direct I/O, some references remain after try_to_unmap() and
1182 * hugepage migration fails without data corruption.
1183 *
1184 * There is also no race when direct I/O is issued on the page under migration,
1185 * because then pte is replaced with migration swap entry and direct I/O code
1186 * will wait in the page fault for migration to complete.
1187 */
1188static int unmap_and_move_huge_page(new_page_t get_new_page,
1189                                free_page_t put_new_page, unsigned long private,
1190                                struct page *hpage, int force,
1191                                enum migrate_mode mode, int reason)
1192{
1193        int rc = -EAGAIN;
1194        int *result = NULL;
1195        int page_was_mapped = 0;
1196        struct page *new_hpage;
1197        struct anon_vma *anon_vma = NULL;
1198
1199        /*
1200         * Movability of hugepages depends on architectures and hugepage size.
1201         * This check is necessary because some callers of hugepage migration
1202         * like soft offline and memory hotremove don't walk through page
1203         * tables or check whether the hugepage is pmd-based or not before
1204         * kicking migration.
1205         */
1206        if (!hugepage_migration_supported(page_hstate(hpage))) {
1207                putback_active_hugepage(hpage);
1208                return -ENOSYS;
1209        }
1210
1211        new_hpage = get_new_page(hpage, private, &result);
1212        if (!new_hpage)
1213                return -ENOMEM;
1214
1215        if (!trylock_page(hpage)) {
1216                if (!force || mode != MIGRATE_SYNC)
1217                        goto out;
1218                lock_page(hpage);
1219        }
1220
1221        if (PageAnon(hpage))
1222                anon_vma = page_get_anon_vma(hpage);
1223
1224        if (unlikely(!trylock_page(new_hpage)))
1225                goto put_anon;
1226
1227        if (page_mapped(hpage)) {
1228                try_to_unmap(hpage,
1229                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1230                page_was_mapped = 1;
1231        }
1232
1233        if (!page_mapped(hpage))
1234                rc = move_to_new_page(new_hpage, hpage, mode);
1235
1236        if (page_was_mapped)
1237                remove_migration_ptes(hpage,
1238                        rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1239
1240        unlock_page(new_hpage);
1241
1242put_anon:
1243        if (anon_vma)
1244                put_anon_vma(anon_vma);
1245
1246        if (rc == MIGRATEPAGE_SUCCESS) {
1247                hugetlb_cgroup_migrate(hpage, new_hpage);
1248                put_new_page = NULL;
1249                set_page_owner_migrate_reason(new_hpage, reason);
1250        }
1251
1252        unlock_page(hpage);
1253out:
1254        if (rc != -EAGAIN)
1255                putback_active_hugepage(hpage);
1256        if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1257                num_poisoned_pages_inc();
1258
1259        /*
1260         * If migration was not successful and there's a freeing callback, use
1261         * it.  Otherwise, put_page() will drop the reference grabbed during
1262         * isolation.
1263         */
1264        if (put_new_page)
1265                put_new_page(new_hpage, private);
1266        else
1267                putback_active_hugepage(new_hpage);
1268
1269        if (result) {
1270                if (rc)
1271                        *result = rc;
1272                else
1273                        *result = page_to_nid(new_hpage);
1274        }
1275        return rc;
1276}
1277
1278/*
1279 * migrate_pages - migrate the pages specified in a list, to the free pages
1280 *                 supplied as the target for the page migration
1281 *
1282 * @from:               The list of pages to be migrated.
1283 * @get_new_page:       The function used to allocate free pages to be used
1284 *                      as the target of the page migration.
1285 * @put_new_page:       The function used to free target pages if migration
1286 *                      fails, or NULL if no special handling is necessary.
1287 * @private:            Private data to be passed on to get_new_page()
1288 * @mode:               The migration mode that specifies the constraints for
1289 *                      page migration, if any.
1290 * @reason:             The reason for page migration.
1291 *
1292 * The function returns after 10 attempts or if no pages are movable any more
1293 * because the list has become empty or no retryable pages exist any more.
1294 * The caller should call putback_movable_pages() to return pages to the LRU
1295 * or free list only if ret != 0.
1296 *
1297 * Returns the number of pages that were not migrated, or an error code.
1298 */
1299int migrate_pages(struct list_head *from, new_page_t get_new_page,
1300                free_page_t put_new_page, unsigned long private,
1301                enum migrate_mode mode, int reason)
1302{
1303        int retry = 1;
1304        int nr_failed = 0;
1305        int nr_succeeded = 0;
1306        int pass = 0;
1307        struct page *page;
1308        struct page *page2;
1309        int swapwrite = current->flags & PF_SWAPWRITE;
1310        int rc;
1311
1312        if (!swapwrite)
1313                current->flags |= PF_SWAPWRITE;
1314
1315        for(pass = 0; pass < 10 && retry; pass++) {
1316                retry = 0;
1317
1318                list_for_each_entry_safe(page, page2, from, lru) {
1319                        cond_resched();
1320
1321                        if (PageHuge(page))
1322                                rc = unmap_and_move_huge_page(get_new_page,
1323                                                put_new_page, private, page,
1324                                                pass > 2, mode, reason);
1325                        else
1326                                rc = unmap_and_move(get_new_page, put_new_page,
1327                                                private, page, pass > 2, mode,
1328                                                reason);
1329
1330                        switch(rc) {
1331                        case -ENOMEM:
1332                                nr_failed++;
1333                                goto out;
1334                        case -EAGAIN:
1335                                retry++;
1336                                break;
1337                        case MIGRATEPAGE_SUCCESS:
1338                                nr_succeeded++;
1339                                break;
1340                        default:
1341                                /*
1342                                 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1343                                 * unlike -EAGAIN case, the failed page is
1344                                 * removed from migration page list and not
1345                                 * retried in the next outer loop.
1346                                 */
1347                                nr_failed++;
1348                                break;
1349                        }
1350                }
1351        }
1352        nr_failed += retry;
1353        rc = nr_failed;
1354out:
1355        if (nr_succeeded)
1356                count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1357        if (nr_failed)
1358                count_vm_events(PGMIGRATE_FAIL, nr_failed);
1359        trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1360
1361        if (!swapwrite)
1362                current->flags &= ~PF_SWAPWRITE;
1363
1364        return rc;
1365}
1366
1367#ifdef CONFIG_NUMA
1368/*
1369 * Move a list of individual pages
1370 */
1371struct page_to_node {
1372        unsigned long addr;
1373        struct page *page;
1374        int node;
1375        int status;
1376};
1377
1378static struct page *new_page_node(struct page *p, unsigned long private,
1379                int **result)
1380{
1381        struct page_to_node *pm = (struct page_to_node *)private;
1382
1383        while (pm->node != MAX_NUMNODES && pm->page != p)
1384                pm++;
1385
1386        if (pm->node == MAX_NUMNODES)
1387                return NULL;
1388
1389        *result = &pm->status;
1390
1391        if (PageHuge(p))
1392                return alloc_huge_page_node(page_hstate(compound_head(p)),
1393                                        pm->node);
1394        else
1395                return __alloc_pages_node(pm->node,
1396                                GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1397}
1398
1399/*
1400 * Move a set of pages as indicated in the pm array. The addr
1401 * field must be set to the virtual address of the page to be moved
1402 * and the node number must contain a valid target node.
1403 * The pm array ends with node = MAX_NUMNODES.
1404 */
1405static int do_move_page_to_node_array(struct mm_struct *mm,
1406                                      struct page_to_node *pm,
1407                                      int migrate_all)
1408{
1409        int err;
1410        struct page_to_node *pp;
1411        LIST_HEAD(pagelist);
1412
1413        down_read(&mm->mmap_sem);
1414
1415        /*
1416         * Build a list of pages to migrate
1417         */
1418        for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1419                struct vm_area_struct *vma;
1420                struct page *page;
1421
1422                err = -EFAULT;
1423                vma = find_vma(mm, pp->addr);
1424                if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1425                        goto set_status;
1426
1427                /* FOLL_DUMP to ignore special (like zero) pages */
1428                page = follow_page(vma, pp->addr,
1429                                FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1430
1431                err = PTR_ERR(page);
1432                if (IS_ERR(page))
1433                        goto set_status;
1434
1435                err = -ENOENT;
1436                if (!page)
1437                        goto set_status;
1438
1439                pp->page = page;
1440                err = page_to_nid(page);
1441
1442                if (err == pp->node)
1443                        /*
1444                         * Node already in the right place
1445                         */
1446                        goto put_and_set;
1447
1448                err = -EACCES;
1449                if (page_mapcount(page) > 1 &&
1450                                !migrate_all)
1451                        goto put_and_set;
1452
1453                if (PageHuge(page)) {
1454                        if (PageHead(page))
1455                                isolate_huge_page(page, &pagelist);
1456                        goto put_and_set;
1457                }
1458
1459                err = isolate_lru_page(page);
1460                if (!err) {
1461                        list_add_tail(&page->lru, &pagelist);
1462                        inc_node_page_state(page, NR_ISOLATED_ANON +
1463                                            page_is_file_cache(page));
1464                }
1465put_and_set:
1466                /*
1467                 * Either remove the duplicate refcount from
1468                 * isolate_lru_page() or drop the page ref if it was
1469                 * not isolated.
1470                 */
1471                put_page(page);
1472set_status:
1473                pp->status = err;
1474        }
1475
1476        err = 0;
1477        if (!list_empty(&pagelist)) {
1478                err = migrate_pages(&pagelist, new_page_node, NULL,
1479                                (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1480                if (err)
1481                        putback_movable_pages(&pagelist);
1482        }
1483
1484        up_read(&mm->mmap_sem);
1485        return err;
1486}
1487
1488/*
1489 * Migrate an array of page address onto an array of nodes and fill
1490 * the corresponding array of status.
1491 */
1492static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1493                         unsigned long nr_pages,
1494                         const void __user * __user *pages,
1495                         const int __user *nodes,
1496                         int __user *status, int flags)
1497{
1498        struct page_to_node *pm;
1499        unsigned long chunk_nr_pages;
1500        unsigned long chunk_start;
1501        int err;
1502
1503        err = -ENOMEM;
1504        pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1505        if (!pm)
1506                goto out;
1507
1508        migrate_prep();
1509
1510        /*
1511         * Store a chunk of page_to_node array in a page,
1512         * but keep the last one as a marker
1513         */
1514        chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1515
1516        for (chunk_start = 0;
1517             chunk_start < nr_pages;
1518             chunk_start += chunk_nr_pages) {
1519                int j;
1520
1521                if (chunk_start + chunk_nr_pages > nr_pages)
1522                        chunk_nr_pages = nr_pages - chunk_start;
1523
1524                /* fill the chunk pm with addrs and nodes from user-space */
1525                for (j = 0; j < chunk_nr_pages; j++) {
1526                        const void __user *p;
1527                        int node;
1528
1529                        err = -EFAULT;
1530                        if (get_user(p, pages + j + chunk_start))
1531                                goto out_pm;
1532                        pm[j].addr = (unsigned long) p;
1533
1534                        if (get_user(node, nodes + j + chunk_start))
1535                                goto out_pm;
1536
1537                        err = -ENODEV;
1538                        if (node < 0 || node >= MAX_NUMNODES)
1539                                goto out_pm;
1540
1541                        if (!node_state(node, N_MEMORY))
1542                                goto out_pm;
1543
1544                        err = -EACCES;
1545                        if (!node_isset(node, task_nodes))
1546                                goto out_pm;
1547
1548                        pm[j].node = node;
1549                }
1550
1551                /* End marker for this chunk */
1552                pm[chunk_nr_pages].node = MAX_NUMNODES;
1553
1554                /* Migrate this chunk */
1555                err = do_move_page_to_node_array(mm, pm,
1556                                                 flags & MPOL_MF_MOVE_ALL);
1557                if (err < 0)
1558                        goto out_pm;
1559
1560                /* Return status information */
1561                for (j = 0; j < chunk_nr_pages; j++)
1562                        if (put_user(pm[j].status, status + j + chunk_start)) {
1563                                err = -EFAULT;
1564                                goto out_pm;
1565                        }
1566        }
1567        err = 0;
1568
1569out_pm:
1570        free_page((unsigned long)pm);
1571out:
1572        return err;
1573}
1574
1575/*
1576 * Determine the nodes of an array of pages and store it in an array of status.
1577 */
1578static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1579                                const void __user **pages, int *status)
1580{
1581        unsigned long i;
1582
1583        down_read(&mm->mmap_sem);
1584
1585        for (i = 0; i < nr_pages; i++) {
1586                unsigned long addr = (unsigned long)(*pages);
1587                struct vm_area_struct *vma;
1588                struct page *page;
1589                int err = -EFAULT;
1590
1591                vma = find_vma(mm, addr);
1592                if (!vma || addr < vma->vm_start)
1593                        goto set_status;
1594
1595                /* FOLL_DUMP to ignore special (like zero) pages */
1596                page = follow_page(vma, addr, FOLL_DUMP);
1597
1598                err = PTR_ERR(page);
1599                if (IS_ERR(page))
1600                        goto set_status;
1601
1602                err = page ? page_to_nid(page) : -ENOENT;
1603set_status:
1604                *status = err;
1605
1606                pages++;
1607                status++;
1608        }
1609
1610        up_read(&mm->mmap_sem);
1611}
1612
1613/*
1614 * Determine the nodes of a user array of pages and store it in
1615 * a user array of status.
1616 */
1617static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1618                         const void __user * __user *pages,
1619                         int __user *status)
1620{
1621#define DO_PAGES_STAT_CHUNK_NR 16
1622        const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1623        int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1624
1625        while (nr_pages) {
1626                unsigned long chunk_nr;
1627
1628                chunk_nr = nr_pages;
1629                if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1630                        chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1631
1632                if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1633                        break;
1634
1635                do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1636
1637                if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1638                        break;
1639
1640                pages += chunk_nr;
1641                status += chunk_nr;
1642                nr_pages -= chunk_nr;
1643        }
1644        return nr_pages ? -EFAULT : 0;
1645}
1646
1647/*
1648 * Move a list of pages in the address space of the currently executing
1649 * process.
1650 */
1651SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1652                const void __user * __user *, pages,
1653                const int __user *, nodes,
1654                int __user *, status, int, flags)
1655{
1656        struct task_struct *task;
1657        struct mm_struct *mm;
1658        int err;
1659        nodemask_t task_nodes;
1660
1661        /* Check flags */
1662        if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1663                return -EINVAL;
1664
1665        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1666                return -EPERM;
1667
1668        /* Find the mm_struct */
1669        rcu_read_lock();
1670        task = pid ? find_task_by_vpid(pid) : current;
1671        if (!task) {
1672                rcu_read_unlock();
1673                return -ESRCH;
1674        }
1675        get_task_struct(task);
1676
1677        /*
1678         * Check if this process has the right to modify the specified
1679         * process. Use the regular "ptrace_may_access()" checks.
1680         */
1681        if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1682                rcu_read_unlock();
1683                err = -EPERM;
1684                goto out;
1685        }
1686        rcu_read_unlock();
1687
1688        err = security_task_movememory(task);
1689        if (err)
1690                goto out;
1691
1692        task_nodes = cpuset_mems_allowed(task);
1693        mm = get_task_mm(task);
1694        put_task_struct(task);
1695
1696        if (!mm)
1697                return -EINVAL;
1698
1699        if (nodes)
1700                err = do_pages_move(mm, task_nodes, nr_pages, pages,
1701                                    nodes, status, flags);
1702        else
1703                err = do_pages_stat(mm, nr_pages, pages, status);
1704
1705        mmput(mm);
1706        return err;
1707
1708out:
1709        put_task_struct(task);
1710        return err;
1711}
1712
1713#ifdef CONFIG_NUMA_BALANCING
1714/*
1715 * Returns true if this is a safe migration target node for misplaced NUMA
1716 * pages. Currently it only checks the watermarks which crude
1717 */
1718static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1719                                   unsigned long nr_migrate_pages)
1720{
1721        int z;
1722
1723        for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1724                struct zone *zone = pgdat->node_zones + z;
1725
1726                if (!populated_zone(zone))
1727                        continue;
1728
1729                /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1730                if (!zone_watermark_ok(zone, 0,
1731                                       high_wmark_pages(zone) +
1732                                       nr_migrate_pages,
1733                                       0, 0))
1734                        continue;
1735                return true;
1736        }
1737        return false;
1738}
1739
1740static struct page *alloc_misplaced_dst_page(struct page *page,
1741                                           unsigned long data,
1742                                           int **result)
1743{
1744        int nid = (int) data;
1745        struct page *newpage;
1746
1747        newpage = __alloc_pages_node(nid,
1748                                         (GFP_HIGHUSER_MOVABLE |
1749                                          __GFP_THISNODE | __GFP_NOMEMALLOC |
1750                                          __GFP_NORETRY | __GFP_NOWARN) &
1751                                         ~__GFP_RECLAIM, 0);
1752
1753        return newpage;
1754}
1755
1756/*
1757 * page migration rate limiting control.
1758 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1759 * window of time. Default here says do not migrate more than 1280M per second.
1760 */
1761static unsigned int migrate_interval_millisecs __read_mostly = 100;
1762static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1763
1764/* Returns true if the node is migrate rate-limited after the update */
1765static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1766                                        unsigned long nr_pages)
1767{
1768        /*
1769         * Rate-limit the amount of data that is being migrated to a node.
1770         * Optimal placement is no good if the memory bus is saturated and
1771         * all the time is being spent migrating!
1772         */
1773        if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1774                spin_lock(&pgdat->numabalancing_migrate_lock);
1775                pgdat->numabalancing_migrate_nr_pages = 0;
1776                pgdat->numabalancing_migrate_next_window = jiffies +
1777                        msecs_to_jiffies(migrate_interval_millisecs);
1778                spin_unlock(&pgdat->numabalancing_migrate_lock);
1779        }
1780        if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1781                trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1782                                                                nr_pages);
1783                return true;
1784        }
1785
1786        /*
1787         * This is an unlocked non-atomic update so errors are possible.
1788         * The consequences are failing to migrate when we potentiall should
1789         * have which is not severe enough to warrant locking. If it is ever
1790         * a problem, it can be converted to a per-cpu counter.
1791         */
1792        pgdat->numabalancing_migrate_nr_pages += nr_pages;
1793        return false;
1794}
1795
1796static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1797{
1798        int page_lru;
1799
1800        VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1801
1802        /* Avoid migrating to a node that is nearly full */
1803        if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1804                return 0;
1805
1806        if (isolate_lru_page(page))
1807                return 0;
1808
1809        /*
1810         * migrate_misplaced_transhuge_page() skips page migration's usual
1811         * check on page_count(), so we must do it here, now that the page
1812         * has been isolated: a GUP pin, or any other pin, prevents migration.
1813         * The expected page count is 3: 1 for page's mapcount and 1 for the
1814         * caller's pin and 1 for the reference taken by isolate_lru_page().
1815         */
1816        if (PageTransHuge(page) && page_count(page) != 3) {
1817                putback_lru_page(page);
1818                return 0;
1819        }
1820
1821        page_lru = page_is_file_cache(page);
1822        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1823                                hpage_nr_pages(page));
1824
1825        /*
1826         * Isolating the page has taken another reference, so the
1827         * caller's reference can be safely dropped without the page
1828         * disappearing underneath us during migration.
1829         */
1830        put_page(page);
1831        return 1;
1832}
1833
1834bool pmd_trans_migrating(pmd_t pmd)
1835{
1836        struct page *page = pmd_page(pmd);
1837        return PageLocked(page);
1838}
1839
1840/*
1841 * Attempt to migrate a misplaced page to the specified destination
1842 * node. Caller is expected to have an elevated reference count on
1843 * the page that will be dropped by this function before returning.
1844 */
1845int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1846                           int node)
1847{
1848        pg_data_t *pgdat = NODE_DATA(node);
1849        int isolated;
1850        int nr_remaining;
1851        LIST_HEAD(migratepages);
1852
1853        /*
1854         * Don't migrate file pages that are mapped in multiple processes
1855         * with execute permissions as they are probably shared libraries.
1856         */
1857        if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1858            (vma->vm_flags & VM_EXEC))
1859                goto out;
1860
1861        /*
1862         * Rate-limit the amount of data that is being migrated to a node.
1863         * Optimal placement is no good if the memory bus is saturated and
1864         * all the time is being spent migrating!
1865         */
1866        if (numamigrate_update_ratelimit(pgdat, 1))
1867                goto out;
1868
1869        isolated = numamigrate_isolate_page(pgdat, page);
1870        if (!isolated)
1871                goto out;
1872
1873        list_add(&page->lru, &migratepages);
1874        nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1875                                     NULL, node, MIGRATE_ASYNC,
1876                                     MR_NUMA_MISPLACED);
1877        if (nr_remaining) {
1878                if (!list_empty(&migratepages)) {
1879                        list_del(&page->lru);
1880                        dec_node_page_state(page, NR_ISOLATED_ANON +
1881                                        page_is_file_cache(page));
1882                        putback_lru_page(page);
1883                }
1884                isolated = 0;
1885        } else
1886                count_vm_numa_event(NUMA_PAGE_MIGRATE);
1887        BUG_ON(!list_empty(&migratepages));
1888        return isolated;
1889
1890out:
1891        put_page(page);
1892        return 0;
1893}
1894#endif /* CONFIG_NUMA_BALANCING */
1895
1896#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1897/*
1898 * Migrates a THP to a given target node. page must be locked and is unlocked
1899 * before returning.
1900 */
1901int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1902                                struct vm_area_struct *vma,
1903                                pmd_t *pmd, pmd_t entry,
1904                                unsigned long address,
1905                                struct page *page, int node)
1906{
1907        spinlock_t *ptl;
1908        pg_data_t *pgdat = NODE_DATA(node);
1909        int isolated = 0;
1910        struct page *new_page = NULL;
1911        int page_lru = page_is_file_cache(page);
1912        unsigned long mmun_start = address & HPAGE_PMD_MASK;
1913        unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1914
1915        /*
1916         * Rate-limit the amount of data that is being migrated to a node.
1917         * Optimal placement is no good if the memory bus is saturated and
1918         * all the time is being spent migrating!
1919         */
1920        if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1921                goto out_dropref;
1922
1923        new_page = alloc_pages_node(node,
1924                (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1925                HPAGE_PMD_ORDER);
1926        if (!new_page)
1927                goto out_fail;
1928        prep_transhuge_page(new_page);
1929
1930        isolated = numamigrate_isolate_page(pgdat, page);
1931        if (!isolated) {
1932                put_page(new_page);
1933                goto out_fail;
1934        }
1935
1936        /* Prepare a page as a migration target */
1937        __SetPageLocked(new_page);
1938        if (PageSwapBacked(page))
1939                __SetPageSwapBacked(new_page);
1940
1941        /* anon mapping, we can simply copy page->mapping to the new page: */
1942        new_page->mapping = page->mapping;
1943        new_page->index = page->index;
1944        migrate_page_copy(new_page, page);
1945        WARN_ON(PageLRU(new_page));
1946
1947        /* Recheck the target PMD */
1948        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1949        ptl = pmd_lock(mm, pmd);
1950        if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
1951                spin_unlock(ptl);
1952                mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1953
1954                /* Reverse changes made by migrate_page_copy() */
1955                if (TestClearPageActive(new_page))
1956                        SetPageActive(page);
1957                if (TestClearPageUnevictable(new_page))
1958                        SetPageUnevictable(page);
1959
1960                unlock_page(new_page);
1961                put_page(new_page);             /* Free it */
1962
1963                /* Retake the callers reference and putback on LRU */
1964                get_page(page);
1965                putback_lru_page(page);
1966                mod_node_page_state(page_pgdat(page),
1967                         NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1968
1969                goto out_unlock;
1970        }
1971
1972        entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1973        entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1974
1975        /*
1976         * Clear the old entry under pagetable lock and establish the new PTE.
1977         * Any parallel GUP will either observe the old page blocking on the
1978         * page lock, block on the page table lock or observe the new page.
1979         * The SetPageUptodate on the new page and page_add_new_anon_rmap
1980         * guarantee the copy is visible before the pagetable update.
1981         */
1982        flush_cache_range(vma, mmun_start, mmun_end);
1983        page_add_anon_rmap(new_page, vma, mmun_start, true);
1984        pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1985        set_pmd_at(mm, mmun_start, pmd, entry);
1986        update_mmu_cache_pmd(vma, address, &entry);
1987
1988        page_ref_unfreeze(page, 2);
1989        mlock_migrate_page(new_page, page);
1990        page_remove_rmap(page, true);
1991        set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
1992
1993        spin_unlock(ptl);
1994        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1995
1996        /* Take an "isolate" reference and put new page on the LRU. */
1997        get_page(new_page);
1998        putback_lru_page(new_page);
1999
2000        unlock_page(new_page);
2001        unlock_page(page);
2002        put_page(page);                 /* Drop the rmap reference */
2003        put_page(page);                 /* Drop the LRU isolation reference */
2004
2005        count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2006        count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2007
2008        mod_node_page_state(page_pgdat(page),
2009                        NR_ISOLATED_ANON + page_lru,
2010                        -HPAGE_PMD_NR);
2011        return isolated;
2012
2013out_fail:
2014        count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2015out_dropref:
2016        ptl = pmd_lock(mm, pmd);
2017        if (pmd_same(*pmd, entry)) {
2018                entry = pmd_modify(entry, vma->vm_page_prot);
2019                set_pmd_at(mm, mmun_start, pmd, entry);
2020                update_mmu_cache_pmd(vma, address, &entry);
2021        }
2022        spin_unlock(ptl);
2023
2024out_unlock:
2025        unlock_page(page);
2026        put_page(page);
2027        return 0;
2028}
2029#endif /* CONFIG_NUMA_BALANCING */
2030
2031#endif /* CONFIG_NUMA */
2032