linux/mm/rmap.c
<<
>>
Prefs
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex       (while writing or truncating, not reading or faulting)
  24 *   mm->mmap_sem
  25 *     page->flags PG_locked (lock_page)
  26 *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
  27 *         mapping->i_mmap_rwsem
  28 *           anon_vma->rwsem
  29 *             mm->page_table_lock or pte_lock
  30 *               zone_lru_lock (in mark_page_accessed, isolate_lru_page)
  31 *               swap_lock (in swap_duplicate, swap_info_get)
  32 *                 mmlist_lock (in mmput, drain_mmlist and others)
  33 *                 mapping->private_lock (in __set_page_dirty_buffers)
  34 *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
  35 *                     mapping->tree_lock (widely used)
  36 *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  37 *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  38 *                   sb_lock (within inode_lock in fs/fs-writeback.c)
  39 *                   mapping->tree_lock (widely used, in set_page_dirty,
  40 *                             in arch-dependent flush_dcache_mmap_lock,
  41 *                             within bdi.wb->list_lock in __sync_single_inode)
  42 *
  43 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
  44 *   ->tasklist_lock
  45 *     pte map lock
  46 */
  47
  48#include <linux/mm.h>
  49#include <linux/sched/mm.h>
  50#include <linux/sched/task.h>
  51#include <linux/pagemap.h>
  52#include <linux/swap.h>
  53#include <linux/swapops.h>
  54#include <linux/slab.h>
  55#include <linux/init.h>
  56#include <linux/ksm.h>
  57#include <linux/rmap.h>
  58#include <linux/rcupdate.h>
  59#include <linux/export.h>
  60#include <linux/memcontrol.h>
  61#include <linux/mmu_notifier.h>
  62#include <linux/migrate.h>
  63#include <linux/hugetlb.h>
  64#include <linux/backing-dev.h>
  65#include <linux/page_idle.h>
  66
  67#include <asm/tlbflush.h>
  68
  69#include <trace/events/tlb.h>
  70
  71#include "internal.h"
  72
  73static struct kmem_cache *anon_vma_cachep;
  74static struct kmem_cache *anon_vma_chain_cachep;
  75
  76static inline struct anon_vma *anon_vma_alloc(void)
  77{
  78        struct anon_vma *anon_vma;
  79
  80        anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  81        if (anon_vma) {
  82                atomic_set(&anon_vma->refcount, 1);
  83                anon_vma->degree = 1;   /* Reference for first vma */
  84                anon_vma->parent = anon_vma;
  85                /*
  86                 * Initialise the anon_vma root to point to itself. If called
  87                 * from fork, the root will be reset to the parents anon_vma.
  88                 */
  89                anon_vma->root = anon_vma;
  90        }
  91
  92        return anon_vma;
  93}
  94
  95static inline void anon_vma_free(struct anon_vma *anon_vma)
  96{
  97        VM_BUG_ON(atomic_read(&anon_vma->refcount));
  98
  99        /*
 100         * Synchronize against page_lock_anon_vma_read() such that
 101         * we can safely hold the lock without the anon_vma getting
 102         * freed.
 103         *
 104         * Relies on the full mb implied by the atomic_dec_and_test() from
 105         * put_anon_vma() against the acquire barrier implied by
 106         * down_read_trylock() from page_lock_anon_vma_read(). This orders:
 107         *
 108         * page_lock_anon_vma_read()    VS      put_anon_vma()
 109         *   down_read_trylock()                  atomic_dec_and_test()
 110         *   LOCK                                 MB
 111         *   atomic_read()                        rwsem_is_locked()
 112         *
 113         * LOCK should suffice since the actual taking of the lock must
 114         * happen _before_ what follows.
 115         */
 116        might_sleep();
 117        if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 118                anon_vma_lock_write(anon_vma);
 119                anon_vma_unlock_write(anon_vma);
 120        }
 121
 122        kmem_cache_free(anon_vma_cachep, anon_vma);
 123}
 124
 125static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 126{
 127        return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 128}
 129
 130static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 131{
 132        kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 133}
 134
 135static void anon_vma_chain_link(struct vm_area_struct *vma,
 136                                struct anon_vma_chain *avc,
 137                                struct anon_vma *anon_vma)
 138{
 139        avc->vma = vma;
 140        avc->anon_vma = anon_vma;
 141        list_add(&avc->same_vma, &vma->anon_vma_chain);
 142        anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 143}
 144
 145/**
 146 * __anon_vma_prepare - attach an anon_vma to a memory region
 147 * @vma: the memory region in question
 148 *
 149 * This makes sure the memory mapping described by 'vma' has
 150 * an 'anon_vma' attached to it, so that we can associate the
 151 * anonymous pages mapped into it with that anon_vma.
 152 *
 153 * The common case will be that we already have one, which
 154 * is handled inline by anon_vma_prepare(). But if
 155 * not we either need to find an adjacent mapping that we
 156 * can re-use the anon_vma from (very common when the only
 157 * reason for splitting a vma has been mprotect()), or we
 158 * allocate a new one.
 159 *
 160 * Anon-vma allocations are very subtle, because we may have
 161 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
 162 * and that may actually touch the spinlock even in the newly
 163 * allocated vma (it depends on RCU to make sure that the
 164 * anon_vma isn't actually destroyed).
 165 *
 166 * As a result, we need to do proper anon_vma locking even
 167 * for the new allocation. At the same time, we do not want
 168 * to do any locking for the common case of already having
 169 * an anon_vma.
 170 *
 171 * This must be called with the mmap_sem held for reading.
 172 */
 173int __anon_vma_prepare(struct vm_area_struct *vma)
 174{
 175        struct mm_struct *mm = vma->vm_mm;
 176        struct anon_vma *anon_vma, *allocated;
 177        struct anon_vma_chain *avc;
 178
 179        might_sleep();
 180
 181        avc = anon_vma_chain_alloc(GFP_KERNEL);
 182        if (!avc)
 183                goto out_enomem;
 184
 185        anon_vma = find_mergeable_anon_vma(vma);
 186        allocated = NULL;
 187        if (!anon_vma) {
 188                anon_vma = anon_vma_alloc();
 189                if (unlikely(!anon_vma))
 190                        goto out_enomem_free_avc;
 191                allocated = anon_vma;
 192        }
 193
 194        anon_vma_lock_write(anon_vma);
 195        /* page_table_lock to protect against threads */
 196        spin_lock(&mm->page_table_lock);
 197        if (likely(!vma->anon_vma)) {
 198                vma->anon_vma = anon_vma;
 199                anon_vma_chain_link(vma, avc, anon_vma);
 200                /* vma reference or self-parent link for new root */
 201                anon_vma->degree++;
 202                allocated = NULL;
 203                avc = NULL;
 204        }
 205        spin_unlock(&mm->page_table_lock);
 206        anon_vma_unlock_write(anon_vma);
 207
 208        if (unlikely(allocated))
 209                put_anon_vma(allocated);
 210        if (unlikely(avc))
 211                anon_vma_chain_free(avc);
 212
 213        return 0;
 214
 215 out_enomem_free_avc:
 216        anon_vma_chain_free(avc);
 217 out_enomem:
 218        return -ENOMEM;
 219}
 220
 221/*
 222 * This is a useful helper function for locking the anon_vma root as
 223 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 224 * have the same vma.
 225 *
 226 * Such anon_vma's should have the same root, so you'd expect to see
 227 * just a single mutex_lock for the whole traversal.
 228 */
 229static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 230{
 231        struct anon_vma *new_root = anon_vma->root;
 232        if (new_root != root) {
 233                if (WARN_ON_ONCE(root))
 234                        up_write(&root->rwsem);
 235                root = new_root;
 236                down_write(&root->rwsem);
 237        }
 238        return root;
 239}
 240
 241static inline void unlock_anon_vma_root(struct anon_vma *root)
 242{
 243        if (root)
 244                up_write(&root->rwsem);
 245}
 246
 247/*
 248 * Attach the anon_vmas from src to dst.
 249 * Returns 0 on success, -ENOMEM on failure.
 250 *
 251 * If dst->anon_vma is NULL this function tries to find and reuse existing
 252 * anon_vma which has no vmas and only one child anon_vma. This prevents
 253 * degradation of anon_vma hierarchy to endless linear chain in case of
 254 * constantly forking task. On the other hand, an anon_vma with more than one
 255 * child isn't reused even if there was no alive vma, thus rmap walker has a
 256 * good chance of avoiding scanning the whole hierarchy when it searches where
 257 * page is mapped.
 258 */
 259int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 260{
 261        struct anon_vma_chain *avc, *pavc;
 262        struct anon_vma *root = NULL;
 263
 264        list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 265                struct anon_vma *anon_vma;
 266
 267                avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 268                if (unlikely(!avc)) {
 269                        unlock_anon_vma_root(root);
 270                        root = NULL;
 271                        avc = anon_vma_chain_alloc(GFP_KERNEL);
 272                        if (!avc)
 273                                goto enomem_failure;
 274                }
 275                anon_vma = pavc->anon_vma;
 276                root = lock_anon_vma_root(root, anon_vma);
 277                anon_vma_chain_link(dst, avc, anon_vma);
 278
 279                /*
 280                 * Reuse existing anon_vma if its degree lower than two,
 281                 * that means it has no vma and only one anon_vma child.
 282                 *
 283                 * Do not chose parent anon_vma, otherwise first child
 284                 * will always reuse it. Root anon_vma is never reused:
 285                 * it has self-parent reference and at least one child.
 286                 */
 287                if (!dst->anon_vma && anon_vma != src->anon_vma &&
 288                                anon_vma->degree < 2)
 289                        dst->anon_vma = anon_vma;
 290        }
 291        if (dst->anon_vma)
 292                dst->anon_vma->degree++;
 293        unlock_anon_vma_root(root);
 294        return 0;
 295
 296 enomem_failure:
 297        /*
 298         * dst->anon_vma is dropped here otherwise its degree can be incorrectly
 299         * decremented in unlink_anon_vmas().
 300         * We can safely do this because callers of anon_vma_clone() don't care
 301         * about dst->anon_vma if anon_vma_clone() failed.
 302         */
 303        dst->anon_vma = NULL;
 304        unlink_anon_vmas(dst);
 305        return -ENOMEM;
 306}
 307
 308/*
 309 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 310 * the corresponding VMA in the parent process is attached to.
 311 * Returns 0 on success, non-zero on failure.
 312 */
 313int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 314{
 315        struct anon_vma_chain *avc;
 316        struct anon_vma *anon_vma;
 317        int error;
 318
 319        /* Don't bother if the parent process has no anon_vma here. */
 320        if (!pvma->anon_vma)
 321                return 0;
 322
 323        /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
 324        vma->anon_vma = NULL;
 325
 326        /*
 327         * First, attach the new VMA to the parent VMA's anon_vmas,
 328         * so rmap can find non-COWed pages in child processes.
 329         */
 330        error = anon_vma_clone(vma, pvma);
 331        if (error)
 332                return error;
 333
 334        /* An existing anon_vma has been reused, all done then. */
 335        if (vma->anon_vma)
 336                return 0;
 337
 338        /* Then add our own anon_vma. */
 339        anon_vma = anon_vma_alloc();
 340        if (!anon_vma)
 341                goto out_error;
 342        avc = anon_vma_chain_alloc(GFP_KERNEL);
 343        if (!avc)
 344                goto out_error_free_anon_vma;
 345
 346        /*
 347         * The root anon_vma's spinlock is the lock actually used when we
 348         * lock any of the anon_vmas in this anon_vma tree.
 349         */
 350        anon_vma->root = pvma->anon_vma->root;
 351        anon_vma->parent = pvma->anon_vma;
 352        /*
 353         * With refcounts, an anon_vma can stay around longer than the
 354         * process it belongs to. The root anon_vma needs to be pinned until
 355         * this anon_vma is freed, because the lock lives in the root.
 356         */
 357        get_anon_vma(anon_vma->root);
 358        /* Mark this anon_vma as the one where our new (COWed) pages go. */
 359        vma->anon_vma = anon_vma;
 360        anon_vma_lock_write(anon_vma);
 361        anon_vma_chain_link(vma, avc, anon_vma);
 362        anon_vma->parent->degree++;
 363        anon_vma_unlock_write(anon_vma);
 364
 365        return 0;
 366
 367 out_error_free_anon_vma:
 368        put_anon_vma(anon_vma);
 369 out_error:
 370        unlink_anon_vmas(vma);
 371        return -ENOMEM;
 372}
 373
 374void unlink_anon_vmas(struct vm_area_struct *vma)
 375{
 376        struct anon_vma_chain *avc, *next;
 377        struct anon_vma *root = NULL;
 378
 379        /*
 380         * Unlink each anon_vma chained to the VMA.  This list is ordered
 381         * from newest to oldest, ensuring the root anon_vma gets freed last.
 382         */
 383        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 384                struct anon_vma *anon_vma = avc->anon_vma;
 385
 386                root = lock_anon_vma_root(root, anon_vma);
 387                anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 388
 389                /*
 390                 * Leave empty anon_vmas on the list - we'll need
 391                 * to free them outside the lock.
 392                 */
 393                if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
 394                        anon_vma->parent->degree--;
 395                        continue;
 396                }
 397
 398                list_del(&avc->same_vma);
 399                anon_vma_chain_free(avc);
 400        }
 401        if (vma->anon_vma)
 402                vma->anon_vma->degree--;
 403        unlock_anon_vma_root(root);
 404
 405        /*
 406         * Iterate the list once more, it now only contains empty and unlinked
 407         * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 408         * needing to write-acquire the anon_vma->root->rwsem.
 409         */
 410        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 411                struct anon_vma *anon_vma = avc->anon_vma;
 412
 413                VM_WARN_ON(anon_vma->degree);
 414                put_anon_vma(anon_vma);
 415
 416                list_del(&avc->same_vma);
 417                anon_vma_chain_free(avc);
 418        }
 419}
 420
 421static void anon_vma_ctor(void *data)
 422{
 423        struct anon_vma *anon_vma = data;
 424
 425        init_rwsem(&anon_vma->rwsem);
 426        atomic_set(&anon_vma->refcount, 0);
 427        anon_vma->rb_root = RB_ROOT;
 428}
 429
 430void __init anon_vma_init(void)
 431{
 432        anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 433                        0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
 434                        anon_vma_ctor);
 435        anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
 436                        SLAB_PANIC|SLAB_ACCOUNT);
 437}
 438
 439/*
 440 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 441 *
 442 * Since there is no serialization what so ever against page_remove_rmap()
 443 * the best this function can do is return a locked anon_vma that might
 444 * have been relevant to this page.
 445 *
 446 * The page might have been remapped to a different anon_vma or the anon_vma
 447 * returned may already be freed (and even reused).
 448 *
 449 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 450 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 451 * ensure that any anon_vma obtained from the page will still be valid for as
 452 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 453 *
 454 * All users of this function must be very careful when walking the anon_vma
 455 * chain and verify that the page in question is indeed mapped in it
 456 * [ something equivalent to page_mapped_in_vma() ].
 457 *
 458 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
 459 * that the anon_vma pointer from page->mapping is valid if there is a
 460 * mapcount, we can dereference the anon_vma after observing those.
 461 */
 462struct anon_vma *page_get_anon_vma(struct page *page)
 463{
 464        struct anon_vma *anon_vma = NULL;
 465        unsigned long anon_mapping;
 466
 467        rcu_read_lock();
 468        anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 469        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 470                goto out;
 471        if (!page_mapped(page))
 472                goto out;
 473
 474        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 475        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 476                anon_vma = NULL;
 477                goto out;
 478        }
 479
 480        /*
 481         * If this page is still mapped, then its anon_vma cannot have been
 482         * freed.  But if it has been unmapped, we have no security against the
 483         * anon_vma structure being freed and reused (for another anon_vma:
 484         * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
 485         * above cannot corrupt).
 486         */
 487        if (!page_mapped(page)) {
 488                rcu_read_unlock();
 489                put_anon_vma(anon_vma);
 490                return NULL;
 491        }
 492out:
 493        rcu_read_unlock();
 494
 495        return anon_vma;
 496}
 497
 498/*
 499 * Similar to page_get_anon_vma() except it locks the anon_vma.
 500 *
 501 * Its a little more complex as it tries to keep the fast path to a single
 502 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 503 * reference like with page_get_anon_vma() and then block on the mutex.
 504 */
 505struct anon_vma *page_lock_anon_vma_read(struct page *page)
 506{
 507        struct anon_vma *anon_vma = NULL;
 508        struct anon_vma *root_anon_vma;
 509        unsigned long anon_mapping;
 510
 511        rcu_read_lock();
 512        anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 513        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 514                goto out;
 515        if (!page_mapped(page))
 516                goto out;
 517
 518        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 519        root_anon_vma = READ_ONCE(anon_vma->root);
 520        if (down_read_trylock(&root_anon_vma->rwsem)) {
 521                /*
 522                 * If the page is still mapped, then this anon_vma is still
 523                 * its anon_vma, and holding the mutex ensures that it will
 524                 * not go away, see anon_vma_free().
 525                 */
 526                if (!page_mapped(page)) {
 527                        up_read(&root_anon_vma->rwsem);
 528                        anon_vma = NULL;
 529                }
 530                goto out;
 531        }
 532
 533        /* trylock failed, we got to sleep */
 534        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 535                anon_vma = NULL;
 536                goto out;
 537        }
 538
 539        if (!page_mapped(page)) {
 540                rcu_read_unlock();
 541                put_anon_vma(anon_vma);
 542                return NULL;
 543        }
 544
 545        /* we pinned the anon_vma, its safe to sleep */
 546        rcu_read_unlock();
 547        anon_vma_lock_read(anon_vma);
 548
 549        if (atomic_dec_and_test(&anon_vma->refcount)) {
 550                /*
 551                 * Oops, we held the last refcount, release the lock
 552                 * and bail -- can't simply use put_anon_vma() because
 553                 * we'll deadlock on the anon_vma_lock_write() recursion.
 554                 */
 555                anon_vma_unlock_read(anon_vma);
 556                __put_anon_vma(anon_vma);
 557                anon_vma = NULL;
 558        }
 559
 560        return anon_vma;
 561
 562out:
 563        rcu_read_unlock();
 564        return anon_vma;
 565}
 566
 567void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
 568{
 569        anon_vma_unlock_read(anon_vma);
 570}
 571
 572#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 573/*
 574 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
 575 * important if a PTE was dirty when it was unmapped that it's flushed
 576 * before any IO is initiated on the page to prevent lost writes. Similarly,
 577 * it must be flushed before freeing to prevent data leakage.
 578 */
 579void try_to_unmap_flush(void)
 580{
 581        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 582
 583        if (!tlb_ubc->flush_required)
 584                return;
 585
 586        arch_tlbbatch_flush(&tlb_ubc->arch);
 587        tlb_ubc->flush_required = false;
 588        tlb_ubc->writable = false;
 589}
 590
 591/* Flush iff there are potentially writable TLB entries that can race with IO */
 592void try_to_unmap_flush_dirty(void)
 593{
 594        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 595
 596        if (tlb_ubc->writable)
 597                try_to_unmap_flush();
 598}
 599
 600static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 601{
 602        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 603
 604        arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
 605        tlb_ubc->flush_required = true;
 606
 607        /*
 608         * Ensure compiler does not re-order the setting of tlb_flush_batched
 609         * before the PTE is cleared.
 610         */
 611        barrier();
 612        mm->tlb_flush_batched = true;
 613
 614        /*
 615         * If the PTE was dirty then it's best to assume it's writable. The
 616         * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
 617         * before the page is queued for IO.
 618         */
 619        if (writable)
 620                tlb_ubc->writable = true;
 621}
 622
 623/*
 624 * Returns true if the TLB flush should be deferred to the end of a batch of
 625 * unmap operations to reduce IPIs.
 626 */
 627static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 628{
 629        bool should_defer = false;
 630
 631        if (!(flags & TTU_BATCH_FLUSH))
 632                return false;
 633
 634        /* If remote CPUs need to be flushed then defer batch the flush */
 635        if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
 636                should_defer = true;
 637        put_cpu();
 638
 639        return should_defer;
 640}
 641
 642/*
 643 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
 644 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
 645 * operation such as mprotect or munmap to race between reclaim unmapping
 646 * the page and flushing the page. If this race occurs, it potentially allows
 647 * access to data via a stale TLB entry. Tracking all mm's that have TLB
 648 * batching in flight would be expensive during reclaim so instead track
 649 * whether TLB batching occurred in the past and if so then do a flush here
 650 * if required. This will cost one additional flush per reclaim cycle paid
 651 * by the first operation at risk such as mprotect and mumap.
 652 *
 653 * This must be called under the PTL so that an access to tlb_flush_batched
 654 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
 655 * via the PTL.
 656 */
 657void flush_tlb_batched_pending(struct mm_struct *mm)
 658{
 659        if (mm->tlb_flush_batched) {
 660                flush_tlb_mm(mm);
 661
 662                /*
 663                 * Do not allow the compiler to re-order the clearing of
 664                 * tlb_flush_batched before the tlb is flushed.
 665                 */
 666                barrier();
 667                mm->tlb_flush_batched = false;
 668        }
 669}
 670#else
 671static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 672{
 673}
 674
 675static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 676{
 677        return false;
 678}
 679#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 680
 681/*
 682 * At what user virtual address is page expected in vma?
 683 * Caller should check the page is actually part of the vma.
 684 */
 685unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 686{
 687        unsigned long address;
 688        if (PageAnon(page)) {
 689                struct anon_vma *page__anon_vma = page_anon_vma(page);
 690                /*
 691                 * Note: swapoff's unuse_vma() is more efficient with this
 692                 * check, and needs it to match anon_vma when KSM is active.
 693                 */
 694                if (!vma->anon_vma || !page__anon_vma ||
 695                    vma->anon_vma->root != page__anon_vma->root)
 696                        return -EFAULT;
 697        } else if (page->mapping) {
 698                if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
 699                        return -EFAULT;
 700        } else
 701                return -EFAULT;
 702        address = __vma_address(page, vma);
 703        if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 704                return -EFAULT;
 705        return address;
 706}
 707
 708pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 709{
 710        pgd_t *pgd;
 711        p4d_t *p4d;
 712        pud_t *pud;
 713        pmd_t *pmd = NULL;
 714        pmd_t pmde;
 715
 716        pgd = pgd_offset(mm, address);
 717        if (!pgd_present(*pgd))
 718                goto out;
 719
 720        p4d = p4d_offset(pgd, address);
 721        if (!p4d_present(*p4d))
 722                goto out;
 723
 724        pud = pud_offset(p4d, address);
 725        if (!pud_present(*pud))
 726                goto out;
 727
 728        pmd = pmd_offset(pud, address);
 729        /*
 730         * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
 731         * without holding anon_vma lock for write.  So when looking for a
 732         * genuine pmde (in which to find pte), test present and !THP together.
 733         */
 734        pmde = *pmd;
 735        barrier();
 736        if (!pmd_present(pmde) || pmd_trans_huge(pmde))
 737                pmd = NULL;
 738out:
 739        return pmd;
 740}
 741
 742struct page_referenced_arg {
 743        int mapcount;
 744        int referenced;
 745        unsigned long vm_flags;
 746        struct mem_cgroup *memcg;
 747};
 748/*
 749 * arg: page_referenced_arg will be passed
 750 */
 751static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
 752                        unsigned long address, void *arg)
 753{
 754        struct page_referenced_arg *pra = arg;
 755        struct page_vma_mapped_walk pvmw = {
 756                .page = page,
 757                .vma = vma,
 758                .address = address,
 759        };
 760        int referenced = 0;
 761
 762        while (page_vma_mapped_walk(&pvmw)) {
 763                address = pvmw.address;
 764
 765                if (vma->vm_flags & VM_LOCKED) {
 766                        page_vma_mapped_walk_done(&pvmw);
 767                        pra->vm_flags |= VM_LOCKED;
 768                        return false; /* To break the loop */
 769                }
 770
 771                if (pvmw.pte) {
 772                        if (ptep_clear_flush_young_notify(vma, address,
 773                                                pvmw.pte)) {
 774                                /*
 775                                 * Don't treat a reference through
 776                                 * a sequentially read mapping as such.
 777                                 * If the page has been used in another mapping,
 778                                 * we will catch it; if this other mapping is
 779                                 * already gone, the unmap path will have set
 780                                 * PG_referenced or activated the page.
 781                                 */
 782                                if (likely(!(vma->vm_flags & VM_SEQ_READ)))
 783                                        referenced++;
 784                        }
 785                } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 786                        if (pmdp_clear_flush_young_notify(vma, address,
 787                                                pvmw.pmd))
 788                                referenced++;
 789                } else {
 790                        /* unexpected pmd-mapped page? */
 791                        WARN_ON_ONCE(1);
 792                }
 793
 794                pra->mapcount--;
 795        }
 796
 797        if (referenced)
 798                clear_page_idle(page);
 799        if (test_and_clear_page_young(page))
 800                referenced++;
 801
 802        if (referenced) {
 803                pra->referenced++;
 804                pra->vm_flags |= vma->vm_flags;
 805        }
 806
 807        if (!pra->mapcount)
 808                return false; /* To break the loop */
 809
 810        return true;
 811}
 812
 813static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
 814{
 815        struct page_referenced_arg *pra = arg;
 816        struct mem_cgroup *memcg = pra->memcg;
 817
 818        if (!mm_match_cgroup(vma->vm_mm, memcg))
 819                return true;
 820
 821        return false;
 822}
 823
 824/**
 825 * page_referenced - test if the page was referenced
 826 * @page: the page to test
 827 * @is_locked: caller holds lock on the page
 828 * @memcg: target memory cgroup
 829 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 830 *
 831 * Quick test_and_clear_referenced for all mappings to a page,
 832 * returns the number of ptes which referenced the page.
 833 */
 834int page_referenced(struct page *page,
 835                    int is_locked,
 836                    struct mem_cgroup *memcg,
 837                    unsigned long *vm_flags)
 838{
 839        int we_locked = 0;
 840        struct page_referenced_arg pra = {
 841                .mapcount = total_mapcount(page),
 842                .memcg = memcg,
 843        };
 844        struct rmap_walk_control rwc = {
 845                .rmap_one = page_referenced_one,
 846                .arg = (void *)&pra,
 847                .anon_lock = page_lock_anon_vma_read,
 848        };
 849
 850        *vm_flags = 0;
 851        if (!page_mapped(page))
 852                return 0;
 853
 854        if (!page_rmapping(page))
 855                return 0;
 856
 857        if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 858                we_locked = trylock_page(page);
 859                if (!we_locked)
 860                        return 1;
 861        }
 862
 863        /*
 864         * If we are reclaiming on behalf of a cgroup, skip
 865         * counting on behalf of references from different
 866         * cgroups
 867         */
 868        if (memcg) {
 869                rwc.invalid_vma = invalid_page_referenced_vma;
 870        }
 871
 872        rmap_walk(page, &rwc);
 873        *vm_flags = pra.vm_flags;
 874
 875        if (we_locked)
 876                unlock_page(page);
 877
 878        return pra.referenced;
 879}
 880
 881static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
 882                            unsigned long address, void *arg)
 883{
 884        struct page_vma_mapped_walk pvmw = {
 885                .page = page,
 886                .vma = vma,
 887                .address = address,
 888                .flags = PVMW_SYNC,
 889        };
 890        unsigned long start = address, end;
 891        int *cleaned = arg;
 892
 893        /*
 894         * We have to assume the worse case ie pmd for invalidation. Note that
 895         * the page can not be free from this function.
 896         */
 897        end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
 898        mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
 899
 900        while (page_vma_mapped_walk(&pvmw)) {
 901                unsigned long cstart, cend;
 902                int ret = 0;
 903
 904                cstart = address = pvmw.address;
 905                if (pvmw.pte) {
 906                        pte_t entry;
 907                        pte_t *pte = pvmw.pte;
 908
 909                        if (!pte_dirty(*pte) && !pte_write(*pte))
 910                                continue;
 911
 912                        flush_cache_page(vma, address, pte_pfn(*pte));
 913                        entry = ptep_clear_flush(vma, address, pte);
 914                        entry = pte_wrprotect(entry);
 915                        entry = pte_mkclean(entry);
 916                        set_pte_at(vma->vm_mm, address, pte, entry);
 917                        cend = cstart + PAGE_SIZE;
 918                        ret = 1;
 919                } else {
 920#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
 921                        pmd_t *pmd = pvmw.pmd;
 922                        pmd_t entry;
 923
 924                        if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
 925                                continue;
 926
 927                        flush_cache_page(vma, address, page_to_pfn(page));
 928                        entry = pmdp_huge_clear_flush(vma, address, pmd);
 929                        entry = pmd_wrprotect(entry);
 930                        entry = pmd_mkclean(entry);
 931                        set_pmd_at(vma->vm_mm, address, pmd, entry);
 932                        cstart &= PMD_MASK;
 933                        cend = cstart + PMD_SIZE;
 934                        ret = 1;
 935#else
 936                        /* unexpected pmd-mapped page? */
 937                        WARN_ON_ONCE(1);
 938#endif
 939                }
 940
 941                if (ret) {
 942                        mmu_notifier_invalidate_range(vma->vm_mm, cstart, cend);
 943                        (*cleaned)++;
 944                }
 945        }
 946
 947        mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
 948
 949        return true;
 950}
 951
 952static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
 953{
 954        if (vma->vm_flags & VM_SHARED)
 955                return false;
 956
 957        return true;
 958}
 959
 960int page_mkclean(struct page *page)
 961{
 962        int cleaned = 0;
 963        struct address_space *mapping;
 964        struct rmap_walk_control rwc = {
 965                .arg = (void *)&cleaned,
 966                .rmap_one = page_mkclean_one,
 967                .invalid_vma = invalid_mkclean_vma,
 968        };
 969
 970        BUG_ON(!PageLocked(page));
 971
 972        if (!page_mapped(page))
 973                return 0;
 974
 975        mapping = page_mapping(page);
 976        if (!mapping)
 977                return 0;
 978
 979        rmap_walk(page, &rwc);
 980
 981        return cleaned;
 982}
 983EXPORT_SYMBOL_GPL(page_mkclean);
 984
 985/**
 986 * page_move_anon_rmap - move a page to our anon_vma
 987 * @page:       the page to move to our anon_vma
 988 * @vma:        the vma the page belongs to
 989 *
 990 * When a page belongs exclusively to one process after a COW event,
 991 * that page can be moved into the anon_vma that belongs to just that
 992 * process, so the rmap code will not search the parent or sibling
 993 * processes.
 994 */
 995void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
 996{
 997        struct anon_vma *anon_vma = vma->anon_vma;
 998
 999        page = compound_head(page);
1000
1001        VM_BUG_ON_PAGE(!PageLocked(page), page);
1002        VM_BUG_ON_VMA(!anon_vma, vma);
1003
1004        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1005        /*
1006         * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1007         * simultaneously, so a concurrent reader (eg page_referenced()'s
1008         * PageAnon()) will not see one without the other.
1009         */
1010        WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1011}
1012
1013/**
1014 * __page_set_anon_rmap - set up new anonymous rmap
1015 * @page:       Page to add to rmap     
1016 * @vma:        VM area to add page to.
1017 * @address:    User virtual address of the mapping     
1018 * @exclusive:  the page is exclusively owned by the current process
1019 */
1020static void __page_set_anon_rmap(struct page *page,
1021        struct vm_area_struct *vma, unsigned long address, int exclusive)
1022{
1023        struct anon_vma *anon_vma = vma->anon_vma;
1024
1025        BUG_ON(!anon_vma);
1026
1027        if (PageAnon(page))
1028                return;
1029
1030        /*
1031         * If the page isn't exclusively mapped into this vma,
1032         * we must use the _oldest_ possible anon_vma for the
1033         * page mapping!
1034         */
1035        if (!exclusive)
1036                anon_vma = anon_vma->root;
1037
1038        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1039        page->mapping = (struct address_space *) anon_vma;
1040        page->index = linear_page_index(vma, address);
1041}
1042
1043/**
1044 * __page_check_anon_rmap - sanity check anonymous rmap addition
1045 * @page:       the page to add the mapping to
1046 * @vma:        the vm area in which the mapping is added
1047 * @address:    the user virtual address mapped
1048 */
1049static void __page_check_anon_rmap(struct page *page,
1050        struct vm_area_struct *vma, unsigned long address)
1051{
1052#ifdef CONFIG_DEBUG_VM
1053        /*
1054         * The page's anon-rmap details (mapping and index) are guaranteed to
1055         * be set up correctly at this point.
1056         *
1057         * We have exclusion against page_add_anon_rmap because the caller
1058         * always holds the page locked, except if called from page_dup_rmap,
1059         * in which case the page is already known to be setup.
1060         *
1061         * We have exclusion against page_add_new_anon_rmap because those pages
1062         * are initially only visible via the pagetables, and the pte is locked
1063         * over the call to page_add_new_anon_rmap.
1064         */
1065        BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1066        BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1067#endif
1068}
1069
1070/**
1071 * page_add_anon_rmap - add pte mapping to an anonymous page
1072 * @page:       the page to add the mapping to
1073 * @vma:        the vm area in which the mapping is added
1074 * @address:    the user virtual address mapped
1075 * @compound:   charge the page as compound or small page
1076 *
1077 * The caller needs to hold the pte lock, and the page must be locked in
1078 * the anon_vma case: to serialize mapping,index checking after setting,
1079 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1080 * (but PageKsm is never downgraded to PageAnon).
1081 */
1082void page_add_anon_rmap(struct page *page,
1083        struct vm_area_struct *vma, unsigned long address, bool compound)
1084{
1085        do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1086}
1087
1088/*
1089 * Special version of the above for do_swap_page, which often runs
1090 * into pages that are exclusively owned by the current process.
1091 * Everybody else should continue to use page_add_anon_rmap above.
1092 */
1093void do_page_add_anon_rmap(struct page *page,
1094        struct vm_area_struct *vma, unsigned long address, int flags)
1095{
1096        bool compound = flags & RMAP_COMPOUND;
1097        bool first;
1098
1099        if (compound) {
1100                atomic_t *mapcount;
1101                VM_BUG_ON_PAGE(!PageLocked(page), page);
1102                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1103                mapcount = compound_mapcount_ptr(page);
1104                first = atomic_inc_and_test(mapcount);
1105        } else {
1106                first = atomic_inc_and_test(&page->_mapcount);
1107        }
1108
1109        if (first) {
1110                int nr = compound ? hpage_nr_pages(page) : 1;
1111                /*
1112                 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1113                 * these counters are not modified in interrupt context, and
1114                 * pte lock(a spinlock) is held, which implies preemption
1115                 * disabled.
1116                 */
1117                if (compound)
1118                        __inc_node_page_state(page, NR_ANON_THPS);
1119                __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1120        }
1121        if (unlikely(PageKsm(page)))
1122                return;
1123
1124        VM_BUG_ON_PAGE(!PageLocked(page), page);
1125
1126        /* address might be in next vma when migration races vma_adjust */
1127        if (first)
1128                __page_set_anon_rmap(page, vma, address,
1129                                flags & RMAP_EXCLUSIVE);
1130        else
1131                __page_check_anon_rmap(page, vma, address);
1132}
1133
1134/**
1135 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1136 * @page:       the page to add the mapping to
1137 * @vma:        the vm area in which the mapping is added
1138 * @address:    the user virtual address mapped
1139 * @compound:   charge the page as compound or small page
1140 *
1141 * Same as page_add_anon_rmap but must only be called on *new* pages.
1142 * This means the inc-and-test can be bypassed.
1143 * Page does not have to be locked.
1144 */
1145void page_add_new_anon_rmap(struct page *page,
1146        struct vm_area_struct *vma, unsigned long address, bool compound)
1147{
1148        int nr = compound ? hpage_nr_pages(page) : 1;
1149
1150        VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1151        __SetPageSwapBacked(page);
1152        if (compound) {
1153                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1154                /* increment count (starts at -1) */
1155                atomic_set(compound_mapcount_ptr(page), 0);
1156                __inc_node_page_state(page, NR_ANON_THPS);
1157        } else {
1158                /* Anon THP always mapped first with PMD */
1159                VM_BUG_ON_PAGE(PageTransCompound(page), page);
1160                /* increment count (starts at -1) */
1161                atomic_set(&page->_mapcount, 0);
1162        }
1163        __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1164        __page_set_anon_rmap(page, vma, address, 1);
1165}
1166
1167/**
1168 * page_add_file_rmap - add pte mapping to a file page
1169 * @page: the page to add the mapping to
1170 *
1171 * The caller needs to hold the pte lock.
1172 */
1173void page_add_file_rmap(struct page *page, bool compound)
1174{
1175        int i, nr = 1;
1176
1177        VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1178        lock_page_memcg(page);
1179        if (compound && PageTransHuge(page)) {
1180                for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1181                        if (atomic_inc_and_test(&page[i]._mapcount))
1182                                nr++;
1183                }
1184                if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1185                        goto out;
1186                VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1187                __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1188        } else {
1189                if (PageTransCompound(page) && page_mapping(page)) {
1190                        VM_WARN_ON_ONCE(!PageLocked(page));
1191
1192                        SetPageDoubleMap(compound_head(page));
1193                        if (PageMlocked(page))
1194                                clear_page_mlock(compound_head(page));
1195                }
1196                if (!atomic_inc_and_test(&page->_mapcount))
1197                        goto out;
1198        }
1199        __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1200out:
1201        unlock_page_memcg(page);
1202}
1203
1204static void page_remove_file_rmap(struct page *page, bool compound)
1205{
1206        int i, nr = 1;
1207
1208        VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1209        lock_page_memcg(page);
1210
1211        /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1212        if (unlikely(PageHuge(page))) {
1213                /* hugetlb pages are always mapped with pmds */
1214                atomic_dec(compound_mapcount_ptr(page));
1215                goto out;
1216        }
1217
1218        /* page still mapped by someone else? */
1219        if (compound && PageTransHuge(page)) {
1220                for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1221                        if (atomic_add_negative(-1, &page[i]._mapcount))
1222                                nr++;
1223                }
1224                if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1225                        goto out;
1226                VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1227                __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1228        } else {
1229                if (!atomic_add_negative(-1, &page->_mapcount))
1230                        goto out;
1231        }
1232
1233        /*
1234         * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1235         * these counters are not modified in interrupt context, and
1236         * pte lock(a spinlock) is held, which implies preemption disabled.
1237         */
1238        __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1239
1240        if (unlikely(PageMlocked(page)))
1241                clear_page_mlock(page);
1242out:
1243        unlock_page_memcg(page);
1244}
1245
1246static void page_remove_anon_compound_rmap(struct page *page)
1247{
1248        int i, nr;
1249
1250        if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1251                return;
1252
1253        /* Hugepages are not counted in NR_ANON_PAGES for now. */
1254        if (unlikely(PageHuge(page)))
1255                return;
1256
1257        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1258                return;
1259
1260        __dec_node_page_state(page, NR_ANON_THPS);
1261
1262        if (TestClearPageDoubleMap(page)) {
1263                /*
1264                 * Subpages can be mapped with PTEs too. Check how many of
1265                 * themi are still mapped.
1266                 */
1267                for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1268                        if (atomic_add_negative(-1, &page[i]._mapcount))
1269                                nr++;
1270                }
1271        } else {
1272                nr = HPAGE_PMD_NR;
1273        }
1274
1275        if (unlikely(PageMlocked(page)))
1276                clear_page_mlock(page);
1277
1278        if (nr) {
1279                __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1280                deferred_split_huge_page(page);
1281        }
1282}
1283
1284/**
1285 * page_remove_rmap - take down pte mapping from a page
1286 * @page:       page to remove mapping from
1287 * @compound:   uncharge the page as compound or small page
1288 *
1289 * The caller needs to hold the pte lock.
1290 */
1291void page_remove_rmap(struct page *page, bool compound)
1292{
1293        if (!PageAnon(page))
1294                return page_remove_file_rmap(page, compound);
1295
1296        if (compound)
1297                return page_remove_anon_compound_rmap(page);
1298
1299        /* page still mapped by someone else? */
1300        if (!atomic_add_negative(-1, &page->_mapcount))
1301                return;
1302
1303        /*
1304         * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1305         * these counters are not modified in interrupt context, and
1306         * pte lock(a spinlock) is held, which implies preemption disabled.
1307         */
1308        __dec_node_page_state(page, NR_ANON_MAPPED);
1309
1310        if (unlikely(PageMlocked(page)))
1311                clear_page_mlock(page);
1312
1313        if (PageTransCompound(page))
1314                deferred_split_huge_page(compound_head(page));
1315
1316        /*
1317         * It would be tidy to reset the PageAnon mapping here,
1318         * but that might overwrite a racing page_add_anon_rmap
1319         * which increments mapcount after us but sets mapping
1320         * before us: so leave the reset to free_hot_cold_page,
1321         * and remember that it's only reliable while mapped.
1322         * Leaving it set also helps swapoff to reinstate ptes
1323         * faster for those pages still in swapcache.
1324         */
1325}
1326
1327/*
1328 * @arg: enum ttu_flags will be passed to this argument
1329 */
1330static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1331                     unsigned long address, void *arg)
1332{
1333        struct mm_struct *mm = vma->vm_mm;
1334        struct page_vma_mapped_walk pvmw = {
1335                .page = page,
1336                .vma = vma,
1337                .address = address,
1338        };
1339        pte_t pteval;
1340        struct page *subpage;
1341        bool ret = true;
1342        unsigned long start = address, end;
1343        enum ttu_flags flags = (enum ttu_flags)arg;
1344
1345        /* munlock has nothing to gain from examining un-locked vmas */
1346        if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1347                return true;
1348
1349        if (flags & TTU_SPLIT_HUGE_PMD) {
1350                split_huge_pmd_address(vma, address,
1351                                flags & TTU_MIGRATION, page);
1352        }
1353
1354        /*
1355         * We have to assume the worse case ie pmd for invalidation. Note that
1356         * the page can not be free in this function as call of try_to_unmap()
1357         * must hold a reference on the page.
1358         */
1359        end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
1360        mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
1361
1362        while (page_vma_mapped_walk(&pvmw)) {
1363                /*
1364                 * If the page is mlock()d, we cannot swap it out.
1365                 * If it's recently referenced (perhaps page_referenced
1366                 * skipped over this mm) then we should reactivate it.
1367                 */
1368                if (!(flags & TTU_IGNORE_MLOCK)) {
1369                        if (vma->vm_flags & VM_LOCKED) {
1370                                /* PTE-mapped THP are never mlocked */
1371                                if (!PageTransCompound(page)) {
1372                                        /*
1373                                         * Holding pte lock, we do *not* need
1374                                         * mmap_sem here
1375                                         */
1376                                        mlock_vma_page(page);
1377                                }
1378                                ret = false;
1379                                page_vma_mapped_walk_done(&pvmw);
1380                                break;
1381                        }
1382                        if (flags & TTU_MUNLOCK)
1383                                continue;
1384                }
1385
1386                /* Unexpected PMD-mapped THP? */
1387                VM_BUG_ON_PAGE(!pvmw.pte, page);
1388
1389                subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1390                address = pvmw.address;
1391
1392
1393                if (!(flags & TTU_IGNORE_ACCESS)) {
1394                        if (ptep_clear_flush_young_notify(vma, address,
1395                                                pvmw.pte)) {
1396                                ret = false;
1397                                page_vma_mapped_walk_done(&pvmw);
1398                                break;
1399                        }
1400                }
1401
1402                /* Nuke the page table entry. */
1403                flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1404                if (should_defer_flush(mm, flags)) {
1405                        /*
1406                         * We clear the PTE but do not flush so potentially
1407                         * a remote CPU could still be writing to the page.
1408                         * If the entry was previously clean then the
1409                         * architecture must guarantee that a clear->dirty
1410                         * transition on a cached TLB entry is written through
1411                         * and traps if the PTE is unmapped.
1412                         */
1413                        pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1414
1415                        set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1416                } else {
1417                        pteval = ptep_clear_flush(vma, address, pvmw.pte);
1418                }
1419
1420                /* Move the dirty bit to the page. Now the pte is gone. */
1421                if (pte_dirty(pteval))
1422                        set_page_dirty(page);
1423
1424                /* Update high watermark before we lower rss */
1425                update_hiwater_rss(mm);
1426
1427                if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1428                        pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1429                        if (PageHuge(page)) {
1430                                int nr = 1 << compound_order(page);
1431                                hugetlb_count_sub(nr, mm);
1432                                set_huge_swap_pte_at(mm, address,
1433                                                     pvmw.pte, pteval,
1434                                                     vma_mmu_pagesize(vma));
1435                        } else {
1436                                dec_mm_counter(mm, mm_counter(page));
1437                                set_pte_at(mm, address, pvmw.pte, pteval);
1438                        }
1439
1440                } else if (pte_unused(pteval)) {
1441                        /*
1442                         * The guest indicated that the page content is of no
1443                         * interest anymore. Simply discard the pte, vmscan
1444                         * will take care of the rest.
1445                         */
1446                        dec_mm_counter(mm, mm_counter(page));
1447                } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1448                                (flags & TTU_MIGRATION)) {
1449                        swp_entry_t entry;
1450                        pte_t swp_pte;
1451                        /*
1452                         * Store the pfn of the page in a special migration
1453                         * pte. do_swap_page() will wait until the migration
1454                         * pte is removed and then restart fault handling.
1455                         */
1456                        entry = make_migration_entry(subpage,
1457                                        pte_write(pteval));
1458                        swp_pte = swp_entry_to_pte(entry);
1459                        if (pte_soft_dirty(pteval))
1460                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
1461                        set_pte_at(mm, address, pvmw.pte, swp_pte);
1462                } else if (PageAnon(page)) {
1463                        swp_entry_t entry = { .val = page_private(subpage) };
1464                        pte_t swp_pte;
1465                        /*
1466                         * Store the swap location in the pte.
1467                         * See handle_pte_fault() ...
1468                         */
1469                        if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1470                                WARN_ON_ONCE(1);
1471                                ret = false;
1472                                /* We have to invalidate as we cleared the pte */
1473                                page_vma_mapped_walk_done(&pvmw);
1474                                break;
1475                        }
1476
1477                        /* MADV_FREE page check */
1478                        if (!PageSwapBacked(page)) {
1479                                if (!PageDirty(page)) {
1480                                        dec_mm_counter(mm, MM_ANONPAGES);
1481                                        goto discard;
1482                                }
1483
1484                                /*
1485                                 * If the page was redirtied, it cannot be
1486                                 * discarded. Remap the page to page table.
1487                                 */
1488                                set_pte_at(mm, address, pvmw.pte, pteval);
1489                                SetPageSwapBacked(page);
1490                                ret = false;
1491                                page_vma_mapped_walk_done(&pvmw);
1492                                break;
1493                        }
1494
1495                        if (swap_duplicate(entry) < 0) {
1496                                set_pte_at(mm, address, pvmw.pte, pteval);
1497                                ret = false;
1498                                page_vma_mapped_walk_done(&pvmw);
1499                                break;
1500                        }
1501                        if (list_empty(&mm->mmlist)) {
1502                                spin_lock(&mmlist_lock);
1503                                if (list_empty(&mm->mmlist))
1504                                        list_add(&mm->mmlist, &init_mm.mmlist);
1505                                spin_unlock(&mmlist_lock);
1506                        }
1507                        dec_mm_counter(mm, MM_ANONPAGES);
1508                        inc_mm_counter(mm, MM_SWAPENTS);
1509                        swp_pte = swp_entry_to_pte(entry);
1510                        if (pte_soft_dirty(pteval))
1511                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
1512                        set_pte_at(mm, address, pvmw.pte, swp_pte);
1513                } else
1514                        dec_mm_counter(mm, mm_counter_file(page));
1515discard:
1516                page_remove_rmap(subpage, PageHuge(page));
1517                put_page(page);
1518                mmu_notifier_invalidate_range(mm, address,
1519                                              address + PAGE_SIZE);
1520        }
1521
1522        mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
1523
1524        return ret;
1525}
1526
1527bool is_vma_temporary_stack(struct vm_area_struct *vma)
1528{
1529        int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1530
1531        if (!maybe_stack)
1532                return false;
1533
1534        if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1535                                                VM_STACK_INCOMPLETE_SETUP)
1536                return true;
1537
1538        return false;
1539}
1540
1541static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1542{
1543        return is_vma_temporary_stack(vma);
1544}
1545
1546static int page_mapcount_is_zero(struct page *page)
1547{
1548        return !total_mapcount(page);
1549}
1550
1551/**
1552 * try_to_unmap - try to remove all page table mappings to a page
1553 * @page: the page to get unmapped
1554 * @flags: action and flags
1555 *
1556 * Tries to remove all the page table entries which are mapping this
1557 * page, used in the pageout path.  Caller must hold the page lock.
1558 *
1559 * If unmap is successful, return true. Otherwise, false.
1560 */
1561bool try_to_unmap(struct page *page, enum ttu_flags flags)
1562{
1563        struct rmap_walk_control rwc = {
1564                .rmap_one = try_to_unmap_one,
1565                .arg = (void *)flags,
1566                .done = page_mapcount_is_zero,
1567                .anon_lock = page_lock_anon_vma_read,
1568        };
1569
1570        /*
1571         * During exec, a temporary VMA is setup and later moved.
1572         * The VMA is moved under the anon_vma lock but not the
1573         * page tables leading to a race where migration cannot
1574         * find the migration ptes. Rather than increasing the
1575         * locking requirements of exec(), migration skips
1576         * temporary VMAs until after exec() completes.
1577         */
1578        if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1579                rwc.invalid_vma = invalid_migration_vma;
1580
1581        if (flags & TTU_RMAP_LOCKED)
1582                rmap_walk_locked(page, &rwc);
1583        else
1584                rmap_walk(page, &rwc);
1585
1586        return !page_mapcount(page) ? true : false;
1587}
1588
1589static int page_not_mapped(struct page *page)
1590{
1591        return !page_mapped(page);
1592};
1593
1594/**
1595 * try_to_munlock - try to munlock a page
1596 * @page: the page to be munlocked
1597 *
1598 * Called from munlock code.  Checks all of the VMAs mapping the page
1599 * to make sure nobody else has this page mlocked. The page will be
1600 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1601 */
1602
1603void try_to_munlock(struct page *page)
1604{
1605        struct rmap_walk_control rwc = {
1606                .rmap_one = try_to_unmap_one,
1607                .arg = (void *)TTU_MUNLOCK,
1608                .done = page_not_mapped,
1609                .anon_lock = page_lock_anon_vma_read,
1610
1611        };
1612
1613        VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1614        VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1615
1616        rmap_walk(page, &rwc);
1617}
1618
1619void __put_anon_vma(struct anon_vma *anon_vma)
1620{
1621        struct anon_vma *root = anon_vma->root;
1622
1623        anon_vma_free(anon_vma);
1624        if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1625                anon_vma_free(root);
1626}
1627
1628static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1629                                        struct rmap_walk_control *rwc)
1630{
1631        struct anon_vma *anon_vma;
1632
1633        if (rwc->anon_lock)
1634                return rwc->anon_lock(page);
1635
1636        /*
1637         * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1638         * because that depends on page_mapped(); but not all its usages
1639         * are holding mmap_sem. Users without mmap_sem are required to
1640         * take a reference count to prevent the anon_vma disappearing
1641         */
1642        anon_vma = page_anon_vma(page);
1643        if (!anon_vma)
1644                return NULL;
1645
1646        anon_vma_lock_read(anon_vma);
1647        return anon_vma;
1648}
1649
1650/*
1651 * rmap_walk_anon - do something to anonymous page using the object-based
1652 * rmap method
1653 * @page: the page to be handled
1654 * @rwc: control variable according to each walk type
1655 *
1656 * Find all the mappings of a page using the mapping pointer and the vma chains
1657 * contained in the anon_vma struct it points to.
1658 *
1659 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1660 * where the page was found will be held for write.  So, we won't recheck
1661 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1662 * LOCKED.
1663 */
1664static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1665                bool locked)
1666{
1667        struct anon_vma *anon_vma;
1668        pgoff_t pgoff_start, pgoff_end;
1669        struct anon_vma_chain *avc;
1670
1671        if (locked) {
1672                anon_vma = page_anon_vma(page);
1673                /* anon_vma disappear under us? */
1674                VM_BUG_ON_PAGE(!anon_vma, page);
1675        } else {
1676                anon_vma = rmap_walk_anon_lock(page, rwc);
1677        }
1678        if (!anon_vma)
1679                return;
1680
1681        pgoff_start = page_to_pgoff(page);
1682        pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1683        anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1684                        pgoff_start, pgoff_end) {
1685                struct vm_area_struct *vma = avc->vma;
1686                unsigned long address = vma_address(page, vma);
1687
1688                cond_resched();
1689
1690                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1691                        continue;
1692
1693                if (!rwc->rmap_one(page, vma, address, rwc->arg))
1694                        break;
1695                if (rwc->done && rwc->done(page))
1696                        break;
1697        }
1698
1699        if (!locked)
1700                anon_vma_unlock_read(anon_vma);
1701}
1702
1703/*
1704 * rmap_walk_file - do something to file page using the object-based rmap method
1705 * @page: the page to be handled
1706 * @rwc: control variable according to each walk type
1707 *
1708 * Find all the mappings of a page using the mapping pointer and the vma chains
1709 * contained in the address_space struct it points to.
1710 *
1711 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1712 * where the page was found will be held for write.  So, we won't recheck
1713 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1714 * LOCKED.
1715 */
1716static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1717                bool locked)
1718{
1719        struct address_space *mapping = page_mapping(page);
1720        pgoff_t pgoff_start, pgoff_end;
1721        struct vm_area_struct *vma;
1722
1723        /*
1724         * The page lock not only makes sure that page->mapping cannot
1725         * suddenly be NULLified by truncation, it makes sure that the
1726         * structure at mapping cannot be freed and reused yet,
1727         * so we can safely take mapping->i_mmap_rwsem.
1728         */
1729        VM_BUG_ON_PAGE(!PageLocked(page), page);
1730
1731        if (!mapping)
1732                return;
1733
1734        pgoff_start = page_to_pgoff(page);
1735        pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1736        if (!locked)
1737                i_mmap_lock_read(mapping);
1738        vma_interval_tree_foreach(vma, &mapping->i_mmap,
1739                        pgoff_start, pgoff_end) {
1740                unsigned long address = vma_address(page, vma);
1741
1742                cond_resched();
1743
1744                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1745                        continue;
1746
1747                if (!rwc->rmap_one(page, vma, address, rwc->arg))
1748                        goto done;
1749                if (rwc->done && rwc->done(page))
1750                        goto done;
1751        }
1752
1753done:
1754        if (!locked)
1755                i_mmap_unlock_read(mapping);
1756}
1757
1758void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1759{
1760        if (unlikely(PageKsm(page)))
1761                rmap_walk_ksm(page, rwc);
1762        else if (PageAnon(page))
1763                rmap_walk_anon(page, rwc, false);
1764        else
1765                rmap_walk_file(page, rwc, false);
1766}
1767
1768/* Like rmap_walk, but caller holds relevant rmap lock */
1769void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1770{
1771        /* no ksm support for now */
1772        VM_BUG_ON_PAGE(PageKsm(page), page);
1773        if (PageAnon(page))
1774                rmap_walk_anon(page, rwc, true);
1775        else
1776                rmap_walk_file(page, rwc, true);
1777}
1778
1779#ifdef CONFIG_HUGETLB_PAGE
1780/*
1781 * The following three functions are for anonymous (private mapped) hugepages.
1782 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1783 * and no lru code, because we handle hugepages differently from common pages.
1784 */
1785static void __hugepage_set_anon_rmap(struct page *page,
1786        struct vm_area_struct *vma, unsigned long address, int exclusive)
1787{
1788        struct anon_vma *anon_vma = vma->anon_vma;
1789
1790        BUG_ON(!anon_vma);
1791
1792        if (PageAnon(page))
1793                return;
1794        if (!exclusive)
1795                anon_vma = anon_vma->root;
1796
1797        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1798        page->mapping = (struct address_space *) anon_vma;
1799        page->index = linear_page_index(vma, address);
1800}
1801
1802void hugepage_add_anon_rmap(struct page *page,
1803                            struct vm_area_struct *vma, unsigned long address)
1804{
1805        struct anon_vma *anon_vma = vma->anon_vma;
1806        int first;
1807
1808        BUG_ON(!PageLocked(page));
1809        BUG_ON(!anon_vma);
1810        /* address might be in next vma when migration races vma_adjust */
1811        first = atomic_inc_and_test(compound_mapcount_ptr(page));
1812        if (first)
1813                __hugepage_set_anon_rmap(page, vma, address, 0);
1814}
1815
1816void hugepage_add_new_anon_rmap(struct page *page,
1817                        struct vm_area_struct *vma, unsigned long address)
1818{
1819        BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1820        atomic_set(compound_mapcount_ptr(page), 0);
1821        __hugepage_set_anon_rmap(page, vma, address, 1);
1822}
1823#endif /* CONFIG_HUGETLB_PAGE */
1824