linux/mm/slab.c
<<
>>
Prefs
   1/*
   2 * linux/mm/slab.c
   3 * Written by Mark Hemment, 1996/97.
   4 * (markhe@nextd.demon.co.uk)
   5 *
   6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   7 *
   8 * Major cleanup, different bufctl logic, per-cpu arrays
   9 *      (c) 2000 Manfred Spraul
  10 *
  11 * Cleanup, make the head arrays unconditional, preparation for NUMA
  12 *      (c) 2002 Manfred Spraul
  13 *
  14 * An implementation of the Slab Allocator as described in outline in;
  15 *      UNIX Internals: The New Frontiers by Uresh Vahalia
  16 *      Pub: Prentice Hall      ISBN 0-13-101908-2
  17 * or with a little more detail in;
  18 *      The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19 *      Jeff Bonwick (Sun Microsystems).
  20 *      Presented at: USENIX Summer 1994 Technical Conference
  21 *
  22 * The memory is organized in caches, one cache for each object type.
  23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24 * Each cache consists out of many slabs (they are small (usually one
  25 * page long) and always contiguous), and each slab contains multiple
  26 * initialized objects.
  27 *
  28 * This means, that your constructor is used only for newly allocated
  29 * slabs and you must pass objects with the same initializations to
  30 * kmem_cache_free.
  31 *
  32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33 * normal). If you need a special memory type, then must create a new
  34 * cache for that memory type.
  35 *
  36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37 *   full slabs with 0 free objects
  38 *   partial slabs
  39 *   empty slabs with no allocated objects
  40 *
  41 * If partial slabs exist, then new allocations come from these slabs,
  42 * otherwise from empty slabs or new slabs are allocated.
  43 *
  44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46 *
  47 * Each cache has a short per-cpu head array, most allocs
  48 * and frees go into that array, and if that array overflows, then 1/2
  49 * of the entries in the array are given back into the global cache.
  50 * The head array is strictly LIFO and should improve the cache hit rates.
  51 * On SMP, it additionally reduces the spinlock operations.
  52 *
  53 * The c_cpuarray may not be read with enabled local interrupts -
  54 * it's changed with a smp_call_function().
  55 *
  56 * SMP synchronization:
  57 *  constructors and destructors are called without any locking.
  58 *  Several members in struct kmem_cache and struct slab never change, they
  59 *      are accessed without any locking.
  60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61 *      and local interrupts are disabled so slab code is preempt-safe.
  62 *  The non-constant members are protected with a per-cache irq spinlock.
  63 *
  64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65 * in 2000 - many ideas in the current implementation are derived from
  66 * his patch.
  67 *
  68 * Further notes from the original documentation:
  69 *
  70 * 11 April '97.  Started multi-threading - markhe
  71 *      The global cache-chain is protected by the mutex 'slab_mutex'.
  72 *      The sem is only needed when accessing/extending the cache-chain, which
  73 *      can never happen inside an interrupt (kmem_cache_create(),
  74 *      kmem_cache_shrink() and kmem_cache_reap()).
  75 *
  76 *      At present, each engine can be growing a cache.  This should be blocked.
  77 *
  78 * 15 March 2005. NUMA slab allocator.
  79 *      Shai Fultheim <shai@scalex86.org>.
  80 *      Shobhit Dayal <shobhit@calsoftinc.com>
  81 *      Alok N Kataria <alokk@calsoftinc.com>
  82 *      Christoph Lameter <christoph@lameter.com>
  83 *
  84 *      Modified the slab allocator to be node aware on NUMA systems.
  85 *      Each node has its own list of partial, free and full slabs.
  86 *      All object allocations for a node occur from node specific slab lists.
  87 */
  88
  89#include        <linux/slab.h>
  90#include        <linux/mm.h>
  91#include        <linux/poison.h>
  92#include        <linux/swap.h>
  93#include        <linux/cache.h>
  94#include        <linux/interrupt.h>
  95#include        <linux/init.h>
  96#include        <linux/compiler.h>
  97#include        <linux/cpuset.h>
  98#include        <linux/proc_fs.h>
  99#include        <linux/seq_file.h>
 100#include        <linux/notifier.h>
 101#include        <linux/kallsyms.h>
 102#include        <linux/cpu.h>
 103#include        <linux/sysctl.h>
 104#include        <linux/module.h>
 105#include        <linux/rcupdate.h>
 106#include        <linux/string.h>
 107#include        <linux/uaccess.h>
 108#include        <linux/nodemask.h>
 109#include        <linux/kmemleak.h>
 110#include        <linux/mempolicy.h>
 111#include        <linux/mutex.h>
 112#include        <linux/fault-inject.h>
 113#include        <linux/rtmutex.h>
 114#include        <linux/reciprocal_div.h>
 115#include        <linux/debugobjects.h>
 116#include        <linux/kmemcheck.h>
 117#include        <linux/memory.h>
 118#include        <linux/prefetch.h>
 119#include        <linux/sched/task_stack.h>
 120
 121#include        <net/sock.h>
 122
 123#include        <asm/cacheflush.h>
 124#include        <asm/tlbflush.h>
 125#include        <asm/page.h>
 126
 127#include <trace/events/kmem.h>
 128
 129#include        "internal.h"
 130
 131#include        "slab.h"
 132
 133/*
 134 * DEBUG        - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 135 *                0 for faster, smaller code (especially in the critical paths).
 136 *
 137 * STATS        - 1 to collect stats for /proc/slabinfo.
 138 *                0 for faster, smaller code (especially in the critical paths).
 139 *
 140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 141 */
 142
 143#ifdef CONFIG_DEBUG_SLAB
 144#define DEBUG           1
 145#define STATS           1
 146#define FORCED_DEBUG    1
 147#else
 148#define DEBUG           0
 149#define STATS           0
 150#define FORCED_DEBUG    0
 151#endif
 152
 153/* Shouldn't this be in a header file somewhere? */
 154#define BYTES_PER_WORD          sizeof(void *)
 155#define REDZONE_ALIGN           max(BYTES_PER_WORD, __alignof__(unsigned long long))
 156
 157#ifndef ARCH_KMALLOC_FLAGS
 158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 159#endif
 160
 161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 162                                <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 163
 164#if FREELIST_BYTE_INDEX
 165typedef unsigned char freelist_idx_t;
 166#else
 167typedef unsigned short freelist_idx_t;
 168#endif
 169
 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 171
 172/*
 173 * struct array_cache
 174 *
 175 * Purpose:
 176 * - LIFO ordering, to hand out cache-warm objects from _alloc
 177 * - reduce the number of linked list operations
 178 * - reduce spinlock operations
 179 *
 180 * The limit is stored in the per-cpu structure to reduce the data cache
 181 * footprint.
 182 *
 183 */
 184struct array_cache {
 185        unsigned int avail;
 186        unsigned int limit;
 187        unsigned int batchcount;
 188        unsigned int touched;
 189        void *entry[];  /*
 190                         * Must have this definition in here for the proper
 191                         * alignment of array_cache. Also simplifies accessing
 192                         * the entries.
 193                         */
 194};
 195
 196struct alien_cache {
 197        spinlock_t lock;
 198        struct array_cache ac;
 199};
 200
 201/*
 202 * Need this for bootstrapping a per node allocator.
 203 */
 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 206#define CACHE_CACHE 0
 207#define SIZE_NODE (MAX_NUMNODES)
 208
 209static int drain_freelist(struct kmem_cache *cache,
 210                        struct kmem_cache_node *n, int tofree);
 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 212                        int node, struct list_head *list);
 213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 215static void cache_reap(struct work_struct *unused);
 216
 217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 218                                                void **list);
 219static inline void fixup_slab_list(struct kmem_cache *cachep,
 220                                struct kmem_cache_node *n, struct page *page,
 221                                void **list);
 222static int slab_early_init = 1;
 223
 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 225
 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
 227{
 228        INIT_LIST_HEAD(&parent->slabs_full);
 229        INIT_LIST_HEAD(&parent->slabs_partial);
 230        INIT_LIST_HEAD(&parent->slabs_free);
 231        parent->total_slabs = 0;
 232        parent->free_slabs = 0;
 233        parent->shared = NULL;
 234        parent->alien = NULL;
 235        parent->colour_next = 0;
 236        spin_lock_init(&parent->list_lock);
 237        parent->free_objects = 0;
 238        parent->free_touched = 0;
 239}
 240
 241#define MAKE_LIST(cachep, listp, slab, nodeid)                          \
 242        do {                                                            \
 243                INIT_LIST_HEAD(listp);                                  \
 244                list_splice(&get_node(cachep, nodeid)->slab, listp);    \
 245        } while (0)
 246
 247#define MAKE_ALL_LISTS(cachep, ptr, nodeid)                             \
 248        do {                                                            \
 249        MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);  \
 250        MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 251        MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);  \
 252        } while (0)
 253
 254#define CFLGS_OBJFREELIST_SLAB  (0x40000000UL)
 255#define CFLGS_OFF_SLAB          (0x80000000UL)
 256#define OBJFREELIST_SLAB(x)     ((x)->flags & CFLGS_OBJFREELIST_SLAB)
 257#define OFF_SLAB(x)     ((x)->flags & CFLGS_OFF_SLAB)
 258
 259#define BATCHREFILL_LIMIT       16
 260/*
 261 * Optimization question: fewer reaps means less probability for unnessary
 262 * cpucache drain/refill cycles.
 263 *
 264 * OTOH the cpuarrays can contain lots of objects,
 265 * which could lock up otherwise freeable slabs.
 266 */
 267#define REAPTIMEOUT_AC          (2*HZ)
 268#define REAPTIMEOUT_NODE        (4*HZ)
 269
 270#if STATS
 271#define STATS_INC_ACTIVE(x)     ((x)->num_active++)
 272#define STATS_DEC_ACTIVE(x)     ((x)->num_active--)
 273#define STATS_INC_ALLOCED(x)    ((x)->num_allocations++)
 274#define STATS_INC_GROWN(x)      ((x)->grown++)
 275#define STATS_ADD_REAPED(x,y)   ((x)->reaped += (y))
 276#define STATS_SET_HIGH(x)                                               \
 277        do {                                                            \
 278                if ((x)->num_active > (x)->high_mark)                   \
 279                        (x)->high_mark = (x)->num_active;               \
 280        } while (0)
 281#define STATS_INC_ERR(x)        ((x)->errors++)
 282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
 283#define STATS_INC_NODEFREES(x)  ((x)->node_frees++)
 284#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 285#define STATS_SET_FREEABLE(x, i)                                        \
 286        do {                                                            \
 287                if ((x)->max_freeable < i)                              \
 288                        (x)->max_freeable = i;                          \
 289        } while (0)
 290#define STATS_INC_ALLOCHIT(x)   atomic_inc(&(x)->allochit)
 291#define STATS_INC_ALLOCMISS(x)  atomic_inc(&(x)->allocmiss)
 292#define STATS_INC_FREEHIT(x)    atomic_inc(&(x)->freehit)
 293#define STATS_INC_FREEMISS(x)   atomic_inc(&(x)->freemiss)
 294#else
 295#define STATS_INC_ACTIVE(x)     do { } while (0)
 296#define STATS_DEC_ACTIVE(x)     do { } while (0)
 297#define STATS_INC_ALLOCED(x)    do { } while (0)
 298#define STATS_INC_GROWN(x)      do { } while (0)
 299#define STATS_ADD_REAPED(x,y)   do { (void)(y); } while (0)
 300#define STATS_SET_HIGH(x)       do { } while (0)
 301#define STATS_INC_ERR(x)        do { } while (0)
 302#define STATS_INC_NODEALLOCS(x) do { } while (0)
 303#define STATS_INC_NODEFREES(x)  do { } while (0)
 304#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 305#define STATS_SET_FREEABLE(x, i) do { } while (0)
 306#define STATS_INC_ALLOCHIT(x)   do { } while (0)
 307#define STATS_INC_ALLOCMISS(x)  do { } while (0)
 308#define STATS_INC_FREEHIT(x)    do { } while (0)
 309#define STATS_INC_FREEMISS(x)   do { } while (0)
 310#endif
 311
 312#if DEBUG
 313
 314/*
 315 * memory layout of objects:
 316 * 0            : objp
 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 318 *              the end of an object is aligned with the end of the real
 319 *              allocation. Catches writes behind the end of the allocation.
 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 321 *              redzone word.
 322 * cachep->obj_offset: The real object.
 323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 324 * cachep->size - 1* BYTES_PER_WORD: last caller address
 325 *                                      [BYTES_PER_WORD long]
 326 */
 327static int obj_offset(struct kmem_cache *cachep)
 328{
 329        return cachep->obj_offset;
 330}
 331
 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 333{
 334        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 335        return (unsigned long long*) (objp + obj_offset(cachep) -
 336                                      sizeof(unsigned long long));
 337}
 338
 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 340{
 341        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 342        if (cachep->flags & SLAB_STORE_USER)
 343                return (unsigned long long *)(objp + cachep->size -
 344                                              sizeof(unsigned long long) -
 345                                              REDZONE_ALIGN);
 346        return (unsigned long long *) (objp + cachep->size -
 347                                       sizeof(unsigned long long));
 348}
 349
 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 351{
 352        BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 353        return (void **)(objp + cachep->size - BYTES_PER_WORD);
 354}
 355
 356#else
 357
 358#define obj_offset(x)                   0
 359#define dbg_redzone1(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 360#define dbg_redzone2(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 361#define dbg_userword(cachep, objp)      ({BUG(); (void **)NULL;})
 362
 363#endif
 364
 365#ifdef CONFIG_DEBUG_SLAB_LEAK
 366
 367static inline bool is_store_user_clean(struct kmem_cache *cachep)
 368{
 369        return atomic_read(&cachep->store_user_clean) == 1;
 370}
 371
 372static inline void set_store_user_clean(struct kmem_cache *cachep)
 373{
 374        atomic_set(&cachep->store_user_clean, 1);
 375}
 376
 377static inline void set_store_user_dirty(struct kmem_cache *cachep)
 378{
 379        if (is_store_user_clean(cachep))
 380                atomic_set(&cachep->store_user_clean, 0);
 381}
 382
 383#else
 384static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
 385
 386#endif
 387
 388/*
 389 * Do not go above this order unless 0 objects fit into the slab or
 390 * overridden on the command line.
 391 */
 392#define SLAB_MAX_ORDER_HI       1
 393#define SLAB_MAX_ORDER_LO       0
 394static int slab_max_order = SLAB_MAX_ORDER_LO;
 395static bool slab_max_order_set __initdata;
 396
 397static inline struct kmem_cache *virt_to_cache(const void *obj)
 398{
 399        struct page *page = virt_to_head_page(obj);
 400        return page->slab_cache;
 401}
 402
 403static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 404                                 unsigned int idx)
 405{
 406        return page->s_mem + cache->size * idx;
 407}
 408
 409/*
 410 * We want to avoid an expensive divide : (offset / cache->size)
 411 *   Using the fact that size is a constant for a particular cache,
 412 *   we can replace (offset / cache->size) by
 413 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 414 */
 415static inline unsigned int obj_to_index(const struct kmem_cache *cache,
 416                                        const struct page *page, void *obj)
 417{
 418        u32 offset = (obj - page->s_mem);
 419        return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 420}
 421
 422#define BOOT_CPUCACHE_ENTRIES   1
 423/* internal cache of cache description objs */
 424static struct kmem_cache kmem_cache_boot = {
 425        .batchcount = 1,
 426        .limit = BOOT_CPUCACHE_ENTRIES,
 427        .shared = 1,
 428        .size = sizeof(struct kmem_cache),
 429        .name = "kmem_cache",
 430};
 431
 432static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 433
 434static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 435{
 436        return this_cpu_ptr(cachep->cpu_cache);
 437}
 438
 439/*
 440 * Calculate the number of objects and left-over bytes for a given buffer size.
 441 */
 442static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 443                unsigned long flags, size_t *left_over)
 444{
 445        unsigned int num;
 446        size_t slab_size = PAGE_SIZE << gfporder;
 447
 448        /*
 449         * The slab management structure can be either off the slab or
 450         * on it. For the latter case, the memory allocated for a
 451         * slab is used for:
 452         *
 453         * - @buffer_size bytes for each object
 454         * - One freelist_idx_t for each object
 455         *
 456         * We don't need to consider alignment of freelist because
 457         * freelist will be at the end of slab page. The objects will be
 458         * at the correct alignment.
 459         *
 460         * If the slab management structure is off the slab, then the
 461         * alignment will already be calculated into the size. Because
 462         * the slabs are all pages aligned, the objects will be at the
 463         * correct alignment when allocated.
 464         */
 465        if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 466                num = slab_size / buffer_size;
 467                *left_over = slab_size % buffer_size;
 468        } else {
 469                num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 470                *left_over = slab_size %
 471                        (buffer_size + sizeof(freelist_idx_t));
 472        }
 473
 474        return num;
 475}
 476
 477#if DEBUG
 478#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 479
 480static void __slab_error(const char *function, struct kmem_cache *cachep,
 481                        char *msg)
 482{
 483        pr_err("slab error in %s(): cache `%s': %s\n",
 484               function, cachep->name, msg);
 485        dump_stack();
 486        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 487}
 488#endif
 489
 490/*
 491 * By default on NUMA we use alien caches to stage the freeing of
 492 * objects allocated from other nodes. This causes massive memory
 493 * inefficiencies when using fake NUMA setup to split memory into a
 494 * large number of small nodes, so it can be disabled on the command
 495 * line
 496  */
 497
 498static int use_alien_caches __read_mostly = 1;
 499static int __init noaliencache_setup(char *s)
 500{
 501        use_alien_caches = 0;
 502        return 1;
 503}
 504__setup("noaliencache", noaliencache_setup);
 505
 506static int __init slab_max_order_setup(char *str)
 507{
 508        get_option(&str, &slab_max_order);
 509        slab_max_order = slab_max_order < 0 ? 0 :
 510                                min(slab_max_order, MAX_ORDER - 1);
 511        slab_max_order_set = true;
 512
 513        return 1;
 514}
 515__setup("slab_max_order=", slab_max_order_setup);
 516
 517#ifdef CONFIG_NUMA
 518/*
 519 * Special reaping functions for NUMA systems called from cache_reap().
 520 * These take care of doing round robin flushing of alien caches (containing
 521 * objects freed on different nodes from which they were allocated) and the
 522 * flushing of remote pcps by calling drain_node_pages.
 523 */
 524static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 525
 526static void init_reap_node(int cpu)
 527{
 528        per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 529                                                    node_online_map);
 530}
 531
 532static void next_reap_node(void)
 533{
 534        int node = __this_cpu_read(slab_reap_node);
 535
 536        node = next_node_in(node, node_online_map);
 537        __this_cpu_write(slab_reap_node, node);
 538}
 539
 540#else
 541#define init_reap_node(cpu) do { } while (0)
 542#define next_reap_node(void) do { } while (0)
 543#endif
 544
 545/*
 546 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 547 * via the workqueue/eventd.
 548 * Add the CPU number into the expiration time to minimize the possibility of
 549 * the CPUs getting into lockstep and contending for the global cache chain
 550 * lock.
 551 */
 552static void start_cpu_timer(int cpu)
 553{
 554        struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 555
 556        if (reap_work->work.func == NULL) {
 557                init_reap_node(cpu);
 558                INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 559                schedule_delayed_work_on(cpu, reap_work,
 560                                        __round_jiffies_relative(HZ, cpu));
 561        }
 562}
 563
 564static void init_arraycache(struct array_cache *ac, int limit, int batch)
 565{
 566        /*
 567         * The array_cache structures contain pointers to free object.
 568         * However, when such objects are allocated or transferred to another
 569         * cache the pointers are not cleared and they could be counted as
 570         * valid references during a kmemleak scan. Therefore, kmemleak must
 571         * not scan such objects.
 572         */
 573        kmemleak_no_scan(ac);
 574        if (ac) {
 575                ac->avail = 0;
 576                ac->limit = limit;
 577                ac->batchcount = batch;
 578                ac->touched = 0;
 579        }
 580}
 581
 582static struct array_cache *alloc_arraycache(int node, int entries,
 583                                            int batchcount, gfp_t gfp)
 584{
 585        size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 586        struct array_cache *ac = NULL;
 587
 588        ac = kmalloc_node(memsize, gfp, node);
 589        init_arraycache(ac, entries, batchcount);
 590        return ac;
 591}
 592
 593static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 594                                        struct page *page, void *objp)
 595{
 596        struct kmem_cache_node *n;
 597        int page_node;
 598        LIST_HEAD(list);
 599
 600        page_node = page_to_nid(page);
 601        n = get_node(cachep, page_node);
 602
 603        spin_lock(&n->list_lock);
 604        free_block(cachep, &objp, 1, page_node, &list);
 605        spin_unlock(&n->list_lock);
 606
 607        slabs_destroy(cachep, &list);
 608}
 609
 610/*
 611 * Transfer objects in one arraycache to another.
 612 * Locking must be handled by the caller.
 613 *
 614 * Return the number of entries transferred.
 615 */
 616static int transfer_objects(struct array_cache *to,
 617                struct array_cache *from, unsigned int max)
 618{
 619        /* Figure out how many entries to transfer */
 620        int nr = min3(from->avail, max, to->limit - to->avail);
 621
 622        if (!nr)
 623                return 0;
 624
 625        memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 626                        sizeof(void *) *nr);
 627
 628        from->avail -= nr;
 629        to->avail += nr;
 630        return nr;
 631}
 632
 633#ifndef CONFIG_NUMA
 634
 635#define drain_alien_cache(cachep, alien) do { } while (0)
 636#define reap_alien(cachep, n) do { } while (0)
 637
 638static inline struct alien_cache **alloc_alien_cache(int node,
 639                                                int limit, gfp_t gfp)
 640{
 641        return NULL;
 642}
 643
 644static inline void free_alien_cache(struct alien_cache **ac_ptr)
 645{
 646}
 647
 648static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 649{
 650        return 0;
 651}
 652
 653static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 654                gfp_t flags)
 655{
 656        return NULL;
 657}
 658
 659static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 660                 gfp_t flags, int nodeid)
 661{
 662        return NULL;
 663}
 664
 665static inline gfp_t gfp_exact_node(gfp_t flags)
 666{
 667        return flags & ~__GFP_NOFAIL;
 668}
 669
 670#else   /* CONFIG_NUMA */
 671
 672static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 673static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 674
 675static struct alien_cache *__alloc_alien_cache(int node, int entries,
 676                                                int batch, gfp_t gfp)
 677{
 678        size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 679        struct alien_cache *alc = NULL;
 680
 681        alc = kmalloc_node(memsize, gfp, node);
 682        init_arraycache(&alc->ac, entries, batch);
 683        spin_lock_init(&alc->lock);
 684        return alc;
 685}
 686
 687static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 688{
 689        struct alien_cache **alc_ptr;
 690        size_t memsize = sizeof(void *) * nr_node_ids;
 691        int i;
 692
 693        if (limit > 1)
 694                limit = 12;
 695        alc_ptr = kzalloc_node(memsize, gfp, node);
 696        if (!alc_ptr)
 697                return NULL;
 698
 699        for_each_node(i) {
 700                if (i == node || !node_online(i))
 701                        continue;
 702                alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 703                if (!alc_ptr[i]) {
 704                        for (i--; i >= 0; i--)
 705                                kfree(alc_ptr[i]);
 706                        kfree(alc_ptr);
 707                        return NULL;
 708                }
 709        }
 710        return alc_ptr;
 711}
 712
 713static void free_alien_cache(struct alien_cache **alc_ptr)
 714{
 715        int i;
 716
 717        if (!alc_ptr)
 718                return;
 719        for_each_node(i)
 720            kfree(alc_ptr[i]);
 721        kfree(alc_ptr);
 722}
 723
 724static void __drain_alien_cache(struct kmem_cache *cachep,
 725                                struct array_cache *ac, int node,
 726                                struct list_head *list)
 727{
 728        struct kmem_cache_node *n = get_node(cachep, node);
 729
 730        if (ac->avail) {
 731                spin_lock(&n->list_lock);
 732                /*
 733                 * Stuff objects into the remote nodes shared array first.
 734                 * That way we could avoid the overhead of putting the objects
 735                 * into the free lists and getting them back later.
 736                 */
 737                if (n->shared)
 738                        transfer_objects(n->shared, ac, ac->limit);
 739
 740                free_block(cachep, ac->entry, ac->avail, node, list);
 741                ac->avail = 0;
 742                spin_unlock(&n->list_lock);
 743        }
 744}
 745
 746/*
 747 * Called from cache_reap() to regularly drain alien caches round robin.
 748 */
 749static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 750{
 751        int node = __this_cpu_read(slab_reap_node);
 752
 753        if (n->alien) {
 754                struct alien_cache *alc = n->alien[node];
 755                struct array_cache *ac;
 756
 757                if (alc) {
 758                        ac = &alc->ac;
 759                        if (ac->avail && spin_trylock_irq(&alc->lock)) {
 760                                LIST_HEAD(list);
 761
 762                                __drain_alien_cache(cachep, ac, node, &list);
 763                                spin_unlock_irq(&alc->lock);
 764                                slabs_destroy(cachep, &list);
 765                        }
 766                }
 767        }
 768}
 769
 770static void drain_alien_cache(struct kmem_cache *cachep,
 771                                struct alien_cache **alien)
 772{
 773        int i = 0;
 774        struct alien_cache *alc;
 775        struct array_cache *ac;
 776        unsigned long flags;
 777
 778        for_each_online_node(i) {
 779                alc = alien[i];
 780                if (alc) {
 781                        LIST_HEAD(list);
 782
 783                        ac = &alc->ac;
 784                        spin_lock_irqsave(&alc->lock, flags);
 785                        __drain_alien_cache(cachep, ac, i, &list);
 786                        spin_unlock_irqrestore(&alc->lock, flags);
 787                        slabs_destroy(cachep, &list);
 788                }
 789        }
 790}
 791
 792static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 793                                int node, int page_node)
 794{
 795        struct kmem_cache_node *n;
 796        struct alien_cache *alien = NULL;
 797        struct array_cache *ac;
 798        LIST_HEAD(list);
 799
 800        n = get_node(cachep, node);
 801        STATS_INC_NODEFREES(cachep);
 802        if (n->alien && n->alien[page_node]) {
 803                alien = n->alien[page_node];
 804                ac = &alien->ac;
 805                spin_lock(&alien->lock);
 806                if (unlikely(ac->avail == ac->limit)) {
 807                        STATS_INC_ACOVERFLOW(cachep);
 808                        __drain_alien_cache(cachep, ac, page_node, &list);
 809                }
 810                ac->entry[ac->avail++] = objp;
 811                spin_unlock(&alien->lock);
 812                slabs_destroy(cachep, &list);
 813        } else {
 814                n = get_node(cachep, page_node);
 815                spin_lock(&n->list_lock);
 816                free_block(cachep, &objp, 1, page_node, &list);
 817                spin_unlock(&n->list_lock);
 818                slabs_destroy(cachep, &list);
 819        }
 820        return 1;
 821}
 822
 823static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 824{
 825        int page_node = page_to_nid(virt_to_page(objp));
 826        int node = numa_mem_id();
 827        /*
 828         * Make sure we are not freeing a object from another node to the array
 829         * cache on this cpu.
 830         */
 831        if (likely(node == page_node))
 832                return 0;
 833
 834        return __cache_free_alien(cachep, objp, node, page_node);
 835}
 836
 837/*
 838 * Construct gfp mask to allocate from a specific node but do not reclaim or
 839 * warn about failures.
 840 */
 841static inline gfp_t gfp_exact_node(gfp_t flags)
 842{
 843        return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 844}
 845#endif
 846
 847static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 848{
 849        struct kmem_cache_node *n;
 850
 851        /*
 852         * Set up the kmem_cache_node for cpu before we can
 853         * begin anything. Make sure some other cpu on this
 854         * node has not already allocated this
 855         */
 856        n = get_node(cachep, node);
 857        if (n) {
 858                spin_lock_irq(&n->list_lock);
 859                n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 860                                cachep->num;
 861                spin_unlock_irq(&n->list_lock);
 862
 863                return 0;
 864        }
 865
 866        n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 867        if (!n)
 868                return -ENOMEM;
 869
 870        kmem_cache_node_init(n);
 871        n->next_reap = jiffies + REAPTIMEOUT_NODE +
 872                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 873
 874        n->free_limit =
 875                (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 876
 877        /*
 878         * The kmem_cache_nodes don't come and go as CPUs
 879         * come and go.  slab_mutex is sufficient
 880         * protection here.
 881         */
 882        cachep->node[node] = n;
 883
 884        return 0;
 885}
 886
 887#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
 888/*
 889 * Allocates and initializes node for a node on each slab cache, used for
 890 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 891 * will be allocated off-node since memory is not yet online for the new node.
 892 * When hotplugging memory or a cpu, existing node are not replaced if
 893 * already in use.
 894 *
 895 * Must hold slab_mutex.
 896 */
 897static int init_cache_node_node(int node)
 898{
 899        int ret;
 900        struct kmem_cache *cachep;
 901
 902        list_for_each_entry(cachep, &slab_caches, list) {
 903                ret = init_cache_node(cachep, node, GFP_KERNEL);
 904                if (ret)
 905                        return ret;
 906        }
 907
 908        return 0;
 909}
 910#endif
 911
 912static int setup_kmem_cache_node(struct kmem_cache *cachep,
 913                                int node, gfp_t gfp, bool force_change)
 914{
 915        int ret = -ENOMEM;
 916        struct kmem_cache_node *n;
 917        struct array_cache *old_shared = NULL;
 918        struct array_cache *new_shared = NULL;
 919        struct alien_cache **new_alien = NULL;
 920        LIST_HEAD(list);
 921
 922        if (use_alien_caches) {
 923                new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 924                if (!new_alien)
 925                        goto fail;
 926        }
 927
 928        if (cachep->shared) {
 929                new_shared = alloc_arraycache(node,
 930                        cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 931                if (!new_shared)
 932                        goto fail;
 933        }
 934
 935        ret = init_cache_node(cachep, node, gfp);
 936        if (ret)
 937                goto fail;
 938
 939        n = get_node(cachep, node);
 940        spin_lock_irq(&n->list_lock);
 941        if (n->shared && force_change) {
 942                free_block(cachep, n->shared->entry,
 943                                n->shared->avail, node, &list);
 944                n->shared->avail = 0;
 945        }
 946
 947        if (!n->shared || force_change) {
 948                old_shared = n->shared;
 949                n->shared = new_shared;
 950                new_shared = NULL;
 951        }
 952
 953        if (!n->alien) {
 954                n->alien = new_alien;
 955                new_alien = NULL;
 956        }
 957
 958        spin_unlock_irq(&n->list_lock);
 959        slabs_destroy(cachep, &list);
 960
 961        /*
 962         * To protect lockless access to n->shared during irq disabled context.
 963         * If n->shared isn't NULL in irq disabled context, accessing to it is
 964         * guaranteed to be valid until irq is re-enabled, because it will be
 965         * freed after synchronize_sched().
 966         */
 967        if (old_shared && force_change)
 968                synchronize_sched();
 969
 970fail:
 971        kfree(old_shared);
 972        kfree(new_shared);
 973        free_alien_cache(new_alien);
 974
 975        return ret;
 976}
 977
 978#ifdef CONFIG_SMP
 979
 980static void cpuup_canceled(long cpu)
 981{
 982        struct kmem_cache *cachep;
 983        struct kmem_cache_node *n = NULL;
 984        int node = cpu_to_mem(cpu);
 985        const struct cpumask *mask = cpumask_of_node(node);
 986
 987        list_for_each_entry(cachep, &slab_caches, list) {
 988                struct array_cache *nc;
 989                struct array_cache *shared;
 990                struct alien_cache **alien;
 991                LIST_HEAD(list);
 992
 993                n = get_node(cachep, node);
 994                if (!n)
 995                        continue;
 996
 997                spin_lock_irq(&n->list_lock);
 998
 999                /* Free limit for this kmem_cache_node */
1000                n->free_limit -= cachep->batchcount;
1001
1002                /* cpu is dead; no one can alloc from it. */
1003                nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1004                if (nc) {
1005                        free_block(cachep, nc->entry, nc->avail, node, &list);
1006                        nc->avail = 0;
1007                }
1008
1009                if (!cpumask_empty(mask)) {
1010                        spin_unlock_irq(&n->list_lock);
1011                        goto free_slab;
1012                }
1013
1014                shared = n->shared;
1015                if (shared) {
1016                        free_block(cachep, shared->entry,
1017                                   shared->avail, node, &list);
1018                        n->shared = NULL;
1019                }
1020
1021                alien = n->alien;
1022                n->alien = NULL;
1023
1024                spin_unlock_irq(&n->list_lock);
1025
1026                kfree(shared);
1027                if (alien) {
1028                        drain_alien_cache(cachep, alien);
1029                        free_alien_cache(alien);
1030                }
1031
1032free_slab:
1033                slabs_destroy(cachep, &list);
1034        }
1035        /*
1036         * In the previous loop, all the objects were freed to
1037         * the respective cache's slabs,  now we can go ahead and
1038         * shrink each nodelist to its limit.
1039         */
1040        list_for_each_entry(cachep, &slab_caches, list) {
1041                n = get_node(cachep, node);
1042                if (!n)
1043                        continue;
1044                drain_freelist(cachep, n, INT_MAX);
1045        }
1046}
1047
1048static int cpuup_prepare(long cpu)
1049{
1050        struct kmem_cache *cachep;
1051        int node = cpu_to_mem(cpu);
1052        int err;
1053
1054        /*
1055         * We need to do this right in the beginning since
1056         * alloc_arraycache's are going to use this list.
1057         * kmalloc_node allows us to add the slab to the right
1058         * kmem_cache_node and not this cpu's kmem_cache_node
1059         */
1060        err = init_cache_node_node(node);
1061        if (err < 0)
1062                goto bad;
1063
1064        /*
1065         * Now we can go ahead with allocating the shared arrays and
1066         * array caches
1067         */
1068        list_for_each_entry(cachep, &slab_caches, list) {
1069                err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1070                if (err)
1071                        goto bad;
1072        }
1073
1074        return 0;
1075bad:
1076        cpuup_canceled(cpu);
1077        return -ENOMEM;
1078}
1079
1080int slab_prepare_cpu(unsigned int cpu)
1081{
1082        int err;
1083
1084        mutex_lock(&slab_mutex);
1085        err = cpuup_prepare(cpu);
1086        mutex_unlock(&slab_mutex);
1087        return err;
1088}
1089
1090/*
1091 * This is called for a failed online attempt and for a successful
1092 * offline.
1093 *
1094 * Even if all the cpus of a node are down, we don't free the
1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1096 * a kmalloc allocation from another cpu for memory from the node of
1097 * the cpu going down.  The list3 structure is usually allocated from
1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1099 */
1100int slab_dead_cpu(unsigned int cpu)
1101{
1102        mutex_lock(&slab_mutex);
1103        cpuup_canceled(cpu);
1104        mutex_unlock(&slab_mutex);
1105        return 0;
1106}
1107#endif
1108
1109static int slab_online_cpu(unsigned int cpu)
1110{
1111        start_cpu_timer(cpu);
1112        return 0;
1113}
1114
1115static int slab_offline_cpu(unsigned int cpu)
1116{
1117        /*
1118         * Shutdown cache reaper. Note that the slab_mutex is held so
1119         * that if cache_reap() is invoked it cannot do anything
1120         * expensive but will only modify reap_work and reschedule the
1121         * timer.
1122         */
1123        cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1124        /* Now the cache_reaper is guaranteed to be not running. */
1125        per_cpu(slab_reap_work, cpu).work.func = NULL;
1126        return 0;
1127}
1128
1129#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130/*
1131 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1132 * Returns -EBUSY if all objects cannot be drained so that the node is not
1133 * removed.
1134 *
1135 * Must hold slab_mutex.
1136 */
1137static int __meminit drain_cache_node_node(int node)
1138{
1139        struct kmem_cache *cachep;
1140        int ret = 0;
1141
1142        list_for_each_entry(cachep, &slab_caches, list) {
1143                struct kmem_cache_node *n;
1144
1145                n = get_node(cachep, node);
1146                if (!n)
1147                        continue;
1148
1149                drain_freelist(cachep, n, INT_MAX);
1150
1151                if (!list_empty(&n->slabs_full) ||
1152                    !list_empty(&n->slabs_partial)) {
1153                        ret = -EBUSY;
1154                        break;
1155                }
1156        }
1157        return ret;
1158}
1159
1160static int __meminit slab_memory_callback(struct notifier_block *self,
1161                                        unsigned long action, void *arg)
1162{
1163        struct memory_notify *mnb = arg;
1164        int ret = 0;
1165        int nid;
1166
1167        nid = mnb->status_change_nid;
1168        if (nid < 0)
1169                goto out;
1170
1171        switch (action) {
1172        case MEM_GOING_ONLINE:
1173                mutex_lock(&slab_mutex);
1174                ret = init_cache_node_node(nid);
1175                mutex_unlock(&slab_mutex);
1176                break;
1177        case MEM_GOING_OFFLINE:
1178                mutex_lock(&slab_mutex);
1179                ret = drain_cache_node_node(nid);
1180                mutex_unlock(&slab_mutex);
1181                break;
1182        case MEM_ONLINE:
1183        case MEM_OFFLINE:
1184        case MEM_CANCEL_ONLINE:
1185        case MEM_CANCEL_OFFLINE:
1186                break;
1187        }
1188out:
1189        return notifier_from_errno(ret);
1190}
1191#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1192
1193/*
1194 * swap the static kmem_cache_node with kmalloced memory
1195 */
1196static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1197                                int nodeid)
1198{
1199        struct kmem_cache_node *ptr;
1200
1201        ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1202        BUG_ON(!ptr);
1203
1204        memcpy(ptr, list, sizeof(struct kmem_cache_node));
1205        /*
1206         * Do not assume that spinlocks can be initialized via memcpy:
1207         */
1208        spin_lock_init(&ptr->list_lock);
1209
1210        MAKE_ALL_LISTS(cachep, ptr, nodeid);
1211        cachep->node[nodeid] = ptr;
1212}
1213
1214/*
1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1216 * size of kmem_cache_node.
1217 */
1218static void __init set_up_node(struct kmem_cache *cachep, int index)
1219{
1220        int node;
1221
1222        for_each_online_node(node) {
1223                cachep->node[node] = &init_kmem_cache_node[index + node];
1224                cachep->node[node]->next_reap = jiffies +
1225                    REAPTIMEOUT_NODE +
1226                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1227        }
1228}
1229
1230/*
1231 * Initialisation.  Called after the page allocator have been initialised and
1232 * before smp_init().
1233 */
1234void __init kmem_cache_init(void)
1235{
1236        int i;
1237
1238        BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1239                                        sizeof(struct rcu_head));
1240        kmem_cache = &kmem_cache_boot;
1241
1242        if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1243                use_alien_caches = 0;
1244
1245        for (i = 0; i < NUM_INIT_LISTS; i++)
1246                kmem_cache_node_init(&init_kmem_cache_node[i]);
1247
1248        /*
1249         * Fragmentation resistance on low memory - only use bigger
1250         * page orders on machines with more than 32MB of memory if
1251         * not overridden on the command line.
1252         */
1253        if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1254                slab_max_order = SLAB_MAX_ORDER_HI;
1255
1256        /* Bootstrap is tricky, because several objects are allocated
1257         * from caches that do not exist yet:
1258         * 1) initialize the kmem_cache cache: it contains the struct
1259         *    kmem_cache structures of all caches, except kmem_cache itself:
1260         *    kmem_cache is statically allocated.
1261         *    Initially an __init data area is used for the head array and the
1262         *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1263         *    array at the end of the bootstrap.
1264         * 2) Create the first kmalloc cache.
1265         *    The struct kmem_cache for the new cache is allocated normally.
1266         *    An __init data area is used for the head array.
1267         * 3) Create the remaining kmalloc caches, with minimally sized
1268         *    head arrays.
1269         * 4) Replace the __init data head arrays for kmem_cache and the first
1270         *    kmalloc cache with kmalloc allocated arrays.
1271         * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1272         *    the other cache's with kmalloc allocated memory.
1273         * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1274         */
1275
1276        /* 1) create the kmem_cache */
1277
1278        /*
1279         * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1280         */
1281        create_boot_cache(kmem_cache, "kmem_cache",
1282                offsetof(struct kmem_cache, node) +
1283                                  nr_node_ids * sizeof(struct kmem_cache_node *),
1284                                  SLAB_HWCACHE_ALIGN);
1285        list_add(&kmem_cache->list, &slab_caches);
1286        slab_state = PARTIAL;
1287
1288        /*
1289         * Initialize the caches that provide memory for the  kmem_cache_node
1290         * structures first.  Without this, further allocations will bug.
1291         */
1292        kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1293                                kmalloc_info[INDEX_NODE].name,
1294                                kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1295        slab_state = PARTIAL_NODE;
1296        setup_kmalloc_cache_index_table();
1297
1298        slab_early_init = 0;
1299
1300        /* 5) Replace the bootstrap kmem_cache_node */
1301        {
1302                int nid;
1303
1304                for_each_online_node(nid) {
1305                        init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1306
1307                        init_list(kmalloc_caches[INDEX_NODE],
1308                                          &init_kmem_cache_node[SIZE_NODE + nid], nid);
1309                }
1310        }
1311
1312        create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1313}
1314
1315void __init kmem_cache_init_late(void)
1316{
1317        struct kmem_cache *cachep;
1318
1319        slab_state = UP;
1320
1321        /* 6) resize the head arrays to their final sizes */
1322        mutex_lock(&slab_mutex);
1323        list_for_each_entry(cachep, &slab_caches, list)
1324                if (enable_cpucache(cachep, GFP_NOWAIT))
1325                        BUG();
1326        mutex_unlock(&slab_mutex);
1327
1328        /* Done! */
1329        slab_state = FULL;
1330
1331#ifdef CONFIG_NUMA
1332        /*
1333         * Register a memory hotplug callback that initializes and frees
1334         * node.
1335         */
1336        hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1337#endif
1338
1339        /*
1340         * The reap timers are started later, with a module init call: That part
1341         * of the kernel is not yet operational.
1342         */
1343}
1344
1345static int __init cpucache_init(void)
1346{
1347        int ret;
1348
1349        /*
1350         * Register the timers that return unneeded pages to the page allocator
1351         */
1352        ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1353                                slab_online_cpu, slab_offline_cpu);
1354        WARN_ON(ret < 0);
1355
1356        /* Done! */
1357        slab_state = FULL;
1358        return 0;
1359}
1360__initcall(cpucache_init);
1361
1362static noinline void
1363slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1364{
1365#if DEBUG
1366        struct kmem_cache_node *n;
1367        unsigned long flags;
1368        int node;
1369        static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1370                                      DEFAULT_RATELIMIT_BURST);
1371
1372        if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1373                return;
1374
1375        pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1376                nodeid, gfpflags, &gfpflags);
1377        pr_warn("  cache: %s, object size: %d, order: %d\n",
1378                cachep->name, cachep->size, cachep->gfporder);
1379
1380        for_each_kmem_cache_node(cachep, node, n) {
1381                unsigned long total_slabs, free_slabs, free_objs;
1382
1383                spin_lock_irqsave(&n->list_lock, flags);
1384                total_slabs = n->total_slabs;
1385                free_slabs = n->free_slabs;
1386                free_objs = n->free_objects;
1387                spin_unlock_irqrestore(&n->list_lock, flags);
1388
1389                pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1390                        node, total_slabs - free_slabs, total_slabs,
1391                        (total_slabs * cachep->num) - free_objs,
1392                        total_slabs * cachep->num);
1393        }
1394#endif
1395}
1396
1397/*
1398 * Interface to system's page allocator. No need to hold the
1399 * kmem_cache_node ->list_lock.
1400 *
1401 * If we requested dmaable memory, we will get it. Even if we
1402 * did not request dmaable memory, we might get it, but that
1403 * would be relatively rare and ignorable.
1404 */
1405static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1406                                                                int nodeid)
1407{
1408        struct page *page;
1409        int nr_pages;
1410
1411        flags |= cachep->allocflags;
1412        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1413                flags |= __GFP_RECLAIMABLE;
1414
1415        page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1416        if (!page) {
1417                slab_out_of_memory(cachep, flags, nodeid);
1418                return NULL;
1419        }
1420
1421        if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1422                __free_pages(page, cachep->gfporder);
1423                return NULL;
1424        }
1425
1426        nr_pages = (1 << cachep->gfporder);
1427        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1428                mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1429        else
1430                mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1431
1432        __SetPageSlab(page);
1433        /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1434        if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1435                SetPageSlabPfmemalloc(page);
1436
1437        if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1438                kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1439
1440                if (cachep->ctor)
1441                        kmemcheck_mark_uninitialized_pages(page, nr_pages);
1442                else
1443                        kmemcheck_mark_unallocated_pages(page, nr_pages);
1444        }
1445
1446        return page;
1447}
1448
1449/*
1450 * Interface to system's page release.
1451 */
1452static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1453{
1454        int order = cachep->gfporder;
1455        unsigned long nr_freed = (1 << order);
1456
1457        kmemcheck_free_shadow(page, order);
1458
1459        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1460                mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1461        else
1462                mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1463
1464        BUG_ON(!PageSlab(page));
1465        __ClearPageSlabPfmemalloc(page);
1466        __ClearPageSlab(page);
1467        page_mapcount_reset(page);
1468        page->mapping = NULL;
1469
1470        if (current->reclaim_state)
1471                current->reclaim_state->reclaimed_slab += nr_freed;
1472        memcg_uncharge_slab(page, order, cachep);
1473        __free_pages(page, order);
1474}
1475
1476static void kmem_rcu_free(struct rcu_head *head)
1477{
1478        struct kmem_cache *cachep;
1479        struct page *page;
1480
1481        page = container_of(head, struct page, rcu_head);
1482        cachep = page->slab_cache;
1483
1484        kmem_freepages(cachep, page);
1485}
1486
1487#if DEBUG
1488static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1489{
1490        if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1491                (cachep->size % PAGE_SIZE) == 0)
1492                return true;
1493
1494        return false;
1495}
1496
1497#ifdef CONFIG_DEBUG_PAGEALLOC
1498static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1499                            unsigned long caller)
1500{
1501        int size = cachep->object_size;
1502
1503        addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1504
1505        if (size < 5 * sizeof(unsigned long))
1506                return;
1507
1508        *addr++ = 0x12345678;
1509        *addr++ = caller;
1510        *addr++ = smp_processor_id();
1511        size -= 3 * sizeof(unsigned long);
1512        {
1513                unsigned long *sptr = &caller;
1514                unsigned long svalue;
1515
1516                while (!kstack_end(sptr)) {
1517                        svalue = *sptr++;
1518                        if (kernel_text_address(svalue)) {
1519                                *addr++ = svalue;
1520                                size -= sizeof(unsigned long);
1521                                if (size <= sizeof(unsigned long))
1522                                        break;
1523                        }
1524                }
1525
1526        }
1527        *addr++ = 0x87654321;
1528}
1529
1530static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1531                                int map, unsigned long caller)
1532{
1533        if (!is_debug_pagealloc_cache(cachep))
1534                return;
1535
1536        if (caller)
1537                store_stackinfo(cachep, objp, caller);
1538
1539        kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1540}
1541
1542#else
1543static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1544                                int map, unsigned long caller) {}
1545
1546#endif
1547
1548static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1549{
1550        int size = cachep->object_size;
1551        addr = &((char *)addr)[obj_offset(cachep)];
1552
1553        memset(addr, val, size);
1554        *(unsigned char *)(addr + size - 1) = POISON_END;
1555}
1556
1557static void dump_line(char *data, int offset, int limit)
1558{
1559        int i;
1560        unsigned char error = 0;
1561        int bad_count = 0;
1562
1563        pr_err("%03x: ", offset);
1564        for (i = 0; i < limit; i++) {
1565                if (data[offset + i] != POISON_FREE) {
1566                        error = data[offset + i];
1567                        bad_count++;
1568                }
1569        }
1570        print_hex_dump(KERN_CONT, "", 0, 16, 1,
1571                        &data[offset], limit, 1);
1572
1573        if (bad_count == 1) {
1574                error ^= POISON_FREE;
1575                if (!(error & (error - 1))) {
1576                        pr_err("Single bit error detected. Probably bad RAM.\n");
1577#ifdef CONFIG_X86
1578                        pr_err("Run memtest86+ or a similar memory test tool.\n");
1579#else
1580                        pr_err("Run a memory test tool.\n");
1581#endif
1582                }
1583        }
1584}
1585#endif
1586
1587#if DEBUG
1588
1589static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1590{
1591        int i, size;
1592        char *realobj;
1593
1594        if (cachep->flags & SLAB_RED_ZONE) {
1595                pr_err("Redzone: 0x%llx/0x%llx\n",
1596                       *dbg_redzone1(cachep, objp),
1597                       *dbg_redzone2(cachep, objp));
1598        }
1599
1600        if (cachep->flags & SLAB_STORE_USER) {
1601                pr_err("Last user: [<%p>](%pSR)\n",
1602                       *dbg_userword(cachep, objp),
1603                       *dbg_userword(cachep, objp));
1604        }
1605        realobj = (char *)objp + obj_offset(cachep);
1606        size = cachep->object_size;
1607        for (i = 0; i < size && lines; i += 16, lines--) {
1608                int limit;
1609                limit = 16;
1610                if (i + limit > size)
1611                        limit = size - i;
1612                dump_line(realobj, i, limit);
1613        }
1614}
1615
1616static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1617{
1618        char *realobj;
1619        int size, i;
1620        int lines = 0;
1621
1622        if (is_debug_pagealloc_cache(cachep))
1623                return;
1624
1625        realobj = (char *)objp + obj_offset(cachep);
1626        size = cachep->object_size;
1627
1628        for (i = 0; i < size; i++) {
1629                char exp = POISON_FREE;
1630                if (i == size - 1)
1631                        exp = POISON_END;
1632                if (realobj[i] != exp) {
1633                        int limit;
1634                        /* Mismatch ! */
1635                        /* Print header */
1636                        if (lines == 0) {
1637                                pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1638                                       print_tainted(), cachep->name,
1639                                       realobj, size);
1640                                print_objinfo(cachep, objp, 0);
1641                        }
1642                        /* Hexdump the affected line */
1643                        i = (i / 16) * 16;
1644                        limit = 16;
1645                        if (i + limit > size)
1646                                limit = size - i;
1647                        dump_line(realobj, i, limit);
1648                        i += 16;
1649                        lines++;
1650                        /* Limit to 5 lines */
1651                        if (lines > 5)
1652                                break;
1653                }
1654        }
1655        if (lines != 0) {
1656                /* Print some data about the neighboring objects, if they
1657                 * exist:
1658                 */
1659                struct page *page = virt_to_head_page(objp);
1660                unsigned int objnr;
1661
1662                objnr = obj_to_index(cachep, page, objp);
1663                if (objnr) {
1664                        objp = index_to_obj(cachep, page, objnr - 1);
1665                        realobj = (char *)objp + obj_offset(cachep);
1666                        pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1667                        print_objinfo(cachep, objp, 2);
1668                }
1669                if (objnr + 1 < cachep->num) {
1670                        objp = index_to_obj(cachep, page, objnr + 1);
1671                        realobj = (char *)objp + obj_offset(cachep);
1672                        pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1673                        print_objinfo(cachep, objp, 2);
1674                }
1675        }
1676}
1677#endif
1678
1679#if DEBUG
1680static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1681                                                struct page *page)
1682{
1683        int i;
1684
1685        if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1686                poison_obj(cachep, page->freelist - obj_offset(cachep),
1687                        POISON_FREE);
1688        }
1689
1690        for (i = 0; i < cachep->num; i++) {
1691                void *objp = index_to_obj(cachep, page, i);
1692
1693                if (cachep->flags & SLAB_POISON) {
1694                        check_poison_obj(cachep, objp);
1695                        slab_kernel_map(cachep, objp, 1, 0);
1696                }
1697                if (cachep->flags & SLAB_RED_ZONE) {
1698                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1699                                slab_error(cachep, "start of a freed object was overwritten");
1700                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1701                                slab_error(cachep, "end of a freed object was overwritten");
1702                }
1703        }
1704}
1705#else
1706static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1707                                                struct page *page)
1708{
1709}
1710#endif
1711
1712/**
1713 * slab_destroy - destroy and release all objects in a slab
1714 * @cachep: cache pointer being destroyed
1715 * @page: page pointer being destroyed
1716 *
1717 * Destroy all the objs in a slab page, and release the mem back to the system.
1718 * Before calling the slab page must have been unlinked from the cache. The
1719 * kmem_cache_node ->list_lock is not held/needed.
1720 */
1721static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1722{
1723        void *freelist;
1724
1725        freelist = page->freelist;
1726        slab_destroy_debugcheck(cachep, page);
1727        if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1728                call_rcu(&page->rcu_head, kmem_rcu_free);
1729        else
1730                kmem_freepages(cachep, page);
1731
1732        /*
1733         * From now on, we don't use freelist
1734         * although actual page can be freed in rcu context
1735         */
1736        if (OFF_SLAB(cachep))
1737                kmem_cache_free(cachep->freelist_cache, freelist);
1738}
1739
1740static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1741{
1742        struct page *page, *n;
1743
1744        list_for_each_entry_safe(page, n, list, lru) {
1745                list_del(&page->lru);
1746                slab_destroy(cachep, page);
1747        }
1748}
1749
1750/**
1751 * calculate_slab_order - calculate size (page order) of slabs
1752 * @cachep: pointer to the cache that is being created
1753 * @size: size of objects to be created in this cache.
1754 * @flags: slab allocation flags
1755 *
1756 * Also calculates the number of objects per slab.
1757 *
1758 * This could be made much more intelligent.  For now, try to avoid using
1759 * high order pages for slabs.  When the gfp() functions are more friendly
1760 * towards high-order requests, this should be changed.
1761 */
1762static size_t calculate_slab_order(struct kmem_cache *cachep,
1763                                size_t size, unsigned long flags)
1764{
1765        size_t left_over = 0;
1766        int gfporder;
1767
1768        for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1769                unsigned int num;
1770                size_t remainder;
1771
1772                num = cache_estimate(gfporder, size, flags, &remainder);
1773                if (!num)
1774                        continue;
1775
1776                /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1777                if (num > SLAB_OBJ_MAX_NUM)
1778                        break;
1779
1780                if (flags & CFLGS_OFF_SLAB) {
1781                        struct kmem_cache *freelist_cache;
1782                        size_t freelist_size;
1783
1784                        freelist_size = num * sizeof(freelist_idx_t);
1785                        freelist_cache = kmalloc_slab(freelist_size, 0u);
1786                        if (!freelist_cache)
1787                                continue;
1788
1789                        /*
1790                         * Needed to avoid possible looping condition
1791                         * in cache_grow_begin()
1792                         */
1793                        if (OFF_SLAB(freelist_cache))
1794                                continue;
1795
1796                        /* check if off slab has enough benefit */
1797                        if (freelist_cache->size > cachep->size / 2)
1798                                continue;
1799                }
1800
1801                /* Found something acceptable - save it away */
1802                cachep->num = num;
1803                cachep->gfporder = gfporder;
1804                left_over = remainder;
1805
1806                /*
1807                 * A VFS-reclaimable slab tends to have most allocations
1808                 * as GFP_NOFS and we really don't want to have to be allocating
1809                 * higher-order pages when we are unable to shrink dcache.
1810                 */
1811                if (flags & SLAB_RECLAIM_ACCOUNT)
1812                        break;
1813
1814                /*
1815                 * Large number of objects is good, but very large slabs are
1816                 * currently bad for the gfp()s.
1817                 */
1818                if (gfporder >= slab_max_order)
1819                        break;
1820
1821                /*
1822                 * Acceptable internal fragmentation?
1823                 */
1824                if (left_over * 8 <= (PAGE_SIZE << gfporder))
1825                        break;
1826        }
1827        return left_over;
1828}
1829
1830static struct array_cache __percpu *alloc_kmem_cache_cpus(
1831                struct kmem_cache *cachep, int entries, int batchcount)
1832{
1833        int cpu;
1834        size_t size;
1835        struct array_cache __percpu *cpu_cache;
1836
1837        size = sizeof(void *) * entries + sizeof(struct array_cache);
1838        cpu_cache = __alloc_percpu(size, sizeof(void *));
1839
1840        if (!cpu_cache)
1841                return NULL;
1842
1843        for_each_possible_cpu(cpu) {
1844                init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1845                                entries, batchcount);
1846        }
1847
1848        return cpu_cache;
1849}
1850
1851static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1852{
1853        if (slab_state >= FULL)
1854                return enable_cpucache(cachep, gfp);
1855
1856        cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1857        if (!cachep->cpu_cache)
1858                return 1;
1859
1860        if (slab_state == DOWN) {
1861                /* Creation of first cache (kmem_cache). */
1862                set_up_node(kmem_cache, CACHE_CACHE);
1863        } else if (slab_state == PARTIAL) {
1864                /* For kmem_cache_node */
1865                set_up_node(cachep, SIZE_NODE);
1866        } else {
1867                int node;
1868
1869                for_each_online_node(node) {
1870                        cachep->node[node] = kmalloc_node(
1871                                sizeof(struct kmem_cache_node), gfp, node);
1872                        BUG_ON(!cachep->node[node]);
1873                        kmem_cache_node_init(cachep->node[node]);
1874                }
1875        }
1876
1877        cachep->node[numa_mem_id()]->next_reap =
1878                        jiffies + REAPTIMEOUT_NODE +
1879                        ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1880
1881        cpu_cache_get(cachep)->avail = 0;
1882        cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1883        cpu_cache_get(cachep)->batchcount = 1;
1884        cpu_cache_get(cachep)->touched = 0;
1885        cachep->batchcount = 1;
1886        cachep->limit = BOOT_CPUCACHE_ENTRIES;
1887        return 0;
1888}
1889
1890unsigned long kmem_cache_flags(unsigned long object_size,
1891        unsigned long flags, const char *name,
1892        void (*ctor)(void *))
1893{
1894        return flags;
1895}
1896
1897struct kmem_cache *
1898__kmem_cache_alias(const char *name, size_t size, size_t align,
1899                   unsigned long flags, void (*ctor)(void *))
1900{
1901        struct kmem_cache *cachep;
1902
1903        cachep = find_mergeable(size, align, flags, name, ctor);
1904        if (cachep) {
1905                cachep->refcount++;
1906
1907                /*
1908                 * Adjust the object sizes so that we clear
1909                 * the complete object on kzalloc.
1910                 */
1911                cachep->object_size = max_t(int, cachep->object_size, size);
1912        }
1913        return cachep;
1914}
1915
1916static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1917                        size_t size, unsigned long flags)
1918{
1919        size_t left;
1920
1921        cachep->num = 0;
1922
1923        if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1924                return false;
1925
1926        left = calculate_slab_order(cachep, size,
1927                        flags | CFLGS_OBJFREELIST_SLAB);
1928        if (!cachep->num)
1929                return false;
1930
1931        if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1932                return false;
1933
1934        cachep->colour = left / cachep->colour_off;
1935
1936        return true;
1937}
1938
1939static bool set_off_slab_cache(struct kmem_cache *cachep,
1940                        size_t size, unsigned long flags)
1941{
1942        size_t left;
1943
1944        cachep->num = 0;
1945
1946        /*
1947         * Always use on-slab management when SLAB_NOLEAKTRACE
1948         * to avoid recursive calls into kmemleak.
1949         */
1950        if (flags & SLAB_NOLEAKTRACE)
1951                return false;
1952
1953        /*
1954         * Size is large, assume best to place the slab management obj
1955         * off-slab (should allow better packing of objs).
1956         */
1957        left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1958        if (!cachep->num)
1959                return false;
1960
1961        /*
1962         * If the slab has been placed off-slab, and we have enough space then
1963         * move it on-slab. This is at the expense of any extra colouring.
1964         */
1965        if (left >= cachep->num * sizeof(freelist_idx_t))
1966                return false;
1967
1968        cachep->colour = left / cachep->colour_off;
1969
1970        return true;
1971}
1972
1973static bool set_on_slab_cache(struct kmem_cache *cachep,
1974                        size_t size, unsigned long flags)
1975{
1976        size_t left;
1977
1978        cachep->num = 0;
1979
1980        left = calculate_slab_order(cachep, size, flags);
1981        if (!cachep->num)
1982                return false;
1983
1984        cachep->colour = left / cachep->colour_off;
1985
1986        return true;
1987}
1988
1989/**
1990 * __kmem_cache_create - Create a cache.
1991 * @cachep: cache management descriptor
1992 * @flags: SLAB flags
1993 *
1994 * Returns a ptr to the cache on success, NULL on failure.
1995 * Cannot be called within a int, but can be interrupted.
1996 * The @ctor is run when new pages are allocated by the cache.
1997 *
1998 * The flags are
1999 *
2000 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2001 * to catch references to uninitialised memory.
2002 *
2003 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2004 * for buffer overruns.
2005 *
2006 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2007 * cacheline.  This can be beneficial if you're counting cycles as closely
2008 * as davem.
2009 */
2010int
2011__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2012{
2013        size_t ralign = BYTES_PER_WORD;
2014        gfp_t gfp;
2015        int err;
2016        size_t size = cachep->size;
2017
2018#if DEBUG
2019#if FORCED_DEBUG
2020        /*
2021         * Enable redzoning and last user accounting, except for caches with
2022         * large objects, if the increased size would increase the object size
2023         * above the next power of two: caches with object sizes just above a
2024         * power of two have a significant amount of internal fragmentation.
2025         */
2026        if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2027                                                2 * sizeof(unsigned long long)))
2028                flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2029        if (!(flags & SLAB_TYPESAFE_BY_RCU))
2030                flags |= SLAB_POISON;
2031#endif
2032#endif
2033
2034        /*
2035         * Check that size is in terms of words.  This is needed to avoid
2036         * unaligned accesses for some archs when redzoning is used, and makes
2037         * sure any on-slab bufctl's are also correctly aligned.
2038         */
2039        size = ALIGN(size, BYTES_PER_WORD);
2040
2041        if (flags & SLAB_RED_ZONE) {
2042                ralign = REDZONE_ALIGN;
2043                /* If redzoning, ensure that the second redzone is suitably
2044                 * aligned, by adjusting the object size accordingly. */
2045                size = ALIGN(size, REDZONE_ALIGN);
2046        }
2047
2048        /* 3) caller mandated alignment */
2049        if (ralign < cachep->align) {
2050                ralign = cachep->align;
2051        }
2052        /* disable debug if necessary */
2053        if (ralign > __alignof__(unsigned long long))
2054                flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2055        /*
2056         * 4) Store it.
2057         */
2058        cachep->align = ralign;
2059        cachep->colour_off = cache_line_size();
2060        /* Offset must be a multiple of the alignment. */
2061        if (cachep->colour_off < cachep->align)
2062                cachep->colour_off = cachep->align;
2063
2064        if (slab_is_available())
2065                gfp = GFP_KERNEL;
2066        else
2067                gfp = GFP_NOWAIT;
2068
2069#if DEBUG
2070
2071        /*
2072         * Both debugging options require word-alignment which is calculated
2073         * into align above.
2074         */
2075        if (flags & SLAB_RED_ZONE) {
2076                /* add space for red zone words */
2077                cachep->obj_offset += sizeof(unsigned long long);
2078                size += 2 * sizeof(unsigned long long);
2079        }
2080        if (flags & SLAB_STORE_USER) {
2081                /* user store requires one word storage behind the end of
2082                 * the real object. But if the second red zone needs to be
2083                 * aligned to 64 bits, we must allow that much space.
2084                 */
2085                if (flags & SLAB_RED_ZONE)
2086                        size += REDZONE_ALIGN;
2087                else
2088                        size += BYTES_PER_WORD;
2089        }
2090#endif
2091
2092        kasan_cache_create(cachep, &size, &flags);
2093
2094        size = ALIGN(size, cachep->align);
2095        /*
2096         * We should restrict the number of objects in a slab to implement
2097         * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2098         */
2099        if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2100                size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2101
2102#if DEBUG
2103        /*
2104         * To activate debug pagealloc, off-slab management is necessary
2105         * requirement. In early phase of initialization, small sized slab
2106         * doesn't get initialized so it would not be possible. So, we need
2107         * to check size >= 256. It guarantees that all necessary small
2108         * sized slab is initialized in current slab initialization sequence.
2109         */
2110        if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2111                size >= 256 && cachep->object_size > cache_line_size()) {
2112                if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2113                        size_t tmp_size = ALIGN(size, PAGE_SIZE);
2114
2115                        if (set_off_slab_cache(cachep, tmp_size, flags)) {
2116                                flags |= CFLGS_OFF_SLAB;
2117                                cachep->obj_offset += tmp_size - size;
2118                                size = tmp_size;
2119                                goto done;
2120                        }
2121                }
2122        }
2123#endif
2124
2125        if (set_objfreelist_slab_cache(cachep, size, flags)) {
2126                flags |= CFLGS_OBJFREELIST_SLAB;
2127                goto done;
2128        }
2129
2130        if (set_off_slab_cache(cachep, size, flags)) {
2131                flags |= CFLGS_OFF_SLAB;
2132                goto done;
2133        }
2134
2135        if (set_on_slab_cache(cachep, size, flags))
2136                goto done;
2137
2138        return -E2BIG;
2139
2140done:
2141        cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2142        cachep->flags = flags;
2143        cachep->allocflags = __GFP_COMP;
2144        if (flags & SLAB_CACHE_DMA)
2145                cachep->allocflags |= GFP_DMA;
2146        cachep->size = size;
2147        cachep->reciprocal_buffer_size = reciprocal_value(size);
2148
2149#if DEBUG
2150        /*
2151         * If we're going to use the generic kernel_map_pages()
2152         * poisoning, then it's going to smash the contents of
2153         * the redzone and userword anyhow, so switch them off.
2154         */
2155        if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2156                (cachep->flags & SLAB_POISON) &&
2157                is_debug_pagealloc_cache(cachep))
2158                cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2159#endif
2160
2161        if (OFF_SLAB(cachep)) {
2162                cachep->freelist_cache =
2163                        kmalloc_slab(cachep->freelist_size, 0u);
2164        }
2165
2166        err = setup_cpu_cache(cachep, gfp);
2167        if (err) {
2168                __kmem_cache_release(cachep);
2169                return err;
2170        }
2171
2172        return 0;
2173}
2174
2175#if DEBUG
2176static void check_irq_off(void)
2177{
2178        BUG_ON(!irqs_disabled());
2179}
2180
2181static void check_irq_on(void)
2182{
2183        BUG_ON(irqs_disabled());
2184}
2185
2186static void check_mutex_acquired(void)
2187{
2188        BUG_ON(!mutex_is_locked(&slab_mutex));
2189}
2190
2191static void check_spinlock_acquired(struct kmem_cache *cachep)
2192{
2193#ifdef CONFIG_SMP
2194        check_irq_off();
2195        assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2196#endif
2197}
2198
2199static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2200{
2201#ifdef CONFIG_SMP
2202        check_irq_off();
2203        assert_spin_locked(&get_node(cachep, node)->list_lock);
2204#endif
2205}
2206
2207#else
2208#define check_irq_off() do { } while(0)
2209#define check_irq_on()  do { } while(0)
2210#define check_mutex_acquired()  do { } while(0)
2211#define check_spinlock_acquired(x) do { } while(0)
2212#define check_spinlock_acquired_node(x, y) do { } while(0)
2213#endif
2214
2215static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2216                                int node, bool free_all, struct list_head *list)
2217{
2218        int tofree;
2219
2220        if (!ac || !ac->avail)
2221                return;
2222
2223        tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2224        if (tofree > ac->avail)
2225                tofree = (ac->avail + 1) / 2;
2226
2227        free_block(cachep, ac->entry, tofree, node, list);
2228        ac->avail -= tofree;
2229        memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2230}
2231
2232static void do_drain(void *arg)
2233{
2234        struct kmem_cache *cachep = arg;
2235        struct array_cache *ac;
2236        int node = numa_mem_id();
2237        struct kmem_cache_node *n;
2238        LIST_HEAD(list);
2239
2240        check_irq_off();
2241        ac = cpu_cache_get(cachep);
2242        n = get_node(cachep, node);
2243        spin_lock(&n->list_lock);
2244        free_block(cachep, ac->entry, ac->avail, node, &list);
2245        spin_unlock(&n->list_lock);
2246        slabs_destroy(cachep, &list);
2247        ac->avail = 0;
2248}
2249
2250static void drain_cpu_caches(struct kmem_cache *cachep)
2251{
2252        struct kmem_cache_node *n;
2253        int node;
2254        LIST_HEAD(list);
2255
2256        on_each_cpu(do_drain, cachep, 1);
2257        check_irq_on();
2258        for_each_kmem_cache_node(cachep, node, n)
2259                if (n->alien)
2260                        drain_alien_cache(cachep, n->alien);
2261
2262        for_each_kmem_cache_node(cachep, node, n) {
2263                spin_lock_irq(&n->list_lock);
2264                drain_array_locked(cachep, n->shared, node, true, &list);
2265                spin_unlock_irq(&n->list_lock);
2266
2267                slabs_destroy(cachep, &list);
2268        }
2269}
2270
2271/*
2272 * Remove slabs from the list of free slabs.
2273 * Specify the number of slabs to drain in tofree.
2274 *
2275 * Returns the actual number of slabs released.
2276 */
2277static int drain_freelist(struct kmem_cache *cache,
2278                        struct kmem_cache_node *n, int tofree)
2279{
2280        struct list_head *p;
2281        int nr_freed;
2282        struct page *page;
2283
2284        nr_freed = 0;
2285        while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2286
2287                spin_lock_irq(&n->list_lock);
2288                p = n->slabs_free.prev;
2289                if (p == &n->slabs_free) {
2290                        spin_unlock_irq(&n->list_lock);
2291                        goto out;
2292                }
2293
2294                page = list_entry(p, struct page, lru);
2295                list_del(&page->lru);
2296                n->free_slabs--;
2297                n->total_slabs--;
2298                /*
2299                 * Safe to drop the lock. The slab is no longer linked
2300                 * to the cache.
2301                 */
2302                n->free_objects -= cache->num;
2303                spin_unlock_irq(&n->list_lock);
2304                slab_destroy(cache, page);
2305                nr_freed++;
2306        }
2307out:
2308        return nr_freed;
2309}
2310
2311int __kmem_cache_shrink(struct kmem_cache *cachep)
2312{
2313        int ret = 0;
2314        int node;
2315        struct kmem_cache_node *n;
2316
2317        drain_cpu_caches(cachep);
2318
2319        check_irq_on();
2320        for_each_kmem_cache_node(cachep, node, n) {
2321                drain_freelist(cachep, n, INT_MAX);
2322
2323                ret += !list_empty(&n->slabs_full) ||
2324                        !list_empty(&n->slabs_partial);
2325        }
2326        return (ret ? 1 : 0);
2327}
2328
2329#ifdef CONFIG_MEMCG
2330void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2331{
2332        __kmem_cache_shrink(cachep);
2333}
2334#endif
2335
2336int __kmem_cache_shutdown(struct kmem_cache *cachep)
2337{
2338        return __kmem_cache_shrink(cachep);
2339}
2340
2341void __kmem_cache_release(struct kmem_cache *cachep)
2342{
2343        int i;
2344        struct kmem_cache_node *n;
2345
2346        cache_random_seq_destroy(cachep);
2347
2348        free_percpu(cachep->cpu_cache);
2349
2350        /* NUMA: free the node structures */
2351        for_each_kmem_cache_node(cachep, i, n) {
2352                kfree(n->shared);
2353                free_alien_cache(n->alien);
2354                kfree(n);
2355                cachep->node[i] = NULL;
2356        }
2357}
2358
2359/*
2360 * Get the memory for a slab management obj.
2361 *
2362 * For a slab cache when the slab descriptor is off-slab, the
2363 * slab descriptor can't come from the same cache which is being created,
2364 * Because if it is the case, that means we defer the creation of
2365 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2366 * And we eventually call down to __kmem_cache_create(), which
2367 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2368 * This is a "chicken-and-egg" problem.
2369 *
2370 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2371 * which are all initialized during kmem_cache_init().
2372 */
2373static void *alloc_slabmgmt(struct kmem_cache *cachep,
2374                                   struct page *page, int colour_off,
2375                                   gfp_t local_flags, int nodeid)
2376{
2377        void *freelist;
2378        void *addr = page_address(page);
2379
2380        page->s_mem = addr + colour_off;
2381        page->active = 0;
2382
2383        if (OBJFREELIST_SLAB(cachep))
2384                freelist = NULL;
2385        else if (OFF_SLAB(cachep)) {
2386                /* Slab management obj is off-slab. */
2387                freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2388                                              local_flags, nodeid);
2389                if (!freelist)
2390                        return NULL;
2391        } else {
2392                /* We will use last bytes at the slab for freelist */
2393                freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2394                                cachep->freelist_size;
2395        }
2396
2397        return freelist;
2398}
2399
2400static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2401{
2402        return ((freelist_idx_t *)page->freelist)[idx];
2403}
2404
2405static inline void set_free_obj(struct page *page,
2406                                        unsigned int idx, freelist_idx_t val)
2407{
2408        ((freelist_idx_t *)(page->freelist))[idx] = val;
2409}
2410
2411static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2412{
2413#if DEBUG
2414        int i;
2415
2416        for (i = 0; i < cachep->num; i++) {
2417                void *objp = index_to_obj(cachep, page, i);
2418
2419                if (cachep->flags & SLAB_STORE_USER)
2420                        *dbg_userword(cachep, objp) = NULL;
2421
2422                if (cachep->flags & SLAB_RED_ZONE) {
2423                        *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2424                        *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2425                }
2426                /*
2427                 * Constructors are not allowed to allocate memory from the same
2428                 * cache which they are a constructor for.  Otherwise, deadlock.
2429                 * They must also be threaded.
2430                 */
2431                if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2432                        kasan_unpoison_object_data(cachep,
2433                                                   objp + obj_offset(cachep));
2434                        cachep->ctor(objp + obj_offset(cachep));
2435                        kasan_poison_object_data(
2436                                cachep, objp + obj_offset(cachep));
2437                }
2438
2439                if (cachep->flags & SLAB_RED_ZONE) {
2440                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2441                                slab_error(cachep, "constructor overwrote the end of an object");
2442                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2443                                slab_error(cachep, "constructor overwrote the start of an object");
2444                }
2445                /* need to poison the objs? */
2446                if (cachep->flags & SLAB_POISON) {
2447                        poison_obj(cachep, objp, POISON_FREE);
2448                        slab_kernel_map(cachep, objp, 0, 0);
2449                }
2450        }
2451#endif
2452}
2453
2454#ifdef CONFIG_SLAB_FREELIST_RANDOM
2455/* Hold information during a freelist initialization */
2456union freelist_init_state {
2457        struct {
2458                unsigned int pos;
2459                unsigned int *list;
2460                unsigned int count;
2461        };
2462        struct rnd_state rnd_state;
2463};
2464
2465/*
2466 * Initialize the state based on the randomization methode available.
2467 * return true if the pre-computed list is available, false otherwize.
2468 */
2469static bool freelist_state_initialize(union freelist_init_state *state,
2470                                struct kmem_cache *cachep,
2471                                unsigned int count)
2472{
2473        bool ret;
2474        unsigned int rand;
2475
2476        /* Use best entropy available to define a random shift */
2477        rand = get_random_int();
2478
2479        /* Use a random state if the pre-computed list is not available */
2480        if (!cachep->random_seq) {
2481                prandom_seed_state(&state->rnd_state, rand);
2482                ret = false;
2483        } else {
2484                state->list = cachep->random_seq;
2485                state->count = count;
2486                state->pos = rand % count;
2487                ret = true;
2488        }
2489        return ret;
2490}
2491
2492/* Get the next entry on the list and randomize it using a random shift */
2493static freelist_idx_t next_random_slot(union freelist_init_state *state)
2494{
2495        if (state->pos >= state->count)
2496                state->pos = 0;
2497        return state->list[state->pos++];
2498}
2499
2500/* Swap two freelist entries */
2501static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2502{
2503        swap(((freelist_idx_t *)page->freelist)[a],
2504                ((freelist_idx_t *)page->freelist)[b]);
2505}
2506
2507/*
2508 * Shuffle the freelist initialization state based on pre-computed lists.
2509 * return true if the list was successfully shuffled, false otherwise.
2510 */
2511static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2512{
2513        unsigned int objfreelist = 0, i, rand, count = cachep->num;
2514        union freelist_init_state state;
2515        bool precomputed;
2516
2517        if (count < 2)
2518                return false;
2519
2520        precomputed = freelist_state_initialize(&state, cachep, count);
2521
2522        /* Take a random entry as the objfreelist */
2523        if (OBJFREELIST_SLAB(cachep)) {
2524                if (!precomputed)
2525                        objfreelist = count - 1;
2526                else
2527                        objfreelist = next_random_slot(&state);
2528                page->freelist = index_to_obj(cachep, page, objfreelist) +
2529                                                obj_offset(cachep);
2530                count--;
2531        }
2532
2533        /*
2534         * On early boot, generate the list dynamically.
2535         * Later use a pre-computed list for speed.
2536         */
2537        if (!precomputed) {
2538                for (i = 0; i < count; i++)
2539                        set_free_obj(page, i, i);
2540
2541                /* Fisher-Yates shuffle */
2542                for (i = count - 1; i > 0; i--) {
2543                        rand = prandom_u32_state(&state.rnd_state);
2544                        rand %= (i + 1);
2545                        swap_free_obj(page, i, rand);
2546                }
2547        } else {
2548                for (i = 0; i < count; i++)
2549                        set_free_obj(page, i, next_random_slot(&state));
2550        }
2551
2552        if (OBJFREELIST_SLAB(cachep))
2553                set_free_obj(page, cachep->num - 1, objfreelist);
2554
2555        return true;
2556}
2557#else
2558static inline bool shuffle_freelist(struct kmem_cache *cachep,
2559                                struct page *page)
2560{
2561        return false;
2562}
2563#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2564
2565static void cache_init_objs(struct kmem_cache *cachep,
2566                            struct page *page)
2567{
2568        int i;
2569        void *objp;
2570        bool shuffled;
2571
2572        cache_init_objs_debug(cachep, page);
2573
2574        /* Try to randomize the freelist if enabled */
2575        shuffled = shuffle_freelist(cachep, page);
2576
2577        if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2578                page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2579                                                obj_offset(cachep);
2580        }
2581
2582        for (i = 0; i < cachep->num; i++) {
2583                objp = index_to_obj(cachep, page, i);
2584                kasan_init_slab_obj(cachep, objp);
2585
2586                /* constructor could break poison info */
2587                if (DEBUG == 0 && cachep->ctor) {
2588                        kasan_unpoison_object_data(cachep, objp);
2589                        cachep->ctor(objp);
2590                        kasan_poison_object_data(cachep, objp);
2591                }
2592
2593                if (!shuffled)
2594                        set_free_obj(page, i, i);
2595        }
2596}
2597
2598static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2599{
2600        void *objp;
2601
2602        objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2603        page->active++;
2604
2605#if DEBUG
2606        if (cachep->flags & SLAB_STORE_USER)
2607                set_store_user_dirty(cachep);
2608#endif
2609
2610        return objp;
2611}
2612
2613static void slab_put_obj(struct kmem_cache *cachep,
2614                        struct page *page, void *objp)
2615{
2616        unsigned int objnr = obj_to_index(cachep, page, objp);
2617#if DEBUG
2618        unsigned int i;
2619
2620        /* Verify double free bug */
2621        for (i = page->active; i < cachep->num; i++) {
2622                if (get_free_obj(page, i) == objnr) {
2623                        pr_err("slab: double free detected in cache '%s', objp %p\n",
2624                               cachep->name, objp);
2625                        BUG();
2626                }
2627        }
2628#endif
2629        page->active--;
2630        if (!page->freelist)
2631                page->freelist = objp + obj_offset(cachep);
2632
2633        set_free_obj(page, page->active, objnr);
2634}
2635
2636/*
2637 * Map pages beginning at addr to the given cache and slab. This is required
2638 * for the slab allocator to be able to lookup the cache and slab of a
2639 * virtual address for kfree, ksize, and slab debugging.
2640 */
2641static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2642                           void *freelist)
2643{
2644        page->slab_cache = cache;
2645        page->freelist = freelist;
2646}
2647
2648/*
2649 * Grow (by 1) the number of slabs within a cache.  This is called by
2650 * kmem_cache_alloc() when there are no active objs left in a cache.
2651 */
2652static struct page *cache_grow_begin(struct kmem_cache *cachep,
2653                                gfp_t flags, int nodeid)
2654{
2655        void *freelist;
2656        size_t offset;
2657        gfp_t local_flags;
2658        int page_node;
2659        struct kmem_cache_node *n;
2660        struct page *page;
2661
2662        /*
2663         * Be lazy and only check for valid flags here,  keeping it out of the
2664         * critical path in kmem_cache_alloc().
2665         */
2666        if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2667                gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2668                flags &= ~GFP_SLAB_BUG_MASK;
2669                pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2670                                invalid_mask, &invalid_mask, flags, &flags);
2671                dump_stack();
2672        }
2673        local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2674
2675        check_irq_off();
2676        if (gfpflags_allow_blocking(local_flags))
2677                local_irq_enable();
2678
2679        /*
2680         * Get mem for the objs.  Attempt to allocate a physical page from
2681         * 'nodeid'.
2682         */
2683        page = kmem_getpages(cachep, local_flags, nodeid);
2684        if (!page)
2685                goto failed;
2686
2687        page_node = page_to_nid(page);
2688        n = get_node(cachep, page_node);
2689
2690        /* Get colour for the slab, and cal the next value. */
2691        n->colour_next++;
2692        if (n->colour_next >= cachep->colour)
2693                n->colour_next = 0;
2694
2695        offset = n->colour_next;
2696        if (offset >= cachep->colour)
2697                offset = 0;
2698
2699        offset *= cachep->colour_off;
2700
2701        /* Get slab management. */
2702        freelist = alloc_slabmgmt(cachep, page, offset,
2703                        local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2704        if (OFF_SLAB(cachep) && !freelist)
2705                goto opps1;
2706
2707        slab_map_pages(cachep, page, freelist);
2708
2709        kasan_poison_slab(page);
2710        cache_init_objs(cachep, page);
2711
2712        if (gfpflags_allow_blocking(local_flags))
2713                local_irq_disable();
2714
2715        return page;
2716
2717opps1:
2718        kmem_freepages(cachep, page);
2719failed:
2720        if (gfpflags_allow_blocking(local_flags))
2721                local_irq_disable();
2722        return NULL;
2723}
2724
2725static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2726{
2727        struct kmem_cache_node *n;
2728        void *list = NULL;
2729
2730        check_irq_off();
2731
2732        if (!page)
2733                return;
2734
2735        INIT_LIST_HEAD(&page->lru);
2736        n = get_node(cachep, page_to_nid(page));
2737
2738        spin_lock(&n->list_lock);
2739        n->total_slabs++;
2740        if (!page->active) {
2741                list_add_tail(&page->lru, &(n->slabs_free));
2742                n->free_slabs++;
2743        } else
2744                fixup_slab_list(cachep, n, page, &list);
2745
2746        STATS_INC_GROWN(cachep);
2747        n->free_objects += cachep->num - page->active;
2748        spin_unlock(&n->list_lock);
2749
2750        fixup_objfreelist_debug(cachep, &list);
2751}
2752
2753#if DEBUG
2754
2755/*
2756 * Perform extra freeing checks:
2757 * - detect bad pointers.
2758 * - POISON/RED_ZONE checking
2759 */
2760static void kfree_debugcheck(const void *objp)
2761{
2762        if (!virt_addr_valid(objp)) {
2763                pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2764                       (unsigned long)objp);
2765                BUG();
2766        }
2767}
2768
2769static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2770{
2771        unsigned long long redzone1, redzone2;
2772
2773        redzone1 = *dbg_redzone1(cache, obj);
2774        redzone2 = *dbg_redzone2(cache, obj);
2775
2776        /*
2777         * Redzone is ok.
2778         */
2779        if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2780                return;
2781
2782        if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2783                slab_error(cache, "double free detected");
2784        else
2785                slab_error(cache, "memory outside object was overwritten");
2786
2787        pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2788               obj, redzone1, redzone2);
2789}
2790
2791static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2792                                   unsigned long caller)
2793{
2794        unsigned int objnr;
2795        struct page *page;
2796
2797        BUG_ON(virt_to_cache(objp) != cachep);
2798
2799        objp -= obj_offset(cachep);
2800        kfree_debugcheck(objp);
2801        page = virt_to_head_page(objp);
2802
2803        if (cachep->flags & SLAB_RED_ZONE) {
2804                verify_redzone_free(cachep, objp);
2805                *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2806                *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2807        }
2808        if (cachep->flags & SLAB_STORE_USER) {
2809                set_store_user_dirty(cachep);
2810                *dbg_userword(cachep, objp) = (void *)caller;
2811        }
2812
2813        objnr = obj_to_index(cachep, page, objp);
2814
2815        BUG_ON(objnr >= cachep->num);
2816        BUG_ON(objp != index_to_obj(cachep, page, objnr));
2817
2818        if (cachep->flags & SLAB_POISON) {
2819                poison_obj(cachep, objp, POISON_FREE);
2820                slab_kernel_map(cachep, objp, 0, caller);
2821        }
2822        return objp;
2823}
2824
2825#else
2826#define kfree_debugcheck(x) do { } while(0)
2827#define cache_free_debugcheck(x,objp,z) (objp)
2828#endif
2829
2830static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2831                                                void **list)
2832{
2833#if DEBUG
2834        void *next = *list;
2835        void *objp;
2836
2837        while (next) {
2838                objp = next - obj_offset(cachep);
2839                next = *(void **)next;
2840                poison_obj(cachep, objp, POISON_FREE);
2841        }
2842#endif
2843}
2844
2845static inline void fixup_slab_list(struct kmem_cache *cachep,
2846                                struct kmem_cache_node *n, struct page *page,
2847                                void **list)
2848{
2849        /* move slabp to correct slabp list: */
2850        list_del(&page->lru);
2851        if (page->active == cachep->num) {
2852                list_add(&page->lru, &n->slabs_full);
2853                if (OBJFREELIST_SLAB(cachep)) {
2854#if DEBUG
2855                        /* Poisoning will be done without holding the lock */
2856                        if (cachep->flags & SLAB_POISON) {
2857                                void **objp = page->freelist;
2858
2859                                *objp = *list;
2860                                *list = objp;
2861                        }
2862#endif
2863                        page->freelist = NULL;
2864                }
2865        } else
2866                list_add(&page->lru, &n->slabs_partial);
2867}
2868
2869/* Try to find non-pfmemalloc slab if needed */
2870static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2871                                        struct page *page, bool pfmemalloc)
2872{
2873        if (!page)
2874                return NULL;
2875
2876        if (pfmemalloc)
2877                return page;
2878
2879        if (!PageSlabPfmemalloc(page))
2880                return page;
2881
2882        /* No need to keep pfmemalloc slab if we have enough free objects */
2883        if (n->free_objects > n->free_limit) {
2884                ClearPageSlabPfmemalloc(page);
2885                return page;
2886        }
2887
2888        /* Move pfmemalloc slab to the end of list to speed up next search */
2889        list_del(&page->lru);
2890        if (!page->active) {
2891                list_add_tail(&page->lru, &n->slabs_free);
2892                n->free_slabs++;
2893        } else
2894                list_add_tail(&page->lru, &n->slabs_partial);
2895
2896        list_for_each_entry(page, &n->slabs_partial, lru) {
2897                if (!PageSlabPfmemalloc(page))
2898                        return page;
2899        }
2900
2901        n->free_touched = 1;
2902        list_for_each_entry(page, &n->slabs_free, lru) {
2903                if (!PageSlabPfmemalloc(page)) {
2904                        n->free_slabs--;
2905                        return page;
2906                }
2907        }
2908
2909        return NULL;
2910}
2911
2912static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2913{
2914        struct page *page;
2915
2916        assert_spin_locked(&n->list_lock);
2917        page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2918        if (!page) {
2919                n->free_touched = 1;
2920                page = list_first_entry_or_null(&n->slabs_free, struct page,
2921                                                lru);
2922                if (page)
2923                        n->free_slabs--;
2924        }
2925
2926        if (sk_memalloc_socks())
2927                page = get_valid_first_slab(n, page, pfmemalloc);
2928
2929        return page;
2930}
2931
2932static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2933                                struct kmem_cache_node *n, gfp_t flags)
2934{
2935        struct page *page;
2936        void *obj;
2937        void *list = NULL;
2938
2939        if (!gfp_pfmemalloc_allowed(flags))
2940                return NULL;
2941
2942        spin_lock(&n->list_lock);
2943        page = get_first_slab(n, true);
2944        if (!page) {
2945                spin_unlock(&n->list_lock);
2946                return NULL;
2947        }
2948
2949        obj = slab_get_obj(cachep, page);
2950        n->free_objects--;
2951
2952        fixup_slab_list(cachep, n, page, &list);
2953
2954        spin_unlock(&n->list_lock);
2955        fixup_objfreelist_debug(cachep, &list);
2956
2957        return obj;
2958}
2959
2960/*
2961 * Slab list should be fixed up by fixup_slab_list() for existing slab
2962 * or cache_grow_end() for new slab
2963 */
2964static __always_inline int alloc_block(struct kmem_cache *cachep,
2965                struct array_cache *ac, struct page *page, int batchcount)
2966{
2967        /*
2968         * There must be at least one object available for
2969         * allocation.
2970         */
2971        BUG_ON(page->active >= cachep->num);
2972
2973        while (page->active < cachep->num && batchcount--) {
2974                STATS_INC_ALLOCED(cachep);
2975                STATS_INC_ACTIVE(cachep);
2976                STATS_SET_HIGH(cachep);
2977
2978                ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2979        }
2980
2981        return batchcount;
2982}
2983
2984static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2985{
2986        int batchcount;
2987        struct kmem_cache_node *n;
2988        struct array_cache *ac, *shared;
2989        int node;
2990        void *list = NULL;
2991        struct page *page;
2992
2993        check_irq_off();
2994        node = numa_mem_id();
2995
2996        ac = cpu_cache_get(cachep);
2997        batchcount = ac->batchcount;
2998        if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2999                /*
3000                 * If there was little recent activity on this cache, then
3001                 * perform only a partial refill.  Otherwise we could generate
3002                 * refill bouncing.
3003                 */
3004                batchcount = BATCHREFILL_LIMIT;
3005        }
3006        n = get_node(cachep, node);
3007
3008        BUG_ON(ac->avail > 0 || !n);
3009        shared = READ_ONCE(n->shared);
3010        if (!n->free_objects && (!shared || !shared->avail))
3011                goto direct_grow;
3012
3013        spin_lock(&n->list_lock);
3014        shared = READ_ONCE(n->shared);
3015
3016        /* See if we can refill from the shared array */
3017        if (shared && transfer_objects(ac, shared, batchcount)) {
3018                shared->touched = 1;
3019                goto alloc_done;
3020        }
3021
3022        while (batchcount > 0) {
3023                /* Get slab alloc is to come from. */
3024                page = get_first_slab(n, false);
3025                if (!page)
3026                        goto must_grow;
3027
3028                check_spinlock_acquired(cachep);
3029
3030                batchcount = alloc_block(cachep, ac, page, batchcount);
3031                fixup_slab_list(cachep, n, page, &list);
3032        }
3033
3034must_grow:
3035        n->free_objects -= ac->avail;
3036alloc_done:
3037        spin_unlock(&n->list_lock);
3038        fixup_objfreelist_debug(cachep, &list);
3039
3040direct_grow:
3041        if (unlikely(!ac->avail)) {
3042                /* Check if we can use obj in pfmemalloc slab */
3043                if (sk_memalloc_socks()) {
3044                        void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3045
3046                        if (obj)
3047                                return obj;
3048                }
3049
3050                page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3051
3052                /*
3053                 * cache_grow_begin() can reenable interrupts,
3054                 * then ac could change.
3055                 */
3056                ac = cpu_cache_get(cachep);
3057                if (!ac->avail && page)
3058                        alloc_block(cachep, ac, page, batchcount);
3059                cache_grow_end(cachep, page);
3060
3061                if (!ac->avail)
3062                        return NULL;
3063        }
3064        ac->touched = 1;
3065
3066        return ac->entry[--ac->avail];
3067}
3068
3069static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3070                                                gfp_t flags)
3071{
3072        might_sleep_if(gfpflags_allow_blocking(flags));
3073}
3074
3075#if DEBUG
3076static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3077                                gfp_t flags, void *objp, unsigned long caller)
3078{
3079        if (!objp)
3080                return objp;
3081        if (cachep->flags & SLAB_POISON) {
3082                check_poison_obj(cachep, objp);
3083                slab_kernel_map(cachep, objp, 1, 0);
3084                poison_obj(cachep, objp, POISON_INUSE);
3085        }
3086        if (cachep->flags & SLAB_STORE_USER)
3087                *dbg_userword(cachep, objp) = (void *)caller;
3088
3089        if (cachep->flags & SLAB_RED_ZONE) {
3090                if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3091                                *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3092                        slab_error(cachep, "double free, or memory outside object was overwritten");
3093                        pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3094                               objp, *dbg_redzone1(cachep, objp),
3095                               *dbg_redzone2(cachep, objp));
3096                }
3097                *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3098                *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3099        }
3100
3101        objp += obj_offset(cachep);
3102        if (cachep->ctor && cachep->flags & SLAB_POISON)
3103                cachep->ctor(objp);
3104        if (ARCH_SLAB_MINALIGN &&
3105            ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3106                pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3107                       objp, (int)ARCH_SLAB_MINALIGN);
3108        }
3109        return objp;
3110}
3111#else
3112#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3113#endif
3114
3115static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3116{
3117        void *objp;
3118        struct array_cache *ac;
3119
3120        check_irq_off();
3121
3122        ac = cpu_cache_get(cachep);
3123        if (likely(ac->avail)) {
3124                ac->touched = 1;
3125                objp = ac->entry[--ac->avail];
3126
3127                STATS_INC_ALLOCHIT(cachep);
3128                goto out;
3129        }
3130
3131        STATS_INC_ALLOCMISS(cachep);
3132        objp = cache_alloc_refill(cachep, flags);
3133        /*
3134         * the 'ac' may be updated by cache_alloc_refill(),
3135         * and kmemleak_erase() requires its correct value.
3136         */
3137        ac = cpu_cache_get(cachep);
3138
3139out:
3140        /*
3141         * To avoid a false negative, if an object that is in one of the
3142         * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3143         * treat the array pointers as a reference to the object.
3144         */
3145        if (objp)
3146                kmemleak_erase(&ac->entry[ac->avail]);
3147        return objp;
3148}
3149
3150#ifdef CONFIG_NUMA
3151/*
3152 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3153 *
3154 * If we are in_interrupt, then process context, including cpusets and
3155 * mempolicy, may not apply and should not be used for allocation policy.
3156 */
3157static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3158{
3159        int nid_alloc, nid_here;
3160
3161        if (in_interrupt() || (flags & __GFP_THISNODE))
3162                return NULL;
3163        nid_alloc = nid_here = numa_mem_id();
3164        if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3165                nid_alloc = cpuset_slab_spread_node();
3166        else if (current->mempolicy)
3167                nid_alloc = mempolicy_slab_node();
3168        if (nid_alloc != nid_here)
3169                return ____cache_alloc_node(cachep, flags, nid_alloc);
3170        return NULL;
3171}
3172
3173/*
3174 * Fallback function if there was no memory available and no objects on a
3175 * certain node and fall back is permitted. First we scan all the
3176 * available node for available objects. If that fails then we
3177 * perform an allocation without specifying a node. This allows the page
3178 * allocator to do its reclaim / fallback magic. We then insert the
3179 * slab into the proper nodelist and then allocate from it.
3180 */
3181static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3182{
3183        struct zonelist *zonelist;
3184        struct zoneref *z;
3185        struct zone *zone;
3186        enum zone_type high_zoneidx = gfp_zone(flags);
3187        void *obj = NULL;
3188        struct page *page;
3189        int nid;
3190        unsigned int cpuset_mems_cookie;
3191
3192        if (flags & __GFP_THISNODE)
3193                return NULL;
3194
3195retry_cpuset:
3196        cpuset_mems_cookie = read_mems_allowed_begin();
3197        zonelist = node_zonelist(mempolicy_slab_node(), flags);
3198
3199retry:
3200        /*
3201         * Look through allowed nodes for objects available
3202         * from existing per node queues.
3203         */
3204        for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3205                nid = zone_to_nid(zone);
3206
3207                if (cpuset_zone_allowed(zone, flags) &&
3208                        get_node(cache, nid) &&
3209                        get_node(cache, nid)->free_objects) {
3210                                obj = ____cache_alloc_node(cache,
3211                                        gfp_exact_node(flags), nid);
3212                                if (obj)
3213                                        break;
3214                }
3215        }
3216
3217        if (!obj) {
3218                /*
3219                 * This allocation will be performed within the constraints
3220                 * of the current cpuset / memory policy requirements.
3221                 * We may trigger various forms of reclaim on the allowed
3222                 * set and go into memory reserves if necessary.
3223                 */
3224                page = cache_grow_begin(cache, flags, numa_mem_id());
3225                cache_grow_end(cache, page);
3226                if (page) {
3227                        nid = page_to_nid(page);
3228                        obj = ____cache_alloc_node(cache,
3229                                gfp_exact_node(flags), nid);
3230
3231                        /*
3232                         * Another processor may allocate the objects in
3233                         * the slab since we are not holding any locks.
3234                         */
3235                        if (!obj)
3236                                goto retry;
3237                }
3238        }
3239
3240        if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3241                goto retry_cpuset;
3242        return obj;
3243}
3244
3245/*
3246 * A interface to enable slab creation on nodeid
3247 */
3248static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3249                                int nodeid)
3250{
3251        struct page *page;
3252        struct kmem_cache_node *n;
3253        void *obj = NULL;
3254        void *list = NULL;
3255
3256        VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3257        n = get_node(cachep, nodeid);
3258        BUG_ON(!n);
3259
3260        check_irq_off();
3261        spin_lock(&n->list_lock);
3262        page = get_first_slab(n, false);
3263        if (!page)
3264                goto must_grow;
3265
3266        check_spinlock_acquired_node(cachep, nodeid);
3267
3268        STATS_INC_NODEALLOCS(cachep);
3269        STATS_INC_ACTIVE(cachep);
3270        STATS_SET_HIGH(cachep);
3271
3272        BUG_ON(page->active == cachep->num);
3273
3274        obj = slab_get_obj(cachep, page);
3275        n->free_objects--;
3276
3277        fixup_slab_list(cachep, n, page, &list);
3278
3279        spin_unlock(&n->list_lock);
3280        fixup_objfreelist_debug(cachep, &list);
3281        return obj;
3282
3283must_grow:
3284        spin_unlock(&n->list_lock);
3285        page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3286        if (page) {
3287                /* This slab isn't counted yet so don't update free_objects */
3288                obj = slab_get_obj(cachep, page);
3289        }
3290        cache_grow_end(cachep, page);
3291
3292        return obj ? obj : fallback_alloc(cachep, flags);
3293}
3294
3295static __always_inline void *
3296slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3297                   unsigned long caller)
3298{
3299        unsigned long save_flags;
3300        void *ptr;
3301        int slab_node = numa_mem_id();
3302
3303        flags &= gfp_allowed_mask;
3304        cachep = slab_pre_alloc_hook(cachep, flags);
3305        if (unlikely(!cachep))
3306                return NULL;
3307
3308        cache_alloc_debugcheck_before(cachep, flags);
3309        local_irq_save(save_flags);
3310
3311        if (nodeid == NUMA_NO_NODE)
3312                nodeid = slab_node;
3313
3314        if (unlikely(!get_node(cachep, nodeid))) {
3315                /* Node not bootstrapped yet */
3316                ptr = fallback_alloc(cachep, flags);
3317                goto out;
3318        }
3319
3320        if (nodeid == slab_node) {
3321                /*
3322                 * Use the locally cached objects if possible.
3323                 * However ____cache_alloc does not allow fallback
3324                 * to other nodes. It may fail while we still have
3325                 * objects on other nodes available.
3326                 */
3327                ptr = ____cache_alloc(cachep, flags);
3328                if (ptr)
3329                        goto out;
3330        }
3331        /* ___cache_alloc_node can fall back to other nodes */
3332        ptr = ____cache_alloc_node(cachep, flags, nodeid);
3333  out:
3334        local_irq_restore(save_flags);
3335        ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3336
3337        if (unlikely(flags & __GFP_ZERO) && ptr)
3338                memset(ptr, 0, cachep->object_size);
3339
3340        slab_post_alloc_hook(cachep, flags, 1, &ptr);
3341        return ptr;
3342}
3343
3344static __always_inline void *
3345__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3346{
3347        void *objp;
3348
3349        if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3350                objp = alternate_node_alloc(cache, flags);
3351                if (objp)
3352                        goto out;
3353        }
3354        objp = ____cache_alloc(cache, flags);
3355
3356        /*
3357         * We may just have run out of memory on the local node.
3358         * ____cache_alloc_node() knows how to locate memory on other nodes
3359         */
3360        if (!objp)
3361                objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3362
3363  out:
3364        return objp;
3365}
3366#else
3367
3368static __always_inline void *
3369__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3370{
3371        return ____cache_alloc(cachep, flags);
3372}
3373
3374#endif /* CONFIG_NUMA */
3375
3376static __always_inline void *
3377slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3378{
3379        unsigned long save_flags;
3380        void *objp;
3381
3382        flags &= gfp_allowed_mask;
3383        cachep = slab_pre_alloc_hook(cachep, flags);
3384        if (unlikely(!cachep))
3385                return NULL;
3386
3387        cache_alloc_debugcheck_before(cachep, flags);
3388        local_irq_save(save_flags);
3389        objp = __do_cache_alloc(cachep, flags);
3390        local_irq_restore(save_flags);
3391        objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3392        prefetchw(objp);
3393
3394        if (unlikely(flags & __GFP_ZERO) && objp)
3395                memset(objp, 0, cachep->object_size);
3396
3397        slab_post_alloc_hook(cachep, flags, 1, &objp);
3398        return objp;
3399}
3400
3401/*
3402 * Caller needs to acquire correct kmem_cache_node's list_lock
3403 * @list: List of detached free slabs should be freed by caller
3404 */
3405static void free_block(struct kmem_cache *cachep, void **objpp,
3406                        int nr_objects, int node, struct list_head *list)
3407{
3408        int i;
3409        struct kmem_cache_node *n = get_node(cachep, node);
3410        struct page *page;
3411
3412        n->free_objects += nr_objects;
3413
3414        for (i = 0; i < nr_objects; i++) {
3415                void *objp;
3416                struct page *page;
3417
3418                objp = objpp[i];
3419
3420                page = virt_to_head_page(objp);
3421                list_del(&page->lru);
3422                check_spinlock_acquired_node(cachep, node);
3423                slab_put_obj(cachep, page, objp);
3424                STATS_DEC_ACTIVE(cachep);
3425
3426                /* fixup slab chains */
3427                if (page->active == 0) {
3428                        list_add(&page->lru, &n->slabs_free);
3429                        n->free_slabs++;
3430                } else {
3431                        /* Unconditionally move a slab to the end of the
3432                         * partial list on free - maximum time for the
3433                         * other objects to be freed, too.
3434                         */
3435                        list_add_tail(&page->lru, &n->slabs_partial);
3436                }
3437        }
3438
3439        while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3440                n->free_objects -= cachep->num;
3441
3442                page = list_last_entry(&n->slabs_free, struct page, lru);
3443                list_move(&page->lru, list);
3444                n->free_slabs--;
3445                n->total_slabs--;
3446        }
3447}
3448
3449static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3450{
3451        int batchcount;
3452        struct kmem_cache_node *n;
3453        int node = numa_mem_id();
3454        LIST_HEAD(list);
3455
3456        batchcount = ac->batchcount;
3457
3458        check_irq_off();
3459        n = get_node(cachep, node);
3460        spin_lock(&n->list_lock);
3461        if (n->shared) {
3462                struct array_cache *shared_array = n->shared;
3463                int max = shared_array->limit - shared_array->avail;
3464                if (max) {
3465                        if (batchcount > max)
3466                                batchcount = max;
3467                        memcpy(&(shared_array->entry[shared_array->avail]),
3468                               ac->entry, sizeof(void *) * batchcount);
3469                        shared_array->avail += batchcount;
3470                        goto free_done;
3471                }
3472        }
3473
3474        free_block(cachep, ac->entry, batchcount, node, &list);
3475free_done:
3476#if STATS
3477        {
3478                int i = 0;
3479                struct page *page;
3480
3481                list_for_each_entry(page, &n->slabs_free, lru) {
3482                        BUG_ON(page->active);
3483
3484                        i++;
3485                }
3486                STATS_SET_FREEABLE(cachep, i);
3487        }
3488#endif
3489        spin_unlock(&n->list_lock);
3490        slabs_destroy(cachep, &list);
3491        ac->avail -= batchcount;
3492        memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3493}
3494
3495/*
3496 * Release an obj back to its cache. If the obj has a constructed state, it must
3497 * be in this state _before_ it is released.  Called with disabled ints.
3498 */
3499static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3500                                unsigned long caller)
3501{
3502        /* Put the object into the quarantine, don't touch it for now. */
3503        if (kasan_slab_free(cachep, objp))
3504                return;
3505
3506        ___cache_free(cachep, objp, caller);
3507}
3508
3509void ___cache_free(struct kmem_cache *cachep, void *objp,
3510                unsigned long caller)
3511{
3512        struct array_cache *ac = cpu_cache_get(cachep);
3513
3514        check_irq_off();
3515        kmemleak_free_recursive(objp, cachep->flags);
3516        objp = cache_free_debugcheck(cachep, objp, caller);
3517
3518        kmemcheck_slab_free(cachep, objp, cachep->object_size);
3519
3520        /*
3521         * Skip calling cache_free_alien() when the platform is not numa.
3522         * This will avoid cache misses that happen while accessing slabp (which
3523         * is per page memory  reference) to get nodeid. Instead use a global
3524         * variable to skip the call, which is mostly likely to be present in
3525         * the cache.
3526         */
3527        if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3528                return;
3529
3530        if (ac->avail < ac->limit) {
3531                STATS_INC_FREEHIT(cachep);
3532        } else {
3533                STATS_INC_FREEMISS(cachep);
3534                cache_flusharray(cachep, ac);
3535        }
3536
3537        if (sk_memalloc_socks()) {
3538                struct page *page = virt_to_head_page(objp);
3539
3540                if (unlikely(PageSlabPfmemalloc(page))) {
3541                        cache_free_pfmemalloc(cachep, page, objp);
3542                        return;
3543                }
3544        }
3545
3546        ac->entry[ac->avail++] = objp;
3547}
3548
3549/**
3550 * kmem_cache_alloc - Allocate an object
3551 * @cachep: The cache to allocate from.
3552 * @flags: See kmalloc().
3553 *
3554 * Allocate an object from this cache.  The flags are only relevant
3555 * if the cache has no available objects.
3556 */
3557void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3558{
3559        void *ret = slab_alloc(cachep, flags, _RET_IP_);
3560
3561        kasan_slab_alloc(cachep, ret, flags);
3562        trace_kmem_cache_alloc(_RET_IP_, ret,
3563                               cachep->object_size, cachep->size, flags);
3564
3565        return ret;
3566}
3567EXPORT_SYMBOL(kmem_cache_alloc);
3568
3569static __always_inline void
3570cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3571                                  size_t size, void **p, unsigned long caller)
3572{
3573        size_t i;
3574
3575        for (i = 0; i < size; i++)
3576                p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3577}
3578
3579int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3580                          void **p)
3581{
3582        size_t i;
3583
3584        s = slab_pre_alloc_hook(s, flags);
3585        if (!s)
3586                return 0;
3587
3588        cache_alloc_debugcheck_before(s, flags);
3589
3590        local_irq_disable();
3591        for (i = 0; i < size; i++) {
3592                void *objp = __do_cache_alloc(s, flags);
3593
3594                if (unlikely(!objp))
3595                        goto error;
3596                p[i] = objp;
3597        }
3598        local_irq_enable();
3599
3600        cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3601
3602        /* Clear memory outside IRQ disabled section */
3603        if (unlikely(flags & __GFP_ZERO))
3604                for (i = 0; i < size; i++)
3605                        memset(p[i], 0, s->object_size);
3606
3607        slab_post_alloc_hook(s, flags, size, p);
3608        /* FIXME: Trace call missing. Christoph would like a bulk variant */
3609        return size;
3610error:
3611        local_irq_enable();
3612        cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3613        slab_post_alloc_hook(s, flags, i, p);
3614        __kmem_cache_free_bulk(s, i, p);
3615        return 0;
3616}
3617EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3618
3619#ifdef CONFIG_TRACING
3620void *
3621kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3622{
3623        void *ret;
3624
3625        ret = slab_alloc(cachep, flags, _RET_IP_);
3626
3627        kasan_kmalloc(cachep, ret, size, flags);
3628        trace_kmalloc(_RET_IP_, ret,
3629                      size, cachep->size, flags);
3630        return ret;
3631}
3632EXPORT_SYMBOL(kmem_cache_alloc_trace);
3633#endif
3634
3635#ifdef CONFIG_NUMA
3636/**
3637 * kmem_cache_alloc_node - Allocate an object on the specified node
3638 * @cachep: The cache to allocate from.
3639 * @flags: See kmalloc().
3640 * @nodeid: node number of the target node.
3641 *
3642 * Identical to kmem_cache_alloc but it will allocate memory on the given
3643 * node, which can improve the performance for cpu bound structures.
3644 *
3645 * Fallback to other node is possible if __GFP_THISNODE is not set.
3646 */
3647void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3648{
3649        void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3650
3651        kasan_slab_alloc(cachep, ret, flags);
3652        trace_kmem_cache_alloc_node(_RET_IP_, ret,
3653                                    cachep->object_size, cachep->size,
3654                                    flags, nodeid);
3655
3656        return ret;
3657}
3658EXPORT_SYMBOL(kmem_cache_alloc_node);
3659
3660#ifdef CONFIG_TRACING
3661void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3662                                  gfp_t flags,
3663                                  int nodeid,
3664                                  size_t size)
3665{
3666        void *ret;
3667
3668        ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3669
3670        kasan_kmalloc(cachep, ret, size, flags);
3671        trace_kmalloc_node(_RET_IP_, ret,
3672                           size, cachep->size,
3673                           flags, nodeid);
3674        return ret;
3675}
3676EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3677#endif
3678
3679static __always_inline void *
3680__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3681{
3682        struct kmem_cache *cachep;
3683        void *ret;
3684
3685        cachep = kmalloc_slab(size, flags);
3686        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3687                return cachep;
3688        ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3689        kasan_kmalloc(cachep, ret, size, flags);
3690
3691        return ret;
3692}
3693
3694void *__kmalloc_node(size_t size, gfp_t flags, int node)
3695{
3696        return __do_kmalloc_node(size, flags, node, _RET_IP_);
3697}
3698EXPORT_SYMBOL(__kmalloc_node);
3699
3700void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3701                int node, unsigned long caller)
3702{
3703        return __do_kmalloc_node(size, flags, node, caller);
3704}
3705EXPORT_SYMBOL(__kmalloc_node_track_caller);
3706#endif /* CONFIG_NUMA */
3707
3708/**
3709 * __do_kmalloc - allocate memory
3710 * @size: how many bytes of memory are required.
3711 * @flags: the type of memory to allocate (see kmalloc).
3712 * @caller: function caller for debug tracking of the caller
3713 */
3714static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3715                                          unsigned long caller)
3716{
3717        struct kmem_cache *cachep;
3718        void *ret;
3719
3720        cachep = kmalloc_slab(size, flags);
3721        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3722                return cachep;
3723        ret = slab_alloc(cachep, flags, caller);
3724
3725        kasan_kmalloc(cachep, ret, size, flags);
3726        trace_kmalloc(caller, ret,
3727                      size, cachep->size, flags);
3728
3729        return ret;
3730}
3731
3732void *__kmalloc(size_t size, gfp_t flags)
3733{
3734        return __do_kmalloc(size, flags, _RET_IP_);
3735}
3736EXPORT_SYMBOL(__kmalloc);
3737
3738void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3739{
3740        return __do_kmalloc(size, flags, caller);
3741}
3742EXPORT_SYMBOL(__kmalloc_track_caller);
3743
3744/**
3745 * kmem_cache_free - Deallocate an object
3746 * @cachep: The cache the allocation was from.
3747 * @objp: The previously allocated object.
3748 *
3749 * Free an object which was previously allocated from this
3750 * cache.
3751 */
3752void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3753{
3754        unsigned long flags;
3755        cachep = cache_from_obj(cachep, objp);
3756        if (!cachep)
3757                return;
3758
3759        local_irq_save(flags);
3760        debug_check_no_locks_freed(objp, cachep->object_size);
3761        if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3762                debug_check_no_obj_freed(objp, cachep->object_size);
3763        __cache_free(cachep, objp, _RET_IP_);
3764        local_irq_restore(flags);
3765
3766        trace_kmem_cache_free(_RET_IP_, objp);
3767}
3768EXPORT_SYMBOL(kmem_cache_free);
3769
3770void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3771{
3772        struct kmem_cache *s;
3773        size_t i;
3774
3775        local_irq_disable();
3776        for (i = 0; i < size; i++) {
3777                void *objp = p[i];
3778
3779                if (!orig_s) /* called via kfree_bulk */
3780                        s = virt_to_cache(objp);
3781                else
3782                        s = cache_from_obj(orig_s, objp);
3783
3784                debug_check_no_locks_freed(objp, s->object_size);
3785                if (!(s->flags & SLAB_DEBUG_OBJECTS))
3786                        debug_check_no_obj_freed(objp, s->object_size);
3787
3788                __cache_free(s, objp, _RET_IP_);
3789        }
3790        local_irq_enable();
3791
3792        /* FIXME: add tracing */
3793}
3794EXPORT_SYMBOL(kmem_cache_free_bulk);
3795
3796/**
3797 * kfree - free previously allocated memory
3798 * @objp: pointer returned by kmalloc.
3799 *
3800 * If @objp is NULL, no operation is performed.
3801 *
3802 * Don't free memory not originally allocated by kmalloc()
3803 * or you will run into trouble.
3804 */
3805void kfree(const void *objp)
3806{
3807        struct kmem_cache *c;
3808        unsigned long flags;
3809
3810        trace_kfree(_RET_IP_, objp);
3811
3812        if (unlikely(ZERO_OR_NULL_PTR(objp)))
3813                return;
3814        local_irq_save(flags);
3815        kfree_debugcheck(objp);
3816        c = virt_to_cache(objp);
3817        debug_check_no_locks_freed(objp, c->object_size);
3818
3819        debug_check_no_obj_freed(objp, c->object_size);
3820        __cache_free(c, (void *)objp, _RET_IP_);
3821        local_irq_restore(flags);
3822}
3823EXPORT_SYMBOL(kfree);
3824
3825/*
3826 * This initializes kmem_cache_node or resizes various caches for all nodes.
3827 */
3828static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3829{
3830        int ret;
3831        int node;
3832        struct kmem_cache_node *n;
3833
3834        for_each_online_node(node) {
3835                ret = setup_kmem_cache_node(cachep, node, gfp, true);
3836                if (ret)
3837                        goto fail;
3838
3839        }
3840
3841        return 0;
3842
3843fail:
3844        if (!cachep->list.next) {
3845                /* Cache is not active yet. Roll back what we did */
3846                node--;
3847                while (node >= 0) {
3848                        n = get_node(cachep, node);
3849                        if (n) {
3850                                kfree(n->shared);
3851                                free_alien_cache(n->alien);
3852                                kfree(n);
3853                                cachep->node[node] = NULL;
3854                        }
3855                        node--;
3856                }
3857        }
3858        return -ENOMEM;
3859}
3860
3861/* Always called with the slab_mutex held */
3862static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3863                                int batchcount, int shared, gfp_t gfp)
3864{
3865        struct array_cache __percpu *cpu_cache, *prev;
3866        int cpu;
3867
3868        cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3869        if (!cpu_cache)
3870                return -ENOMEM;
3871
3872        prev = cachep->cpu_cache;
3873        cachep->cpu_cache = cpu_cache;
3874        /*
3875         * Without a previous cpu_cache there's no need to synchronize remote
3876         * cpus, so skip the IPIs.
3877         */
3878        if (prev)
3879                kick_all_cpus_sync();
3880
3881        check_irq_on();
3882        cachep->batchcount = batchcount;
3883        cachep->limit = limit;
3884        cachep->shared = shared;
3885
3886        if (!prev)
3887                goto setup_node;
3888
3889        for_each_online_cpu(cpu) {
3890                LIST_HEAD(list);
3891                int node;
3892                struct kmem_cache_node *n;
3893                struct array_cache *ac = per_cpu_ptr(prev, cpu);
3894
3895                node = cpu_to_mem(cpu);
3896                n = get_node(cachep, node);
3897                spin_lock_irq(&n->list_lock);
3898                free_block(cachep, ac->entry, ac->avail, node, &list);
3899                spin_unlock_irq(&n->list_lock);
3900                slabs_destroy(cachep, &list);
3901        }
3902        free_percpu(prev);
3903
3904setup_node:
3905        return setup_kmem_cache_nodes(cachep, gfp);
3906}
3907
3908static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3909                                int batchcount, int shared, gfp_t gfp)
3910{
3911        int ret;
3912        struct kmem_cache *c;
3913
3914        ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3915
3916        if (slab_state < FULL)
3917                return ret;
3918
3919        if ((ret < 0) || !is_root_cache(cachep))
3920                return ret;
3921
3922        lockdep_assert_held(&slab_mutex);
3923        for_each_memcg_cache(c, cachep) {
3924                /* return value determined by the root cache only */
3925                __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3926        }
3927
3928        return ret;
3929}
3930
3931/* Called with slab_mutex held always */
3932static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3933{
3934        int err;
3935        int limit = 0;
3936        int shared = 0;
3937        int batchcount = 0;
3938
3939        err = cache_random_seq_create(cachep, cachep->num, gfp);
3940        if (err)
3941                goto end;
3942
3943        if (!is_root_cache(cachep)) {
3944                struct kmem_cache *root = memcg_root_cache(cachep);
3945                limit = root->limit;
3946                shared = root->shared;
3947                batchcount = root->batchcount;
3948        }
3949
3950        if (limit && shared && batchcount)
3951                goto skip_setup;
3952        /*
3953         * The head array serves three purposes:
3954         * - create a LIFO ordering, i.e. return objects that are cache-warm
3955         * - reduce the number of spinlock operations.
3956         * - reduce the number of linked list operations on the slab and
3957         *   bufctl chains: array operations are cheaper.
3958         * The numbers are guessed, we should auto-tune as described by
3959         * Bonwick.
3960         */
3961        if (cachep->size > 131072)
3962                limit = 1;
3963        else if (cachep->size > PAGE_SIZE)
3964                limit = 8;
3965        else if (cachep->size > 1024)
3966                limit = 24;
3967        else if (cachep->size > 256)
3968                limit = 54;
3969        else
3970                limit = 120;
3971
3972        /*
3973         * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3974         * allocation behaviour: Most allocs on one cpu, most free operations
3975         * on another cpu. For these cases, an efficient object passing between
3976         * cpus is necessary. This is provided by a shared array. The array
3977         * replaces Bonwick's magazine layer.
3978         * On uniprocessor, it's functionally equivalent (but less efficient)
3979         * to a larger limit. Thus disabled by default.
3980         */
3981        shared = 0;
3982        if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3983                shared = 8;
3984
3985#if DEBUG
3986        /*
3987         * With debugging enabled, large batchcount lead to excessively long
3988         * periods with disabled local interrupts. Limit the batchcount
3989         */
3990        if (limit > 32)
3991                limit = 32;
3992#endif
3993        batchcount = (limit + 1) / 2;
3994skip_setup:
3995        err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3996end:
3997        if (err)
3998                pr_err("enable_cpucache failed for %s, error %d\n",
3999                       cachep->name, -err);
4000        return err;
4001}
4002
4003/*
4004 * Drain an array if it contains any elements taking the node lock only if
4005 * necessary. Note that the node listlock also protects the array_cache
4006 * if drain_array() is used on the shared array.
4007 */
4008static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4009                         struct array_cache *ac, int node)
4010{
4011        LIST_HEAD(list);
4012
4013        /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4014        check_mutex_acquired();
4015
4016        if (!ac || !ac->avail)
4017                return;
4018
4019        if (ac->touched) {
4020                ac->touched = 0;
4021                return;
4022        }
4023
4024        spin_lock_irq(&n->list_lock);
4025        drain_array_locked(cachep, ac, node, false, &list);
4026        spin_unlock_irq(&n->list_lock);
4027
4028        slabs_destroy(cachep, &list);
4029}
4030
4031/**
4032 * cache_reap - Reclaim memory from caches.
4033 * @w: work descriptor
4034 *
4035 * Called from workqueue/eventd every few seconds.
4036 * Purpose:
4037 * - clear the per-cpu caches for this CPU.
4038 * - return freeable pages to the main free memory pool.
4039 *
4040 * If we cannot acquire the cache chain mutex then just give up - we'll try
4041 * again on the next iteration.
4042 */
4043static void cache_reap(struct work_struct *w)
4044{
4045        struct kmem_cache *searchp;
4046        struct kmem_cache_node *n;
4047        int node = numa_mem_id();
4048        struct delayed_work *work = to_delayed_work(w);
4049
4050        if (!mutex_trylock(&slab_mutex))
4051                /* Give up. Setup the next iteration. */
4052                goto out;
4053
4054        list_for_each_entry(searchp, &slab_caches, list) {
4055                check_irq_on();
4056
4057                /*
4058                 * We only take the node lock if absolutely necessary and we
4059                 * have established with reasonable certainty that
4060                 * we can do some work if the lock was obtained.
4061                 */
4062                n = get_node(searchp, node);
4063
4064                reap_alien(searchp, n);
4065
4066                drain_array(searchp, n, cpu_cache_get(searchp), node);
4067
4068                /*
4069                 * These are racy checks but it does not matter
4070                 * if we skip one check or scan twice.
4071                 */
4072                if (time_after(n->next_reap, jiffies))
4073                        goto next;
4074
4075                n->next_reap = jiffies + REAPTIMEOUT_NODE;
4076
4077                drain_array(searchp, n, n->shared, node);
4078
4079                if (n->free_touched)
4080                        n->free_touched = 0;
4081                else {
4082                        int freed;
4083
4084                        freed = drain_freelist(searchp, n, (n->free_limit +
4085                                5 * searchp->num - 1) / (5 * searchp->num));
4086                        STATS_ADD_REAPED(searchp, freed);
4087                }
4088next:
4089                cond_resched();
4090        }
4091        check_irq_on();
4092        mutex_unlock(&slab_mutex);
4093        next_reap_node();
4094out:
4095        /* Set up the next iteration */
4096        schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4097}
4098
4099#ifdef CONFIG_SLABINFO
4100void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4101{
4102        unsigned long active_objs, num_objs, active_slabs;
4103        unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4104        unsigned long free_slabs = 0;
4105        int node;
4106        struct kmem_cache_node *n;
4107
4108        for_each_kmem_cache_node(cachep, node, n) {
4109                check_irq_on();
4110                spin_lock_irq(&n->list_lock);
4111
4112                total_slabs += n->total_slabs;
4113                free_slabs += n->free_slabs;
4114                free_objs += n->free_objects;
4115
4116                if (n->shared)
4117                        shared_avail += n->shared->avail;
4118
4119                spin_unlock_irq(&n->list_lock);
4120        }
4121        num_objs = total_slabs * cachep->num;
4122        active_slabs = total_slabs - free_slabs;
4123        active_objs = num_objs - free_objs;
4124
4125        sinfo->active_objs = active_objs;
4126        sinfo->num_objs = num_objs;
4127        sinfo->active_slabs = active_slabs;
4128        sinfo->num_slabs = total_slabs;
4129        sinfo->shared_avail = shared_avail;
4130        sinfo->limit = cachep->limit;
4131        sinfo->batchcount = cachep->batchcount;
4132        sinfo->shared = cachep->shared;
4133        sinfo->objects_per_slab = cachep->num;
4134        sinfo->cache_order = cachep->gfporder;
4135}
4136
4137void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4138{
4139#if STATS
4140        {                       /* node stats */
4141                unsigned long high = cachep->high_mark;
4142                unsigned long allocs = cachep->num_allocations;
4143                unsigned long grown = cachep->grown;
4144                unsigned long reaped = cachep->reaped;
4145                unsigned long errors = cachep->errors;
4146                unsigned long max_freeable = cachep->max_freeable;
4147                unsigned long node_allocs = cachep->node_allocs;
4148                unsigned long node_frees = cachep->node_frees;
4149                unsigned long overflows = cachep->node_overflow;
4150
4151                seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4152                           allocs, high, grown,
4153                           reaped, errors, max_freeable, node_allocs,
4154                           node_frees, overflows);
4155        }
4156        /* cpu stats */
4157        {
4158                unsigned long allochit = atomic_read(&cachep->allochit);
4159                unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4160                unsigned long freehit = atomic_read(&cachep->freehit);
4161                unsigned long freemiss = atomic_read(&cachep->freemiss);
4162
4163                seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4164                           allochit, allocmiss, freehit, freemiss);
4165        }
4166#endif
4167}
4168
4169#define MAX_SLABINFO_WRITE 128
4170/**
4171 * slabinfo_write - Tuning for the slab allocator
4172 * @file: unused
4173 * @buffer: user buffer
4174 * @count: data length
4175 * @ppos: unused
4176 */
4177ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4178                       size_t count, loff_t *ppos)
4179{
4180        char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4181        int limit, batchcount, shared, res;
4182        struct kmem_cache *cachep;
4183
4184        if (count > MAX_SLABINFO_WRITE)
4185                return -EINVAL;
4186        if (copy_from_user(&kbuf, buffer, count))
4187                return -EFAULT;
4188        kbuf[MAX_SLABINFO_WRITE] = '\0';
4189
4190        tmp = strchr(kbuf, ' ');
4191        if (!tmp)
4192                return -EINVAL;
4193        *tmp = '\0';
4194        tmp++;
4195        if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4196                return -EINVAL;
4197
4198        /* Find the cache in the chain of caches. */
4199        mutex_lock(&slab_mutex);
4200        res = -EINVAL;
4201        list_for_each_entry(cachep, &slab_caches, list) {
4202                if (!strcmp(cachep->name, kbuf)) {
4203                        if (limit < 1 || batchcount < 1 ||
4204                                        batchcount > limit || shared < 0) {
4205                                res = 0;
4206                        } else {
4207                                res = do_tune_cpucache(cachep, limit,
4208                                                       batchcount, shared,
4209                                                       GFP_KERNEL);
4210                        }
4211                        break;
4212                }
4213        }
4214        mutex_unlock(&slab_mutex);
4215        if (res >= 0)
4216                res = count;
4217        return res;
4218}
4219
4220#ifdef CONFIG_DEBUG_SLAB_LEAK
4221
4222static inline int add_caller(unsigned long *n, unsigned long v)
4223{
4224        unsigned long *p;
4225        int l;
4226        if (!v)
4227                return 1;
4228        l = n[1];
4229        p = n + 2;
4230        while (l) {
4231                int i = l/2;
4232                unsigned long *q = p + 2 * i;
4233                if (*q == v) {
4234                        q[1]++;
4235                        return 1;
4236                }
4237                if (*q > v) {
4238                        l = i;
4239                } else {
4240                        p = q + 2;
4241                        l -= i + 1;
4242                }
4243        }
4244        if (++n[1] == n[0])
4245                return 0;
4246        memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4247        p[0] = v;
4248        p[1] = 1;
4249        return 1;
4250}
4251
4252static void handle_slab(unsigned long *n, struct kmem_cache *c,
4253                                                struct page *page)
4254{
4255        void *p;
4256        int i, j;
4257        unsigned long v;
4258
4259        if (n[0] == n[1])
4260                return;
4261        for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4262                bool active = true;
4263
4264                for (j = page->active; j < c->num; j++) {
4265                        if (get_free_obj(page, j) == i) {
4266                                active = false;
4267                                break;
4268                        }
4269                }
4270
4271                if (!active)
4272                        continue;
4273
4274                /*
4275                 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4276                 * mapping is established when actual object allocation and
4277                 * we could mistakenly access the unmapped object in the cpu
4278                 * cache.
4279                 */
4280                if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4281                        continue;
4282
4283                if (!add_caller(n, v))
4284                        return;
4285        }
4286}
4287
4288static void show_symbol(struct seq_file *m, unsigned long address)
4289{
4290#ifdef CONFIG_KALLSYMS
4291        unsigned long offset, size;
4292        char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4293
4294        if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4295                seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4296                if (modname[0])
4297                        seq_printf(m, " [%s]", modname);
4298                return;
4299        }
4300#endif
4301        seq_printf(m, "%p", (void *)address);
4302}
4303
4304static int leaks_show(struct seq_file *m, void *p)
4305{
4306        struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4307        struct page *page;
4308        struct kmem_cache_node *n;
4309        const char *name;
4310        unsigned long *x = m->private;
4311        int node;
4312        int i;
4313
4314        if (!(cachep->flags & SLAB_STORE_USER))
4315                return 0;
4316        if (!(cachep->flags & SLAB_RED_ZONE))
4317                return 0;
4318
4319        /*
4320         * Set store_user_clean and start to grab stored user information
4321         * for all objects on this cache. If some alloc/free requests comes
4322         * during the processing, information would be wrong so restart
4323         * whole processing.
4324         */
4325        do {
4326                set_store_user_clean(cachep);
4327                drain_cpu_caches(cachep);
4328
4329                x[1] = 0;
4330
4331                for_each_kmem_cache_node(cachep, node, n) {
4332
4333                        check_irq_on();
4334                        spin_lock_irq(&n->list_lock);
4335
4336                        list_for_each_entry(page, &n->slabs_full, lru)
4337                                handle_slab(x, cachep, page);
4338                        list_for_each_entry(page, &n->slabs_partial, lru)
4339                                handle_slab(x, cachep, page);
4340                        spin_unlock_irq(&n->list_lock);
4341                }
4342        } while (!is_store_user_clean(cachep));
4343
4344        name = cachep->name;
4345        if (x[0] == x[1]) {
4346                /* Increase the buffer size */
4347                mutex_unlock(&slab_mutex);
4348                m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4349                if (!m->private) {
4350                        /* Too bad, we are really out */
4351                        m->private = x;
4352                        mutex_lock(&slab_mutex);
4353                        return -ENOMEM;
4354                }
4355                *(unsigned long *)m->private = x[0] * 2;
4356                kfree(x);
4357                mutex_lock(&slab_mutex);
4358                /* Now make sure this entry will be retried */
4359                m->count = m->size;
4360                return 0;
4361        }
4362        for (i = 0; i < x[1]; i++) {
4363                seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4364                show_symbol(m, x[2*i+2]);
4365                seq_putc(m, '\n');
4366        }
4367
4368        return 0;
4369}
4370
4371static const struct seq_operations slabstats_op = {
4372        .start = slab_start,
4373        .next = slab_next,
4374        .stop = slab_stop,
4375        .show = leaks_show,
4376};
4377
4378static int slabstats_open(struct inode *inode, struct file *file)
4379{
4380        unsigned long *n;
4381
4382        n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4383        if (!n)
4384                return -ENOMEM;
4385
4386        *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4387
4388        return 0;
4389}
4390
4391static const struct file_operations proc_slabstats_operations = {
4392        .open           = slabstats_open,
4393        .read           = seq_read,
4394        .llseek         = seq_lseek,
4395        .release        = seq_release_private,
4396};
4397#endif
4398
4399static int __init slab_proc_init(void)
4400{
4401#ifdef CONFIG_DEBUG_SLAB_LEAK
4402        proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4403#endif
4404        return 0;
4405}
4406module_init(slab_proc_init);
4407#endif
4408
4409#ifdef CONFIG_HARDENED_USERCOPY
4410/*
4411 * Rejects objects that are incorrectly sized.
4412 *
4413 * Returns NULL if check passes, otherwise const char * to name of cache
4414 * to indicate an error.
4415 */
4416const char *__check_heap_object(const void *ptr, unsigned long n,
4417                                struct page *page)
4418{
4419        struct kmem_cache *cachep;
4420        unsigned int objnr;
4421        unsigned long offset;
4422
4423        /* Find and validate object. */
4424        cachep = page->slab_cache;
4425        objnr = obj_to_index(cachep, page, (void *)ptr);
4426        BUG_ON(objnr >= cachep->num);
4427
4428        /* Find offset within object. */
4429        offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4430
4431        /* Allow address range falling entirely within object size. */
4432        if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4433                return NULL;
4434
4435        return cachep->name;
4436}
4437#endif /* CONFIG_HARDENED_USERCOPY */
4438
4439/**
4440 * ksize - get the actual amount of memory allocated for a given object
4441 * @objp: Pointer to the object
4442 *
4443 * kmalloc may internally round up allocations and return more memory
4444 * than requested. ksize() can be used to determine the actual amount of
4445 * memory allocated. The caller may use this additional memory, even though
4446 * a smaller amount of memory was initially specified with the kmalloc call.
4447 * The caller must guarantee that objp points to a valid object previously
4448 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4449 * must not be freed during the duration of the call.
4450 */
4451size_t ksize(const void *objp)
4452{
4453        size_t size;
4454
4455        BUG_ON(!objp);
4456        if (unlikely(objp == ZERO_SIZE_PTR))
4457                return 0;
4458
4459        size = virt_to_cache(objp)->object_size;
4460        /* We assume that ksize callers could use the whole allocated area,
4461         * so we need to unpoison this area.
4462         */
4463        kasan_unpoison_shadow(objp, size);
4464
4465        return size;
4466}
4467EXPORT_SYMBOL(ksize);
4468