linux/mm/sparse.c
<<
>>
Prefs
   1/*
   2 * sparse memory mappings.
   3 */
   4#include <linux/mm.h>
   5#include <linux/slab.h>
   6#include <linux/mmzone.h>
   7#include <linux/bootmem.h>
   8#include <linux/compiler.h>
   9#include <linux/highmem.h>
  10#include <linux/export.h>
  11#include <linux/spinlock.h>
  12#include <linux/vmalloc.h>
  13
  14#include "internal.h"
  15#include <asm/dma.h>
  16#include <asm/pgalloc.h>
  17#include <asm/pgtable.h>
  18
  19/*
  20 * Permanent SPARSEMEM data:
  21 *
  22 * 1) mem_section       - memory sections, mem_map's for valid memory
  23 */
  24#ifdef CONFIG_SPARSEMEM_EXTREME
  25struct mem_section *mem_section[NR_SECTION_ROOTS]
  26        ____cacheline_internodealigned_in_smp;
  27#else
  28struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
  29        ____cacheline_internodealigned_in_smp;
  30#endif
  31EXPORT_SYMBOL(mem_section);
  32
  33#ifdef NODE_NOT_IN_PAGE_FLAGS
  34/*
  35 * If we did not store the node number in the page then we have to
  36 * do a lookup in the section_to_node_table in order to find which
  37 * node the page belongs to.
  38 */
  39#if MAX_NUMNODES <= 256
  40static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
  41#else
  42static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
  43#endif
  44
  45int page_to_nid(const struct page *page)
  46{
  47        return section_to_node_table[page_to_section(page)];
  48}
  49EXPORT_SYMBOL(page_to_nid);
  50
  51static void set_section_nid(unsigned long section_nr, int nid)
  52{
  53        section_to_node_table[section_nr] = nid;
  54}
  55#else /* !NODE_NOT_IN_PAGE_FLAGS */
  56static inline void set_section_nid(unsigned long section_nr, int nid)
  57{
  58}
  59#endif
  60
  61#ifdef CONFIG_SPARSEMEM_EXTREME
  62static noinline struct mem_section __ref *sparse_index_alloc(int nid)
  63{
  64        struct mem_section *section = NULL;
  65        unsigned long array_size = SECTIONS_PER_ROOT *
  66                                   sizeof(struct mem_section);
  67
  68        if (slab_is_available()) {
  69                if (node_state(nid, N_HIGH_MEMORY))
  70                        section = kzalloc_node(array_size, GFP_KERNEL, nid);
  71                else
  72                        section = kzalloc(array_size, GFP_KERNEL);
  73        } else {
  74                section = memblock_virt_alloc_node(array_size, nid);
  75        }
  76
  77        return section;
  78}
  79
  80static int __meminit sparse_index_init(unsigned long section_nr, int nid)
  81{
  82        unsigned long root = SECTION_NR_TO_ROOT(section_nr);
  83        struct mem_section *section;
  84
  85        if (mem_section[root])
  86                return -EEXIST;
  87
  88        section = sparse_index_alloc(nid);
  89        if (!section)
  90                return -ENOMEM;
  91
  92        mem_section[root] = section;
  93
  94        return 0;
  95}
  96#else /* !SPARSEMEM_EXTREME */
  97static inline int sparse_index_init(unsigned long section_nr, int nid)
  98{
  99        return 0;
 100}
 101#endif
 102
 103#ifdef CONFIG_SPARSEMEM_EXTREME
 104int __section_nr(struct mem_section* ms)
 105{
 106        unsigned long root_nr;
 107        struct mem_section* root;
 108
 109        for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
 110                root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
 111                if (!root)
 112                        continue;
 113
 114                if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
 115                     break;
 116        }
 117
 118        VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
 119
 120        return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
 121}
 122#else
 123int __section_nr(struct mem_section* ms)
 124{
 125        return (int)(ms - mem_section[0]);
 126}
 127#endif
 128
 129/*
 130 * During early boot, before section_mem_map is used for an actual
 131 * mem_map, we use section_mem_map to store the section's NUMA
 132 * node.  This keeps us from having to use another data structure.  The
 133 * node information is cleared just before we store the real mem_map.
 134 */
 135static inline unsigned long sparse_encode_early_nid(int nid)
 136{
 137        return (nid << SECTION_NID_SHIFT);
 138}
 139
 140static inline int sparse_early_nid(struct mem_section *section)
 141{
 142        return (section->section_mem_map >> SECTION_NID_SHIFT);
 143}
 144
 145/* Validate the physical addressing limitations of the model */
 146void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
 147                                                unsigned long *end_pfn)
 148{
 149        unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
 150
 151        /*
 152         * Sanity checks - do not allow an architecture to pass
 153         * in larger pfns than the maximum scope of sparsemem:
 154         */
 155        if (*start_pfn > max_sparsemem_pfn) {
 156                mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
 157                        "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
 158                        *start_pfn, *end_pfn, max_sparsemem_pfn);
 159                WARN_ON_ONCE(1);
 160                *start_pfn = max_sparsemem_pfn;
 161                *end_pfn = max_sparsemem_pfn;
 162        } else if (*end_pfn > max_sparsemem_pfn) {
 163                mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
 164                        "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
 165                        *start_pfn, *end_pfn, max_sparsemem_pfn);
 166                WARN_ON_ONCE(1);
 167                *end_pfn = max_sparsemem_pfn;
 168        }
 169}
 170
 171/*
 172 * There are a number of times that we loop over NR_MEM_SECTIONS,
 173 * looking for section_present() on each.  But, when we have very
 174 * large physical address spaces, NR_MEM_SECTIONS can also be
 175 * very large which makes the loops quite long.
 176 *
 177 * Keeping track of this gives us an easy way to break out of
 178 * those loops early.
 179 */
 180int __highest_present_section_nr;
 181static void section_mark_present(struct mem_section *ms)
 182{
 183        int section_nr = __section_nr(ms);
 184
 185        if (section_nr > __highest_present_section_nr)
 186                __highest_present_section_nr = section_nr;
 187
 188        ms->section_mem_map |= SECTION_MARKED_PRESENT;
 189}
 190
 191static inline int next_present_section_nr(int section_nr)
 192{
 193        do {
 194                section_nr++;
 195                if (present_section_nr(section_nr))
 196                        return section_nr;
 197        } while ((section_nr < NR_MEM_SECTIONS) &&
 198                 (section_nr <= __highest_present_section_nr));
 199
 200        return -1;
 201}
 202#define for_each_present_section_nr(start, section_nr)          \
 203        for (section_nr = next_present_section_nr(start-1);     \
 204             ((section_nr >= 0) &&                              \
 205              (section_nr < NR_MEM_SECTIONS) &&                 \
 206              (section_nr <= __highest_present_section_nr));    \
 207             section_nr = next_present_section_nr(section_nr))
 208
 209/* Record a memory area against a node. */
 210void __init memory_present(int nid, unsigned long start, unsigned long end)
 211{
 212        unsigned long pfn;
 213
 214        start &= PAGE_SECTION_MASK;
 215        mminit_validate_memmodel_limits(&start, &end);
 216        for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
 217                unsigned long section = pfn_to_section_nr(pfn);
 218                struct mem_section *ms;
 219
 220                sparse_index_init(section, nid);
 221                set_section_nid(section, nid);
 222
 223                ms = __nr_to_section(section);
 224                if (!ms->section_mem_map) {
 225                        ms->section_mem_map = sparse_encode_early_nid(nid) |
 226                                                        SECTION_IS_ONLINE;
 227                        section_mark_present(ms);
 228                }
 229        }
 230}
 231
 232/*
 233 * Only used by the i386 NUMA architecures, but relatively
 234 * generic code.
 235 */
 236unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
 237                                                     unsigned long end_pfn)
 238{
 239        unsigned long pfn;
 240        unsigned long nr_pages = 0;
 241
 242        mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
 243        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 244                if (nid != early_pfn_to_nid(pfn))
 245                        continue;
 246
 247                if (pfn_present(pfn))
 248                        nr_pages += PAGES_PER_SECTION;
 249        }
 250
 251        return nr_pages * sizeof(struct page);
 252}
 253
 254/*
 255 * Subtle, we encode the real pfn into the mem_map such that
 256 * the identity pfn - section_mem_map will return the actual
 257 * physical page frame number.
 258 */
 259static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
 260{
 261        return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
 262}
 263
 264/*
 265 * Decode mem_map from the coded memmap
 266 */
 267struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
 268{
 269        /* mask off the extra low bits of information */
 270        coded_mem_map &= SECTION_MAP_MASK;
 271        return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
 272}
 273
 274static int __meminit sparse_init_one_section(struct mem_section *ms,
 275                unsigned long pnum, struct page *mem_map,
 276                unsigned long *pageblock_bitmap)
 277{
 278        if (!present_section(ms))
 279                return -EINVAL;
 280
 281        ms->section_mem_map &= ~SECTION_MAP_MASK;
 282        ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
 283                                                        SECTION_HAS_MEM_MAP;
 284        ms->pageblock_flags = pageblock_bitmap;
 285
 286        return 1;
 287}
 288
 289unsigned long usemap_size(void)
 290{
 291        return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
 292}
 293
 294#ifdef CONFIG_MEMORY_HOTPLUG
 295static unsigned long *__kmalloc_section_usemap(void)
 296{
 297        return kmalloc(usemap_size(), GFP_KERNEL);
 298}
 299#endif /* CONFIG_MEMORY_HOTPLUG */
 300
 301#ifdef CONFIG_MEMORY_HOTREMOVE
 302static unsigned long * __init
 303sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
 304                                         unsigned long size)
 305{
 306        unsigned long goal, limit;
 307        unsigned long *p;
 308        int nid;
 309        /*
 310         * A page may contain usemaps for other sections preventing the
 311         * page being freed and making a section unremovable while
 312         * other sections referencing the usemap remain active. Similarly,
 313         * a pgdat can prevent a section being removed. If section A
 314         * contains a pgdat and section B contains the usemap, both
 315         * sections become inter-dependent. This allocates usemaps
 316         * from the same section as the pgdat where possible to avoid
 317         * this problem.
 318         */
 319        goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
 320        limit = goal + (1UL << PA_SECTION_SHIFT);
 321        nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
 322again:
 323        p = memblock_virt_alloc_try_nid_nopanic(size,
 324                                                SMP_CACHE_BYTES, goal, limit,
 325                                                nid);
 326        if (!p && limit) {
 327                limit = 0;
 328                goto again;
 329        }
 330        return p;
 331}
 332
 333static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
 334{
 335        unsigned long usemap_snr, pgdat_snr;
 336        static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
 337        static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
 338        struct pglist_data *pgdat = NODE_DATA(nid);
 339        int usemap_nid;
 340
 341        usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
 342        pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
 343        if (usemap_snr == pgdat_snr)
 344                return;
 345
 346        if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
 347                /* skip redundant message */
 348                return;
 349
 350        old_usemap_snr = usemap_snr;
 351        old_pgdat_snr = pgdat_snr;
 352
 353        usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
 354        if (usemap_nid != nid) {
 355                pr_info("node %d must be removed before remove section %ld\n",
 356                        nid, usemap_snr);
 357                return;
 358        }
 359        /*
 360         * There is a circular dependency.
 361         * Some platforms allow un-removable section because they will just
 362         * gather other removable sections for dynamic partitioning.
 363         * Just notify un-removable section's number here.
 364         */
 365        pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
 366                usemap_snr, pgdat_snr, nid);
 367}
 368#else
 369static unsigned long * __init
 370sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
 371                                         unsigned long size)
 372{
 373        return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
 374}
 375
 376static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
 377{
 378}
 379#endif /* CONFIG_MEMORY_HOTREMOVE */
 380
 381static void __init sparse_early_usemaps_alloc_node(void *data,
 382                                 unsigned long pnum_begin,
 383                                 unsigned long pnum_end,
 384                                 unsigned long usemap_count, int nodeid)
 385{
 386        void *usemap;
 387        unsigned long pnum;
 388        unsigned long **usemap_map = (unsigned long **)data;
 389        int size = usemap_size();
 390
 391        usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
 392                                                          size * usemap_count);
 393        if (!usemap) {
 394                pr_warn("%s: allocation failed\n", __func__);
 395                return;
 396        }
 397
 398        for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
 399                if (!present_section_nr(pnum))
 400                        continue;
 401                usemap_map[pnum] = usemap;
 402                usemap += size;
 403                check_usemap_section_nr(nodeid, usemap_map[pnum]);
 404        }
 405}
 406
 407#ifndef CONFIG_SPARSEMEM_VMEMMAP
 408struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
 409{
 410        struct page *map;
 411        unsigned long size;
 412
 413        map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
 414        if (map)
 415                return map;
 416
 417        size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
 418        map = memblock_virt_alloc_try_nid(size,
 419                                          PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
 420                                          BOOTMEM_ALLOC_ACCESSIBLE, nid);
 421        return map;
 422}
 423void __init sparse_mem_maps_populate_node(struct page **map_map,
 424                                          unsigned long pnum_begin,
 425                                          unsigned long pnum_end,
 426                                          unsigned long map_count, int nodeid)
 427{
 428        void *map;
 429        unsigned long pnum;
 430        unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
 431
 432        map = alloc_remap(nodeid, size * map_count);
 433        if (map) {
 434                for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
 435                        if (!present_section_nr(pnum))
 436                                continue;
 437                        map_map[pnum] = map;
 438                        map += size;
 439                }
 440                return;
 441        }
 442
 443        size = PAGE_ALIGN(size);
 444        map = memblock_virt_alloc_try_nid(size * map_count,
 445                                          PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
 446                                          BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
 447        if (map) {
 448                for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
 449                        if (!present_section_nr(pnum))
 450                                continue;
 451                        map_map[pnum] = map;
 452                        map += size;
 453                }
 454                return;
 455        }
 456
 457        /* fallback */
 458        for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
 459                struct mem_section *ms;
 460
 461                if (!present_section_nr(pnum))
 462                        continue;
 463                map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
 464                if (map_map[pnum])
 465                        continue;
 466                ms = __nr_to_section(pnum);
 467                pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
 468                       __func__);
 469                ms->section_mem_map = 0;
 470        }
 471}
 472#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
 473
 474#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 475static void __init sparse_early_mem_maps_alloc_node(void *data,
 476                                 unsigned long pnum_begin,
 477                                 unsigned long pnum_end,
 478                                 unsigned long map_count, int nodeid)
 479{
 480        struct page **map_map = (struct page **)data;
 481        sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
 482                                         map_count, nodeid);
 483}
 484#else
 485static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
 486{
 487        struct page *map;
 488        struct mem_section *ms = __nr_to_section(pnum);
 489        int nid = sparse_early_nid(ms);
 490
 491        map = sparse_mem_map_populate(pnum, nid);
 492        if (map)
 493                return map;
 494
 495        pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
 496               __func__);
 497        ms->section_mem_map = 0;
 498        return NULL;
 499}
 500#endif
 501
 502void __weak __meminit vmemmap_populate_print_last(void)
 503{
 504}
 505
 506/**
 507 *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
 508 *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
 509 */
 510static void __init alloc_usemap_and_memmap(void (*alloc_func)
 511                                        (void *, unsigned long, unsigned long,
 512                                        unsigned long, int), void *data)
 513{
 514        unsigned long pnum;
 515        unsigned long map_count;
 516        int nodeid_begin = 0;
 517        unsigned long pnum_begin = 0;
 518
 519        for_each_present_section_nr(0, pnum) {
 520                struct mem_section *ms;
 521
 522                ms = __nr_to_section(pnum);
 523                nodeid_begin = sparse_early_nid(ms);
 524                pnum_begin = pnum;
 525                break;
 526        }
 527        map_count = 1;
 528        for_each_present_section_nr(pnum_begin + 1, pnum) {
 529                struct mem_section *ms;
 530                int nodeid;
 531
 532                ms = __nr_to_section(pnum);
 533                nodeid = sparse_early_nid(ms);
 534                if (nodeid == nodeid_begin) {
 535                        map_count++;
 536                        continue;
 537                }
 538                /* ok, we need to take cake of from pnum_begin to pnum - 1*/
 539                alloc_func(data, pnum_begin, pnum,
 540                                                map_count, nodeid_begin);
 541                /* new start, update count etc*/
 542                nodeid_begin = nodeid;
 543                pnum_begin = pnum;
 544                map_count = 1;
 545        }
 546        /* ok, last chunk */
 547        alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
 548                                                map_count, nodeid_begin);
 549}
 550
 551/*
 552 * Allocate the accumulated non-linear sections, allocate a mem_map
 553 * for each and record the physical to section mapping.
 554 */
 555void __init sparse_init(void)
 556{
 557        unsigned long pnum;
 558        struct page *map;
 559        unsigned long *usemap;
 560        unsigned long **usemap_map;
 561        int size;
 562#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 563        int size2;
 564        struct page **map_map;
 565#endif
 566
 567        /* see include/linux/mmzone.h 'struct mem_section' definition */
 568        BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
 569
 570        /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
 571        set_pageblock_order();
 572
 573        /*
 574         * map is using big page (aka 2M in x86 64 bit)
 575         * usemap is less one page (aka 24 bytes)
 576         * so alloc 2M (with 2M align) and 24 bytes in turn will
 577         * make next 2M slip to one more 2M later.
 578         * then in big system, the memory will have a lot of holes...
 579         * here try to allocate 2M pages continuously.
 580         *
 581         * powerpc need to call sparse_init_one_section right after each
 582         * sparse_early_mem_map_alloc, so allocate usemap_map at first.
 583         */
 584        size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
 585        usemap_map = memblock_virt_alloc(size, 0);
 586        if (!usemap_map)
 587                panic("can not allocate usemap_map\n");
 588        alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
 589                                                        (void *)usemap_map);
 590
 591#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 592        size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
 593        map_map = memblock_virt_alloc(size2, 0);
 594        if (!map_map)
 595                panic("can not allocate map_map\n");
 596        alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
 597                                                        (void *)map_map);
 598#endif
 599
 600        for_each_present_section_nr(0, pnum) {
 601                usemap = usemap_map[pnum];
 602                if (!usemap)
 603                        continue;
 604
 605#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 606                map = map_map[pnum];
 607#else
 608                map = sparse_early_mem_map_alloc(pnum);
 609#endif
 610                if (!map)
 611                        continue;
 612
 613                sparse_init_one_section(__nr_to_section(pnum), pnum, map,
 614                                                                usemap);
 615        }
 616
 617        vmemmap_populate_print_last();
 618
 619#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
 620        memblock_free_early(__pa(map_map), size2);
 621#endif
 622        memblock_free_early(__pa(usemap_map), size);
 623}
 624
 625#ifdef CONFIG_MEMORY_HOTPLUG
 626
 627/* Mark all memory sections within the pfn range as online */
 628void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
 629{
 630        unsigned long pfn;
 631
 632        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 633                unsigned long section_nr = pfn_to_section_nr(start_pfn);
 634                struct mem_section *ms;
 635
 636                /* onlining code should never touch invalid ranges */
 637                if (WARN_ON(!valid_section_nr(section_nr)))
 638                        continue;
 639
 640                ms = __nr_to_section(section_nr);
 641                ms->section_mem_map |= SECTION_IS_ONLINE;
 642        }
 643}
 644
 645#ifdef CONFIG_MEMORY_HOTREMOVE
 646/* Mark all memory sections within the pfn range as online */
 647void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
 648{
 649        unsigned long pfn;
 650
 651        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 652                unsigned long section_nr = pfn_to_section_nr(start_pfn);
 653                struct mem_section *ms;
 654
 655                /*
 656                 * TODO this needs some double checking. Offlining code makes
 657                 * sure to check pfn_valid but those checks might be just bogus
 658                 */
 659                if (WARN_ON(!valid_section_nr(section_nr)))
 660                        continue;
 661
 662                ms = __nr_to_section(section_nr);
 663                ms->section_mem_map &= ~SECTION_IS_ONLINE;
 664        }
 665}
 666#endif
 667
 668#ifdef CONFIG_SPARSEMEM_VMEMMAP
 669static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
 670{
 671        /* This will make the necessary allocations eventually. */
 672        return sparse_mem_map_populate(pnum, nid);
 673}
 674static void __kfree_section_memmap(struct page *memmap)
 675{
 676        unsigned long start = (unsigned long)memmap;
 677        unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
 678
 679        vmemmap_free(start, end);
 680}
 681#ifdef CONFIG_MEMORY_HOTREMOVE
 682static void free_map_bootmem(struct page *memmap)
 683{
 684        unsigned long start = (unsigned long)memmap;
 685        unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
 686
 687        vmemmap_free(start, end);
 688}
 689#endif /* CONFIG_MEMORY_HOTREMOVE */
 690#else
 691static struct page *__kmalloc_section_memmap(void)
 692{
 693        struct page *page, *ret;
 694        unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
 695
 696        page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
 697        if (page)
 698                goto got_map_page;
 699
 700        ret = vmalloc(memmap_size);
 701        if (ret)
 702                goto got_map_ptr;
 703
 704        return NULL;
 705got_map_page:
 706        ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
 707got_map_ptr:
 708
 709        return ret;
 710}
 711
 712static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
 713{
 714        return __kmalloc_section_memmap();
 715}
 716
 717static void __kfree_section_memmap(struct page *memmap)
 718{
 719        if (is_vmalloc_addr(memmap))
 720                vfree(memmap);
 721        else
 722                free_pages((unsigned long)memmap,
 723                           get_order(sizeof(struct page) * PAGES_PER_SECTION));
 724}
 725
 726#ifdef CONFIG_MEMORY_HOTREMOVE
 727static void free_map_bootmem(struct page *memmap)
 728{
 729        unsigned long maps_section_nr, removing_section_nr, i;
 730        unsigned long magic, nr_pages;
 731        struct page *page = virt_to_page(memmap);
 732
 733        nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
 734                >> PAGE_SHIFT;
 735
 736        for (i = 0; i < nr_pages; i++, page++) {
 737                magic = (unsigned long) page->freelist;
 738
 739                BUG_ON(magic == NODE_INFO);
 740
 741                maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
 742                removing_section_nr = page_private(page);
 743
 744                /*
 745                 * When this function is called, the removing section is
 746                 * logical offlined state. This means all pages are isolated
 747                 * from page allocator. If removing section's memmap is placed
 748                 * on the same section, it must not be freed.
 749                 * If it is freed, page allocator may allocate it which will
 750                 * be removed physically soon.
 751                 */
 752                if (maps_section_nr != removing_section_nr)
 753                        put_page_bootmem(page);
 754        }
 755}
 756#endif /* CONFIG_MEMORY_HOTREMOVE */
 757#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 758
 759/*
 760 * returns the number of sections whose mem_maps were properly
 761 * set.  If this is <=0, then that means that the passed-in
 762 * map was not consumed and must be freed.
 763 */
 764int __meminit sparse_add_one_section(struct pglist_data *pgdat, unsigned long start_pfn)
 765{
 766        unsigned long section_nr = pfn_to_section_nr(start_pfn);
 767        struct mem_section *ms;
 768        struct page *memmap;
 769        unsigned long *usemap;
 770        unsigned long flags;
 771        int ret;
 772
 773        /*
 774         * no locking for this, because it does its own
 775         * plus, it does a kmalloc
 776         */
 777        ret = sparse_index_init(section_nr, pgdat->node_id);
 778        if (ret < 0 && ret != -EEXIST)
 779                return ret;
 780        memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
 781        if (!memmap)
 782                return -ENOMEM;
 783        usemap = __kmalloc_section_usemap();
 784        if (!usemap) {
 785                __kfree_section_memmap(memmap);
 786                return -ENOMEM;
 787        }
 788
 789        pgdat_resize_lock(pgdat, &flags);
 790
 791        ms = __pfn_to_section(start_pfn);
 792        if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
 793                ret = -EEXIST;
 794                goto out;
 795        }
 796
 797        memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
 798
 799        section_mark_present(ms);
 800
 801        ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
 802
 803out:
 804        pgdat_resize_unlock(pgdat, &flags);
 805        if (ret <= 0) {
 806                kfree(usemap);
 807                __kfree_section_memmap(memmap);
 808        }
 809        return ret;
 810}
 811
 812#ifdef CONFIG_MEMORY_HOTREMOVE
 813#ifdef CONFIG_MEMORY_FAILURE
 814static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
 815{
 816        int i;
 817
 818        if (!memmap)
 819                return;
 820
 821        for (i = 0; i < nr_pages; i++) {
 822                if (PageHWPoison(&memmap[i])) {
 823                        atomic_long_sub(1, &num_poisoned_pages);
 824                        ClearPageHWPoison(&memmap[i]);
 825                }
 826        }
 827}
 828#else
 829static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
 830{
 831}
 832#endif
 833
 834static void free_section_usemap(struct page *memmap, unsigned long *usemap)
 835{
 836        struct page *usemap_page;
 837
 838        if (!usemap)
 839                return;
 840
 841        usemap_page = virt_to_page(usemap);
 842        /*
 843         * Check to see if allocation came from hot-plug-add
 844         */
 845        if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
 846                kfree(usemap);
 847                if (memmap)
 848                        __kfree_section_memmap(memmap);
 849                return;
 850        }
 851
 852        /*
 853         * The usemap came from bootmem. This is packed with other usemaps
 854         * on the section which has pgdat at boot time. Just keep it as is now.
 855         */
 856
 857        if (memmap)
 858                free_map_bootmem(memmap);
 859}
 860
 861void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
 862                unsigned long map_offset)
 863{
 864        struct page *memmap = NULL;
 865        unsigned long *usemap = NULL, flags;
 866        struct pglist_data *pgdat = zone->zone_pgdat;
 867
 868        pgdat_resize_lock(pgdat, &flags);
 869        if (ms->section_mem_map) {
 870                usemap = ms->pageblock_flags;
 871                memmap = sparse_decode_mem_map(ms->section_mem_map,
 872                                                __section_nr(ms));
 873                ms->section_mem_map = 0;
 874                ms->pageblock_flags = NULL;
 875        }
 876        pgdat_resize_unlock(pgdat, &flags);
 877
 878        clear_hwpoisoned_pages(memmap + map_offset,
 879                        PAGES_PER_SECTION - map_offset);
 880        free_section_usemap(memmap, usemap);
 881}
 882#endif /* CONFIG_MEMORY_HOTREMOVE */
 883#endif /* CONFIG_MEMORY_HOTPLUG */
 884