linux/mm/slub.c
<<
>>
Prefs
   1/*
   2 * SLUB: A slab allocator that limits cache line use instead of queuing
   3 * objects in per cpu and per node lists.
   4 *
   5 * The allocator synchronizes using per slab locks or atomic operatios
   6 * and only uses a centralized lock to manage a pool of partial slabs.
   7 *
   8 * (C) 2007 SGI, Christoph Lameter
   9 * (C) 2011 Linux Foundation, Christoph Lameter
  10 */
  11
  12#include <linux/mm.h>
  13#include <linux/swap.h> /* struct reclaim_state */
  14#include <linux/module.h>
  15#include <linux/bit_spinlock.h>
  16#include <linux/interrupt.h>
  17#include <linux/bitops.h>
  18#include <linux/slab.h>
  19#include "slab.h"
  20#include <linux/proc_fs.h>
  21#include <linux/notifier.h>
  22#include <linux/seq_file.h>
  23#include <linux/kasan.h>
  24#include <linux/kmemcheck.h>
  25#include <linux/cpu.h>
  26#include <linux/cpuset.h>
  27#include <linux/mempolicy.h>
  28#include <linux/ctype.h>
  29#include <linux/debugobjects.h>
  30#include <linux/kallsyms.h>
  31#include <linux/memory.h>
  32#include <linux/math64.h>
  33#include <linux/fault-inject.h>
  34#include <linux/stacktrace.h>
  35#include <linux/prefetch.h>
  36#include <linux/memcontrol.h>
  37
  38#include <trace/events/kmem.h>
  39
  40#include "internal.h"
  41
  42/*
  43 * Lock order:
  44 *   1. slab_mutex (Global Mutex)
  45 *   2. node->list_lock
  46 *   3. slab_lock(page) (Only on some arches and for debugging)
  47 *
  48 *   slab_mutex
  49 *
  50 *   The role of the slab_mutex is to protect the list of all the slabs
  51 *   and to synchronize major metadata changes to slab cache structures.
  52 *
  53 *   The slab_lock is only used for debugging and on arches that do not
  54 *   have the ability to do a cmpxchg_double. It only protects the second
  55 *   double word in the page struct. Meaning
  56 *      A. page->freelist       -> List of object free in a page
  57 *      B. page->counters       -> Counters of objects
  58 *      C. page->frozen         -> frozen state
  59 *
  60 *   If a slab is frozen then it is exempt from list management. It is not
  61 *   on any list. The processor that froze the slab is the one who can
  62 *   perform list operations on the page. Other processors may put objects
  63 *   onto the freelist but the processor that froze the slab is the only
  64 *   one that can retrieve the objects from the page's freelist.
  65 *
  66 *   The list_lock protects the partial and full list on each node and
  67 *   the partial slab counter. If taken then no new slabs may be added or
  68 *   removed from the lists nor make the number of partial slabs be modified.
  69 *   (Note that the total number of slabs is an atomic value that may be
  70 *   modified without taking the list lock).
  71 *
  72 *   The list_lock is a centralized lock and thus we avoid taking it as
  73 *   much as possible. As long as SLUB does not have to handle partial
  74 *   slabs, operations can continue without any centralized lock. F.e.
  75 *   allocating a long series of objects that fill up slabs does not require
  76 *   the list lock.
  77 *   Interrupts are disabled during allocation and deallocation in order to
  78 *   make the slab allocator safe to use in the context of an irq. In addition
  79 *   interrupts are disabled to ensure that the processor does not change
  80 *   while handling per_cpu slabs, due to kernel preemption.
  81 *
  82 * SLUB assigns one slab for allocation to each processor.
  83 * Allocations only occur from these slabs called cpu slabs.
  84 *
  85 * Slabs with free elements are kept on a partial list and during regular
  86 * operations no list for full slabs is used. If an object in a full slab is
  87 * freed then the slab will show up again on the partial lists.
  88 * We track full slabs for debugging purposes though because otherwise we
  89 * cannot scan all objects.
  90 *
  91 * Slabs are freed when they become empty. Teardown and setup is
  92 * minimal so we rely on the page allocators per cpu caches for
  93 * fast frees and allocs.
  94 *
  95 * Overloading of page flags that are otherwise used for LRU management.
  96 *
  97 * PageActive           The slab is frozen and exempt from list processing.
  98 *                      This means that the slab is dedicated to a purpose
  99 *                      such as satisfying allocations for a specific
 100 *                      processor. Objects may be freed in the slab while
 101 *                      it is frozen but slab_free will then skip the usual
 102 *                      list operations. It is up to the processor holding
 103 *                      the slab to integrate the slab into the slab lists
 104 *                      when the slab is no longer needed.
 105 *
 106 *                      One use of this flag is to mark slabs that are
 107 *                      used for allocations. Then such a slab becomes a cpu
 108 *                      slab. The cpu slab may be equipped with an additional
 109 *                      freelist that allows lockless access to
 110 *                      free objects in addition to the regular freelist
 111 *                      that requires the slab lock.
 112 *
 113 * PageError            Slab requires special handling due to debug
 114 *                      options set. This moves slab handling out of
 115 *                      the fast path and disables lockless freelists.
 116 */
 117
 118static inline int kmem_cache_debug(struct kmem_cache *s)
 119{
 120#ifdef CONFIG_SLUB_DEBUG
 121        return unlikely(s->flags & SLAB_DEBUG_FLAGS);
 122#else
 123        return 0;
 124#endif
 125}
 126
 127void *fixup_red_left(struct kmem_cache *s, void *p)
 128{
 129        if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
 130                p += s->red_left_pad;
 131
 132        return p;
 133}
 134
 135static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
 136{
 137#ifdef CONFIG_SLUB_CPU_PARTIAL
 138        return !kmem_cache_debug(s);
 139#else
 140        return false;
 141#endif
 142}
 143
 144/*
 145 * Issues still to be resolved:
 146 *
 147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 148 *
 149 * - Variable sizing of the per node arrays
 150 */
 151
 152/* Enable to test recovery from slab corruption on boot */
 153#undef SLUB_RESILIENCY_TEST
 154
 155/* Enable to log cmpxchg failures */
 156#undef SLUB_DEBUG_CMPXCHG
 157
 158/*
 159 * Mininum number of partial slabs. These will be left on the partial
 160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 161 */
 162#define MIN_PARTIAL 5
 163
 164/*
 165 * Maximum number of desirable partial slabs.
 166 * The existence of more partial slabs makes kmem_cache_shrink
 167 * sort the partial list by the number of objects in use.
 168 */
 169#define MAX_PARTIAL 10
 170
 171#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
 172                                SLAB_POISON | SLAB_STORE_USER)
 173
 174/*
 175 * These debug flags cannot use CMPXCHG because there might be consistency
 176 * issues when checking or reading debug information
 177 */
 178#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
 179                                SLAB_TRACE)
 180
 181
 182/*
 183 * Debugging flags that require metadata to be stored in the slab.  These get
 184 * disabled when slub_debug=O is used and a cache's min order increases with
 185 * metadata.
 186 */
 187#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
 188
 189#define OO_SHIFT        16
 190#define OO_MASK         ((1 << OO_SHIFT) - 1)
 191#define MAX_OBJS_PER_PAGE       32767 /* since page.objects is u15 */
 192
 193/* Internal SLUB flags */
 194#define __OBJECT_POISON         0x80000000UL /* Poison object */
 195#define __CMPXCHG_DOUBLE        0x40000000UL /* Use cmpxchg_double */
 196
 197/*
 198 * Tracking user of a slab.
 199 */
 200#define TRACK_ADDRS_COUNT 16
 201struct track {
 202        unsigned long addr;     /* Called from address */
 203#ifdef CONFIG_STACKTRACE
 204        unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
 205#endif
 206        int cpu;                /* Was running on cpu */
 207        int pid;                /* Pid context */
 208        unsigned long when;     /* When did the operation occur */
 209};
 210
 211enum track_item { TRACK_ALLOC, TRACK_FREE };
 212
 213#ifdef CONFIG_SYSFS
 214static int sysfs_slab_add(struct kmem_cache *);
 215static int sysfs_slab_alias(struct kmem_cache *, const char *);
 216static void memcg_propagate_slab_attrs(struct kmem_cache *s);
 217static void sysfs_slab_remove(struct kmem_cache *s);
 218#else
 219static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 220static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 221                                                        { return 0; }
 222static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
 223static inline void sysfs_slab_remove(struct kmem_cache *s) { }
 224#endif
 225
 226static inline void stat(const struct kmem_cache *s, enum stat_item si)
 227{
 228#ifdef CONFIG_SLUB_STATS
 229        /*
 230         * The rmw is racy on a preemptible kernel but this is acceptable, so
 231         * avoid this_cpu_add()'s irq-disable overhead.
 232         */
 233        raw_cpu_inc(s->cpu_slab->stat[si]);
 234#endif
 235}
 236
 237/********************************************************************
 238 *                      Core slab cache functions
 239 *******************************************************************/
 240
 241static inline void *get_freepointer(struct kmem_cache *s, void *object)
 242{
 243        return *(void **)(object + s->offset);
 244}
 245
 246static void prefetch_freepointer(const struct kmem_cache *s, void *object)
 247{
 248        prefetch(object + s->offset);
 249}
 250
 251static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
 252{
 253        void *p;
 254
 255        if (!debug_pagealloc_enabled())
 256                return get_freepointer(s, object);
 257
 258        probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
 259        return p;
 260}
 261
 262static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 263{
 264        *(void **)(object + s->offset) = fp;
 265}
 266
 267/* Loop over all objects in a slab */
 268#define for_each_object(__p, __s, __addr, __objects) \
 269        for (__p = fixup_red_left(__s, __addr); \
 270                __p < (__addr) + (__objects) * (__s)->size; \
 271                __p += (__s)->size)
 272
 273#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
 274        for (__p = fixup_red_left(__s, __addr), __idx = 1; \
 275                __idx <= __objects; \
 276                __p += (__s)->size, __idx++)
 277
 278/* Determine object index from a given position */
 279static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
 280{
 281        return (p - addr) / s->size;
 282}
 283
 284static inline int order_objects(int order, unsigned long size, int reserved)
 285{
 286        return ((PAGE_SIZE << order) - reserved) / size;
 287}
 288
 289static inline struct kmem_cache_order_objects oo_make(int order,
 290                unsigned long size, int reserved)
 291{
 292        struct kmem_cache_order_objects x = {
 293                (order << OO_SHIFT) + order_objects(order, size, reserved)
 294        };
 295
 296        return x;
 297}
 298
 299static inline int oo_order(struct kmem_cache_order_objects x)
 300{
 301        return x.x >> OO_SHIFT;
 302}
 303
 304static inline int oo_objects(struct kmem_cache_order_objects x)
 305{
 306        return x.x & OO_MASK;
 307}
 308
 309/*
 310 * Per slab locking using the pagelock
 311 */
 312static __always_inline void slab_lock(struct page *page)
 313{
 314        VM_BUG_ON_PAGE(PageTail(page), page);
 315        bit_spin_lock(PG_locked, &page->flags);
 316}
 317
 318static __always_inline void slab_unlock(struct page *page)
 319{
 320        VM_BUG_ON_PAGE(PageTail(page), page);
 321        __bit_spin_unlock(PG_locked, &page->flags);
 322}
 323
 324static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
 325{
 326        struct page tmp;
 327        tmp.counters = counters_new;
 328        /*
 329         * page->counters can cover frozen/inuse/objects as well
 330         * as page->_refcount.  If we assign to ->counters directly
 331         * we run the risk of losing updates to page->_refcount, so
 332         * be careful and only assign to the fields we need.
 333         */
 334        page->frozen  = tmp.frozen;
 335        page->inuse   = tmp.inuse;
 336        page->objects = tmp.objects;
 337}
 338
 339/* Interrupts must be disabled (for the fallback code to work right) */
 340static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 341                void *freelist_old, unsigned long counters_old,
 342                void *freelist_new, unsigned long counters_new,
 343                const char *n)
 344{
 345        VM_BUG_ON(!irqs_disabled());
 346#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 347    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 348        if (s->flags & __CMPXCHG_DOUBLE) {
 349                if (cmpxchg_double(&page->freelist, &page->counters,
 350                                   freelist_old, counters_old,
 351                                   freelist_new, counters_new))
 352                        return true;
 353        } else
 354#endif
 355        {
 356                slab_lock(page);
 357                if (page->freelist == freelist_old &&
 358                                        page->counters == counters_old) {
 359                        page->freelist = freelist_new;
 360                        set_page_slub_counters(page, counters_new);
 361                        slab_unlock(page);
 362                        return true;
 363                }
 364                slab_unlock(page);
 365        }
 366
 367        cpu_relax();
 368        stat(s, CMPXCHG_DOUBLE_FAIL);
 369
 370#ifdef SLUB_DEBUG_CMPXCHG
 371        pr_info("%s %s: cmpxchg double redo ", n, s->name);
 372#endif
 373
 374        return false;
 375}
 376
 377static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
 378                void *freelist_old, unsigned long counters_old,
 379                void *freelist_new, unsigned long counters_new,
 380                const char *n)
 381{
 382#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
 383    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
 384        if (s->flags & __CMPXCHG_DOUBLE) {
 385                if (cmpxchg_double(&page->freelist, &page->counters,
 386                                   freelist_old, counters_old,
 387                                   freelist_new, counters_new))
 388                        return true;
 389        } else
 390#endif
 391        {
 392                unsigned long flags;
 393
 394                local_irq_save(flags);
 395                slab_lock(page);
 396                if (page->freelist == freelist_old &&
 397                                        page->counters == counters_old) {
 398                        page->freelist = freelist_new;
 399                        set_page_slub_counters(page, counters_new);
 400                        slab_unlock(page);
 401                        local_irq_restore(flags);
 402                        return true;
 403                }
 404                slab_unlock(page);
 405                local_irq_restore(flags);
 406        }
 407
 408        cpu_relax();
 409        stat(s, CMPXCHG_DOUBLE_FAIL);
 410
 411#ifdef SLUB_DEBUG_CMPXCHG
 412        pr_info("%s %s: cmpxchg double redo ", n, s->name);
 413#endif
 414
 415        return false;
 416}
 417
 418#ifdef CONFIG_SLUB_DEBUG
 419/*
 420 * Determine a map of object in use on a page.
 421 *
 422 * Node listlock must be held to guarantee that the page does
 423 * not vanish from under us.
 424 */
 425static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
 426{
 427        void *p;
 428        void *addr = page_address(page);
 429
 430        for (p = page->freelist; p; p = get_freepointer(s, p))
 431                set_bit(slab_index(p, s, addr), map);
 432}
 433
 434static inline int size_from_object(struct kmem_cache *s)
 435{
 436        if (s->flags & SLAB_RED_ZONE)
 437                return s->size - s->red_left_pad;
 438
 439        return s->size;
 440}
 441
 442static inline void *restore_red_left(struct kmem_cache *s, void *p)
 443{
 444        if (s->flags & SLAB_RED_ZONE)
 445                p -= s->red_left_pad;
 446
 447        return p;
 448}
 449
 450/*
 451 * Debug settings:
 452 */
 453#if defined(CONFIG_SLUB_DEBUG_ON)
 454static int slub_debug = DEBUG_DEFAULT_FLAGS;
 455#else
 456static int slub_debug;
 457#endif
 458
 459static char *slub_debug_slabs;
 460static int disable_higher_order_debug;
 461
 462/*
 463 * slub is about to manipulate internal object metadata.  This memory lies
 464 * outside the range of the allocated object, so accessing it would normally
 465 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 466 * to tell kasan that these accesses are OK.
 467 */
 468static inline void metadata_access_enable(void)
 469{
 470        kasan_disable_current();
 471}
 472
 473static inline void metadata_access_disable(void)
 474{
 475        kasan_enable_current();
 476}
 477
 478/*
 479 * Object debugging
 480 */
 481
 482/* Verify that a pointer has an address that is valid within a slab page */
 483static inline int check_valid_pointer(struct kmem_cache *s,
 484                                struct page *page, void *object)
 485{
 486        void *base;
 487
 488        if (!object)
 489                return 1;
 490
 491        base = page_address(page);
 492        object = restore_red_left(s, object);
 493        if (object < base || object >= base + page->objects * s->size ||
 494                (object - base) % s->size) {
 495                return 0;
 496        }
 497
 498        return 1;
 499}
 500
 501static void print_section(char *level, char *text, u8 *addr,
 502                          unsigned int length)
 503{
 504        metadata_access_enable();
 505        print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
 506                        length, 1);
 507        metadata_access_disable();
 508}
 509
 510static struct track *get_track(struct kmem_cache *s, void *object,
 511        enum track_item alloc)
 512{
 513        struct track *p;
 514
 515        if (s->offset)
 516                p = object + s->offset + sizeof(void *);
 517        else
 518                p = object + s->inuse;
 519
 520        return p + alloc;
 521}
 522
 523static void set_track(struct kmem_cache *s, void *object,
 524                        enum track_item alloc, unsigned long addr)
 525{
 526        struct track *p = get_track(s, object, alloc);
 527
 528        if (addr) {
 529#ifdef CONFIG_STACKTRACE
 530                struct stack_trace trace;
 531                int i;
 532
 533                trace.nr_entries = 0;
 534                trace.max_entries = TRACK_ADDRS_COUNT;
 535                trace.entries = p->addrs;
 536                trace.skip = 3;
 537                metadata_access_enable();
 538                save_stack_trace(&trace);
 539                metadata_access_disable();
 540
 541                /* See rant in lockdep.c */
 542                if (trace.nr_entries != 0 &&
 543                    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
 544                        trace.nr_entries--;
 545
 546                for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
 547                        p->addrs[i] = 0;
 548#endif
 549                p->addr = addr;
 550                p->cpu = smp_processor_id();
 551                p->pid = current->pid;
 552                p->when = jiffies;
 553        } else
 554                memset(p, 0, sizeof(struct track));
 555}
 556
 557static void init_tracking(struct kmem_cache *s, void *object)
 558{
 559        if (!(s->flags & SLAB_STORE_USER))
 560                return;
 561
 562        set_track(s, object, TRACK_FREE, 0UL);
 563        set_track(s, object, TRACK_ALLOC, 0UL);
 564}
 565
 566static void print_track(const char *s, struct track *t)
 567{
 568        if (!t->addr)
 569                return;
 570
 571        pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
 572               s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
 573#ifdef CONFIG_STACKTRACE
 574        {
 575                int i;
 576                for (i = 0; i < TRACK_ADDRS_COUNT; i++)
 577                        if (t->addrs[i])
 578                                pr_err("\t%pS\n", (void *)t->addrs[i]);
 579                        else
 580                                break;
 581        }
 582#endif
 583}
 584
 585static void print_tracking(struct kmem_cache *s, void *object)
 586{
 587        if (!(s->flags & SLAB_STORE_USER))
 588                return;
 589
 590        print_track("Allocated", get_track(s, object, TRACK_ALLOC));
 591        print_track("Freed", get_track(s, object, TRACK_FREE));
 592}
 593
 594static void print_page_info(struct page *page)
 595{
 596        pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
 597               page, page->objects, page->inuse, page->freelist, page->flags);
 598
 599}
 600
 601static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 602{
 603        struct va_format vaf;
 604        va_list args;
 605
 606        va_start(args, fmt);
 607        vaf.fmt = fmt;
 608        vaf.va = &args;
 609        pr_err("=============================================================================\n");
 610        pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
 611        pr_err("-----------------------------------------------------------------------------\n\n");
 612
 613        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 614        va_end(args);
 615}
 616
 617static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 618{
 619        struct va_format vaf;
 620        va_list args;
 621
 622        va_start(args, fmt);
 623        vaf.fmt = fmt;
 624        vaf.va = &args;
 625        pr_err("FIX %s: %pV\n", s->name, &vaf);
 626        va_end(args);
 627}
 628
 629static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 630{
 631        unsigned int off;       /* Offset of last byte */
 632        u8 *addr = page_address(page);
 633
 634        print_tracking(s, p);
 635
 636        print_page_info(page);
 637
 638        pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
 639               p, p - addr, get_freepointer(s, p));
 640
 641        if (s->flags & SLAB_RED_ZONE)
 642                print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
 643                              s->red_left_pad);
 644        else if (p > addr + 16)
 645                print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
 646
 647        print_section(KERN_ERR, "Object ", p,
 648                      min_t(unsigned long, s->object_size, PAGE_SIZE));
 649        if (s->flags & SLAB_RED_ZONE)
 650                print_section(KERN_ERR, "Redzone ", p + s->object_size,
 651                        s->inuse - s->object_size);
 652
 653        if (s->offset)
 654                off = s->offset + sizeof(void *);
 655        else
 656                off = s->inuse;
 657
 658        if (s->flags & SLAB_STORE_USER)
 659                off += 2 * sizeof(struct track);
 660
 661        off += kasan_metadata_size(s);
 662
 663        if (off != size_from_object(s))
 664                /* Beginning of the filler is the free pointer */
 665                print_section(KERN_ERR, "Padding ", p + off,
 666                              size_from_object(s) - off);
 667
 668        dump_stack();
 669}
 670
 671void object_err(struct kmem_cache *s, struct page *page,
 672                        u8 *object, char *reason)
 673{
 674        slab_bug(s, "%s", reason);
 675        print_trailer(s, page, object);
 676}
 677
 678static void slab_err(struct kmem_cache *s, struct page *page,
 679                        const char *fmt, ...)
 680{
 681        va_list args;
 682        char buf[100];
 683
 684        va_start(args, fmt);
 685        vsnprintf(buf, sizeof(buf), fmt, args);
 686        va_end(args);
 687        slab_bug(s, "%s", buf);
 688        print_page_info(page);
 689        dump_stack();
 690}
 691
 692static void init_object(struct kmem_cache *s, void *object, u8 val)
 693{
 694        u8 *p = object;
 695
 696        if (s->flags & SLAB_RED_ZONE)
 697                memset(p - s->red_left_pad, val, s->red_left_pad);
 698
 699        if (s->flags & __OBJECT_POISON) {
 700                memset(p, POISON_FREE, s->object_size - 1);
 701                p[s->object_size - 1] = POISON_END;
 702        }
 703
 704        if (s->flags & SLAB_RED_ZONE)
 705                memset(p + s->object_size, val, s->inuse - s->object_size);
 706}
 707
 708static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 709                                                void *from, void *to)
 710{
 711        slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
 712        memset(from, data, to - from);
 713}
 714
 715static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 716                        u8 *object, char *what,
 717                        u8 *start, unsigned int value, unsigned int bytes)
 718{
 719        u8 *fault;
 720        u8 *end;
 721
 722        metadata_access_enable();
 723        fault = memchr_inv(start, value, bytes);
 724        metadata_access_disable();
 725        if (!fault)
 726                return 1;
 727
 728        end = start + bytes;
 729        while (end > fault && end[-1] == value)
 730                end--;
 731
 732        slab_bug(s, "%s overwritten", what);
 733        pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
 734                                        fault, end - 1, fault[0], value);
 735        print_trailer(s, page, object);
 736
 737        restore_bytes(s, what, value, fault, end);
 738        return 0;
 739}
 740
 741/*
 742 * Object layout:
 743 *
 744 * object address
 745 *      Bytes of the object to be managed.
 746 *      If the freepointer may overlay the object then the free
 747 *      pointer is the first word of the object.
 748 *
 749 *      Poisoning uses 0x6b (POISON_FREE) and the last byte is
 750 *      0xa5 (POISON_END)
 751 *
 752 * object + s->object_size
 753 *      Padding to reach word boundary. This is also used for Redzoning.
 754 *      Padding is extended by another word if Redzoning is enabled and
 755 *      object_size == inuse.
 756 *
 757 *      We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 758 *      0xcc (RED_ACTIVE) for objects in use.
 759 *
 760 * object + s->inuse
 761 *      Meta data starts here.
 762 *
 763 *      A. Free pointer (if we cannot overwrite object on free)
 764 *      B. Tracking data for SLAB_STORE_USER
 765 *      C. Padding to reach required alignment boundary or at mininum
 766 *              one word if debugging is on to be able to detect writes
 767 *              before the word boundary.
 768 *
 769 *      Padding is done using 0x5a (POISON_INUSE)
 770 *
 771 * object + s->size
 772 *      Nothing is used beyond s->size.
 773 *
 774 * If slabcaches are merged then the object_size and inuse boundaries are mostly
 775 * ignored. And therefore no slab options that rely on these boundaries
 776 * may be used with merged slabcaches.
 777 */
 778
 779static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 780{
 781        unsigned long off = s->inuse;   /* The end of info */
 782
 783        if (s->offset)
 784                /* Freepointer is placed after the object. */
 785                off += sizeof(void *);
 786
 787        if (s->flags & SLAB_STORE_USER)
 788                /* We also have user information there */
 789                off += 2 * sizeof(struct track);
 790
 791        off += kasan_metadata_size(s);
 792
 793        if (size_from_object(s) == off)
 794                return 1;
 795
 796        return check_bytes_and_report(s, page, p, "Object padding",
 797                        p + off, POISON_INUSE, size_from_object(s) - off);
 798}
 799
 800/* Check the pad bytes at the end of a slab page */
 801static int slab_pad_check(struct kmem_cache *s, struct page *page)
 802{
 803        u8 *start;
 804        u8 *fault;
 805        u8 *end;
 806        int length;
 807        int remainder;
 808
 809        if (!(s->flags & SLAB_POISON))
 810                return 1;
 811
 812        start = page_address(page);
 813        length = (PAGE_SIZE << compound_order(page)) - s->reserved;
 814        end = start + length;
 815        remainder = length % s->size;
 816        if (!remainder)
 817                return 1;
 818
 819        metadata_access_enable();
 820        fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
 821        metadata_access_disable();
 822        if (!fault)
 823                return 1;
 824        while (end > fault && end[-1] == POISON_INUSE)
 825                end--;
 826
 827        slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
 828        print_section(KERN_ERR, "Padding ", end - remainder, remainder);
 829
 830        restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
 831        return 0;
 832}
 833
 834static int check_object(struct kmem_cache *s, struct page *page,
 835                                        void *object, u8 val)
 836{
 837        u8 *p = object;
 838        u8 *endobject = object + s->object_size;
 839
 840        if (s->flags & SLAB_RED_ZONE) {
 841                if (!check_bytes_and_report(s, page, object, "Redzone",
 842                        object - s->red_left_pad, val, s->red_left_pad))
 843                        return 0;
 844
 845                if (!check_bytes_and_report(s, page, object, "Redzone",
 846                        endobject, val, s->inuse - s->object_size))
 847                        return 0;
 848        } else {
 849                if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
 850                        check_bytes_and_report(s, page, p, "Alignment padding",
 851                                endobject, POISON_INUSE,
 852                                s->inuse - s->object_size);
 853                }
 854        }
 855
 856        if (s->flags & SLAB_POISON) {
 857                if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
 858                        (!check_bytes_and_report(s, page, p, "Poison", p,
 859                                        POISON_FREE, s->object_size - 1) ||
 860                         !check_bytes_and_report(s, page, p, "Poison",
 861                                p + s->object_size - 1, POISON_END, 1)))
 862                        return 0;
 863                /*
 864                 * check_pad_bytes cleans up on its own.
 865                 */
 866                check_pad_bytes(s, page, p);
 867        }
 868
 869        if (!s->offset && val == SLUB_RED_ACTIVE)
 870                /*
 871                 * Object and freepointer overlap. Cannot check
 872                 * freepointer while object is allocated.
 873                 */
 874                return 1;
 875
 876        /* Check free pointer validity */
 877        if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
 878                object_err(s, page, p, "Freepointer corrupt");
 879                /*
 880                 * No choice but to zap it and thus lose the remainder
 881                 * of the free objects in this slab. May cause
 882                 * another error because the object count is now wrong.
 883                 */
 884                set_freepointer(s, p, NULL);
 885                return 0;
 886        }
 887        return 1;
 888}
 889
 890static int check_slab(struct kmem_cache *s, struct page *page)
 891{
 892        int maxobj;
 893
 894        VM_BUG_ON(!irqs_disabled());
 895
 896        if (!PageSlab(page)) {
 897                slab_err(s, page, "Not a valid slab page");
 898                return 0;
 899        }
 900
 901        maxobj = order_objects(compound_order(page), s->size, s->reserved);
 902        if (page->objects > maxobj) {
 903                slab_err(s, page, "objects %u > max %u",
 904                        page->objects, maxobj);
 905                return 0;
 906        }
 907        if (page->inuse > page->objects) {
 908                slab_err(s, page, "inuse %u > max %u",
 909                        page->inuse, page->objects);
 910                return 0;
 911        }
 912        /* Slab_pad_check fixes things up after itself */
 913        slab_pad_check(s, page);
 914        return 1;
 915}
 916
 917/*
 918 * Determine if a certain object on a page is on the freelist. Must hold the
 919 * slab lock to guarantee that the chains are in a consistent state.
 920 */
 921static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
 922{
 923        int nr = 0;
 924        void *fp;
 925        void *object = NULL;
 926        int max_objects;
 927
 928        fp = page->freelist;
 929        while (fp && nr <= page->objects) {
 930                if (fp == search)
 931                        return 1;
 932                if (!check_valid_pointer(s, page, fp)) {
 933                        if (object) {
 934                                object_err(s, page, object,
 935                                        "Freechain corrupt");
 936                                set_freepointer(s, object, NULL);
 937                        } else {
 938                                slab_err(s, page, "Freepointer corrupt");
 939                                page->freelist = NULL;
 940                                page->inuse = page->objects;
 941                                slab_fix(s, "Freelist cleared");
 942                                return 0;
 943                        }
 944                        break;
 945                }
 946                object = fp;
 947                fp = get_freepointer(s, object);
 948                nr++;
 949        }
 950
 951        max_objects = order_objects(compound_order(page), s->size, s->reserved);
 952        if (max_objects > MAX_OBJS_PER_PAGE)
 953                max_objects = MAX_OBJS_PER_PAGE;
 954
 955        if (page->objects != max_objects) {
 956                slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
 957                         page->objects, max_objects);
 958                page->objects = max_objects;
 959                slab_fix(s, "Number of objects adjusted.");
 960        }
 961        if (page->inuse != page->objects - nr) {
 962                slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
 963                         page->inuse, page->objects - nr);
 964                page->inuse = page->objects - nr;
 965                slab_fix(s, "Object count adjusted.");
 966        }
 967        return search == NULL;
 968}
 969
 970static void trace(struct kmem_cache *s, struct page *page, void *object,
 971                                                                int alloc)
 972{
 973        if (s->flags & SLAB_TRACE) {
 974                pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
 975                        s->name,
 976                        alloc ? "alloc" : "free",
 977                        object, page->inuse,
 978                        page->freelist);
 979
 980                if (!alloc)
 981                        print_section(KERN_INFO, "Object ", (void *)object,
 982                                        s->object_size);
 983
 984                dump_stack();
 985        }
 986}
 987
 988/*
 989 * Tracking of fully allocated slabs for debugging purposes.
 990 */
 991static void add_full(struct kmem_cache *s,
 992        struct kmem_cache_node *n, struct page *page)
 993{
 994        if (!(s->flags & SLAB_STORE_USER))
 995                return;
 996
 997        lockdep_assert_held(&n->list_lock);
 998        list_add(&page->lru, &n->full);
 999}
1000
1001static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1002{
1003        if (!(s->flags & SLAB_STORE_USER))
1004                return;
1005
1006        lockdep_assert_held(&n->list_lock);
1007        list_del(&page->lru);
1008}
1009
1010/* Tracking of the number of slabs for debugging purposes */
1011static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1012{
1013        struct kmem_cache_node *n = get_node(s, node);
1014
1015        return atomic_long_read(&n->nr_slabs);
1016}
1017
1018static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1019{
1020        return atomic_long_read(&n->nr_slabs);
1021}
1022
1023static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1024{
1025        struct kmem_cache_node *n = get_node(s, node);
1026
1027        /*
1028         * May be called early in order to allocate a slab for the
1029         * kmem_cache_node structure. Solve the chicken-egg
1030         * dilemma by deferring the increment of the count during
1031         * bootstrap (see early_kmem_cache_node_alloc).
1032         */
1033        if (likely(n)) {
1034                atomic_long_inc(&n->nr_slabs);
1035                atomic_long_add(objects, &n->total_objects);
1036        }
1037}
1038static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1039{
1040        struct kmem_cache_node *n = get_node(s, node);
1041
1042        atomic_long_dec(&n->nr_slabs);
1043        atomic_long_sub(objects, &n->total_objects);
1044}
1045
1046/* Object debug checks for alloc/free paths */
1047static void setup_object_debug(struct kmem_cache *s, struct page *page,
1048                                                                void *object)
1049{
1050        if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1051                return;
1052
1053        init_object(s, object, SLUB_RED_INACTIVE);
1054        init_tracking(s, object);
1055}
1056
1057static inline int alloc_consistency_checks(struct kmem_cache *s,
1058                                        struct page *page,
1059                                        void *object, unsigned long addr)
1060{
1061        if (!check_slab(s, page))
1062                return 0;
1063
1064        if (!check_valid_pointer(s, page, object)) {
1065                object_err(s, page, object, "Freelist Pointer check fails");
1066                return 0;
1067        }
1068
1069        if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1070                return 0;
1071
1072        return 1;
1073}
1074
1075static noinline int alloc_debug_processing(struct kmem_cache *s,
1076                                        struct page *page,
1077                                        void *object, unsigned long addr)
1078{
1079        if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1080                if (!alloc_consistency_checks(s, page, object, addr))
1081                        goto bad;
1082        }
1083
1084        /* Success perform special debug activities for allocs */
1085        if (s->flags & SLAB_STORE_USER)
1086                set_track(s, object, TRACK_ALLOC, addr);
1087        trace(s, page, object, 1);
1088        init_object(s, object, SLUB_RED_ACTIVE);
1089        return 1;
1090
1091bad:
1092        if (PageSlab(page)) {
1093                /*
1094                 * If this is a slab page then lets do the best we can
1095                 * to avoid issues in the future. Marking all objects
1096                 * as used avoids touching the remaining objects.
1097                 */
1098                slab_fix(s, "Marking all objects used");
1099                page->inuse = page->objects;
1100                page->freelist = NULL;
1101        }
1102        return 0;
1103}
1104
1105static inline int free_consistency_checks(struct kmem_cache *s,
1106                struct page *page, void *object, unsigned long addr)
1107{
1108        if (!check_valid_pointer(s, page, object)) {
1109                slab_err(s, page, "Invalid object pointer 0x%p", object);
1110                return 0;
1111        }
1112
1113        if (on_freelist(s, page, object)) {
1114                object_err(s, page, object, "Object already free");
1115                return 0;
1116        }
1117
1118        if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1119                return 0;
1120
1121        if (unlikely(s != page->slab_cache)) {
1122                if (!PageSlab(page)) {
1123                        slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1124                                 object);
1125                } else if (!page->slab_cache) {
1126                        pr_err("SLUB <none>: no slab for object 0x%p.\n",
1127                               object);
1128                        dump_stack();
1129                } else
1130                        object_err(s, page, object,
1131                                        "page slab pointer corrupt.");
1132                return 0;
1133        }
1134        return 1;
1135}
1136
1137/* Supports checking bulk free of a constructed freelist */
1138static noinline int free_debug_processing(
1139        struct kmem_cache *s, struct page *page,
1140        void *head, void *tail, int bulk_cnt,
1141        unsigned long addr)
1142{
1143        struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1144        void *object = head;
1145        int cnt = 0;
1146        unsigned long uninitialized_var(flags);
1147        int ret = 0;
1148
1149        spin_lock_irqsave(&n->list_lock, flags);
1150        slab_lock(page);
1151
1152        if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1153                if (!check_slab(s, page))
1154                        goto out;
1155        }
1156
1157next_object:
1158        cnt++;
1159
1160        if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1161                if (!free_consistency_checks(s, page, object, addr))
1162                        goto out;
1163        }
1164
1165        if (s->flags & SLAB_STORE_USER)
1166                set_track(s, object, TRACK_FREE, addr);
1167        trace(s, page, object, 0);
1168        /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1169        init_object(s, object, SLUB_RED_INACTIVE);
1170
1171        /* Reached end of constructed freelist yet? */
1172        if (object != tail) {
1173                object = get_freepointer(s, object);
1174                goto next_object;
1175        }
1176        ret = 1;
1177
1178out:
1179        if (cnt != bulk_cnt)
1180                slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1181                         bulk_cnt, cnt);
1182
1183        slab_unlock(page);
1184        spin_unlock_irqrestore(&n->list_lock, flags);
1185        if (!ret)
1186                slab_fix(s, "Object at 0x%p not freed", object);
1187        return ret;
1188}
1189
1190static int __init setup_slub_debug(char *str)
1191{
1192        slub_debug = DEBUG_DEFAULT_FLAGS;
1193        if (*str++ != '=' || !*str)
1194                /*
1195                 * No options specified. Switch on full debugging.
1196                 */
1197                goto out;
1198
1199        if (*str == ',')
1200                /*
1201                 * No options but restriction on slabs. This means full
1202                 * debugging for slabs matching a pattern.
1203                 */
1204                goto check_slabs;
1205
1206        slub_debug = 0;
1207        if (*str == '-')
1208                /*
1209                 * Switch off all debugging measures.
1210                 */
1211                goto out;
1212
1213        /*
1214         * Determine which debug features should be switched on
1215         */
1216        for (; *str && *str != ','; str++) {
1217                switch (tolower(*str)) {
1218                case 'f':
1219                        slub_debug |= SLAB_CONSISTENCY_CHECKS;
1220                        break;
1221                case 'z':
1222                        slub_debug |= SLAB_RED_ZONE;
1223                        break;
1224                case 'p':
1225                        slub_debug |= SLAB_POISON;
1226                        break;
1227                case 'u':
1228                        slub_debug |= SLAB_STORE_USER;
1229                        break;
1230                case 't':
1231                        slub_debug |= SLAB_TRACE;
1232                        break;
1233                case 'a':
1234                        slub_debug |= SLAB_FAILSLAB;
1235                        break;
1236                case 'o':
1237                        /*
1238                         * Avoid enabling debugging on caches if its minimum
1239                         * order would increase as a result.
1240                         */
1241                        disable_higher_order_debug = 1;
1242                        break;
1243                default:
1244                        pr_err("slub_debug option '%c' unknown. skipped\n",
1245                               *str);
1246                }
1247        }
1248
1249check_slabs:
1250        if (*str == ',')
1251                slub_debug_slabs = str + 1;
1252out:
1253        return 1;
1254}
1255
1256__setup("slub_debug", setup_slub_debug);
1257
1258unsigned long kmem_cache_flags(unsigned long object_size,
1259        unsigned long flags, const char *name,
1260        void (*ctor)(void *))
1261{
1262        /*
1263         * Enable debugging if selected on the kernel commandline.
1264         */
1265        if (slub_debug && (!slub_debug_slabs || (name &&
1266                !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1267                flags |= slub_debug;
1268
1269        return flags;
1270}
1271#else /* !CONFIG_SLUB_DEBUG */
1272static inline void setup_object_debug(struct kmem_cache *s,
1273                        struct page *page, void *object) {}
1274
1275static inline int alloc_debug_processing(struct kmem_cache *s,
1276        struct page *page, void *object, unsigned long addr) { return 0; }
1277
1278static inline int free_debug_processing(
1279        struct kmem_cache *s, struct page *page,
1280        void *head, void *tail, int bulk_cnt,
1281        unsigned long addr) { return 0; }
1282
1283static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1284                        { return 1; }
1285static inline int check_object(struct kmem_cache *s, struct page *page,
1286                        void *object, u8 val) { return 1; }
1287static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1288                                        struct page *page) {}
1289static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1290                                        struct page *page) {}
1291unsigned long kmem_cache_flags(unsigned long object_size,
1292        unsigned long flags, const char *name,
1293        void (*ctor)(void *))
1294{
1295        return flags;
1296}
1297#define slub_debug 0
1298
1299#define disable_higher_order_debug 0
1300
1301static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1302                                                        { return 0; }
1303static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1304                                                        { return 0; }
1305static inline void inc_slabs_node(struct kmem_cache *s, int node,
1306                                                        int objects) {}
1307static inline void dec_slabs_node(struct kmem_cache *s, int node,
1308                                                        int objects) {}
1309
1310#endif /* CONFIG_SLUB_DEBUG */
1311
1312/*
1313 * Hooks for other subsystems that check memory allocations. In a typical
1314 * production configuration these hooks all should produce no code at all.
1315 */
1316static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1317{
1318        kmemleak_alloc(ptr, size, 1, flags);
1319        kasan_kmalloc_large(ptr, size, flags);
1320}
1321
1322static inline void kfree_hook(const void *x)
1323{
1324        kmemleak_free(x);
1325        kasan_kfree_large(x);
1326}
1327
1328static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1329{
1330        void *freeptr;
1331
1332        kmemleak_free_recursive(x, s->flags);
1333
1334        /*
1335         * Trouble is that we may no longer disable interrupts in the fast path
1336         * So in order to make the debug calls that expect irqs to be
1337         * disabled we need to disable interrupts temporarily.
1338         */
1339#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1340        {
1341                unsigned long flags;
1342
1343                local_irq_save(flags);
1344                kmemcheck_slab_free(s, x, s->object_size);
1345                debug_check_no_locks_freed(x, s->object_size);
1346                local_irq_restore(flags);
1347        }
1348#endif
1349        if (!(s->flags & SLAB_DEBUG_OBJECTS))
1350                debug_check_no_obj_freed(x, s->object_size);
1351
1352        freeptr = get_freepointer(s, x);
1353        /*
1354         * kasan_slab_free() may put x into memory quarantine, delaying its
1355         * reuse. In this case the object's freelist pointer is changed.
1356         */
1357        kasan_slab_free(s, x);
1358        return freeptr;
1359}
1360
1361static inline void slab_free_freelist_hook(struct kmem_cache *s,
1362                                           void *head, void *tail)
1363{
1364/*
1365 * Compiler cannot detect this function can be removed if slab_free_hook()
1366 * evaluates to nothing.  Thus, catch all relevant config debug options here.
1367 */
1368#if defined(CONFIG_KMEMCHECK) ||                \
1369        defined(CONFIG_LOCKDEP) ||              \
1370        defined(CONFIG_DEBUG_KMEMLEAK) ||       \
1371        defined(CONFIG_DEBUG_OBJECTS_FREE) ||   \
1372        defined(CONFIG_KASAN)
1373
1374        void *object = head;
1375        void *tail_obj = tail ? : head;
1376        void *freeptr;
1377
1378        do {
1379                freeptr = slab_free_hook(s, object);
1380        } while ((object != tail_obj) && (object = freeptr));
1381#endif
1382}
1383
1384static void setup_object(struct kmem_cache *s, struct page *page,
1385                                void *object)
1386{
1387        setup_object_debug(s, page, object);
1388        kasan_init_slab_obj(s, object);
1389        if (unlikely(s->ctor)) {
1390                kasan_unpoison_object_data(s, object);
1391                s->ctor(object);
1392                kasan_poison_object_data(s, object);
1393        }
1394}
1395
1396/*
1397 * Slab allocation and freeing
1398 */
1399static inline struct page *alloc_slab_page(struct kmem_cache *s,
1400                gfp_t flags, int node, struct kmem_cache_order_objects oo)
1401{
1402        struct page *page;
1403        int order = oo_order(oo);
1404
1405        flags |= __GFP_NOTRACK;
1406
1407        if (node == NUMA_NO_NODE)
1408                page = alloc_pages(flags, order);
1409        else
1410                page = __alloc_pages_node(node, flags, order);
1411
1412        if (page && memcg_charge_slab(page, flags, order, s)) {
1413                __free_pages(page, order);
1414                page = NULL;
1415        }
1416
1417        return page;
1418}
1419
1420#ifdef CONFIG_SLAB_FREELIST_RANDOM
1421/* Pre-initialize the random sequence cache */
1422static int init_cache_random_seq(struct kmem_cache *s)
1423{
1424        int err;
1425        unsigned long i, count = oo_objects(s->oo);
1426
1427        /* Bailout if already initialised */
1428        if (s->random_seq)
1429                return 0;
1430
1431        err = cache_random_seq_create(s, count, GFP_KERNEL);
1432        if (err) {
1433                pr_err("SLUB: Unable to initialize free list for %s\n",
1434                        s->name);
1435                return err;
1436        }
1437
1438        /* Transform to an offset on the set of pages */
1439        if (s->random_seq) {
1440                for (i = 0; i < count; i++)
1441                        s->random_seq[i] *= s->size;
1442        }
1443        return 0;
1444}
1445
1446/* Initialize each random sequence freelist per cache */
1447static void __init init_freelist_randomization(void)
1448{
1449        struct kmem_cache *s;
1450
1451        mutex_lock(&slab_mutex);
1452
1453        list_for_each_entry(s, &slab_caches, list)
1454                init_cache_random_seq(s);
1455
1456        mutex_unlock(&slab_mutex);
1457}
1458
1459/* Get the next entry on the pre-computed freelist randomized */
1460static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1461                                unsigned long *pos, void *start,
1462                                unsigned long page_limit,
1463                                unsigned long freelist_count)
1464{
1465        unsigned int idx;
1466
1467        /*
1468         * If the target page allocation failed, the number of objects on the
1469         * page might be smaller than the usual size defined by the cache.
1470         */
1471        do {
1472                idx = s->random_seq[*pos];
1473                *pos += 1;
1474                if (*pos >= freelist_count)
1475                        *pos = 0;
1476        } while (unlikely(idx >= page_limit));
1477
1478        return (char *)start + idx;
1479}
1480
1481/* Shuffle the single linked freelist based on a random pre-computed sequence */
1482static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1483{
1484        void *start;
1485        void *cur;
1486        void *next;
1487        unsigned long idx, pos, page_limit, freelist_count;
1488
1489        if (page->objects < 2 || !s->random_seq)
1490                return false;
1491
1492        freelist_count = oo_objects(s->oo);
1493        pos = get_random_int() % freelist_count;
1494
1495        page_limit = page->objects * s->size;
1496        start = fixup_red_left(s, page_address(page));
1497
1498        /* First entry is used as the base of the freelist */
1499        cur = next_freelist_entry(s, page, &pos, start, page_limit,
1500                                freelist_count);
1501        page->freelist = cur;
1502
1503        for (idx = 1; idx < page->objects; idx++) {
1504                setup_object(s, page, cur);
1505                next = next_freelist_entry(s, page, &pos, start, page_limit,
1506                        freelist_count);
1507                set_freepointer(s, cur, next);
1508                cur = next;
1509        }
1510        setup_object(s, page, cur);
1511        set_freepointer(s, cur, NULL);
1512
1513        return true;
1514}
1515#else
1516static inline int init_cache_random_seq(struct kmem_cache *s)
1517{
1518        return 0;
1519}
1520static inline void init_freelist_randomization(void) { }
1521static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1522{
1523        return false;
1524}
1525#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1526
1527static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1528{
1529        struct page *page;
1530        struct kmem_cache_order_objects oo = s->oo;
1531        gfp_t alloc_gfp;
1532        void *start, *p;
1533        int idx, order;
1534        bool shuffle;
1535
1536        flags &= gfp_allowed_mask;
1537
1538        if (gfpflags_allow_blocking(flags))
1539                local_irq_enable();
1540
1541        flags |= s->allocflags;
1542
1543        /*
1544         * Let the initial higher-order allocation fail under memory pressure
1545         * so we fall-back to the minimum order allocation.
1546         */
1547        alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1548        if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1549                alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1550
1551        page = alloc_slab_page(s, alloc_gfp, node, oo);
1552        if (unlikely(!page)) {
1553                oo = s->min;
1554                alloc_gfp = flags;
1555                /*
1556                 * Allocation may have failed due to fragmentation.
1557                 * Try a lower order alloc if possible
1558                 */
1559                page = alloc_slab_page(s, alloc_gfp, node, oo);
1560                if (unlikely(!page))
1561                        goto out;
1562                stat(s, ORDER_FALLBACK);
1563        }
1564
1565        if (kmemcheck_enabled &&
1566            !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1567                int pages = 1 << oo_order(oo);
1568
1569                kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1570
1571                /*
1572                 * Objects from caches that have a constructor don't get
1573                 * cleared when they're allocated, so we need to do it here.
1574                 */
1575                if (s->ctor)
1576                        kmemcheck_mark_uninitialized_pages(page, pages);
1577                else
1578                        kmemcheck_mark_unallocated_pages(page, pages);
1579        }
1580
1581        page->objects = oo_objects(oo);
1582
1583        order = compound_order(page);
1584        page->slab_cache = s;
1585        __SetPageSlab(page);
1586        if (page_is_pfmemalloc(page))
1587                SetPageSlabPfmemalloc(page);
1588
1589        start = page_address(page);
1590
1591        if (unlikely(s->flags & SLAB_POISON))
1592                memset(start, POISON_INUSE, PAGE_SIZE << order);
1593
1594        kasan_poison_slab(page);
1595
1596        shuffle = shuffle_freelist(s, page);
1597
1598        if (!shuffle) {
1599                for_each_object_idx(p, idx, s, start, page->objects) {
1600                        setup_object(s, page, p);
1601                        if (likely(idx < page->objects))
1602                                set_freepointer(s, p, p + s->size);
1603                        else
1604                                set_freepointer(s, p, NULL);
1605                }
1606                page->freelist = fixup_red_left(s, start);
1607        }
1608
1609        page->inuse = page->objects;
1610        page->frozen = 1;
1611
1612out:
1613        if (gfpflags_allow_blocking(flags))
1614                local_irq_disable();
1615        if (!page)
1616                return NULL;
1617
1618        mod_lruvec_page_state(page,
1619                (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1620                NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1621                1 << oo_order(oo));
1622
1623        inc_slabs_node(s, page_to_nid(page), page->objects);
1624
1625        return page;
1626}
1627
1628static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1629{
1630        if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1631                gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1632                flags &= ~GFP_SLAB_BUG_MASK;
1633                pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1634                                invalid_mask, &invalid_mask, flags, &flags);
1635                dump_stack();
1636        }
1637
1638        return allocate_slab(s,
1639                flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1640}
1641
1642static void __free_slab(struct kmem_cache *s, struct page *page)
1643{
1644        int order = compound_order(page);
1645        int pages = 1 << order;
1646
1647        if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1648                void *p;
1649
1650                slab_pad_check(s, page);
1651                for_each_object(p, s, page_address(page),
1652                                                page->objects)
1653                        check_object(s, page, p, SLUB_RED_INACTIVE);
1654        }
1655
1656        kmemcheck_free_shadow(page, compound_order(page));
1657
1658        mod_lruvec_page_state(page,
1659                (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1660                NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1661                -pages);
1662
1663        __ClearPageSlabPfmemalloc(page);
1664        __ClearPageSlab(page);
1665
1666        page_mapcount_reset(page);
1667        if (current->reclaim_state)
1668                current->reclaim_state->reclaimed_slab += pages;
1669        memcg_uncharge_slab(page, order, s);
1670        __free_pages(page, order);
1671}
1672
1673#define need_reserve_slab_rcu                                           \
1674        (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1675
1676static void rcu_free_slab(struct rcu_head *h)
1677{
1678        struct page *page;
1679
1680        if (need_reserve_slab_rcu)
1681                page = virt_to_head_page(h);
1682        else
1683                page = container_of((struct list_head *)h, struct page, lru);
1684
1685        __free_slab(page->slab_cache, page);
1686}
1687
1688static void free_slab(struct kmem_cache *s, struct page *page)
1689{
1690        if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1691                struct rcu_head *head;
1692
1693                if (need_reserve_slab_rcu) {
1694                        int order = compound_order(page);
1695                        int offset = (PAGE_SIZE << order) - s->reserved;
1696
1697                        VM_BUG_ON(s->reserved != sizeof(*head));
1698                        head = page_address(page) + offset;
1699                } else {
1700                        head = &page->rcu_head;
1701                }
1702
1703                call_rcu(head, rcu_free_slab);
1704        } else
1705                __free_slab(s, page);
1706}
1707
1708static void discard_slab(struct kmem_cache *s, struct page *page)
1709{
1710        dec_slabs_node(s, page_to_nid(page), page->objects);
1711        free_slab(s, page);
1712}
1713
1714/*
1715 * Management of partially allocated slabs.
1716 */
1717static inline void
1718__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1719{
1720        n->nr_partial++;
1721        if (tail == DEACTIVATE_TO_TAIL)
1722                list_add_tail(&page->lru, &n->partial);
1723        else
1724                list_add(&page->lru, &n->partial);
1725}
1726
1727static inline void add_partial(struct kmem_cache_node *n,
1728                                struct page *page, int tail)
1729{
1730        lockdep_assert_held(&n->list_lock);
1731        __add_partial(n, page, tail);
1732}
1733
1734static inline void remove_partial(struct kmem_cache_node *n,
1735                                        struct page *page)
1736{
1737        lockdep_assert_held(&n->list_lock);
1738        list_del(&page->lru);
1739        n->nr_partial--;
1740}
1741
1742/*
1743 * Remove slab from the partial list, freeze it and
1744 * return the pointer to the freelist.
1745 *
1746 * Returns a list of objects or NULL if it fails.
1747 */
1748static inline void *acquire_slab(struct kmem_cache *s,
1749                struct kmem_cache_node *n, struct page *page,
1750                int mode, int *objects)
1751{
1752        void *freelist;
1753        unsigned long counters;
1754        struct page new;
1755
1756        lockdep_assert_held(&n->list_lock);
1757
1758        /*
1759         * Zap the freelist and set the frozen bit.
1760         * The old freelist is the list of objects for the
1761         * per cpu allocation list.
1762         */
1763        freelist = page->freelist;
1764        counters = page->counters;
1765        new.counters = counters;
1766        *objects = new.objects - new.inuse;
1767        if (mode) {
1768                new.inuse = page->objects;
1769                new.freelist = NULL;
1770        } else {
1771                new.freelist = freelist;
1772        }
1773
1774        VM_BUG_ON(new.frozen);
1775        new.frozen = 1;
1776
1777        if (!__cmpxchg_double_slab(s, page,
1778                        freelist, counters,
1779                        new.freelist, new.counters,
1780                        "acquire_slab"))
1781                return NULL;
1782
1783        remove_partial(n, page);
1784        WARN_ON(!freelist);
1785        return freelist;
1786}
1787
1788static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1789static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1790
1791/*
1792 * Try to allocate a partial slab from a specific node.
1793 */
1794static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1795                                struct kmem_cache_cpu *c, gfp_t flags)
1796{
1797        struct page *page, *page2;
1798        void *object = NULL;
1799        int available = 0;
1800        int objects;
1801
1802        /*
1803         * Racy check. If we mistakenly see no partial slabs then we
1804         * just allocate an empty slab. If we mistakenly try to get a
1805         * partial slab and there is none available then get_partials()
1806         * will return NULL.
1807         */
1808        if (!n || !n->nr_partial)
1809                return NULL;
1810
1811        spin_lock(&n->list_lock);
1812        list_for_each_entry_safe(page, page2, &n->partial, lru) {
1813                void *t;
1814
1815                if (!pfmemalloc_match(page, flags))
1816                        continue;
1817
1818                t = acquire_slab(s, n, page, object == NULL, &objects);
1819                if (!t)
1820                        break;
1821
1822                available += objects;
1823                if (!object) {
1824                        c->page = page;
1825                        stat(s, ALLOC_FROM_PARTIAL);
1826                        object = t;
1827                } else {
1828                        put_cpu_partial(s, page, 0);
1829                        stat(s, CPU_PARTIAL_NODE);
1830                }
1831                if (!kmem_cache_has_cpu_partial(s)
1832                        || available > slub_cpu_partial(s) / 2)
1833                        break;
1834
1835        }
1836        spin_unlock(&n->list_lock);
1837        return object;
1838}
1839
1840/*
1841 * Get a page from somewhere. Search in increasing NUMA distances.
1842 */
1843static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1844                struct kmem_cache_cpu *c)
1845{
1846#ifdef CONFIG_NUMA
1847        struct zonelist *zonelist;
1848        struct zoneref *z;
1849        struct zone *zone;
1850        enum zone_type high_zoneidx = gfp_zone(flags);
1851        void *object;
1852        unsigned int cpuset_mems_cookie;
1853
1854        /*
1855         * The defrag ratio allows a configuration of the tradeoffs between
1856         * inter node defragmentation and node local allocations. A lower
1857         * defrag_ratio increases the tendency to do local allocations
1858         * instead of attempting to obtain partial slabs from other nodes.
1859         *
1860         * If the defrag_ratio is set to 0 then kmalloc() always
1861         * returns node local objects. If the ratio is higher then kmalloc()
1862         * may return off node objects because partial slabs are obtained
1863         * from other nodes and filled up.
1864         *
1865         * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1866         * (which makes defrag_ratio = 1000) then every (well almost)
1867         * allocation will first attempt to defrag slab caches on other nodes.
1868         * This means scanning over all nodes to look for partial slabs which
1869         * may be expensive if we do it every time we are trying to find a slab
1870         * with available objects.
1871         */
1872        if (!s->remote_node_defrag_ratio ||
1873                        get_cycles() % 1024 > s->remote_node_defrag_ratio)
1874                return NULL;
1875
1876        do {
1877                cpuset_mems_cookie = read_mems_allowed_begin();
1878                zonelist = node_zonelist(mempolicy_slab_node(), flags);
1879                for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1880                        struct kmem_cache_node *n;
1881
1882                        n = get_node(s, zone_to_nid(zone));
1883
1884                        if (n && cpuset_zone_allowed(zone, flags) &&
1885                                        n->nr_partial > s->min_partial) {
1886                                object = get_partial_node(s, n, c, flags);
1887                                if (object) {
1888                                        /*
1889                                         * Don't check read_mems_allowed_retry()
1890                                         * here - if mems_allowed was updated in
1891                                         * parallel, that was a harmless race
1892                                         * between allocation and the cpuset
1893                                         * update
1894                                         */
1895                                        return object;
1896                                }
1897                        }
1898                }
1899        } while (read_mems_allowed_retry(cpuset_mems_cookie));
1900#endif
1901        return NULL;
1902}
1903
1904/*
1905 * Get a partial page, lock it and return it.
1906 */
1907static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1908                struct kmem_cache_cpu *c)
1909{
1910        void *object;
1911        int searchnode = node;
1912
1913        if (node == NUMA_NO_NODE)
1914                searchnode = numa_mem_id();
1915        else if (!node_present_pages(node))
1916                searchnode = node_to_mem_node(node);
1917
1918        object = get_partial_node(s, get_node(s, searchnode), c, flags);
1919        if (object || node != NUMA_NO_NODE)
1920                return object;
1921
1922        return get_any_partial(s, flags, c);
1923}
1924
1925#ifdef CONFIG_PREEMPT
1926/*
1927 * Calculate the next globally unique transaction for disambiguiation
1928 * during cmpxchg. The transactions start with the cpu number and are then
1929 * incremented by CONFIG_NR_CPUS.
1930 */
1931#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1932#else
1933/*
1934 * No preemption supported therefore also no need to check for
1935 * different cpus.
1936 */
1937#define TID_STEP 1
1938#endif
1939
1940static inline unsigned long next_tid(unsigned long tid)
1941{
1942        return tid + TID_STEP;
1943}
1944
1945static inline unsigned int tid_to_cpu(unsigned long tid)
1946{
1947        return tid % TID_STEP;
1948}
1949
1950static inline unsigned long tid_to_event(unsigned long tid)
1951{
1952        return tid / TID_STEP;
1953}
1954
1955static inline unsigned int init_tid(int cpu)
1956{
1957        return cpu;
1958}
1959
1960static inline void note_cmpxchg_failure(const char *n,
1961                const struct kmem_cache *s, unsigned long tid)
1962{
1963#ifdef SLUB_DEBUG_CMPXCHG
1964        unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1965
1966        pr_info("%s %s: cmpxchg redo ", n, s->name);
1967
1968#ifdef CONFIG_PREEMPT
1969        if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1970                pr_warn("due to cpu change %d -> %d\n",
1971                        tid_to_cpu(tid), tid_to_cpu(actual_tid));
1972        else
1973#endif
1974        if (tid_to_event(tid) != tid_to_event(actual_tid))
1975                pr_warn("due to cpu running other code. Event %ld->%ld\n",
1976                        tid_to_event(tid), tid_to_event(actual_tid));
1977        else
1978                pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1979                        actual_tid, tid, next_tid(tid));
1980#endif
1981        stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1982}
1983
1984static void init_kmem_cache_cpus(struct kmem_cache *s)
1985{
1986        int cpu;
1987
1988        for_each_possible_cpu(cpu)
1989                per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1990}
1991
1992/*
1993 * Remove the cpu slab
1994 */
1995static void deactivate_slab(struct kmem_cache *s, struct page *page,
1996                                void *freelist, struct kmem_cache_cpu *c)
1997{
1998        enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1999        struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2000        int lock = 0;
2001        enum slab_modes l = M_NONE, m = M_NONE;
2002        void *nextfree;
2003        int tail = DEACTIVATE_TO_HEAD;
2004        struct page new;
2005        struct page old;
2006
2007        if (page->freelist) {
2008                stat(s, DEACTIVATE_REMOTE_FREES);
2009                tail = DEACTIVATE_TO_TAIL;
2010        }
2011
2012        /*
2013         * Stage one: Free all available per cpu objects back
2014         * to the page freelist while it is still frozen. Leave the
2015         * last one.
2016         *
2017         * There is no need to take the list->lock because the page
2018         * is still frozen.
2019         */
2020        while (freelist && (nextfree = get_freepointer(s, freelist))) {
2021                void *prior;
2022                unsigned long counters;
2023
2024                do {
2025                        prior = page->freelist;
2026                        counters = page->counters;
2027                        set_freepointer(s, freelist, prior);
2028                        new.counters = counters;
2029                        new.inuse--;
2030                        VM_BUG_ON(!new.frozen);
2031
2032                } while (!__cmpxchg_double_slab(s, page,
2033                        prior, counters,
2034                        freelist, new.counters,
2035                        "drain percpu freelist"));
2036
2037                freelist = nextfree;
2038        }
2039
2040        /*
2041         * Stage two: Ensure that the page is unfrozen while the
2042         * list presence reflects the actual number of objects
2043         * during unfreeze.
2044         *
2045         * We setup the list membership and then perform a cmpxchg
2046         * with the count. If there is a mismatch then the page
2047         * is not unfrozen but the page is on the wrong list.
2048         *
2049         * Then we restart the process which may have to remove
2050         * the page from the list that we just put it on again
2051         * because the number of objects in the slab may have
2052         * changed.
2053         */
2054redo:
2055
2056        old.freelist = page->freelist;
2057        old.counters = page->counters;
2058        VM_BUG_ON(!old.frozen);
2059
2060        /* Determine target state of the slab */
2061        new.counters = old.counters;
2062        if (freelist) {
2063                new.inuse--;
2064                set_freepointer(s, freelist, old.freelist);
2065                new.freelist = freelist;
2066        } else
2067                new.freelist = old.freelist;
2068
2069        new.frozen = 0;
2070
2071        if (!new.inuse && n->nr_partial >= s->min_partial)
2072                m = M_FREE;
2073        else if (new.freelist) {
2074                m = M_PARTIAL;
2075                if (!lock) {
2076                        lock = 1;
2077                        /*
2078                         * Taking the spinlock removes the possiblity
2079                         * that acquire_slab() will see a slab page that
2080                         * is frozen
2081                         */
2082                        spin_lock(&n->list_lock);
2083                }
2084        } else {
2085                m = M_FULL;
2086                if (kmem_cache_debug(s) && !lock) {
2087                        lock = 1;
2088                        /*
2089                         * This also ensures that the scanning of full
2090                         * slabs from diagnostic functions will not see
2091                         * any frozen slabs.
2092                         */
2093                        spin_lock(&n->list_lock);
2094                }
2095        }
2096
2097        if (l != m) {
2098
2099                if (l == M_PARTIAL)
2100
2101                        remove_partial(n, page);
2102
2103                else if (l == M_FULL)
2104
2105                        remove_full(s, n, page);
2106
2107                if (m == M_PARTIAL) {
2108
2109                        add_partial(n, page, tail);
2110                        stat(s, tail);
2111
2112                } else if (m == M_FULL) {
2113
2114                        stat(s, DEACTIVATE_FULL);
2115                        add_full(s, n, page);
2116
2117                }
2118        }
2119
2120        l = m;
2121        if (!__cmpxchg_double_slab(s, page,
2122                                old.freelist, old.counters,
2123                                new.freelist, new.counters,
2124                                "unfreezing slab"))
2125                goto redo;
2126
2127        if (lock)
2128                spin_unlock(&n->list_lock);
2129
2130        if (m == M_FREE) {
2131                stat(s, DEACTIVATE_EMPTY);
2132                discard_slab(s, page);
2133                stat(s, FREE_SLAB);
2134        }
2135
2136        c->page = NULL;
2137        c->freelist = NULL;
2138}
2139
2140/*
2141 * Unfreeze all the cpu partial slabs.
2142 *
2143 * This function must be called with interrupts disabled
2144 * for the cpu using c (or some other guarantee must be there
2145 * to guarantee no concurrent accesses).
2146 */
2147static void unfreeze_partials(struct kmem_cache *s,
2148                struct kmem_cache_cpu *c)
2149{
2150#ifdef CONFIG_SLUB_CPU_PARTIAL
2151        struct kmem_cache_node *n = NULL, *n2 = NULL;
2152        struct page *page, *discard_page = NULL;
2153
2154        while ((page = c->partial)) {
2155                struct page new;
2156                struct page old;
2157
2158                c->partial = page->next;
2159
2160                n2 = get_node(s, page_to_nid(page));
2161                if (n != n2) {
2162                        if (n)
2163                                spin_unlock(&n->list_lock);
2164
2165                        n = n2;
2166                        spin_lock(&n->list_lock);
2167                }
2168
2169                do {
2170
2171                        old.freelist = page->freelist;
2172                        old.counters = page->counters;
2173                        VM_BUG_ON(!old.frozen);
2174
2175                        new.counters = old.counters;
2176                        new.freelist = old.freelist;
2177
2178                        new.frozen = 0;
2179
2180                } while (!__cmpxchg_double_slab(s, page,
2181                                old.freelist, old.counters,
2182                                new.freelist, new.counters,
2183                                "unfreezing slab"));
2184
2185                if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2186                        page->next = discard_page;
2187                        discard_page = page;
2188                } else {
2189                        add_partial(n, page, DEACTIVATE_TO_TAIL);
2190                        stat(s, FREE_ADD_PARTIAL);
2191                }
2192        }
2193
2194        if (n)
2195                spin_unlock(&n->list_lock);
2196
2197        while (discard_page) {
2198                page = discard_page;
2199                discard_page = discard_page->next;
2200
2201                stat(s, DEACTIVATE_EMPTY);
2202                discard_slab(s, page);
2203                stat(s, FREE_SLAB);
2204        }
2205#endif
2206}
2207
2208/*
2209 * Put a page that was just frozen (in __slab_free) into a partial page
2210 * slot if available. This is done without interrupts disabled and without
2211 * preemption disabled. The cmpxchg is racy and may put the partial page
2212 * onto a random cpus partial slot.
2213 *
2214 * If we did not find a slot then simply move all the partials to the
2215 * per node partial list.
2216 */
2217static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2218{
2219#ifdef CONFIG_SLUB_CPU_PARTIAL
2220        struct page *oldpage;
2221        int pages;
2222        int pobjects;
2223
2224        preempt_disable();
2225        do {
2226                pages = 0;
2227                pobjects = 0;
2228                oldpage = this_cpu_read(s->cpu_slab->partial);
2229
2230                if (oldpage) {
2231                        pobjects = oldpage->pobjects;
2232                        pages = oldpage->pages;
2233                        if (drain && pobjects > s->cpu_partial) {
2234                                unsigned long flags;
2235                                /*
2236                                 * partial array is full. Move the existing
2237                                 * set to the per node partial list.
2238                                 */
2239                                local_irq_save(flags);
2240                                unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2241                                local_irq_restore(flags);
2242                                oldpage = NULL;
2243                                pobjects = 0;
2244                                pages = 0;
2245                                stat(s, CPU_PARTIAL_DRAIN);
2246                        }
2247                }
2248
2249                pages++;
2250                pobjects += page->objects - page->inuse;
2251
2252                page->pages = pages;
2253                page->pobjects = pobjects;
2254                page->next = oldpage;
2255
2256        } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2257                                                                != oldpage);
2258        if (unlikely(!s->cpu_partial)) {
2259                unsigned long flags;
2260
2261                local_irq_save(flags);
2262                unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2263                local_irq_restore(flags);
2264        }
2265        preempt_enable();
2266#endif
2267}
2268
2269static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2270{
2271        stat(s, CPUSLAB_FLUSH);
2272        deactivate_slab(s, c->page, c->freelist, c);
2273
2274        c->tid = next_tid(c->tid);
2275}
2276
2277/*
2278 * Flush cpu slab.
2279 *
2280 * Called from IPI handler with interrupts disabled.
2281 */
2282static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2283{
2284        struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2285
2286        if (likely(c)) {
2287                if (c->page)
2288                        flush_slab(s, c);
2289
2290                unfreeze_partials(s, c);
2291        }
2292}
2293
2294static void flush_cpu_slab(void *d)
2295{
2296        struct kmem_cache *s = d;
2297
2298        __flush_cpu_slab(s, smp_processor_id());
2299}
2300
2301static bool has_cpu_slab(int cpu, void *info)
2302{
2303        struct kmem_cache *s = info;
2304        struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2305
2306        return c->page || slub_percpu_partial(c);
2307}
2308
2309static void flush_all(struct kmem_cache *s)
2310{
2311        on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2312}
2313
2314/*
2315 * Use the cpu notifier to insure that the cpu slabs are flushed when
2316 * necessary.
2317 */
2318static int slub_cpu_dead(unsigned int cpu)
2319{
2320        struct kmem_cache *s;
2321        unsigned long flags;
2322
2323        mutex_lock(&slab_mutex);
2324        list_for_each_entry(s, &slab_caches, list) {
2325                local_irq_save(flags);
2326                __flush_cpu_slab(s, cpu);
2327                local_irq_restore(flags);
2328        }
2329        mutex_unlock(&slab_mutex);
2330        return 0;
2331}
2332
2333/*
2334 * Check if the objects in a per cpu structure fit numa
2335 * locality expectations.
2336 */
2337static inline int node_match(struct page *page, int node)
2338{
2339#ifdef CONFIG_NUMA
2340        if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2341                return 0;
2342#endif
2343        return 1;
2344}
2345
2346#ifdef CONFIG_SLUB_DEBUG
2347static int count_free(struct page *page)
2348{
2349        return page->objects - page->inuse;
2350}
2351
2352static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2353{
2354        return atomic_long_read(&n->total_objects);
2355}
2356#endif /* CONFIG_SLUB_DEBUG */
2357
2358#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2359static unsigned long count_partial(struct kmem_cache_node *n,
2360                                        int (*get_count)(struct page *))
2361{
2362        unsigned long flags;
2363        unsigned long x = 0;
2364        struct page *page;
2365
2366        spin_lock_irqsave(&n->list_lock, flags);
2367        list_for_each_entry(page, &n->partial, lru)
2368                x += get_count(page);
2369        spin_unlock_irqrestore(&n->list_lock, flags);
2370        return x;
2371}
2372#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2373
2374static noinline void
2375slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2376{
2377#ifdef CONFIG_SLUB_DEBUG
2378        static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2379                                      DEFAULT_RATELIMIT_BURST);
2380        int node;
2381        struct kmem_cache_node *n;
2382
2383        if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2384                return;
2385
2386        pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2387                nid, gfpflags, &gfpflags);
2388        pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2389                s->name, s->object_size, s->size, oo_order(s->oo),
2390                oo_order(s->min));
2391
2392        if (oo_order(s->min) > get_order(s->object_size))
2393                pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2394                        s->name);
2395
2396        for_each_kmem_cache_node(s, node, n) {
2397                unsigned long nr_slabs;
2398                unsigned long nr_objs;
2399                unsigned long nr_free;
2400
2401                nr_free  = count_partial(n, count_free);
2402                nr_slabs = node_nr_slabs(n);
2403                nr_objs  = node_nr_objs(n);
2404
2405                pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2406                        node, nr_slabs, nr_objs, nr_free);
2407        }
2408#endif
2409}
2410
2411static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2412                        int node, struct kmem_cache_cpu **pc)
2413{
2414        void *freelist;
2415        struct kmem_cache_cpu *c = *pc;
2416        struct page *page;
2417
2418        freelist = get_partial(s, flags, node, c);
2419
2420        if (freelist)
2421                return freelist;
2422
2423        page = new_slab(s, flags, node);
2424        if (page) {
2425                c = raw_cpu_ptr(s->cpu_slab);
2426                if (c->page)
2427                        flush_slab(s, c);
2428
2429                /*
2430                 * No other reference to the page yet so we can
2431                 * muck around with it freely without cmpxchg
2432                 */
2433                freelist = page->freelist;
2434                page->freelist = NULL;
2435
2436                stat(s, ALLOC_SLAB);
2437                c->page = page;
2438                *pc = c;
2439        } else
2440                freelist = NULL;
2441
2442        return freelist;
2443}
2444
2445static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2446{
2447        if (unlikely(PageSlabPfmemalloc(page)))
2448                return gfp_pfmemalloc_allowed(gfpflags);
2449
2450        return true;
2451}
2452
2453/*
2454 * Check the page->freelist of a page and either transfer the freelist to the
2455 * per cpu freelist or deactivate the page.
2456 *
2457 * The page is still frozen if the return value is not NULL.
2458 *
2459 * If this function returns NULL then the page has been unfrozen.
2460 *
2461 * This function must be called with interrupt disabled.
2462 */
2463static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2464{
2465        struct page new;
2466        unsigned long counters;
2467        void *freelist;
2468
2469        do {
2470                freelist = page->freelist;
2471                counters = page->counters;
2472
2473                new.counters = counters;
2474                VM_BUG_ON(!new.frozen);
2475
2476                new.inuse = page->objects;
2477                new.frozen = freelist != NULL;
2478
2479        } while (!__cmpxchg_double_slab(s, page,
2480                freelist, counters,
2481                NULL, new.counters,
2482                "get_freelist"));
2483
2484        return freelist;
2485}
2486
2487/*
2488 * Slow path. The lockless freelist is empty or we need to perform
2489 * debugging duties.
2490 *
2491 * Processing is still very fast if new objects have been freed to the
2492 * regular freelist. In that case we simply take over the regular freelist
2493 * as the lockless freelist and zap the regular freelist.
2494 *
2495 * If that is not working then we fall back to the partial lists. We take the
2496 * first element of the freelist as the object to allocate now and move the
2497 * rest of the freelist to the lockless freelist.
2498 *
2499 * And if we were unable to get a new slab from the partial slab lists then
2500 * we need to allocate a new slab. This is the slowest path since it involves
2501 * a call to the page allocator and the setup of a new slab.
2502 *
2503 * Version of __slab_alloc to use when we know that interrupts are
2504 * already disabled (which is the case for bulk allocation).
2505 */
2506static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2507                          unsigned long addr, struct kmem_cache_cpu *c)
2508{
2509        void *freelist;
2510        struct page *page;
2511
2512        page = c->page;
2513        if (!page)
2514                goto new_slab;
2515redo:
2516
2517        if (unlikely(!node_match(page, node))) {
2518                int searchnode = node;
2519
2520                if (node != NUMA_NO_NODE && !node_present_pages(node))
2521                        searchnode = node_to_mem_node(node);
2522
2523                if (unlikely(!node_match(page, searchnode))) {
2524                        stat(s, ALLOC_NODE_MISMATCH);
2525                        deactivate_slab(s, page, c->freelist, c);
2526                        goto new_slab;
2527                }
2528        }
2529
2530        /*
2531         * By rights, we should be searching for a slab page that was
2532         * PFMEMALLOC but right now, we are losing the pfmemalloc
2533         * information when the page leaves the per-cpu allocator
2534         */
2535        if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2536                deactivate_slab(s, page, c->freelist, c);
2537                goto new_slab;
2538        }
2539
2540        /* must check again c->freelist in case of cpu migration or IRQ */
2541        freelist = c->freelist;
2542        if (freelist)
2543                goto load_freelist;
2544
2545        freelist = get_freelist(s, page);
2546
2547        if (!freelist) {
2548                c->page = NULL;
2549                stat(s, DEACTIVATE_BYPASS);
2550                goto new_slab;
2551        }
2552
2553        stat(s, ALLOC_REFILL);
2554
2555load_freelist:
2556        /*
2557         * freelist is pointing to the list of objects to be used.
2558         * page is pointing to the page from which the objects are obtained.
2559         * That page must be frozen for per cpu allocations to work.
2560         */
2561        VM_BUG_ON(!c->page->frozen);
2562        c->freelist = get_freepointer(s, freelist);
2563        c->tid = next_tid(c->tid);
2564        return freelist;
2565
2566new_slab:
2567
2568        if (slub_percpu_partial(c)) {
2569                page = c->page = slub_percpu_partial(c);
2570                slub_set_percpu_partial(c, page);
2571                stat(s, CPU_PARTIAL_ALLOC);
2572                goto redo;
2573        }
2574
2575        freelist = new_slab_objects(s, gfpflags, node, &c);
2576
2577        if (unlikely(!freelist)) {
2578                slab_out_of_memory(s, gfpflags, node);
2579                return NULL;
2580        }
2581
2582        page = c->page;
2583        if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2584                goto load_freelist;
2585
2586        /* Only entered in the debug case */
2587        if (kmem_cache_debug(s) &&
2588                        !alloc_debug_processing(s, page, freelist, addr))
2589                goto new_slab;  /* Slab failed checks. Next slab needed */
2590
2591        deactivate_slab(s, page, get_freepointer(s, freelist), c);
2592        return freelist;
2593}
2594
2595/*
2596 * Another one that disabled interrupt and compensates for possible
2597 * cpu changes by refetching the per cpu area pointer.
2598 */
2599static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2600                          unsigned long addr, struct kmem_cache_cpu *c)
2601{
2602        void *p;
2603        unsigned long flags;
2604
2605        local_irq_save(flags);
2606#ifdef CONFIG_PREEMPT
2607        /*
2608         * We may have been preempted and rescheduled on a different
2609         * cpu before disabling interrupts. Need to reload cpu area
2610         * pointer.
2611         */
2612        c = this_cpu_ptr(s->cpu_slab);
2613#endif
2614
2615        p = ___slab_alloc(s, gfpflags, node, addr, c);
2616        local_irq_restore(flags);
2617        return p;
2618}
2619
2620/*
2621 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2622 * have the fastpath folded into their functions. So no function call
2623 * overhead for requests that can be satisfied on the fastpath.
2624 *
2625 * The fastpath works by first checking if the lockless freelist can be used.
2626 * If not then __slab_alloc is called for slow processing.
2627 *
2628 * Otherwise we can simply pick the next object from the lockless free list.
2629 */
2630static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2631                gfp_t gfpflags, int node, unsigned long addr)
2632{
2633        void *object;
2634        struct kmem_cache_cpu *c;
2635        struct page *page;
2636        unsigned long tid;
2637
2638        s = slab_pre_alloc_hook(s, gfpflags);
2639        if (!s)
2640                return NULL;
2641redo:
2642        /*
2643         * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2644         * enabled. We may switch back and forth between cpus while
2645         * reading from one cpu area. That does not matter as long
2646         * as we end up on the original cpu again when doing the cmpxchg.
2647         *
2648         * We should guarantee that tid and kmem_cache are retrieved on
2649         * the same cpu. It could be different if CONFIG_PREEMPT so we need
2650         * to check if it is matched or not.
2651         */
2652        do {
2653                tid = this_cpu_read(s->cpu_slab->tid);
2654                c = raw_cpu_ptr(s->cpu_slab);
2655        } while (IS_ENABLED(CONFIG_PREEMPT) &&
2656                 unlikely(tid != READ_ONCE(c->tid)));
2657
2658        /*
2659         * Irqless object alloc/free algorithm used here depends on sequence
2660         * of fetching cpu_slab's data. tid should be fetched before anything
2661         * on c to guarantee that object and page associated with previous tid
2662         * won't be used with current tid. If we fetch tid first, object and
2663         * page could be one associated with next tid and our alloc/free
2664         * request will be failed. In this case, we will retry. So, no problem.
2665         */
2666        barrier();
2667
2668        /*
2669         * The transaction ids are globally unique per cpu and per operation on
2670         * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2671         * occurs on the right processor and that there was no operation on the
2672         * linked list in between.
2673         */
2674
2675        object = c->freelist;
2676        page = c->page;
2677        if (unlikely(!object || !node_match(page, node))) {
2678                object = __slab_alloc(s, gfpflags, node, addr, c);
2679                stat(s, ALLOC_SLOWPATH);
2680        } else {
2681                void *next_object = get_freepointer_safe(s, object);
2682
2683                /*
2684                 * The cmpxchg will only match if there was no additional
2685                 * operation and if we are on the right processor.
2686                 *
2687                 * The cmpxchg does the following atomically (without lock
2688                 * semantics!)
2689                 * 1. Relocate first pointer to the current per cpu area.
2690                 * 2. Verify that tid and freelist have not been changed
2691                 * 3. If they were not changed replace tid and freelist
2692                 *
2693                 * Since this is without lock semantics the protection is only
2694                 * against code executing on this cpu *not* from access by
2695                 * other cpus.
2696                 */
2697                if (unlikely(!this_cpu_cmpxchg_double(
2698                                s->cpu_slab->freelist, s->cpu_slab->tid,
2699                                object, tid,
2700                                next_object, next_tid(tid)))) {
2701
2702                        note_cmpxchg_failure("slab_alloc", s, tid);
2703                        goto redo;
2704                }
2705                prefetch_freepointer(s, next_object);
2706                stat(s, ALLOC_FASTPATH);
2707        }
2708
2709        if (unlikely(gfpflags & __GFP_ZERO) && object)
2710                memset(object, 0, s->object_size);
2711
2712        slab_post_alloc_hook(s, gfpflags, 1, &object);
2713
2714        return object;
2715}
2716
2717static __always_inline void *slab_alloc(struct kmem_cache *s,
2718                gfp_t gfpflags, unsigned long addr)
2719{
2720        return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2721}
2722
2723void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2724{
2725        void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2726
2727        trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2728                                s->size, gfpflags);
2729
2730        return ret;
2731}
2732EXPORT_SYMBOL(kmem_cache_alloc);
2733
2734#ifdef CONFIG_TRACING
2735void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2736{
2737        void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2738        trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2739        kasan_kmalloc(s, ret, size, gfpflags);
2740        return ret;
2741}
2742EXPORT_SYMBOL(kmem_cache_alloc_trace);
2743#endif
2744
2745#ifdef CONFIG_NUMA
2746void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2747{
2748        void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2749
2750        trace_kmem_cache_alloc_node(_RET_IP_, ret,
2751                                    s->object_size, s->size, gfpflags, node);
2752
2753        return ret;
2754}
2755EXPORT_SYMBOL(kmem_cache_alloc_node);
2756
2757#ifdef CONFIG_TRACING
2758void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2759                                    gfp_t gfpflags,
2760                                    int node, size_t size)
2761{
2762        void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2763
2764        trace_kmalloc_node(_RET_IP_, ret,
2765                           size, s->size, gfpflags, node);
2766
2767        kasan_kmalloc(s, ret, size, gfpflags);
2768        return ret;
2769}
2770EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2771#endif
2772#endif
2773
2774/*
2775 * Slow path handling. This may still be called frequently since objects
2776 * have a longer lifetime than the cpu slabs in most processing loads.
2777 *
2778 * So we still attempt to reduce cache line usage. Just take the slab
2779 * lock and free the item. If there is no additional partial page
2780 * handling required then we can return immediately.
2781 */
2782static void __slab_free(struct kmem_cache *s, struct page *page,
2783                        void *head, void *tail, int cnt,
2784                        unsigned long addr)
2785
2786{
2787        void *prior;
2788        int was_frozen;
2789        struct page new;
2790        unsigned long counters;
2791        struct kmem_cache_node *n = NULL;
2792        unsigned long uninitialized_var(flags);
2793
2794        stat(s, FREE_SLOWPATH);
2795
2796        if (kmem_cache_debug(s) &&
2797            !free_debug_processing(s, page, head, tail, cnt, addr))
2798                return;
2799
2800        do {
2801                if (unlikely(n)) {
2802                        spin_unlock_irqrestore(&n->list_lock, flags);
2803                        n = NULL;
2804                }
2805                prior = page->freelist;
2806                counters = page->counters;
2807                set_freepointer(s, tail, prior);
2808                new.counters = counters;
2809                was_frozen = new.frozen;
2810                new.inuse -= cnt;
2811                if ((!new.inuse || !prior) && !was_frozen) {
2812
2813                        if (kmem_cache_has_cpu_partial(s) && !prior) {
2814
2815                                /*
2816                                 * Slab was on no list before and will be
2817                                 * partially empty
2818                                 * We can defer the list move and instead
2819                                 * freeze it.
2820                                 */
2821                                new.frozen = 1;
2822
2823                        } else { /* Needs to be taken off a list */
2824
2825                                n = get_node(s, page_to_nid(page));
2826                                /*
2827                                 * Speculatively acquire the list_lock.
2828                                 * If the cmpxchg does not succeed then we may
2829                                 * drop the list_lock without any processing.
2830                                 *
2831                                 * Otherwise the list_lock will synchronize with
2832                                 * other processors updating the list of slabs.
2833                                 */
2834                                spin_lock_irqsave(&n->list_lock, flags);
2835
2836                        }
2837                }
2838
2839        } while (!cmpxchg_double_slab(s, page,
2840                prior, counters,
2841                head, new.counters,
2842                "__slab_free"));
2843
2844        if (likely(!n)) {
2845
2846                /*
2847                 * If we just froze the page then put it onto the
2848                 * per cpu partial list.
2849                 */
2850                if (new.frozen && !was_frozen) {
2851                        put_cpu_partial(s, page, 1);
2852                        stat(s, CPU_PARTIAL_FREE);
2853                }
2854                /*
2855                 * The list lock was not taken therefore no list
2856                 * activity can be necessary.
2857                 */
2858                if (was_frozen)
2859                        stat(s, FREE_FROZEN);
2860                return;
2861        }
2862
2863        if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2864                goto slab_empty;
2865
2866        /*
2867         * Objects left in the slab. If it was not on the partial list before
2868         * then add it.
2869         */
2870        if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2871                if (kmem_cache_debug(s))
2872                        remove_full(s, n, page);
2873                add_partial(n, page, DEACTIVATE_TO_TAIL);
2874                stat(s, FREE_ADD_PARTIAL);
2875        }
2876        spin_unlock_irqrestore(&n->list_lock, flags);
2877        return;
2878
2879slab_empty:
2880        if (prior) {
2881                /*
2882                 * Slab on the partial list.
2883                 */
2884                remove_partial(n, page);
2885                stat(s, FREE_REMOVE_PARTIAL);
2886        } else {
2887                /* Slab must be on the full list */
2888                remove_full(s, n, page);
2889        }
2890
2891        spin_unlock_irqrestore(&n->list_lock, flags);
2892        stat(s, FREE_SLAB);
2893        discard_slab(s, page);
2894}
2895
2896/*
2897 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2898 * can perform fastpath freeing without additional function calls.
2899 *
2900 * The fastpath is only possible if we are freeing to the current cpu slab
2901 * of this processor. This typically the case if we have just allocated
2902 * the item before.
2903 *
2904 * If fastpath is not possible then fall back to __slab_free where we deal
2905 * with all sorts of special processing.
2906 *
2907 * Bulk free of a freelist with several objects (all pointing to the
2908 * same page) possible by specifying head and tail ptr, plus objects
2909 * count (cnt). Bulk free indicated by tail pointer being set.
2910 */
2911static __always_inline void do_slab_free(struct kmem_cache *s,
2912                                struct page *page, void *head, void *tail,
2913                                int cnt, unsigned long addr)
2914{
2915        void *tail_obj = tail ? : head;
2916        struct kmem_cache_cpu *c;
2917        unsigned long tid;
2918redo:
2919        /*
2920         * Determine the currently cpus per cpu slab.
2921         * The cpu may change afterward. However that does not matter since
2922         * data is retrieved via this pointer. If we are on the same cpu
2923         * during the cmpxchg then the free will succeed.
2924         */
2925        do {
2926                tid = this_cpu_read(s->cpu_slab->tid);
2927                c = raw_cpu_ptr(s->cpu_slab);
2928        } while (IS_ENABLED(CONFIG_PREEMPT) &&
2929                 unlikely(tid != READ_ONCE(c->tid)));
2930
2931        /* Same with comment on barrier() in slab_alloc_node() */
2932        barrier();
2933
2934        if (likely(page == c->page)) {
2935                set_freepointer(s, tail_obj, c->freelist);
2936
2937                if (unlikely(!this_cpu_cmpxchg_double(
2938                                s->cpu_slab->freelist, s->cpu_slab->tid,
2939                                c->freelist, tid,
2940                                head, next_tid(tid)))) {
2941
2942                        note_cmpxchg_failure("slab_free", s, tid);
2943                        goto redo;
2944                }
2945                stat(s, FREE_FASTPATH);
2946        } else
2947                __slab_free(s, page, head, tail_obj, cnt, addr);
2948
2949}
2950
2951static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2952                                      void *head, void *tail, int cnt,
2953                                      unsigned long addr)
2954{
2955        slab_free_freelist_hook(s, head, tail);
2956        /*
2957         * slab_free_freelist_hook() could have put the items into quarantine.
2958         * If so, no need to free them.
2959         */
2960        if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
2961                return;
2962        do_slab_free(s, page, head, tail, cnt, addr);
2963}
2964
2965#ifdef CONFIG_KASAN
2966void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2967{
2968        do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2969}
2970#endif
2971
2972void kmem_cache_free(struct kmem_cache *s, void *x)
2973{
2974        s = cache_from_obj(s, x);
2975        if (!s)
2976                return;
2977        slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2978        trace_kmem_cache_free(_RET_IP_, x);
2979}
2980EXPORT_SYMBOL(kmem_cache_free);
2981
2982struct detached_freelist {
2983        struct page *page;
2984        void *tail;
2985        void *freelist;
2986        int cnt;
2987        struct kmem_cache *s;
2988};
2989
2990/*
2991 * This function progressively scans the array with free objects (with
2992 * a limited look ahead) and extract objects belonging to the same
2993 * page.  It builds a detached freelist directly within the given
2994 * page/objects.  This can happen without any need for
2995 * synchronization, because the objects are owned by running process.
2996 * The freelist is build up as a single linked list in the objects.
2997 * The idea is, that this detached freelist can then be bulk
2998 * transferred to the real freelist(s), but only requiring a single
2999 * synchronization primitive.  Look ahead in the array is limited due
3000 * to performance reasons.
3001 */
3002static inline
3003int build_detached_freelist(struct kmem_cache *s, size_t size,
3004                            void **p, struct detached_freelist *df)
3005{
3006        size_t first_skipped_index = 0;
3007        int lookahead = 3;
3008        void *object;
3009        struct page *page;
3010
3011        /* Always re-init detached_freelist */
3012        df->page = NULL;
3013
3014        do {
3015                object = p[--size];
3016                /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3017        } while (!object && size);
3018
3019        if (!object)
3020                return 0;
3021
3022        page = virt_to_head_page(object);
3023        if (!s) {
3024                /* Handle kalloc'ed objects */
3025                if (unlikely(!PageSlab(page))) {
3026                        BUG_ON(!PageCompound(page));
3027                        kfree_hook(object);
3028                        __free_pages(page, compound_order(page));
3029                        p[size] = NULL; /* mark object processed */
3030                        return size;
3031                }
3032                /* Derive kmem_cache from object */
3033                df->s = page->slab_cache;
3034        } else {
3035                df->s = cache_from_obj(s, object); /* Support for memcg */
3036        }
3037
3038        /* Start new detached freelist */
3039        df->page = page;
3040        set_freepointer(df->s, object, NULL);
3041        df->tail = object;
3042        df->freelist = object;
3043        p[size] = NULL; /* mark object processed */
3044        df->cnt = 1;
3045
3046        while (size) {
3047                object = p[--size];
3048                if (!object)
3049                        continue; /* Skip processed objects */
3050
3051                /* df->page is always set at this point */
3052                if (df->page == virt_to_head_page(object)) {
3053                        /* Opportunity build freelist */
3054                        set_freepointer(df->s, object, df->freelist);
3055                        df->freelist = object;
3056                        df->cnt++;
3057                        p[size] = NULL; /* mark object processed */
3058
3059                        continue;
3060                }
3061
3062                /* Limit look ahead search */
3063                if (!--lookahead)
3064                        break;
3065
3066                if (!first_skipped_index)
3067                        first_skipped_index = size + 1;
3068        }
3069
3070        return first_skipped_index;
3071}
3072
3073/* Note that interrupts must be enabled when calling this function. */
3074void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3075{
3076        if (WARN_ON(!size))
3077                return;
3078
3079        do {
3080                struct detached_freelist df;
3081
3082                size = build_detached_freelist(s, size, p, &df);
3083                if (!df.page)
3084                        continue;
3085
3086                slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3087        } while (likely(size));
3088}
3089EXPORT_SYMBOL(kmem_cache_free_bulk);
3090
3091/* Note that interrupts must be enabled when calling this function. */
3092int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3093                          void **p)
3094{
3095        struct kmem_cache_cpu *c;
3096        int i;
3097
3098        /* memcg and kmem_cache debug support */
3099        s = slab_pre_alloc_hook(s, flags);
3100        if (unlikely(!s))
3101                return false;
3102        /*
3103         * Drain objects in the per cpu slab, while disabling local
3104         * IRQs, which protects against PREEMPT and interrupts
3105         * handlers invoking normal fastpath.
3106         */
3107        local_irq_disable();
3108        c = this_cpu_ptr(s->cpu_slab);
3109
3110        for (i = 0; i < size; i++) {
3111                void *object = c->freelist;
3112
3113                if (unlikely(!object)) {
3114                        /*
3115                         * Invoking slow path likely have side-effect
3116                         * of re-populating per CPU c->freelist
3117                         */
3118                        p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3119                                            _RET_IP_, c);
3120                        if (unlikely(!p[i]))
3121                                goto error;
3122
3123                        c = this_cpu_ptr(s->cpu_slab);
3124                        continue; /* goto for-loop */
3125                }
3126                c->freelist = get_freepointer(s, object);
3127                p[i] = object;
3128        }
3129        c->tid = next_tid(c->tid);
3130        local_irq_enable();
3131
3132        /* Clear memory outside IRQ disabled fastpath loop */
3133        if (unlikely(flags & __GFP_ZERO)) {
3134                int j;
3135
3136                for (j = 0; j < i; j++)
3137                        memset(p[j], 0, s->object_size);
3138        }
3139
3140        /* memcg and kmem_cache debug support */
3141        slab_post_alloc_hook(s, flags, size, p);
3142        return i;
3143error:
3144        local_irq_enable();
3145        slab_post_alloc_hook(s, flags, i, p);
3146        __kmem_cache_free_bulk(s, i, p);
3147        return 0;
3148}
3149EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3150
3151
3152/*
3153 * Object placement in a slab is made very easy because we always start at
3154 * offset 0. If we tune the size of the object to the alignment then we can
3155 * get the required alignment by putting one properly sized object after
3156 * another.
3157 *
3158 * Notice that the allocation order determines the sizes of the per cpu
3159 * caches. Each processor has always one slab available for allocations.
3160 * Increasing the allocation order reduces the number of times that slabs
3161 * must be moved on and off the partial lists and is therefore a factor in
3162 * locking overhead.
3163 */
3164
3165/*
3166 * Mininum / Maximum order of slab pages. This influences locking overhead
3167 * and slab fragmentation. A higher order reduces the number of partial slabs
3168 * and increases the number of allocations possible without having to
3169 * take the list_lock.
3170 */
3171static int slub_min_order;
3172static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3173static int slub_min_objects;
3174
3175/*
3176 * Calculate the order of allocation given an slab object size.
3177 *
3178 * The order of allocation has significant impact on performance and other
3179 * system components. Generally order 0 allocations should be preferred since
3180 * order 0 does not cause fragmentation in the page allocator. Larger objects
3181 * be problematic to put into order 0 slabs because there may be too much
3182 * unused space left. We go to a higher order if more than 1/16th of the slab
3183 * would be wasted.
3184 *
3185 * In order to reach satisfactory performance we must ensure that a minimum
3186 * number of objects is in one slab. Otherwise we may generate too much
3187 * activity on the partial lists which requires taking the list_lock. This is
3188 * less a concern for large slabs though which are rarely used.
3189 *
3190 * slub_max_order specifies the order where we begin to stop considering the
3191 * number of objects in a slab as critical. If we reach slub_max_order then
3192 * we try to keep the page order as low as possible. So we accept more waste
3193 * of space in favor of a small page order.
3194 *
3195 * Higher order allocations also allow the placement of more objects in a
3196 * slab and thereby reduce object handling overhead. If the user has
3197 * requested a higher mininum order then we start with that one instead of
3198 * the smallest order which will fit the object.
3199 */
3200static inline int slab_order(int size, int min_objects,
3201                                int max_order, int fract_leftover, int reserved)
3202{
3203        int order;
3204        int rem;
3205        int min_order = slub_min_order;
3206
3207        if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3208                return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3209
3210        for (order = max(min_order, get_order(min_objects * size + reserved));
3211                        order <= max_order; order++) {
3212
3213                unsigned long slab_size = PAGE_SIZE << order;
3214
3215                rem = (slab_size - reserved) % size;
3216
3217                if (rem <= slab_size / fract_leftover)
3218                        break;
3219        }
3220
3221        return order;
3222}
3223
3224static inline int calculate_order(int size, int reserved)
3225{
3226        int order;
3227        int min_objects;
3228        int fraction;
3229        int max_objects;
3230
3231        /*
3232         * Attempt to find best configuration for a slab. This
3233         * works by first attempting to generate a layout with
3234         * the best configuration and backing off gradually.
3235         *
3236         * First we increase the acceptable waste in a slab. Then
3237         * we reduce the minimum objects required in a slab.
3238         */
3239        min_objects = slub_min_objects;
3240        if (!min_objects)
3241                min_objects = 4 * (fls(nr_cpu_ids) + 1);
3242        max_objects = order_objects(slub_max_order, size, reserved);
3243        min_objects = min(min_objects, max_objects);
3244
3245        while (min_objects > 1) {
3246                fraction = 16;
3247                while (fraction >= 4) {
3248                        order = slab_order(size, min_objects,
3249                                        slub_max_order, fraction, reserved);
3250                        if (order <= slub_max_order)
3251                                return order;
3252                        fraction /= 2;
3253                }
3254                min_objects--;
3255        }
3256
3257        /*
3258         * We were unable to place multiple objects in a slab. Now
3259         * lets see if we can place a single object there.
3260         */
3261        order = slab_order(size, 1, slub_max_order, 1, reserved);
3262        if (order <= slub_max_order)
3263                return order;
3264
3265        /*
3266         * Doh this slab cannot be placed using slub_max_order.
3267         */
3268        order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3269        if (order < MAX_ORDER)
3270                return order;
3271        return -ENOSYS;
3272}
3273
3274static void
3275init_kmem_cache_node(struct kmem_cache_node *n)
3276{
3277        n->nr_partial = 0;
3278        spin_lock_init(&n->list_lock);
3279        INIT_LIST_HEAD(&n->partial);
3280#ifdef CONFIG_SLUB_DEBUG
3281        atomic_long_set(&n->nr_slabs, 0);
3282        atomic_long_set(&n->total_objects, 0);
3283        INIT_LIST_HEAD(&n->full);
3284#endif
3285}
3286
3287static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3288{
3289        BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3290                        KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3291
3292        /*
3293         * Must align to double word boundary for the double cmpxchg
3294         * instructions to work; see __pcpu_double_call_return_bool().
3295         */
3296        s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3297                                     2 * sizeof(void *));
3298
3299        if (!s->cpu_slab)
3300                return 0;
3301
3302        init_kmem_cache_cpus(s);
3303
3304        return 1;
3305}
3306
3307static struct kmem_cache *kmem_cache_node;
3308
3309/*
3310 * No kmalloc_node yet so do it by hand. We know that this is the first
3311 * slab on the node for this slabcache. There are no concurrent accesses
3312 * possible.
3313 *
3314 * Note that this function only works on the kmem_cache_node
3315 * when allocating for the kmem_cache_node. This is used for bootstrapping
3316 * memory on a fresh node that has no slab structures yet.
3317 */
3318static void early_kmem_cache_node_alloc(int node)
3319{
3320        struct page *page;
3321        struct kmem_cache_node *n;
3322
3323        BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3324
3325        page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3326
3327        BUG_ON(!page);
3328        if (page_to_nid(page) != node) {
3329                pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3330                pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3331        }
3332
3333        n = page->freelist;
3334        BUG_ON(!n);
3335        page->freelist = get_freepointer(kmem_cache_node, n);
3336        page->inuse = 1;
3337        page->frozen = 0;
3338        kmem_cache_node->node[node] = n;
3339#ifdef CONFIG_SLUB_DEBUG
3340        init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3341        init_tracking(kmem_cache_node, n);
3342#endif
3343        kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3344                      GFP_KERNEL);
3345        init_kmem_cache_node(n);
3346        inc_slabs_node(kmem_cache_node, node, page->objects);
3347
3348        /*
3349         * No locks need to be taken here as it has just been
3350         * initialized and there is no concurrent access.
3351         */
3352        __add_partial(n, page, DEACTIVATE_TO_HEAD);
3353}
3354
3355static void free_kmem_cache_nodes(struct kmem_cache *s)
3356{
3357        int node;
3358        struct kmem_cache_node *n;
3359
3360        for_each_kmem_cache_node(s, node, n) {
3361                kmem_cache_free(kmem_cache_node, n);
3362                s->node[node] = NULL;
3363        }
3364}
3365
3366void __kmem_cache_release(struct kmem_cache *s)
3367{
3368        cache_random_seq_destroy(s);
3369        free_percpu(s->cpu_slab);
3370        free_kmem_cache_nodes(s);
3371}
3372
3373static int init_kmem_cache_nodes(struct kmem_cache *s)
3374{
3375        int node;
3376
3377        for_each_node_state(node, N_NORMAL_MEMORY) {
3378                struct kmem_cache_node *n;
3379
3380                if (slab_state == DOWN) {
3381                        early_kmem_cache_node_alloc(node);
3382                        continue;
3383                }
3384                n = kmem_cache_alloc_node(kmem_cache_node,
3385                                                GFP_KERNEL, node);
3386
3387                if (!n) {
3388                        free_kmem_cache_nodes(s);
3389                        return 0;
3390                }
3391
3392                s->node[node] = n;
3393                init_kmem_cache_node(n);
3394        }
3395        return 1;
3396}
3397
3398static void set_min_partial(struct kmem_cache *s, unsigned long min)
3399{
3400        if (min < MIN_PARTIAL)
3401                min = MIN_PARTIAL;
3402        else if (min > MAX_PARTIAL)
3403                min = MAX_PARTIAL;
3404        s->min_partial = min;
3405}
3406
3407static void set_cpu_partial(struct kmem_cache *s)
3408{
3409#ifdef CONFIG_SLUB_CPU_PARTIAL
3410        /*
3411         * cpu_partial determined the maximum number of objects kept in the
3412         * per cpu partial lists of a processor.
3413         *
3414         * Per cpu partial lists mainly contain slabs that just have one
3415         * object freed. If they are used for allocation then they can be
3416         * filled up again with minimal effort. The slab will never hit the
3417         * per node partial lists and therefore no locking will be required.
3418         *
3419         * This setting also determines
3420         *
3421         * A) The number of objects from per cpu partial slabs dumped to the
3422         *    per node list when we reach the limit.
3423         * B) The number of objects in cpu partial slabs to extract from the
3424         *    per node list when we run out of per cpu objects. We only fetch
3425         *    50% to keep some capacity around for frees.
3426         */
3427        if (!kmem_cache_has_cpu_partial(s))
3428                s->cpu_partial = 0;
3429        else if (s->size >= PAGE_SIZE)
3430                s->cpu_partial = 2;
3431        else if (s->size >= 1024)
3432                s->cpu_partial = 6;
3433        else if (s->size >= 256)
3434                s->cpu_partial = 13;
3435        else
3436                s->cpu_partial = 30;
3437#endif
3438}
3439
3440/*
3441 * calculate_sizes() determines the order and the distribution of data within
3442 * a slab object.
3443 */
3444static int calculate_sizes(struct kmem_cache *s, int forced_order)
3445{
3446        unsigned long flags = s->flags;
3447        size_t size = s->object_size;
3448        int order;
3449
3450        /*
3451         * Round up object size to the next word boundary. We can only
3452         * place the free pointer at word boundaries and this determines
3453         * the possible location of the free pointer.
3454         */
3455        size = ALIGN(size, sizeof(void *));
3456
3457#ifdef CONFIG_SLUB_DEBUG
3458        /*
3459         * Determine if we can poison the object itself. If the user of
3460         * the slab may touch the object after free or before allocation
3461         * then we should never poison the object itself.
3462         */
3463        if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3464                        !s->ctor)
3465                s->flags |= __OBJECT_POISON;
3466        else
3467                s->flags &= ~__OBJECT_POISON;
3468
3469
3470        /*
3471         * If we are Redzoning then check if there is some space between the
3472         * end of the object and the free pointer. If not then add an
3473         * additional word to have some bytes to store Redzone information.
3474         */
3475        if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3476                size += sizeof(void *);
3477#endif
3478
3479        /*
3480         * With that we have determined the number of bytes in actual use
3481         * by the object. This is the potential offset to the free pointer.
3482         */
3483        s->inuse = size;
3484
3485        if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3486                s->ctor)) {
3487                /*
3488                 * Relocate free pointer after the object if it is not
3489                 * permitted to overwrite the first word of the object on
3490                 * kmem_cache_free.
3491                 *
3492                 * This is the case if we do RCU, have a constructor or
3493                 * destructor or are poisoning the objects.
3494                 */
3495                s->offset = size;
3496                size += sizeof(void *);
3497        }
3498
3499#ifdef CONFIG_SLUB_DEBUG
3500        if (flags & SLAB_STORE_USER)
3501                /*
3502                 * Need to store information about allocs and frees after
3503                 * the object.
3504                 */
3505                size += 2 * sizeof(struct track);
3506#endif
3507
3508        kasan_cache_create(s, &size, &s->flags);
3509#ifdef CONFIG_SLUB_DEBUG
3510        if (flags & SLAB_RED_ZONE) {
3511                /*
3512                 * Add some empty padding so that we can catch
3513                 * overwrites from earlier objects rather than let
3514                 * tracking information or the free pointer be
3515                 * corrupted if a user writes before the start
3516                 * of the object.
3517                 */
3518                size += sizeof(void *);
3519
3520                s->red_left_pad = sizeof(void *);
3521                s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3522                size += s->red_left_pad;
3523        }
3524#endif
3525
3526        /*
3527         * SLUB stores one object immediately after another beginning from
3528         * offset 0. In order to align the objects we have to simply size
3529         * each object to conform to the alignment.
3530         */
3531        size = ALIGN(size, s->align);
3532        s->size = size;
3533        if (forced_order >= 0)
3534                order = forced_order;
3535        else
3536                order = calculate_order(size, s->reserved);
3537
3538        if (order < 0)
3539                return 0;
3540
3541        s->allocflags = 0;
3542        if (order)
3543                s->allocflags |= __GFP_COMP;
3544
3545        if (s->flags & SLAB_CACHE_DMA)
3546                s->allocflags |= GFP_DMA;
3547
3548        if (s->flags & SLAB_RECLAIM_ACCOUNT)
3549                s->allocflags |= __GFP_RECLAIMABLE;
3550
3551        /*
3552         * Determine the number of objects per slab
3553         */
3554        s->oo = oo_make(order, size, s->reserved);
3555        s->min = oo_make(get_order(size), size, s->reserved);
3556        if (oo_objects(s->oo) > oo_objects(s->max))
3557                s->max = s->oo;
3558
3559        return !!oo_objects(s->oo);
3560}
3561
3562static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3563{
3564        s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3565        s->reserved = 0;
3566
3567        if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3568                s->reserved = sizeof(struct rcu_head);
3569
3570        if (!calculate_sizes(s, -1))
3571                goto error;
3572        if (disable_higher_order_debug) {
3573                /*
3574                 * Disable debugging flags that store metadata if the min slab
3575                 * order increased.
3576                 */
3577                if (get_order(s->size) > get_order(s->object_size)) {
3578                        s->flags &= ~DEBUG_METADATA_FLAGS;
3579                        s->offset = 0;
3580                        if (!calculate_sizes(s, -1))
3581                                goto error;
3582                }
3583        }
3584
3585#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3586    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3587        if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3588                /* Enable fast mode */
3589                s->flags |= __CMPXCHG_DOUBLE;
3590#endif
3591
3592        /*
3593         * The larger the object size is, the more pages we want on the partial
3594         * list to avoid pounding the page allocator excessively.
3595         */
3596        set_min_partial(s, ilog2(s->size) / 2);
3597
3598        set_cpu_partial(s);
3599
3600#ifdef CONFIG_NUMA
3601        s->remote_node_defrag_ratio = 1000;
3602#endif
3603
3604        /* Initialize the pre-computed randomized freelist if slab is up */
3605        if (slab_state >= UP) {
3606                if (init_cache_random_seq(s))
3607                        goto error;
3608        }
3609
3610        if (!init_kmem_cache_nodes(s))
3611                goto error;
3612
3613        if (alloc_kmem_cache_cpus(s))
3614                return 0;
3615
3616        free_kmem_cache_nodes(s);
3617error:
3618        if (flags & SLAB_PANIC)
3619                panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3620                      s->name, (unsigned long)s->size, s->size,
3621                      oo_order(s->oo), s->offset, flags);
3622        return -EINVAL;
3623}
3624
3625static void list_slab_objects(struct kmem_cache *s, struct page *page,
3626                                                        const char *text)
3627{
3628#ifdef CONFIG_SLUB_DEBUG
3629        void *addr = page_address(page);
3630        void *p;
3631        unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3632                                     sizeof(long), GFP_ATOMIC);
3633        if (!map)
3634                return;
3635        slab_err(s, page, text, s->name);
3636        slab_lock(page);
3637
3638        get_map(s, page, map);
3639        for_each_object(p, s, addr, page->objects) {
3640
3641                if (!test_bit(slab_index(p, s, addr), map)) {
3642                        pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3643                        print_tracking(s, p);
3644                }
3645        }
3646        slab_unlock(page);
3647        kfree(map);
3648#endif
3649}
3650
3651/*
3652 * Attempt to free all partial slabs on a node.
3653 * This is called from __kmem_cache_shutdown(). We must take list_lock
3654 * because sysfs file might still access partial list after the shutdowning.
3655 */
3656static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3657{
3658        LIST_HEAD(discard);
3659        struct page *page, *h;
3660
3661        BUG_ON(irqs_disabled());
3662        spin_lock_irq(&n->list_lock);
3663        list_for_each_entry_safe(page, h, &n->partial, lru) {
3664                if (!page->inuse) {
3665                        remove_partial(n, page);
3666                        list_add(&page->lru, &discard);
3667                } else {
3668                        list_slab_objects(s, page,
3669                        "Objects remaining in %s on __kmem_cache_shutdown()");
3670                }
3671        }
3672        spin_unlock_irq(&n->list_lock);
3673
3674        list_for_each_entry_safe(page, h, &discard, lru)
3675                discard_slab(s, page);
3676}
3677
3678/*
3679 * Release all resources used by a slab cache.
3680 */
3681int __kmem_cache_shutdown(struct kmem_cache *s)
3682{
3683        int node;
3684        struct kmem_cache_node *n;
3685
3686        flush_all(s);
3687        /* Attempt to free all objects */
3688        for_each_kmem_cache_node(s, node, n) {
3689                free_partial(s, n);
3690                if (n->nr_partial || slabs_node(s, node))
3691                        return 1;
3692        }
3693        sysfs_slab_remove(s);
3694        return 0;
3695}
3696
3697/********************************************************************
3698 *              Kmalloc subsystem
3699 *******************************************************************/
3700
3701static int __init setup_slub_min_order(char *str)
3702{
3703        get_option(&str, &slub_min_order);
3704
3705        return 1;
3706}
3707
3708__setup("slub_min_order=", setup_slub_min_order);
3709
3710static int __init setup_slub_max_order(char *str)
3711{
3712        get_option(&str, &slub_max_order);
3713        slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3714
3715        return 1;
3716}
3717
3718__setup("slub_max_order=", setup_slub_max_order);
3719
3720static int __init setup_slub_min_objects(char *str)
3721{
3722        get_option(&str, &slub_min_objects);
3723
3724        return 1;
3725}
3726
3727__setup("slub_min_objects=", setup_slub_min_objects);
3728
3729void *__kmalloc(size_t size, gfp_t flags)
3730{
3731        struct kmem_cache *s;
3732        void *ret;
3733
3734        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3735                return kmalloc_large(size, flags);
3736
3737        s = kmalloc_slab(size, flags);
3738
3739        if (unlikely(ZERO_OR_NULL_PTR(s)))
3740                return s;
3741
3742        ret = slab_alloc(s, flags, _RET_IP_);
3743
3744        trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3745
3746        kasan_kmalloc(s, ret, size, flags);
3747
3748        return ret;
3749}
3750EXPORT_SYMBOL(__kmalloc);
3751
3752#ifdef CONFIG_NUMA
3753static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3754{
3755        struct page *page;
3756        void *ptr = NULL;
3757
3758        flags |= __GFP_COMP | __GFP_NOTRACK;
3759        page = alloc_pages_node(node, flags, get_order(size));
3760        if (page)
3761                ptr = page_address(page);
3762
3763        kmalloc_large_node_hook(ptr, size, flags);
3764        return ptr;
3765}
3766
3767void *__kmalloc_node(size_t size, gfp_t flags, int node)
3768{
3769        struct kmem_cache *s;
3770        void *ret;
3771
3772        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3773                ret = kmalloc_large_node(size, flags, node);
3774
3775                trace_kmalloc_node(_RET_IP_, ret,
3776                                   size, PAGE_SIZE << get_order(size),
3777                                   flags, node);
3778
3779                return ret;
3780        }
3781
3782        s = kmalloc_slab(size, flags);
3783
3784        if (unlikely(ZERO_OR_NULL_PTR(s)))
3785                return s;
3786
3787        ret = slab_alloc_node(s, flags, node, _RET_IP_);
3788
3789        trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3790
3791        kasan_kmalloc(s, ret, size, flags);
3792
3793        return ret;
3794}
3795EXPORT_SYMBOL(__kmalloc_node);
3796#endif
3797
3798#ifdef CONFIG_HARDENED_USERCOPY
3799/*
3800 * Rejects objects that are incorrectly sized.
3801 *
3802 * Returns NULL if check passes, otherwise const char * to name of cache
3803 * to indicate an error.
3804 */
3805const char *__check_heap_object(const void *ptr, unsigned long n,
3806                                struct page *page)
3807{
3808        struct kmem_cache *s;
3809        unsigned long offset;
3810        size_t object_size;
3811
3812        /* Find object and usable object size. */
3813        s = page->slab_cache;
3814        object_size = slab_ksize(s);
3815
3816        /* Reject impossible pointers. */
3817        if (ptr < page_address(page))
3818                return s->name;
3819
3820        /* Find offset within object. */
3821        offset = (ptr - page_address(page)) % s->size;
3822
3823        /* Adjust for redzone and reject if within the redzone. */
3824        if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3825                if (offset < s->red_left_pad)
3826                        return s->name;
3827                offset -= s->red_left_pad;
3828        }
3829
3830        /* Allow address range falling entirely within object size. */
3831        if (offset <= object_size && n <= object_size - offset)
3832                return NULL;
3833
3834        return s->name;
3835}
3836#endif /* CONFIG_HARDENED_USERCOPY */
3837
3838static size_t __ksize(const void *object)
3839{
3840        struct page *page;
3841
3842        if (unlikely(object == ZERO_SIZE_PTR))
3843                return 0;
3844
3845        page = virt_to_head_page(object);
3846
3847        if (unlikely(!PageSlab(page))) {
3848                WARN_ON(!PageCompound(page));
3849                return PAGE_SIZE << compound_order(page);
3850        }
3851
3852        return slab_ksize(page->slab_cache);
3853}
3854
3855size_t ksize(const void *object)
3856{
3857        size_t size = __ksize(object);
3858        /* We assume that ksize callers could use whole allocated area,
3859         * so we need to unpoison this area.
3860         */
3861        kasan_unpoison_shadow(object, size);
3862        return size;
3863}
3864EXPORT_SYMBOL(ksize);
3865
3866void kfree(const void *x)
3867{
3868        struct page *page;
3869        void *object = (void *)x;
3870
3871        trace_kfree(_RET_IP_, x);
3872
3873        if (unlikely(ZERO_OR_NULL_PTR(x)))
3874                return;
3875
3876        page = virt_to_head_page(x);
3877        if (unlikely(!PageSlab(page))) {
3878                BUG_ON(!PageCompound(page));
3879                kfree_hook(x);
3880                __free_pages(page, compound_order(page));
3881                return;
3882        }
3883        slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3884}
3885EXPORT_SYMBOL(kfree);
3886
3887#define SHRINK_PROMOTE_MAX 32
3888
3889/*
3890 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3891 * up most to the head of the partial lists. New allocations will then
3892 * fill those up and thus they can be removed from the partial lists.
3893 *
3894 * The slabs with the least items are placed last. This results in them
3895 * being allocated from last increasing the chance that the last objects
3896 * are freed in them.
3897 */
3898int __kmem_cache_shrink(struct kmem_cache *s)
3899{
3900        int node;
3901        int i;
3902        struct kmem_cache_node *n;
3903        struct page *page;
3904        struct page *t;
3905        struct list_head discard;
3906        struct list_head promote[SHRINK_PROMOTE_MAX];
3907        unsigned long flags;
3908        int ret = 0;
3909
3910        flush_all(s);
3911        for_each_kmem_cache_node(s, node, n) {
3912                INIT_LIST_HEAD(&discard);
3913                for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3914                        INIT_LIST_HEAD(promote + i);
3915
3916                spin_lock_irqsave(&n->list_lock, flags);
3917
3918                /*
3919                 * Build lists of slabs to discard or promote.
3920                 *
3921                 * Note that concurrent frees may occur while we hold the
3922                 * list_lock. page->inuse here is the upper limit.
3923                 */
3924                list_for_each_entry_safe(page, t, &n->partial, lru) {
3925                        int free = page->objects - page->inuse;
3926
3927                        /* Do not reread page->inuse */
3928                        barrier();
3929
3930                        /* We do not keep full slabs on the list */
3931                        BUG_ON(free <= 0);
3932
3933                        if (free == page->objects) {
3934                                list_move(&page->lru, &discard);
3935                                n->nr_partial--;
3936                        } else if (free <= SHRINK_PROMOTE_MAX)
3937                                list_move(&page->lru, promote + free - 1);
3938                }
3939
3940                /*
3941                 * Promote the slabs filled up most to the head of the
3942                 * partial list.
3943                 */
3944                for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3945                        list_splice(promote + i, &n->partial);
3946
3947                spin_unlock_irqrestore(&n->list_lock, flags);
3948
3949                /* Release empty slabs */
3950                list_for_each_entry_safe(page, t, &discard, lru)
3951                        discard_slab(s, page);
3952
3953                if (slabs_node(s, node))
3954                        ret = 1;
3955        }
3956
3957        return ret;
3958}
3959
3960#ifdef CONFIG_MEMCG
3961static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3962{
3963        /*
3964         * Called with all the locks held after a sched RCU grace period.
3965         * Even if @s becomes empty after shrinking, we can't know that @s
3966         * doesn't have allocations already in-flight and thus can't
3967         * destroy @s until the associated memcg is released.
3968         *
3969         * However, let's remove the sysfs files for empty caches here.
3970         * Each cache has a lot of interface files which aren't
3971         * particularly useful for empty draining caches; otherwise, we can
3972         * easily end up with millions of unnecessary sysfs files on
3973         * systems which have a lot of memory and transient cgroups.
3974         */
3975        if (!__kmem_cache_shrink(s))
3976                sysfs_slab_remove(s);
3977}
3978
3979void __kmemcg_cache_deactivate(struct kmem_cache *s)
3980{
3981        /*
3982         * Disable empty slabs caching. Used to avoid pinning offline
3983         * memory cgroups by kmem pages that can be freed.
3984         */
3985        slub_set_cpu_partial(s, 0);
3986        s->min_partial = 0;
3987
3988        /*
3989         * s->cpu_partial is checked locklessly (see put_cpu_partial), so
3990         * we have to make sure the change is visible before shrinking.
3991         */
3992        slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
3993}
3994#endif
3995
3996static int slab_mem_going_offline_callback(void *arg)
3997{
3998        struct kmem_cache *s;
3999
4000        mutex_lock(&slab_mutex);
4001        list_for_each_entry(s, &slab_caches, list)
4002                __kmem_cache_shrink(s);
4003        mutex_unlock(&slab_mutex);
4004
4005        return 0;
4006}
4007
4008static void slab_mem_offline_callback(void *arg)
4009{
4010        struct kmem_cache_node *n;
4011        struct kmem_cache *s;
4012        struct memory_notify *marg = arg;
4013        int offline_node;
4014
4015        offline_node = marg->status_change_nid_normal;
4016
4017        /*
4018         * If the node still has available memory. we need kmem_cache_node
4019         * for it yet.
4020         */
4021        if (offline_node < 0)
4022                return;
4023
4024        mutex_lock(&slab_mutex);
4025        list_for_each_entry(s, &slab_caches, list) {
4026                n = get_node(s, offline_node);
4027                if (n) {
4028                        /*
4029                         * if n->nr_slabs > 0, slabs still exist on the node
4030                         * that is going down. We were unable to free them,
4031                         * and offline_pages() function shouldn't call this
4032                         * callback. So, we must fail.
4033                         */
4034                        BUG_ON(slabs_node(s, offline_node));
4035
4036                        s->node[offline_node] = NULL;
4037                        kmem_cache_free(kmem_cache_node, n);
4038                }
4039        }
4040        mutex_unlock(&slab_mutex);
4041}
4042
4043static int slab_mem_going_online_callback(void *arg)
4044{
4045        struct kmem_cache_node *n;
4046        struct kmem_cache *s;
4047        struct memory_notify *marg = arg;
4048        int nid = marg->status_change_nid_normal;
4049        int ret = 0;
4050
4051        /*
4052         * If the node's memory is already available, then kmem_cache_node is
4053         * already created. Nothing to do.
4054         */
4055        if (nid < 0)
4056                return 0;
4057
4058        /*
4059         * We are bringing a node online. No memory is available yet. We must
4060         * allocate a kmem_cache_node structure in order to bring the node
4061         * online.
4062         */
4063        mutex_lock(&slab_mutex);
4064        list_for_each_entry(s, &slab_caches, list) {
4065                /*
4066                 * XXX: kmem_cache_alloc_node will fallback to other nodes
4067                 *      since memory is not yet available from the node that
4068                 *      is brought up.
4069                 */
4070                n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4071                if (!n) {
4072                        ret = -ENOMEM;
4073                        goto out;
4074                }
4075                init_kmem_cache_node(n);
4076                s->node[nid] = n;
4077        }
4078out:
4079        mutex_unlock(&slab_mutex);
4080        return ret;
4081}
4082
4083static int slab_memory_callback(struct notifier_block *self,
4084                                unsigned long action, void *arg)
4085{
4086        int ret = 0;
4087
4088        switch (action) {
4089        case MEM_GOING_ONLINE:
4090                ret = slab_mem_going_online_callback(arg);
4091                break;
4092        case MEM_GOING_OFFLINE:
4093                ret = slab_mem_going_offline_callback(arg);
4094                break;
4095        case MEM_OFFLINE:
4096        case MEM_CANCEL_ONLINE:
4097                slab_mem_offline_callback(arg);
4098                break;
4099        case MEM_ONLINE:
4100        case MEM_CANCEL_OFFLINE:
4101                break;
4102        }
4103        if (ret)
4104                ret = notifier_from_errno(ret);
4105        else
4106                ret = NOTIFY_OK;
4107        return ret;
4108}
4109
4110static struct notifier_block slab_memory_callback_nb = {
4111        .notifier_call = slab_memory_callback,
4112        .priority = SLAB_CALLBACK_PRI,
4113};
4114
4115/********************************************************************
4116 *                      Basic setup of slabs
4117 *******************************************************************/
4118
4119/*
4120 * Used for early kmem_cache structures that were allocated using
4121 * the page allocator. Allocate them properly then fix up the pointers
4122 * that may be pointing to the wrong kmem_cache structure.
4123 */
4124
4125static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4126{
4127        int node;
4128        struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4129        struct kmem_cache_node *n;
4130
4131        memcpy(s, static_cache, kmem_cache->object_size);
4132
4133        /*
4134         * This runs very early, and only the boot processor is supposed to be
4135         * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4136         * IPIs around.
4137         */
4138        __flush_cpu_slab(s, smp_processor_id());
4139        for_each_kmem_cache_node(s, node, n) {
4140                struct page *p;
4141
4142                list_for_each_entry(p, &n->partial, lru)
4143                        p->slab_cache = s;
4144
4145#ifdef CONFIG_SLUB_DEBUG
4146                list_for_each_entry(p, &n->full, lru)
4147                        p->slab_cache = s;
4148#endif
4149        }
4150        slab_init_memcg_params(s);
4151        list_add(&s->list, &slab_caches);
4152        memcg_link_cache(s);
4153        return s;
4154}
4155
4156void __init kmem_cache_init(void)
4157{
4158        static __initdata struct kmem_cache boot_kmem_cache,
4159                boot_kmem_cache_node;
4160
4161        if (debug_guardpage_minorder())
4162                slub_max_order = 0;
4163
4164        kmem_cache_node = &boot_kmem_cache_node;
4165        kmem_cache = &boot_kmem_cache;
4166
4167        create_boot_cache(kmem_cache_node, "kmem_cache_node",
4168                sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4169
4170        register_hotmemory_notifier(&slab_memory_callback_nb);
4171
4172        /* Able to allocate the per node structures */
4173        slab_state = PARTIAL;
4174
4175        create_boot_cache(kmem_cache, "kmem_cache",
4176                        offsetof(struct kmem_cache, node) +
4177                                nr_node_ids * sizeof(struct kmem_cache_node *),
4178                       SLAB_HWCACHE_ALIGN);
4179
4180        kmem_cache = bootstrap(&boot_kmem_cache);
4181
4182        /*
4183         * Allocate kmem_cache_node properly from the kmem_cache slab.
4184         * kmem_cache_node is separately allocated so no need to
4185         * update any list pointers.
4186         */
4187        kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4188
4189        /* Now we can use the kmem_cache to allocate kmalloc slabs */
4190        setup_kmalloc_cache_index_table();
4191        create_kmalloc_caches(0);
4192
4193        /* Setup random freelists for each cache */
4194        init_freelist_randomization();
4195
4196        cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4197                                  slub_cpu_dead);
4198
4199        pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4200                cache_line_size(),
4201                slub_min_order, slub_max_order, slub_min_objects,
4202                nr_cpu_ids, nr_node_ids);
4203}
4204
4205void __init kmem_cache_init_late(void)
4206{
4207}
4208
4209struct kmem_cache *
4210__kmem_cache_alias(const char *name, size_t size, size_t align,
4211                   unsigned long flags, void (*ctor)(void *))
4212{
4213        struct kmem_cache *s, *c;
4214
4215        s = find_mergeable(size, align, flags, name, ctor);
4216        if (s) {
4217                s->refcount++;
4218
4219                /*
4220                 * Adjust the object sizes so that we clear
4221                 * the complete object on kzalloc.
4222                 */
4223                s->object_size = max(s->object_size, (int)size);
4224                s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4225
4226                for_each_memcg_cache(c, s) {
4227                        c->object_size = s->object_size;
4228                        c->inuse = max_t(int, c->inuse,
4229                                         ALIGN(size, sizeof(void *)));
4230                }
4231
4232                if (sysfs_slab_alias(s, name)) {
4233                        s->refcount--;
4234                        s = NULL;
4235                }
4236        }
4237
4238        return s;
4239}
4240
4241int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4242{
4243        int err;
4244
4245        err = kmem_cache_open(s, flags);
4246        if (err)
4247                return err;
4248
4249        /* Mutex is not taken during early boot */
4250        if (slab_state <= UP)
4251                return 0;
4252
4253        memcg_propagate_slab_attrs(s);
4254        err = sysfs_slab_add(s);
4255        if (err)
4256                __kmem_cache_release(s);
4257
4258        return err;
4259}
4260
4261void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4262{
4263        struct kmem_cache *s;
4264        void *ret;
4265
4266        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4267                return kmalloc_large(size, gfpflags);
4268
4269        s = kmalloc_slab(size, gfpflags);
4270
4271        if (unlikely(ZERO_OR_NULL_PTR(s)))
4272                return s;
4273
4274        ret = slab_alloc(s, gfpflags, caller);
4275
4276        /* Honor the call site pointer we received. */
4277        trace_kmalloc(caller, ret, size, s->size, gfpflags);
4278
4279        return ret;
4280}
4281
4282#ifdef CONFIG_NUMA
4283void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4284                                        int node, unsigned long caller)
4285{
4286        struct kmem_cache *s;
4287        void *ret;
4288
4289        if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4290                ret = kmalloc_large_node(size, gfpflags, node);
4291
4292                trace_kmalloc_node(caller, ret,
4293                                   size, PAGE_SIZE << get_order(size),
4294                                   gfpflags, node);
4295
4296                return ret;
4297        }
4298
4299        s = kmalloc_slab(size, gfpflags);
4300
4301        if (unlikely(ZERO_OR_NULL_PTR(s)))
4302                return s;
4303
4304        ret = slab_alloc_node(s, gfpflags, node, caller);
4305
4306        /* Honor the call site pointer we received. */
4307        trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4308
4309        return ret;
4310}
4311#endif
4312
4313#ifdef CONFIG_SYSFS
4314static int count_inuse(struct page *page)
4315{
4316        return page->inuse;
4317}
4318
4319static int count_total(struct page *page)
4320{
4321        return page->objects;
4322}
4323#endif
4324
4325#ifdef CONFIG_SLUB_DEBUG
4326static int validate_slab(struct kmem_cache *s, struct page *page,
4327                                                unsigned long *map)
4328{
4329        void *p;
4330        void *addr = page_address(page);
4331
4332        if (!check_slab(s, page) ||
4333                        !on_freelist(s, page, NULL))
4334                return 0;
4335
4336        /* Now we know that a valid freelist exists */
4337        bitmap_zero(map, page->objects);
4338
4339        get_map(s, page, map);
4340        for_each_object(p, s, addr, page->objects) {
4341                if (test_bit(slab_index(p, s, addr), map))
4342                        if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4343                                return 0;
4344        }
4345
4346        for_each_object(p, s, addr, page->objects)
4347                if (!test_bit(slab_index(p, s, addr), map))
4348                        if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4349                                return 0;
4350        return 1;
4351}
4352
4353static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4354                                                unsigned long *map)
4355{
4356        slab_lock(page);
4357        validate_slab(s, page, map);
4358        slab_unlock(page);
4359}
4360
4361static int validate_slab_node(struct kmem_cache *s,
4362                struct kmem_cache_node *n, unsigned long *map)
4363{
4364        unsigned long count = 0;
4365        struct page *page;
4366        unsigned long flags;
4367
4368        spin_lock_irqsave(&n->list_lock, flags);
4369
4370        list_for_each_entry(page, &n->partial, lru) {
4371                validate_slab_slab(s, page, map);
4372                count++;
4373        }
4374        if (count != n->nr_partial)
4375                pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4376                       s->name, count, n->nr_partial);
4377
4378        if (!(s->flags & SLAB_STORE_USER))
4379                goto out;
4380
4381        list_for_each_entry(page, &n->full, lru) {
4382                validate_slab_slab(s, page, map);
4383                count++;
4384        }
4385        if (count != atomic_long_read(&n->nr_slabs))
4386                pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4387                       s->name, count, atomic_long_read(&n->nr_slabs));
4388
4389out:
4390        spin_unlock_irqrestore(&n->list_lock, flags);
4391        return count;
4392}
4393
4394static long validate_slab_cache(struct kmem_cache *s)
4395{
4396        int node;
4397        unsigned long count = 0;
4398        unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4399                                sizeof(unsigned long), GFP_KERNEL);
4400        struct kmem_cache_node *n;
4401
4402        if (!map)
4403                return -ENOMEM;
4404
4405        flush_all(s);
4406        for_each_kmem_cache_node(s, node, n)
4407                count += validate_slab_node(s, n, map);
4408        kfree(map);
4409        return count;
4410}
4411/*
4412 * Generate lists of code addresses where slabcache objects are allocated
4413 * and freed.
4414 */
4415
4416struct location {
4417        unsigned long count;
4418        unsigned long addr;
4419        long long sum_time;
4420        long min_time;
4421        long max_time;
4422        long min_pid;
4423        long max_pid;
4424        DECLARE_BITMAP(cpus, NR_CPUS);
4425        nodemask_t nodes;
4426};
4427
4428struct loc_track {
4429        unsigned long max;
4430        unsigned long count;
4431        struct location *loc;
4432};
4433
4434static void free_loc_track(struct loc_track *t)
4435{
4436        if (t->max)
4437                free_pages((unsigned long)t->loc,
4438                        get_order(sizeof(struct location) * t->max));
4439}
4440
4441static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4442{
4443        struct location *l;
4444        int order;
4445
4446        order = get_order(sizeof(struct location) * max);
4447
4448        l = (void *)__get_free_pages(flags, order);
4449        if (!l)
4450                return 0;
4451
4452        if (t->count) {
4453                memcpy(l, t->loc, sizeof(struct location) * t->count);
4454                free_loc_track(t);
4455        }
4456        t->max = max;
4457        t->loc = l;
4458        return 1;
4459}
4460
4461static int add_location(struct loc_track *t, struct kmem_cache *s,
4462                                const struct track *track)
4463{
4464        long start, end, pos;
4465        struct location *l;
4466        unsigned long caddr;
4467        unsigned long age = jiffies - track->when;
4468
4469        start = -1;
4470        end = t->count;
4471
4472        for ( ; ; ) {
4473                pos = start + (end - start + 1) / 2;
4474
4475                /*
4476                 * There is nothing at "end". If we end up there
4477                 * we need to add something to before end.
4478                 */
4479                if (pos == end)
4480                        break;
4481
4482                caddr = t->loc[pos].addr;
4483                if (track->addr == caddr) {
4484
4485                        l = &t->loc[pos];
4486                        l->count++;
4487                        if (track->when) {
4488                                l->sum_time += age;
4489                                if (age < l->min_time)
4490                                        l->min_time = age;
4491                                if (age > l->max_time)
4492                                        l->max_time = age;
4493
4494                                if (track->pid < l->min_pid)
4495                                        l->min_pid = track->pid;
4496                                if (track->pid > l->max_pid)
4497                                        l->max_pid = track->pid;
4498
4499                                cpumask_set_cpu(track->cpu,
4500                                                to_cpumask(l->cpus));
4501                        }
4502                        node_set(page_to_nid(virt_to_page(track)), l->nodes);
4503                        return 1;
4504                }
4505
4506                if (track->addr < caddr)
4507                        end = pos;
4508                else
4509                        start = pos;
4510        }
4511
4512        /*
4513         * Not found. Insert new tracking element.
4514         */
4515        if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4516                return 0;
4517
4518        l = t->loc + pos;
4519        if (pos < t->count)
4520                memmove(l + 1, l,
4521                        (t->count - pos) * sizeof(struct location));
4522        t->count++;
4523        l->count = 1;
4524        l->addr = track->addr;
4525        l->sum_time = age;
4526        l->min_time = age;
4527        l->max_time = age;
4528        l->min_pid = track->pid;
4529        l->max_pid = track->pid;
4530        cpumask_clear(to_cpumask(l->cpus));
4531        cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4532        nodes_clear(l->nodes);
4533        node_set(page_to_nid(virt_to_page(track)), l->nodes);
4534        return 1;
4535}
4536
4537static void process_slab(struct loc_track *t, struct kmem_cache *s,
4538                struct page *page, enum track_item alloc,
4539                unsigned long *map)
4540{
4541        void *addr = page_address(page);
4542        void *p;
4543
4544        bitmap_zero(map, page->objects);
4545        get_map(s, page, map);
4546
4547        for_each_object(p, s, addr, page->objects)
4548                if (!test_bit(slab_index(p, s, addr), map))
4549                        add_location(t, s, get_track(s, p, alloc));
4550}
4551
4552static int list_locations(struct kmem_cache *s, char *buf,
4553                                        enum track_item alloc)
4554{
4555        int len = 0;
4556        unsigned long i;
4557        struct loc_track t = { 0, 0, NULL };
4558        int node;
4559        unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4560                                     sizeof(unsigned long), GFP_KERNEL);
4561        struct kmem_cache_node *n;
4562
4563        if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4564                                     GFP_TEMPORARY)) {
4565                kfree(map);
4566                return sprintf(buf, "Out of memory\n");
4567        }
4568        /* Push back cpu slabs */
4569        flush_all(s);
4570
4571        for_each_kmem_cache_node(s, node, n) {
4572                unsigned long flags;
4573                struct page *page;
4574
4575                if (!atomic_long_read(&n->nr_slabs))
4576                        continue;
4577
4578                spin_lock_irqsave(&n->list_lock, flags);
4579                list_for_each_entry(page, &n->partial, lru)
4580                        process_slab(&t, s, page, alloc, map);
4581                list_for_each_entry(page, &n->full, lru)
4582                        process_slab(&t, s, page, alloc, map);
4583                spin_unlock_irqrestore(&n->list_lock, flags);
4584        }
4585
4586        for (i = 0; i < t.count; i++) {
4587                struct location *l = &t.loc[i];
4588
4589                if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4590                        break;
4591                len += sprintf(buf + len, "%7ld ", l->count);
4592
4593                if (l->addr)
4594                        len += sprintf(buf + len, "%pS", (void *)l->addr);
4595                else
4596                        len += sprintf(buf + len, "<not-available>");
4597
4598                if (l->sum_time != l->min_time) {
4599                        len += sprintf(buf + len, " age=%ld/%ld/%ld",
4600                                l->min_time,
4601                                (long)div_u64(l->sum_time, l->count),
4602                                l->max_time);
4603                } else
4604                        len += sprintf(buf + len, " age=%ld",
4605                                l->min_time);
4606
4607                if (l->min_pid != l->max_pid)
4608                        len += sprintf(buf + len, " pid=%ld-%ld",
4609                                l->min_pid, l->max_pid);
4610                else
4611                        len += sprintf(buf + len, " pid=%ld",
4612                                l->min_pid);
4613
4614                if (num_online_cpus() > 1 &&
4615                                !cpumask_empty(to_cpumask(l->cpus)) &&
4616                                len < PAGE_SIZE - 60)
4617                        len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4618                                         " cpus=%*pbl",
4619                                         cpumask_pr_args(to_cpumask(l->cpus)));
4620
4621                if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4622                                len < PAGE_SIZE - 60)
4623                        len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4624                                         " nodes=%*pbl",
4625                                         nodemask_pr_args(&l->nodes));
4626
4627                len += sprintf(buf + len, "\n");
4628        }
4629
4630        free_loc_track(&t);
4631        kfree(map);
4632        if (!t.count)
4633                len += sprintf(buf, "No data\n");
4634        return len;
4635}
4636#endif
4637
4638#ifdef SLUB_RESILIENCY_TEST
4639static void __init resiliency_test(void)
4640{
4641        u8 *p;
4642
4643        BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4644
4645        pr_err("SLUB resiliency testing\n");
4646        pr_err("-----------------------\n");
4647        pr_err("A. Corruption after allocation\n");
4648
4649        p = kzalloc(16, GFP_KERNEL);
4650        p[16] = 0x12;
4651        pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4652               p + 16);
4653
4654        validate_slab_cache(kmalloc_caches[4]);
4655
4656        /* Hmmm... The next two are dangerous */
4657        p = kzalloc(32, GFP_KERNEL);
4658        p[32 + sizeof(void *)] = 0x34;
4659        pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4660               p);
4661        pr_err("If allocated object is overwritten then not detectable\n\n");
4662
4663        validate_slab_cache(kmalloc_caches[5]);
4664        p = kzalloc(64, GFP_KERNEL);
4665        p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4666        *p = 0x56;
4667        pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4668               p);
4669        pr_err("If allocated object is overwritten then not detectable\n\n");
4670        validate_slab_cache(kmalloc_caches[6]);
4671
4672        pr_err("\nB. Corruption after free\n");
4673        p = kzalloc(128, GFP_KERNEL);
4674        kfree(p);
4675        *p = 0x78;
4676        pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4677        validate_slab_cache(kmalloc_caches[7]);
4678
4679        p = kzalloc(256, GFP_KERNEL);
4680        kfree(p);
4681        p[50] = 0x9a;
4682        pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4683        validate_slab_cache(kmalloc_caches[8]);
4684
4685        p = kzalloc(512, GFP_KERNEL);
4686        kfree(p);
4687        p[512] = 0xab;
4688        pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4689        validate_slab_cache(kmalloc_caches[9]);
4690}
4691#else
4692#ifdef CONFIG_SYSFS
4693static void resiliency_test(void) {};
4694#endif
4695#endif
4696
4697#ifdef CONFIG_SYSFS
4698enum slab_stat_type {
4699        SL_ALL,                 /* All slabs */
4700        SL_PARTIAL,             /* Only partially allocated slabs */
4701        SL_CPU,                 /* Only slabs used for cpu caches */
4702        SL_OBJECTS,             /* Determine allocated objects not slabs */
4703        SL_TOTAL                /* Determine object capacity not slabs */
4704};
4705
4706#define SO_ALL          (1 << SL_ALL)
4707#define SO_PARTIAL      (1 << SL_PARTIAL)
4708#define SO_CPU          (1 << SL_CPU)
4709#define SO_OBJECTS      (1 << SL_OBJECTS)
4710#define SO_TOTAL        (1 << SL_TOTAL)
4711
4712#ifdef CONFIG_MEMCG
4713static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4714
4715static int __init setup_slub_memcg_sysfs(char *str)
4716{
4717        int v;
4718
4719        if (get_option(&str, &v) > 0)
4720                memcg_sysfs_enabled = v;
4721
4722        return 1;
4723}
4724
4725__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4726#endif
4727
4728static ssize_t show_slab_objects(struct kmem_cache *s,
4729                            char *buf, unsigned long flags)
4730{
4731        unsigned long total = 0;
4732        int node;
4733        int x;
4734        unsigned long *nodes;
4735
4736        nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4737        if (!nodes)
4738                return -ENOMEM;
4739
4740        if (flags & SO_CPU) {
4741                int cpu;
4742
4743                for_each_possible_cpu(cpu) {
4744                        struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4745                                                               cpu);
4746                        int node;
4747                        struct page *page;
4748
4749                        page = READ_ONCE(c->page);
4750                        if (!page)
4751                                continue;
4752
4753                        node = page_to_nid(page);
4754                        if (flags & SO_TOTAL)
4755                                x = page->objects;
4756                        else if (flags & SO_OBJECTS)
4757                                x = page->inuse;
4758                        else
4759                                x = 1;
4760
4761                        total += x;
4762                        nodes[node] += x;
4763
4764                        page = slub_percpu_partial_read_once(c);
4765                        if (page) {
4766                                node = page_to_nid(page);
4767                                if (flags & SO_TOTAL)
4768                                        WARN_ON_ONCE(1);
4769                                else if (flags & SO_OBJECTS)
4770                                        WARN_ON_ONCE(1);
4771                                else
4772                                        x = page->pages;
4773                                total += x;
4774                                nodes[node] += x;
4775                        }
4776                }
4777        }
4778
4779        get_online_mems();
4780#ifdef CONFIG_SLUB_DEBUG
4781        if (flags & SO_ALL) {
4782                struct kmem_cache_node *n;
4783
4784                for_each_kmem_cache_node(s, node, n) {
4785
4786                        if (flags & SO_TOTAL)
4787                                x = atomic_long_read(&n->total_objects);
4788                        else if (flags & SO_OBJECTS)
4789                                x = atomic_long_read(&n->total_objects) -
4790                                        count_partial(n, count_free);
4791                        else
4792                                x = atomic_long_read(&n->nr_slabs);
4793                        total += x;
4794                        nodes[node] += x;
4795                }
4796
4797        } else
4798#endif
4799        if (flags & SO_PARTIAL) {
4800                struct kmem_cache_node *n;
4801
4802                for_each_kmem_cache_node(s, node, n) {
4803                        if (flags & SO_TOTAL)
4804                                x = count_partial(n, count_total);
4805                        else if (flags & SO_OBJECTS)
4806                                x = count_partial(n, count_inuse);
4807                        else
4808                                x = n->nr_partial;
4809                        total += x;
4810                        nodes[node] += x;
4811                }
4812        }
4813        x = sprintf(buf, "%lu", total);
4814#ifdef CONFIG_NUMA
4815        for (node = 0; node < nr_node_ids; node++)
4816                if (nodes[node])
4817                        x += sprintf(buf + x, " N%d=%lu",
4818                                        node, nodes[node]);
4819#endif
4820        put_online_mems();
4821        kfree(nodes);
4822        return x + sprintf(buf + x, "\n");
4823}
4824
4825#ifdef CONFIG_SLUB_DEBUG
4826static int any_slab_objects(struct kmem_cache *s)
4827{
4828        int node;
4829        struct kmem_cache_node *n;
4830
4831        for_each_kmem_cache_node(s, node, n)
4832                if (atomic_long_read(&n->total_objects))
4833                        return 1;
4834
4835        return 0;
4836}
4837#endif
4838
4839#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4840#define to_slab(n) container_of(n, struct kmem_cache, kobj)
4841
4842struct slab_attribute {
4843        struct attribute attr;
4844        ssize_t (*show)(struct kmem_cache *s, char *buf);
4845        ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4846};
4847
4848#define SLAB_ATTR_RO(_name) \
4849        static struct slab_attribute _name##_attr = \
4850        __ATTR(_name, 0400, _name##_show, NULL)
4851
4852#define SLAB_ATTR(_name) \
4853        static struct slab_attribute _name##_attr =  \
4854        __ATTR(_name, 0600, _name##_show, _name##_store)
4855
4856static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4857{
4858        return sprintf(buf, "%d\n", s->size);
4859}
4860SLAB_ATTR_RO(slab_size);
4861
4862static ssize_t align_show(struct kmem_cache *s, char *buf)
4863{
4864        return sprintf(buf, "%d\n", s->align);
4865}
4866SLAB_ATTR_RO(align);
4867
4868static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4869{
4870        return sprintf(buf, "%d\n", s->object_size);
4871}
4872SLAB_ATTR_RO(object_size);
4873
4874static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4875{
4876        return sprintf(buf, "%d\n", oo_objects(s->oo));
4877}
4878SLAB_ATTR_RO(objs_per_slab);
4879
4880static ssize_t order_store(struct kmem_cache *s,
4881                                const char *buf, size_t length)
4882{
4883        unsigned long order;
4884        int err;
4885
4886        err = kstrtoul(buf, 10, &order);
4887        if (err)
4888                return err;
4889
4890        if (order > slub_max_order || order < slub_min_order)
4891                return -EINVAL;
4892
4893        calculate_sizes(s, order);
4894        return length;
4895}
4896
4897static ssize_t order_show(struct kmem_cache *s, char *buf)
4898{
4899        return sprintf(buf, "%d\n", oo_order(s->oo));
4900}
4901SLAB_ATTR(order);
4902
4903static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4904{
4905        return sprintf(buf, "%lu\n", s->min_partial);
4906}
4907
4908static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4909                                 size_t length)
4910{
4911        unsigned long min;
4912        int err;
4913
4914        err = kstrtoul(buf, 10, &min);
4915        if (err)
4916                return err;
4917
4918        set_min_partial(s, min);
4919        return length;
4920}
4921SLAB_ATTR(min_partial);
4922
4923static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4924{
4925        return sprintf(buf, "%u\n", slub_cpu_partial(s));
4926}
4927
4928static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4929                                 size_t length)
4930{
4931        unsigned long objects;
4932        int err;
4933
4934        err = kstrtoul(buf, 10, &objects);
4935        if (err)
4936                return err;
4937        if (objects && !kmem_cache_has_cpu_partial(s))
4938                return -EINVAL;
4939
4940        slub_set_cpu_partial(s, objects);
4941        flush_all(s);
4942        return length;
4943}
4944SLAB_ATTR(cpu_partial);
4945
4946static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4947{
4948        if (!s->ctor)
4949                return 0;
4950        return sprintf(buf, "%pS\n", s->ctor);
4951}
4952SLAB_ATTR_RO(ctor);
4953
4954static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4955{
4956        return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4957}
4958SLAB_ATTR_RO(aliases);
4959
4960static ssize_t partial_show(struct kmem_cache *s, char *buf)
4961{
4962        return show_slab_objects(s, buf, SO_PARTIAL);
4963}
4964SLAB_ATTR_RO(partial);
4965
4966static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4967{
4968        return show_slab_objects(s, buf, SO_CPU);
4969}
4970SLAB_ATTR_RO(cpu_slabs);
4971
4972static ssize_t objects_show(struct kmem_cache *s, char *buf)
4973{
4974        return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4975}
4976SLAB_ATTR_RO(objects);
4977
4978static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4979{
4980        return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4981}
4982SLAB_ATTR_RO(objects_partial);
4983
4984static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4985{
4986        int objects = 0;
4987        int pages = 0;
4988        int cpu;
4989        int len;
4990
4991        for_each_online_cpu(cpu) {
4992                struct page *page;
4993
4994                page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
4995
4996                if (page) {
4997                        pages += page->pages;
4998                        objects += page->pobjects;
4999                }
5000        }
5001
5002        len = sprintf(buf, "%d(%d)", objects, pages);
5003
5004#ifdef CONFIG_SMP
5005        for_each_online_cpu(cpu) {
5006                struct page *page;
5007
5008                page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5009
5010                if (page && len < PAGE_SIZE - 20)
5011                        len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5012                                page->pobjects, page->pages);
5013        }
5014#endif
5015        return len + sprintf(buf + len, "\n");
5016}
5017SLAB_ATTR_RO(slabs_cpu_partial);
5018
5019static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5020{
5021        return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5022}
5023
5024static ssize_t reclaim_account_store(struct kmem_cache *s,
5025                                const char *buf, size_t length)
5026{
5027        s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5028        if (buf[0] == '1')
5029                s->flags |= SLAB_RECLAIM_ACCOUNT;
5030        return length;
5031}
5032SLAB_ATTR(reclaim_account);
5033
5034static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5035{
5036        return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5037}
5038SLAB_ATTR_RO(hwcache_align);
5039
5040#ifdef CONFIG_ZONE_DMA
5041static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5042{
5043        return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5044}
5045SLAB_ATTR_RO(cache_dma);
5046#endif
5047
5048static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5049{
5050        return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5051}
5052SLAB_ATTR_RO(destroy_by_rcu);
5053
5054static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5055{
5056        return sprintf(buf, "%d\n", s->reserved);
5057}
5058SLAB_ATTR_RO(reserved);
5059
5060#ifdef CONFIG_SLUB_DEBUG
5061static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5062{
5063        return show_slab_objects(s, buf, SO_ALL);
5064}
5065SLAB_ATTR_RO(slabs);
5066
5067static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5068{
5069        return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5070}
5071SLAB_ATTR_RO(total_objects);
5072
5073static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5074{
5075        return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5076}
5077
5078static ssize_t sanity_checks_store(struct kmem_cache *s,
5079                                const char *buf, size_t length)
5080{
5081        s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5082        if (buf[0] == '1') {
5083                s->flags &= ~__CMPXCHG_DOUBLE;
5084                s->flags |= SLAB_CONSISTENCY_CHECKS;
5085        }
5086        return length;
5087}
5088SLAB_ATTR(sanity_checks);
5089
5090static ssize_t trace_show(struct kmem_cache *s, char *buf)
5091{
5092        return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5093}
5094
5095static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5096                                                        size_t length)
5097{
5098        /*
5099         * Tracing a merged cache is going to give confusing results
5100         * as well as cause other issues like converting a mergeable
5101         * cache into an umergeable one.
5102         */
5103        if (s->refcount > 1)
5104                return -EINVAL;
5105
5106        s->flags &= ~SLAB_TRACE;
5107        if (buf[0] == '1') {
5108                s->flags &= ~__CMPXCHG_DOUBLE;
5109                s->flags |= SLAB_TRACE;
5110        }
5111        return length;
5112}
5113SLAB_ATTR(trace);
5114
5115static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5116{
5117        return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5118}
5119
5120static ssize_t red_zone_store(struct kmem_cache *s,
5121                                const char *buf, size_t length)
5122{
5123        if (any_slab_objects(s))
5124                return -EBUSY;
5125
5126        s->flags &= ~SLAB_RED_ZONE;
5127        if (buf[0] == '1') {
5128                s->flags |= SLAB_RED_ZONE;
5129        }
5130        calculate_sizes(s, -1);
5131        return length;
5132}
5133SLAB_ATTR(red_zone);
5134
5135static ssize_t poison_show(struct kmem_cache *s, char *buf)
5136{
5137        return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5138}
5139
5140static ssize_t poison_store(struct kmem_cache *s,
5141                                const char *buf, size_t length)
5142{
5143        if (any_slab_objects(s))
5144                return -EBUSY;
5145
5146        s->flags &= ~SLAB_POISON;
5147        if (buf[0] == '1') {
5148                s->flags |= SLAB_POISON;
5149        }
5150        calculate_sizes(s, -1);
5151        return length;
5152}
5153SLAB_ATTR(poison);
5154
5155static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5156{
5157        return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5158}
5159
5160static ssize_t store_user_store(struct kmem_cache *s,
5161                                const char *buf, size_t length)
5162{
5163        if (any_slab_objects(s))
5164                return -EBUSY;
5165
5166        s->flags &= ~SLAB_STORE_USER;
5167        if (buf[0] == '1') {
5168                s->flags &= ~__CMPXCHG_DOUBLE;
5169                s->flags |= SLAB_STORE_USER;
5170        }
5171        calculate_sizes(s, -1);
5172        return length;
5173}
5174SLAB_ATTR(store_user);
5175
5176static ssize_t validate_show(struct kmem_cache *s, char *buf)
5177{
5178        return 0;
5179}
5180
5181static ssize_t validate_store(struct kmem_cache *s,
5182                        const char *buf, size_t length)
5183{
5184        int ret = -EINVAL;
5185
5186        if (buf[0] == '1') {
5187                ret = validate_slab_cache(s);
5188                if (ret >= 0)
5189                        ret = length;
5190        }
5191        return ret;
5192}
5193SLAB_ATTR(validate);
5194
5195static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5196{
5197        if (!(s->flags & SLAB_STORE_USER))
5198                return -ENOSYS;
5199        return list_locations(s, buf, TRACK_ALLOC);
5200}
5201SLAB_ATTR_RO(alloc_calls);
5202
5203static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5204{
5205        if (!(s->flags & SLAB_STORE_USER))
5206                return -ENOSYS;
5207        return list_locations(s, buf, TRACK_FREE);
5208}
5209SLAB_ATTR_RO(free_calls);
5210#endif /* CONFIG_SLUB_DEBUG */
5211
5212#ifdef CONFIG_FAILSLAB
5213static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5214{
5215        return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5216}
5217
5218static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5219                                                        size_t length)
5220{
5221        if (s->refcount > 1)
5222                return -EINVAL;
5223
5224        s->flags &= ~SLAB_FAILSLAB;
5225        if (buf[0] == '1')
5226                s->flags |= SLAB_FAILSLAB;
5227        return length;
5228}
5229SLAB_ATTR(failslab);
5230#endif
5231
5232static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5233{
5234        return 0;
5235}
5236
5237static ssize_t shrink_store(struct kmem_cache *s,
5238                        const char *buf, size_t length)
5239{
5240        if (buf[0] == '1')
5241                kmem_cache_shrink(s);
5242        else
5243                return -EINVAL;
5244        return length;
5245}
5246SLAB_ATTR(shrink);
5247
5248#ifdef CONFIG_NUMA
5249static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5250{
5251        return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5252}
5253
5254static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5255                                const char *buf, size_t length)
5256{
5257        unsigned long ratio;
5258        int err;
5259
5260        err = kstrtoul(buf, 10, &ratio);
5261        if (err)
5262                return err;
5263
5264        if (ratio <= 100)
5265                s->remote_node_defrag_ratio = ratio * 10;
5266
5267        return length;
5268}
5269SLAB_ATTR(remote_node_defrag_ratio);
5270#endif
5271
5272#ifdef CONFIG_SLUB_STATS
5273static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5274{
5275        unsigned long sum  = 0;
5276        int cpu;
5277        int len;
5278        int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5279
5280        if (!data)
5281                return -ENOMEM;
5282
5283        for_each_online_cpu(cpu) {
5284                unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5285
5286                data[cpu] = x;
5287                sum += x;
5288        }
5289
5290        len = sprintf(buf, "%lu", sum);
5291
5292#ifdef CONFIG_SMP
5293        for_each_online_cpu(cpu) {
5294                if (data[cpu] && len < PAGE_SIZE - 20)
5295                        len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5296        }
5297#endif
5298        kfree(data);
5299        return len + sprintf(buf + len, "\n");
5300}
5301
5302static void clear_stat(struct kmem_cache *s, enum stat_item si)
5303{
5304        int cpu;
5305
5306        for_each_online_cpu(cpu)
5307                per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5308}
5309
5310#define STAT_ATTR(si, text)                                     \
5311static ssize_t text##_show(struct kmem_cache *s, char *buf)     \
5312{                                                               \
5313        return show_stat(s, buf, si);                           \
5314}                                                               \
5315static ssize_t text##_store(struct kmem_cache *s,               \
5316                                const char *buf, size_t length) \
5317{                                                               \
5318        if (buf[0] != '0')                                      \
5319                return -EINVAL;                                 \
5320        clear_stat(s, si);                                      \
5321        return length;                                          \
5322}                                                               \
5323SLAB_ATTR(text);                                                \
5324
5325STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5326STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5327STAT_ATTR(FREE_FASTPATH, free_fastpath);
5328STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5329STAT_ATTR(FREE_FROZEN, free_frozen);
5330STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5331STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5332STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5333STAT_ATTR(ALLOC_SLAB, alloc_slab);
5334STAT_ATTR(ALLOC_REFILL, alloc_refill);
5335STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5336STAT_ATTR(FREE_SLAB, free_slab);
5337STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5338STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5339STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5340STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5341STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5342STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5343STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5344STAT_ATTR(ORDER_FALLBACK, order_fallback);
5345STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5346STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5347STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5348STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5349STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5350STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5351#endif
5352
5353static struct attribute *slab_attrs[] = {
5354        &slab_size_attr.attr,
5355        &object_size_attr.attr,
5356        &objs_per_slab_attr.attr,
5357        &order_attr.attr,
5358        &min_partial_attr.attr,
5359        &cpu_partial_attr.attr,
5360        &objects_attr.attr,
5361        &objects_partial_attr.attr,
5362        &partial_attr.attr,
5363        &cpu_slabs_attr.attr,
5364        &ctor_attr.attr,
5365        &aliases_attr.attr,
5366        &align_attr.attr,
5367        &hwcache_align_attr.attr,
5368        &reclaim_account_attr.attr,
5369        &destroy_by_rcu_attr.attr,
5370        &shrink_attr.attr,
5371        &reserved_attr.attr,
5372        &slabs_cpu_partial_attr.attr,
5373#ifdef CONFIG_SLUB_DEBUG
5374        &total_objects_attr.attr,
5375        &slabs_attr.attr,
5376        &sanity_checks_attr.attr,
5377        &trace_attr.attr,
5378        &red_zone_attr.attr,
5379        &poison_attr.attr,
5380        &store_user_attr.attr,
5381        &validate_attr.attr,
5382        &alloc_calls_attr.attr,
5383        &free_calls_attr.attr,
5384#endif
5385#ifdef CONFIG_ZONE_DMA
5386        &cache_dma_attr.attr,
5387#endif
5388#ifdef CONFIG_NUMA
5389        &remote_node_defrag_ratio_attr.attr,
5390#endif
5391#ifdef CONFIG_SLUB_STATS
5392        &alloc_fastpath_attr.attr,
5393        &alloc_slowpath_attr.attr,
5394        &free_fastpath_attr.attr,
5395        &free_slowpath_attr.attr,
5396        &free_frozen_attr.attr,
5397        &free_add_partial_attr.attr,
5398        &free_remove_partial_attr.attr,
5399        &alloc_from_partial_attr.attr,
5400        &alloc_slab_attr.attr,
5401        &alloc_refill_attr.attr,
5402        &alloc_node_mismatch_attr.attr,
5403        &free_slab_attr.attr,
5404        &cpuslab_flush_attr.attr,
5405        &deactivate_full_attr.attr,
5406        &deactivate_empty_attr.attr,
5407        &deactivate_to_head_attr.attr,
5408        &deactivate_to_tail_attr.attr,
5409        &deactivate_remote_frees_attr.attr,
5410        &deactivate_bypass_attr.attr,
5411        &order_fallback_attr.attr,
5412        &cmpxchg_double_fail_attr.attr,
5413        &cmpxchg_double_cpu_fail_attr.attr,
5414        &cpu_partial_alloc_attr.attr,
5415        &cpu_partial_free_attr.attr,
5416        &cpu_partial_node_attr.attr,
5417        &cpu_partial_drain_attr.attr,
5418#endif
5419#ifdef CONFIG_FAILSLAB
5420        &failslab_attr.attr,
5421#endif
5422
5423        NULL
5424};
5425
5426static struct attribute_group slab_attr_group = {
5427        .attrs = slab_attrs,
5428};
5429
5430static ssize_t slab_attr_show(struct kobject *kobj,
5431                                struct attribute *attr,
5432                                char *buf)
5433{
5434        struct slab_attribute *attribute;
5435        struct kmem_cache *s;
5436        int err;
5437
5438        attribute = to_slab_attr(attr);
5439        s = to_slab(kobj);
5440
5441        if (!attribute->show)
5442                return -EIO;
5443
5444        err = attribute->show(s, buf);
5445
5446        return err;
5447}
5448
5449static ssize_t slab_attr_store(struct kobject *kobj,
5450                                struct attribute *attr,
5451                                const char *buf, size_t len)
5452{
5453        struct slab_attribute *attribute;
5454        struct kmem_cache *s;
5455        int err;
5456
5457        attribute = to_slab_attr(attr);
5458        s = to_slab(kobj);
5459
5460        if (!attribute->store)
5461                return -EIO;
5462
5463        err = attribute->store(s, buf, len);
5464#ifdef CONFIG_MEMCG
5465        if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5466                struct kmem_cache *c;
5467
5468                mutex_lock(&slab_mutex);
5469                if (s->max_attr_size < len)
5470                        s->max_attr_size = len;
5471
5472                /*
5473                 * This is a best effort propagation, so this function's return
5474                 * value will be determined by the parent cache only. This is
5475                 * basically because not all attributes will have a well
5476                 * defined semantics for rollbacks - most of the actions will
5477                 * have permanent effects.
5478                 *
5479                 * Returning the error value of any of the children that fail
5480                 * is not 100 % defined, in the sense that users seeing the
5481                 * error code won't be able to know anything about the state of
5482                 * the cache.
5483                 *
5484                 * Only returning the error code for the parent cache at least
5485                 * has well defined semantics. The cache being written to
5486                 * directly either failed or succeeded, in which case we loop
5487                 * through the descendants with best-effort propagation.
5488                 */
5489                for_each_memcg_cache(c, s)
5490                        attribute->store(c, buf, len);
5491                mutex_unlock(&slab_mutex);
5492        }
5493#endif
5494        return err;
5495}
5496
5497static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5498{
5499#ifdef CONFIG_MEMCG
5500        int i;
5501        char *buffer = NULL;
5502        struct kmem_cache *root_cache;
5503
5504        if (is_root_cache(s))
5505                return;
5506
5507        root_cache = s->memcg_params.root_cache;
5508
5509        /*
5510         * This mean this cache had no attribute written. Therefore, no point
5511         * in copying default values around
5512         */
5513        if (!root_cache->max_attr_size)
5514                return;
5515
5516        for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5517                char mbuf[64];
5518                char *buf;
5519                struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5520                ssize_t len;
5521
5522                if (!attr || !attr->store || !attr->show)
5523                        continue;
5524
5525                /*
5526                 * It is really bad that we have to allocate here, so we will
5527                 * do it only as a fallback. If we actually allocate, though,
5528                 * we can just use the allocated buffer until the end.
5529                 *
5530                 * Most of the slub attributes will tend to be very small in
5531                 * size, but sysfs allows buffers up to a page, so they can
5532                 * theoretically happen.
5533                 */
5534                if (buffer)
5535                        buf = buffer;
5536                else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5537                        buf = mbuf;
5538                else {
5539                        buffer = (char *) get_zeroed_page(GFP_KERNEL);
5540                        if (WARN_ON(!buffer))
5541                                continue;
5542                        buf = buffer;
5543                }
5544
5545                len = attr->show(root_cache, buf);
5546                if (len > 0)
5547                        attr->store(s, buf, len);
5548        }
5549
5550        if (buffer)
5551                free_page((unsigned long)buffer);
5552#endif
5553}
5554
5555static void kmem_cache_release(struct kobject *k)
5556{
5557        slab_kmem_cache_release(to_slab(k));
5558}
5559
5560static const struct sysfs_ops slab_sysfs_ops = {
5561        .show = slab_attr_show,
5562        .store = slab_attr_store,
5563};
5564
5565static struct kobj_type slab_ktype = {
5566        .sysfs_ops = &slab_sysfs_ops,
5567        .release = kmem_cache_release,
5568};
5569
5570static int uevent_filter(struct kset *kset, struct kobject *kobj)
5571{
5572        struct kobj_type *ktype = get_ktype(kobj);
5573
5574        if (ktype == &slab_ktype)
5575                return 1;
5576        return 0;
5577}
5578
5579static const struct kset_uevent_ops slab_uevent_ops = {
5580        .filter = uevent_filter,
5581};
5582
5583static struct kset *slab_kset;
5584
5585static inline struct kset *cache_kset(struct kmem_cache *s)
5586{
5587#ifdef CONFIG_MEMCG
5588        if (!is_root_cache(s))
5589                return s->memcg_params.root_cache->memcg_kset;
5590#endif
5591        return slab_kset;
5592}
5593
5594#define ID_STR_LENGTH 64
5595
5596/* Create a unique string id for a slab cache:
5597 *
5598 * Format       :[flags-]size
5599 */
5600static char *create_unique_id(struct kmem_cache *s)
5601{
5602        char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5603        char *p = name;
5604
5605        BUG_ON(!name);
5606
5607        *p++ = ':';
5608        /*
5609         * First flags affecting slabcache operations. We will only
5610         * get here for aliasable slabs so we do not need to support
5611         * too many flags. The flags here must cover all flags that
5612         * are matched during merging to guarantee that the id is
5613         * unique.
5614         */
5615        if (s->flags & SLAB_CACHE_DMA)
5616                *p++ = 'd';
5617        if (s->flags & SLAB_RECLAIM_ACCOUNT)
5618                *p++ = 'a';
5619        if (s->flags & SLAB_CONSISTENCY_CHECKS)
5620                *p++ = 'F';
5621        if (!(s->flags & SLAB_NOTRACK))
5622                *p++ = 't';
5623        if (s->flags & SLAB_ACCOUNT)
5624                *p++ = 'A';
5625        if (p != name + 1)
5626                *p++ = '-';
5627        p += sprintf(p, "%07d", s->size);
5628
5629        BUG_ON(p > name + ID_STR_LENGTH - 1);
5630        return name;
5631}
5632
5633static void sysfs_slab_remove_workfn(struct work_struct *work)
5634{
5635        struct kmem_cache *s =
5636                container_of(work, struct kmem_cache, kobj_remove_work);
5637
5638        if (!s->kobj.state_in_sysfs)
5639                /*
5640                 * For a memcg cache, this may be called during
5641                 * deactivation and again on shutdown.  Remove only once.
5642                 * A cache is never shut down before deactivation is
5643                 * complete, so no need to worry about synchronization.
5644                 */
5645                goto out;
5646
5647#ifdef CONFIG_MEMCG
5648        kset_unregister(s->memcg_kset);
5649#endif
5650        kobject_uevent(&s->kobj, KOBJ_REMOVE);
5651        kobject_del(&s->kobj);
5652out:
5653        kobject_put(&s->kobj);
5654}
5655
5656static int sysfs_slab_add(struct kmem_cache *s)
5657{
5658        int err;
5659        const char *name;
5660        struct kset *kset = cache_kset(s);
5661        int unmergeable = slab_unmergeable(s);
5662
5663        INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5664
5665        if (!kset) {
5666                kobject_init(&s->kobj, &slab_ktype);
5667                return 0;
5668        }
5669
5670        if (unmergeable) {
5671                /*
5672                 * Slabcache can never be merged so we can use the name proper.
5673                 * This is typically the case for debug situations. In that
5674                 * case we can catch duplicate names easily.
5675                 */
5676                sysfs_remove_link(&slab_kset->kobj, s->name);
5677                name = s->name;
5678        } else {
5679                /*
5680                 * Create a unique name for the slab as a target
5681                 * for the symlinks.
5682                 */
5683                name = create_unique_id(s);
5684        }
5685
5686        s->kobj.kset = kset;
5687        err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5688        if (err)
5689                goto out;
5690
5691        err = sysfs_create_group(&s->kobj, &slab_attr_group);
5692        if (err)
5693                goto out_del_kobj;
5694
5695#ifdef CONFIG_MEMCG
5696        if (is_root_cache(s) && memcg_sysfs_enabled) {
5697                s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5698                if (!s->memcg_kset) {
5699                        err = -ENOMEM;
5700                        goto out_del_kobj;
5701                }
5702        }
5703#endif
5704
5705        kobject_uevent(&s->kobj, KOBJ_ADD);
5706        if (!unmergeable) {
5707                /* Setup first alias */
5708                sysfs_slab_alias(s, s->name);
5709        }
5710out:
5711        if (!unmergeable)
5712                kfree(name);
5713        return err;
5714out_del_kobj:
5715        kobject_del(&s->kobj);
5716        goto out;
5717}
5718
5719static void sysfs_slab_remove(struct kmem_cache *s)
5720{
5721        if (slab_state < FULL)
5722                /*
5723                 * Sysfs has not been setup yet so no need to remove the
5724                 * cache from sysfs.
5725                 */
5726                return;
5727
5728        kobject_get(&s->kobj);
5729        schedule_work(&s->kobj_remove_work);
5730}
5731
5732void sysfs_slab_release(struct kmem_cache *s)
5733{
5734        if (slab_state >= FULL)
5735                kobject_put(&s->kobj);
5736}
5737
5738/*
5739 * Need to buffer aliases during bootup until sysfs becomes
5740 * available lest we lose that information.
5741 */
5742struct saved_alias {
5743        struct kmem_cache *s;
5744        const char *name;
5745        struct saved_alias *next;
5746};
5747
5748static struct saved_alias *alias_list;
5749
5750static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5751{
5752        struct saved_alias *al;
5753
5754        if (slab_state == FULL) {
5755                /*
5756                 * If we have a leftover link then remove it.
5757                 */
5758                sysfs_remove_link(&slab_kset->kobj, name);
5759                return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5760        }
5761
5762        al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5763        if (!al)
5764                return -ENOMEM;
5765
5766        al->s = s;
5767        al->name = name;
5768        al->next = alias_list;
5769        alias_list = al;
5770        return 0;
5771}
5772
5773static int __init slab_sysfs_init(void)
5774{
5775        struct kmem_cache *s;
5776        int err;
5777
5778        mutex_lock(&slab_mutex);
5779
5780        slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5781        if (!slab_kset) {
5782                mutex_unlock(&slab_mutex);
5783                pr_err("Cannot register slab subsystem.\n");
5784                return -ENOSYS;
5785        }
5786
5787        slab_state = FULL;
5788
5789        list_for_each_entry(s, &slab_caches, list) {
5790                err = sysfs_slab_add(s);
5791                if (err)
5792                        pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5793                               s->name);
5794        }
5795
5796        while (alias_list) {
5797                struct saved_alias *al = alias_list;
5798
5799                alias_list = alias_list->next;
5800                err = sysfs_slab_alias(al->s, al->name);
5801                if (err)
5802                        pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5803                               al->name);
5804                kfree(al);
5805        }
5806
5807        mutex_unlock(&slab_mutex);
5808        resiliency_test();
5809        return 0;
5810}
5811
5812__initcall(slab_sysfs_init);
5813#endif /* CONFIG_SYSFS */
5814
5815/*
5816 * The /proc/slabinfo ABI
5817 */
5818#ifdef CONFIG_SLABINFO
5819void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5820{
5821        unsigned long nr_slabs = 0;
5822        unsigned long nr_objs = 0;
5823        unsigned long nr_free = 0;
5824        int node;
5825        struct kmem_cache_node *n;
5826
5827        for_each_kmem_cache_node(s, node, n) {
5828                nr_slabs += node_nr_slabs(n);
5829                nr_objs += node_nr_objs(n);
5830                nr_free += count_partial(n, count_free);
5831        }
5832
5833        sinfo->active_objs = nr_objs - nr_free;
5834        sinfo->num_objs = nr_objs;
5835        sinfo->active_slabs = nr_slabs;
5836        sinfo->num_slabs = nr_slabs;
5837        sinfo->objects_per_slab = oo_objects(s->oo);
5838        sinfo->cache_order = oo_order(s->oo);
5839}
5840
5841void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5842{
5843}
5844
5845ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5846                       size_t count, loff_t *ppos)
5847{
5848        return -EIO;
5849}
5850#endif /* CONFIG_SLABINFO */
5851