linux/mm/readahead.c
<<
>>
Prefs
   1/*
   2 * mm/readahead.c - address_space-level file readahead.
   3 *
   4 * Copyright (C) 2002, Linus Torvalds
   5 *
   6 * 09Apr2002    Andrew Morton
   7 *              Initial version.
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/dax.h>
  12#include <linux/gfp.h>
  13#include <linux/export.h>
  14#include <linux/blkdev.h>
  15#include <linux/backing-dev.h>
  16#include <linux/task_io_accounting_ops.h>
  17#include <linux/pagevec.h>
  18#include <linux/pagemap.h>
  19#include <linux/syscalls.h>
  20#include <linux/file.h>
  21#include <linux/mm_inline.h>
  22
  23#include "internal.h"
  24
  25/*
  26 * Initialise a struct file's readahead state.  Assumes that the caller has
  27 * memset *ra to zero.
  28 */
  29void
  30file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
  31{
  32        ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
  33        ra->prev_pos = -1;
  34}
  35EXPORT_SYMBOL_GPL(file_ra_state_init);
  36
  37/*
  38 * see if a page needs releasing upon read_cache_pages() failure
  39 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
  40 *   before calling, such as the NFS fs marking pages that are cached locally
  41 *   on disk, thus we need to give the fs a chance to clean up in the event of
  42 *   an error
  43 */
  44static void read_cache_pages_invalidate_page(struct address_space *mapping,
  45                                             struct page *page)
  46{
  47        if (page_has_private(page)) {
  48                if (!trylock_page(page))
  49                        BUG();
  50                page->mapping = mapping;
  51                do_invalidatepage(page, 0, PAGE_SIZE);
  52                page->mapping = NULL;
  53                unlock_page(page);
  54        }
  55        put_page(page);
  56}
  57
  58/*
  59 * release a list of pages, invalidating them first if need be
  60 */
  61static void read_cache_pages_invalidate_pages(struct address_space *mapping,
  62                                              struct list_head *pages)
  63{
  64        struct page *victim;
  65
  66        while (!list_empty(pages)) {
  67                victim = lru_to_page(pages);
  68                list_del(&victim->lru);
  69                read_cache_pages_invalidate_page(mapping, victim);
  70        }
  71}
  72
  73/**
  74 * read_cache_pages - populate an address space with some pages & start reads against them
  75 * @mapping: the address_space
  76 * @pages: The address of a list_head which contains the target pages.  These
  77 *   pages have their ->index populated and are otherwise uninitialised.
  78 * @filler: callback routine for filling a single page.
  79 * @data: private data for the callback routine.
  80 *
  81 * Hides the details of the LRU cache etc from the filesystems.
  82 */
  83int read_cache_pages(struct address_space *mapping, struct list_head *pages,
  84                        int (*filler)(void *, struct page *), void *data)
  85{
  86        struct page *page;
  87        int ret = 0;
  88
  89        while (!list_empty(pages)) {
  90                page = lru_to_page(pages);
  91                list_del(&page->lru);
  92                if (add_to_page_cache_lru(page, mapping, page->index,
  93                                readahead_gfp_mask(mapping))) {
  94                        read_cache_pages_invalidate_page(mapping, page);
  95                        continue;
  96                }
  97                put_page(page);
  98
  99                ret = filler(data, page);
 100                if (unlikely(ret)) {
 101                        read_cache_pages_invalidate_pages(mapping, pages);
 102                        break;
 103                }
 104                task_io_account_read(PAGE_SIZE);
 105        }
 106        return ret;
 107}
 108
 109EXPORT_SYMBOL(read_cache_pages);
 110
 111static int read_pages(struct address_space *mapping, struct file *filp,
 112                struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
 113{
 114        struct blk_plug plug;
 115        unsigned page_idx;
 116        int ret;
 117
 118        blk_start_plug(&plug);
 119
 120        if (mapping->a_ops->readpages) {
 121                ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
 122                /* Clean up the remaining pages */
 123                put_pages_list(pages);
 124                goto out;
 125        }
 126
 127        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
 128                struct page *page = lru_to_page(pages);
 129                list_del(&page->lru);
 130                if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
 131                        mapping->a_ops->readpage(filp, page);
 132                put_page(page);
 133        }
 134        ret = 0;
 135
 136out:
 137        blk_finish_plug(&plug);
 138
 139        return ret;
 140}
 141
 142/*
 143 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
 144 * the pages first, then submits them all for I/O. This avoids the very bad
 145 * behaviour which would occur if page allocations are causing VM writeback.
 146 * We really don't want to intermingle reads and writes like that.
 147 *
 148 * Returns the number of pages requested, or the maximum amount of I/O allowed.
 149 */
 150int __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
 151                        pgoff_t offset, unsigned long nr_to_read,
 152                        unsigned long lookahead_size)
 153{
 154        struct inode *inode = mapping->host;
 155        struct page *page;
 156        unsigned long end_index;        /* The last page we want to read */
 157        LIST_HEAD(page_pool);
 158        int page_idx;
 159        int ret = 0;
 160        loff_t isize = i_size_read(inode);
 161        gfp_t gfp_mask = readahead_gfp_mask(mapping);
 162
 163        if (isize == 0)
 164                goto out;
 165
 166        end_index = ((isize - 1) >> PAGE_SHIFT);
 167
 168        /*
 169         * Preallocate as many pages as we will need.
 170         */
 171        for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
 172                pgoff_t page_offset = offset + page_idx;
 173
 174                if (page_offset > end_index)
 175                        break;
 176
 177                rcu_read_lock();
 178                page = radix_tree_lookup(&mapping->page_tree, page_offset);
 179                rcu_read_unlock();
 180                if (page && !radix_tree_exceptional_entry(page))
 181                        continue;
 182
 183                page = __page_cache_alloc(gfp_mask);
 184                if (!page)
 185                        break;
 186                page->index = page_offset;
 187                list_add(&page->lru, &page_pool);
 188                if (page_idx == nr_to_read - lookahead_size)
 189                        SetPageReadahead(page);
 190                ret++;
 191        }
 192
 193        /*
 194         * Now start the IO.  We ignore I/O errors - if the page is not
 195         * uptodate then the caller will launch readpage again, and
 196         * will then handle the error.
 197         */
 198        if (ret)
 199                read_pages(mapping, filp, &page_pool, ret, gfp_mask);
 200        BUG_ON(!list_empty(&page_pool));
 201out:
 202        return ret;
 203}
 204
 205/*
 206 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
 207 * memory at once.
 208 */
 209int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
 210                               pgoff_t offset, unsigned long nr_to_read)
 211{
 212        struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
 213        struct file_ra_state *ra = &filp->f_ra;
 214        unsigned long max_pages;
 215
 216        if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
 217                return -EINVAL;
 218
 219        /*
 220         * If the request exceeds the readahead window, allow the read to
 221         * be up to the optimal hardware IO size
 222         */
 223        max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
 224        nr_to_read = min(nr_to_read, max_pages);
 225        while (nr_to_read) {
 226                int err;
 227
 228                unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
 229
 230                if (this_chunk > nr_to_read)
 231                        this_chunk = nr_to_read;
 232                err = __do_page_cache_readahead(mapping, filp,
 233                                                offset, this_chunk, 0);
 234                if (err < 0)
 235                        return err;
 236
 237                offset += this_chunk;
 238                nr_to_read -= this_chunk;
 239        }
 240        return 0;
 241}
 242
 243/*
 244 * Set the initial window size, round to next power of 2 and square
 245 * for small size, x 4 for medium, and x 2 for large
 246 * for 128k (32 page) max ra
 247 * 1-8 page = 32k initial, > 8 page = 128k initial
 248 */
 249static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
 250{
 251        unsigned long newsize = roundup_pow_of_two(size);
 252
 253        if (newsize <= max / 32)
 254                newsize = newsize * 4;
 255        else if (newsize <= max / 4)
 256                newsize = newsize * 2;
 257        else
 258                newsize = max;
 259
 260        return newsize;
 261}
 262
 263/*
 264 *  Get the previous window size, ramp it up, and
 265 *  return it as the new window size.
 266 */
 267static unsigned long get_next_ra_size(struct file_ra_state *ra,
 268                                                unsigned long max)
 269{
 270        unsigned long cur = ra->size;
 271        unsigned long newsize;
 272
 273        if (cur < max / 16)
 274                newsize = 4 * cur;
 275        else
 276                newsize = 2 * cur;
 277
 278        return min(newsize, max);
 279}
 280
 281/*
 282 * On-demand readahead design.
 283 *
 284 * The fields in struct file_ra_state represent the most-recently-executed
 285 * readahead attempt:
 286 *
 287 *                        |<----- async_size ---------|
 288 *     |------------------- size -------------------->|
 289 *     |==================#===========================|
 290 *     ^start             ^page marked with PG_readahead
 291 *
 292 * To overlap application thinking time and disk I/O time, we do
 293 * `readahead pipelining': Do not wait until the application consumed all
 294 * readahead pages and stalled on the missing page at readahead_index;
 295 * Instead, submit an asynchronous readahead I/O as soon as there are
 296 * only async_size pages left in the readahead window. Normally async_size
 297 * will be equal to size, for maximum pipelining.
 298 *
 299 * In interleaved sequential reads, concurrent streams on the same fd can
 300 * be invalidating each other's readahead state. So we flag the new readahead
 301 * page at (start+size-async_size) with PG_readahead, and use it as readahead
 302 * indicator. The flag won't be set on already cached pages, to avoid the
 303 * readahead-for-nothing fuss, saving pointless page cache lookups.
 304 *
 305 * prev_pos tracks the last visited byte in the _previous_ read request.
 306 * It should be maintained by the caller, and will be used for detecting
 307 * small random reads. Note that the readahead algorithm checks loosely
 308 * for sequential patterns. Hence interleaved reads might be served as
 309 * sequential ones.
 310 *
 311 * There is a special-case: if the first page which the application tries to
 312 * read happens to be the first page of the file, it is assumed that a linear
 313 * read is about to happen and the window is immediately set to the initial size
 314 * based on I/O request size and the max_readahead.
 315 *
 316 * The code ramps up the readahead size aggressively at first, but slow down as
 317 * it approaches max_readhead.
 318 */
 319
 320/*
 321 * Count contiguously cached pages from @offset-1 to @offset-@max,
 322 * this count is a conservative estimation of
 323 *      - length of the sequential read sequence, or
 324 *      - thrashing threshold in memory tight systems
 325 */
 326static pgoff_t count_history_pages(struct address_space *mapping,
 327                                   pgoff_t offset, unsigned long max)
 328{
 329        pgoff_t head;
 330
 331        rcu_read_lock();
 332        head = page_cache_prev_hole(mapping, offset - 1, max);
 333        rcu_read_unlock();
 334
 335        return offset - 1 - head;
 336}
 337
 338/*
 339 * page cache context based read-ahead
 340 */
 341static int try_context_readahead(struct address_space *mapping,
 342                                 struct file_ra_state *ra,
 343                                 pgoff_t offset,
 344                                 unsigned long req_size,
 345                                 unsigned long max)
 346{
 347        pgoff_t size;
 348
 349        size = count_history_pages(mapping, offset, max);
 350
 351        /*
 352         * not enough history pages:
 353         * it could be a random read
 354         */
 355        if (size <= req_size)
 356                return 0;
 357
 358        /*
 359         * starts from beginning of file:
 360         * it is a strong indication of long-run stream (or whole-file-read)
 361         */
 362        if (size >= offset)
 363                size *= 2;
 364
 365        ra->start = offset;
 366        ra->size = min(size + req_size, max);
 367        ra->async_size = 1;
 368
 369        return 1;
 370}
 371
 372/*
 373 * A minimal readahead algorithm for trivial sequential/random reads.
 374 */
 375static unsigned long
 376ondemand_readahead(struct address_space *mapping,
 377                   struct file_ra_state *ra, struct file *filp,
 378                   bool hit_readahead_marker, pgoff_t offset,
 379                   unsigned long req_size)
 380{
 381        struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
 382        unsigned long max_pages = ra->ra_pages;
 383        pgoff_t prev_offset;
 384
 385        /*
 386         * If the request exceeds the readahead window, allow the read to
 387         * be up to the optimal hardware IO size
 388         */
 389        if (req_size > max_pages && bdi->io_pages > max_pages)
 390                max_pages = min(req_size, bdi->io_pages);
 391
 392        /*
 393         * start of file
 394         */
 395        if (!offset)
 396                goto initial_readahead;
 397
 398        /*
 399         * It's the expected callback offset, assume sequential access.
 400         * Ramp up sizes, and push forward the readahead window.
 401         */
 402        if ((offset == (ra->start + ra->size - ra->async_size) ||
 403             offset == (ra->start + ra->size))) {
 404                ra->start += ra->size;
 405                ra->size = get_next_ra_size(ra, max_pages);
 406                ra->async_size = ra->size;
 407                goto readit;
 408        }
 409
 410        /*
 411         * Hit a marked page without valid readahead state.
 412         * E.g. interleaved reads.
 413         * Query the pagecache for async_size, which normally equals to
 414         * readahead size. Ramp it up and use it as the new readahead size.
 415         */
 416        if (hit_readahead_marker) {
 417                pgoff_t start;
 418
 419                rcu_read_lock();
 420                start = page_cache_next_hole(mapping, offset + 1, max_pages);
 421                rcu_read_unlock();
 422
 423                if (!start || start - offset > max_pages)
 424                        return 0;
 425
 426                ra->start = start;
 427                ra->size = start - offset;      /* old async_size */
 428                ra->size += req_size;
 429                ra->size = get_next_ra_size(ra, max_pages);
 430                ra->async_size = ra->size;
 431                goto readit;
 432        }
 433
 434        /*
 435         * oversize read
 436         */
 437        if (req_size > max_pages)
 438                goto initial_readahead;
 439
 440        /*
 441         * sequential cache miss
 442         * trivial case: (offset - prev_offset) == 1
 443         * unaligned reads: (offset - prev_offset) == 0
 444         */
 445        prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
 446        if (offset - prev_offset <= 1UL)
 447                goto initial_readahead;
 448
 449        /*
 450         * Query the page cache and look for the traces(cached history pages)
 451         * that a sequential stream would leave behind.
 452         */
 453        if (try_context_readahead(mapping, ra, offset, req_size, max_pages))
 454                goto readit;
 455
 456        /*
 457         * standalone, small random read
 458         * Read as is, and do not pollute the readahead state.
 459         */
 460        return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
 461
 462initial_readahead:
 463        ra->start = offset;
 464        ra->size = get_init_ra_size(req_size, max_pages);
 465        ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
 466
 467readit:
 468        /*
 469         * Will this read hit the readahead marker made by itself?
 470         * If so, trigger the readahead marker hit now, and merge
 471         * the resulted next readahead window into the current one.
 472         */
 473        if (offset == ra->start && ra->size == ra->async_size) {
 474                ra->async_size = get_next_ra_size(ra, max_pages);
 475                ra->size += ra->async_size;
 476        }
 477
 478        return ra_submit(ra, mapping, filp);
 479}
 480
 481/**
 482 * page_cache_sync_readahead - generic file readahead
 483 * @mapping: address_space which holds the pagecache and I/O vectors
 484 * @ra: file_ra_state which holds the readahead state
 485 * @filp: passed on to ->readpage() and ->readpages()
 486 * @offset: start offset into @mapping, in pagecache page-sized units
 487 * @req_size: hint: total size of the read which the caller is performing in
 488 *            pagecache pages
 489 *
 490 * page_cache_sync_readahead() should be called when a cache miss happened:
 491 * it will submit the read.  The readahead logic may decide to piggyback more
 492 * pages onto the read request if access patterns suggest it will improve
 493 * performance.
 494 */
 495void page_cache_sync_readahead(struct address_space *mapping,
 496                               struct file_ra_state *ra, struct file *filp,
 497                               pgoff_t offset, unsigned long req_size)
 498{
 499        /* no read-ahead */
 500        if (!ra->ra_pages)
 501                return;
 502
 503        /* be dumb */
 504        if (filp && (filp->f_mode & FMODE_RANDOM)) {
 505                force_page_cache_readahead(mapping, filp, offset, req_size);
 506                return;
 507        }
 508
 509        /* do read-ahead */
 510        ondemand_readahead(mapping, ra, filp, false, offset, req_size);
 511}
 512EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
 513
 514/**
 515 * page_cache_async_readahead - file readahead for marked pages
 516 * @mapping: address_space which holds the pagecache and I/O vectors
 517 * @ra: file_ra_state which holds the readahead state
 518 * @filp: passed on to ->readpage() and ->readpages()
 519 * @page: the page at @offset which has the PG_readahead flag set
 520 * @offset: start offset into @mapping, in pagecache page-sized units
 521 * @req_size: hint: total size of the read which the caller is performing in
 522 *            pagecache pages
 523 *
 524 * page_cache_async_readahead() should be called when a page is used which
 525 * has the PG_readahead flag; this is a marker to suggest that the application
 526 * has used up enough of the readahead window that we should start pulling in
 527 * more pages.
 528 */
 529void
 530page_cache_async_readahead(struct address_space *mapping,
 531                           struct file_ra_state *ra, struct file *filp,
 532                           struct page *page, pgoff_t offset,
 533                           unsigned long req_size)
 534{
 535        /* no read-ahead */
 536        if (!ra->ra_pages)
 537                return;
 538
 539        /*
 540         * Same bit is used for PG_readahead and PG_reclaim.
 541         */
 542        if (PageWriteback(page))
 543                return;
 544
 545        ClearPageReadahead(page);
 546
 547        /*
 548         * Defer asynchronous read-ahead on IO congestion.
 549         */
 550        if (inode_read_congested(mapping->host))
 551                return;
 552
 553        /* do read-ahead */
 554        ondemand_readahead(mapping, ra, filp, true, offset, req_size);
 555}
 556EXPORT_SYMBOL_GPL(page_cache_async_readahead);
 557
 558static ssize_t
 559do_readahead(struct address_space *mapping, struct file *filp,
 560             pgoff_t index, unsigned long nr)
 561{
 562        if (!mapping || !mapping->a_ops)
 563                return -EINVAL;
 564
 565        /*
 566         * Readahead doesn't make sense for DAX inodes, but we don't want it
 567         * to report a failure either.  Instead, we just return success and
 568         * don't do any work.
 569         */
 570        if (dax_mapping(mapping))
 571                return 0;
 572
 573        return force_page_cache_readahead(mapping, filp, index, nr);
 574}
 575
 576SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
 577{
 578        ssize_t ret;
 579        struct fd f;
 580
 581        ret = -EBADF;
 582        f = fdget(fd);
 583        if (f.file) {
 584                if (f.file->f_mode & FMODE_READ) {
 585                        struct address_space *mapping = f.file->f_mapping;
 586                        pgoff_t start = offset >> PAGE_SHIFT;
 587                        pgoff_t end = (offset + count - 1) >> PAGE_SHIFT;
 588                        unsigned long len = end - start + 1;
 589                        ret = do_readahead(mapping, f.file, start, len);
 590                }
 591                fdput(f);
 592        }
 593        return ret;
 594}
 595