linux/mm/swapfile.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/swapfile.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 *  Swap reorganised 29.12.95, Stephen Tweedie
   6 */
   7
   8#include <linux/mm.h>
   9#include <linux/sched/mm.h>
  10#include <linux/sched/task.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mman.h>
  13#include <linux/slab.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/swap.h>
  16#include <linux/vmalloc.h>
  17#include <linux/pagemap.h>
  18#include <linux/namei.h>
  19#include <linux/shmem_fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/random.h>
  22#include <linux/writeback.h>
  23#include <linux/proc_fs.h>
  24#include <linux/seq_file.h>
  25#include <linux/init.h>
  26#include <linux/ksm.h>
  27#include <linux/rmap.h>
  28#include <linux/security.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mutex.h>
  31#include <linux/capability.h>
  32#include <linux/syscalls.h>
  33#include <linux/memcontrol.h>
  34#include <linux/poll.h>
  35#include <linux/oom.h>
  36#include <linux/frontswap.h>
  37#include <linux/swapfile.h>
  38#include <linux/export.h>
  39#include <linux/swap_slots.h>
  40#include <linux/sort.h>
  41
  42#include <asm/pgtable.h>
  43#include <asm/tlbflush.h>
  44#include <linux/swapops.h>
  45#include <linux/swap_cgroup.h>
  46
  47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  48                                 unsigned char);
  49static void free_swap_count_continuations(struct swap_info_struct *);
  50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
  51
  52DEFINE_SPINLOCK(swap_lock);
  53static unsigned int nr_swapfiles;
  54atomic_long_t nr_swap_pages;
  55/*
  56 * Some modules use swappable objects and may try to swap them out under
  57 * memory pressure (via the shrinker). Before doing so, they may wish to
  58 * check to see if any swap space is available.
  59 */
  60EXPORT_SYMBOL_GPL(nr_swap_pages);
  61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  62long total_swap_pages;
  63static int least_priority;
  64
  65static const char Bad_file[] = "Bad swap file entry ";
  66static const char Unused_file[] = "Unused swap file entry ";
  67static const char Bad_offset[] = "Bad swap offset entry ";
  68static const char Unused_offset[] = "Unused swap offset entry ";
  69
  70/*
  71 * all active swap_info_structs
  72 * protected with swap_lock, and ordered by priority.
  73 */
  74PLIST_HEAD(swap_active_head);
  75
  76/*
  77 * all available (active, not full) swap_info_structs
  78 * protected with swap_avail_lock, ordered by priority.
  79 * This is used by get_swap_page() instead of swap_active_head
  80 * because swap_active_head includes all swap_info_structs,
  81 * but get_swap_page() doesn't need to look at full ones.
  82 * This uses its own lock instead of swap_lock because when a
  83 * swap_info_struct changes between not-full/full, it needs to
  84 * add/remove itself to/from this list, but the swap_info_struct->lock
  85 * is held and the locking order requires swap_lock to be taken
  86 * before any swap_info_struct->lock.
  87 */
  88static PLIST_HEAD(swap_avail_head);
  89static DEFINE_SPINLOCK(swap_avail_lock);
  90
  91struct swap_info_struct *swap_info[MAX_SWAPFILES];
  92
  93static DEFINE_MUTEX(swapon_mutex);
  94
  95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
  96/* Activity counter to indicate that a swapon or swapoff has occurred */
  97static atomic_t proc_poll_event = ATOMIC_INIT(0);
  98
  99static inline unsigned char swap_count(unsigned char ent)
 100{
 101        return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
 102}
 103
 104/* returns 1 if swap entry is freed */
 105static int
 106__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
 107{
 108        swp_entry_t entry = swp_entry(si->type, offset);
 109        struct page *page;
 110        int ret = 0;
 111
 112        page = find_get_page(swap_address_space(entry), swp_offset(entry));
 113        if (!page)
 114                return 0;
 115        /*
 116         * This function is called from scan_swap_map() and it's called
 117         * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
 118         * We have to use trylock for avoiding deadlock. This is a special
 119         * case and you should use try_to_free_swap() with explicit lock_page()
 120         * in usual operations.
 121         */
 122        if (trylock_page(page)) {
 123                ret = try_to_free_swap(page);
 124                unlock_page(page);
 125        }
 126        put_page(page);
 127        return ret;
 128}
 129
 130/*
 131 * swapon tell device that all the old swap contents can be discarded,
 132 * to allow the swap device to optimize its wear-levelling.
 133 */
 134static int discard_swap(struct swap_info_struct *si)
 135{
 136        struct swap_extent *se;
 137        sector_t start_block;
 138        sector_t nr_blocks;
 139        int err = 0;
 140
 141        /* Do not discard the swap header page! */
 142        se = &si->first_swap_extent;
 143        start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 144        nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 145        if (nr_blocks) {
 146                err = blkdev_issue_discard(si->bdev, start_block,
 147                                nr_blocks, GFP_KERNEL, 0);
 148                if (err)
 149                        return err;
 150                cond_resched();
 151        }
 152
 153        list_for_each_entry(se, &si->first_swap_extent.list, list) {
 154                start_block = se->start_block << (PAGE_SHIFT - 9);
 155                nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 156
 157                err = blkdev_issue_discard(si->bdev, start_block,
 158                                nr_blocks, GFP_KERNEL, 0);
 159                if (err)
 160                        break;
 161
 162                cond_resched();
 163        }
 164        return err;             /* That will often be -EOPNOTSUPP */
 165}
 166
 167/*
 168 * swap allocation tell device that a cluster of swap can now be discarded,
 169 * to allow the swap device to optimize its wear-levelling.
 170 */
 171static void discard_swap_cluster(struct swap_info_struct *si,
 172                                 pgoff_t start_page, pgoff_t nr_pages)
 173{
 174        struct swap_extent *se = si->curr_swap_extent;
 175        int found_extent = 0;
 176
 177        while (nr_pages) {
 178                if (se->start_page <= start_page &&
 179                    start_page < se->start_page + se->nr_pages) {
 180                        pgoff_t offset = start_page - se->start_page;
 181                        sector_t start_block = se->start_block + offset;
 182                        sector_t nr_blocks = se->nr_pages - offset;
 183
 184                        if (nr_blocks > nr_pages)
 185                                nr_blocks = nr_pages;
 186                        start_page += nr_blocks;
 187                        nr_pages -= nr_blocks;
 188
 189                        if (!found_extent++)
 190                                si->curr_swap_extent = se;
 191
 192                        start_block <<= PAGE_SHIFT - 9;
 193                        nr_blocks <<= PAGE_SHIFT - 9;
 194                        if (blkdev_issue_discard(si->bdev, start_block,
 195                                    nr_blocks, GFP_NOIO, 0))
 196                                break;
 197                }
 198
 199                se = list_next_entry(se, list);
 200        }
 201}
 202
 203#ifdef CONFIG_THP_SWAP
 204#define SWAPFILE_CLUSTER        HPAGE_PMD_NR
 205#else
 206#define SWAPFILE_CLUSTER        256
 207#endif
 208#define LATENCY_LIMIT           256
 209
 210static inline void cluster_set_flag(struct swap_cluster_info *info,
 211        unsigned int flag)
 212{
 213        info->flags = flag;
 214}
 215
 216static inline unsigned int cluster_count(struct swap_cluster_info *info)
 217{
 218        return info->data;
 219}
 220
 221static inline void cluster_set_count(struct swap_cluster_info *info,
 222                                     unsigned int c)
 223{
 224        info->data = c;
 225}
 226
 227static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 228                                         unsigned int c, unsigned int f)
 229{
 230        info->flags = f;
 231        info->data = c;
 232}
 233
 234static inline unsigned int cluster_next(struct swap_cluster_info *info)
 235{
 236        return info->data;
 237}
 238
 239static inline void cluster_set_next(struct swap_cluster_info *info,
 240                                    unsigned int n)
 241{
 242        info->data = n;
 243}
 244
 245static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 246                                         unsigned int n, unsigned int f)
 247{
 248        info->flags = f;
 249        info->data = n;
 250}
 251
 252static inline bool cluster_is_free(struct swap_cluster_info *info)
 253{
 254        return info->flags & CLUSTER_FLAG_FREE;
 255}
 256
 257static inline bool cluster_is_null(struct swap_cluster_info *info)
 258{
 259        return info->flags & CLUSTER_FLAG_NEXT_NULL;
 260}
 261
 262static inline void cluster_set_null(struct swap_cluster_info *info)
 263{
 264        info->flags = CLUSTER_FLAG_NEXT_NULL;
 265        info->data = 0;
 266}
 267
 268static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 269                                                     unsigned long offset)
 270{
 271        struct swap_cluster_info *ci;
 272
 273        ci = si->cluster_info;
 274        if (ci) {
 275                ci += offset / SWAPFILE_CLUSTER;
 276                spin_lock(&ci->lock);
 277        }
 278        return ci;
 279}
 280
 281static inline void unlock_cluster(struct swap_cluster_info *ci)
 282{
 283        if (ci)
 284                spin_unlock(&ci->lock);
 285}
 286
 287static inline struct swap_cluster_info *lock_cluster_or_swap_info(
 288        struct swap_info_struct *si,
 289        unsigned long offset)
 290{
 291        struct swap_cluster_info *ci;
 292
 293        ci = lock_cluster(si, offset);
 294        if (!ci)
 295                spin_lock(&si->lock);
 296
 297        return ci;
 298}
 299
 300static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
 301                                               struct swap_cluster_info *ci)
 302{
 303        if (ci)
 304                unlock_cluster(ci);
 305        else
 306                spin_unlock(&si->lock);
 307}
 308
 309static inline bool cluster_list_empty(struct swap_cluster_list *list)
 310{
 311        return cluster_is_null(&list->head);
 312}
 313
 314static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
 315{
 316        return cluster_next(&list->head);
 317}
 318
 319static void cluster_list_init(struct swap_cluster_list *list)
 320{
 321        cluster_set_null(&list->head);
 322        cluster_set_null(&list->tail);
 323}
 324
 325static void cluster_list_add_tail(struct swap_cluster_list *list,
 326                                  struct swap_cluster_info *ci,
 327                                  unsigned int idx)
 328{
 329        if (cluster_list_empty(list)) {
 330                cluster_set_next_flag(&list->head, idx, 0);
 331                cluster_set_next_flag(&list->tail, idx, 0);
 332        } else {
 333                struct swap_cluster_info *ci_tail;
 334                unsigned int tail = cluster_next(&list->tail);
 335
 336                /*
 337                 * Nested cluster lock, but both cluster locks are
 338                 * only acquired when we held swap_info_struct->lock
 339                 */
 340                ci_tail = ci + tail;
 341                spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
 342                cluster_set_next(ci_tail, idx);
 343                spin_unlock(&ci_tail->lock);
 344                cluster_set_next_flag(&list->tail, idx, 0);
 345        }
 346}
 347
 348static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
 349                                           struct swap_cluster_info *ci)
 350{
 351        unsigned int idx;
 352
 353        idx = cluster_next(&list->head);
 354        if (cluster_next(&list->tail) == idx) {
 355                cluster_set_null(&list->head);
 356                cluster_set_null(&list->tail);
 357        } else
 358                cluster_set_next_flag(&list->head,
 359                                      cluster_next(&ci[idx]), 0);
 360
 361        return idx;
 362}
 363
 364/* Add a cluster to discard list and schedule it to do discard */
 365static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 366                unsigned int idx)
 367{
 368        /*
 369         * If scan_swap_map() can't find a free cluster, it will check
 370         * si->swap_map directly. To make sure the discarding cluster isn't
 371         * taken by scan_swap_map(), mark the swap entries bad (occupied). It
 372         * will be cleared after discard
 373         */
 374        memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 375                        SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 376
 377        cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
 378
 379        schedule_work(&si->discard_work);
 380}
 381
 382static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
 383{
 384        struct swap_cluster_info *ci = si->cluster_info;
 385
 386        cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
 387        cluster_list_add_tail(&si->free_clusters, ci, idx);
 388}
 389
 390/*
 391 * Doing discard actually. After a cluster discard is finished, the cluster
 392 * will be added to free cluster list. caller should hold si->lock.
 393*/
 394static void swap_do_scheduled_discard(struct swap_info_struct *si)
 395{
 396        struct swap_cluster_info *info, *ci;
 397        unsigned int idx;
 398
 399        info = si->cluster_info;
 400
 401        while (!cluster_list_empty(&si->discard_clusters)) {
 402                idx = cluster_list_del_first(&si->discard_clusters, info);
 403                spin_unlock(&si->lock);
 404
 405                discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 406                                SWAPFILE_CLUSTER);
 407
 408                spin_lock(&si->lock);
 409                ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
 410                __free_cluster(si, idx);
 411                memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 412                                0, SWAPFILE_CLUSTER);
 413                unlock_cluster(ci);
 414        }
 415}
 416
 417static void swap_discard_work(struct work_struct *work)
 418{
 419        struct swap_info_struct *si;
 420
 421        si = container_of(work, struct swap_info_struct, discard_work);
 422
 423        spin_lock(&si->lock);
 424        swap_do_scheduled_discard(si);
 425        spin_unlock(&si->lock);
 426}
 427
 428static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
 429{
 430        struct swap_cluster_info *ci = si->cluster_info;
 431
 432        VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
 433        cluster_list_del_first(&si->free_clusters, ci);
 434        cluster_set_count_flag(ci + idx, 0, 0);
 435}
 436
 437static void free_cluster(struct swap_info_struct *si, unsigned long idx)
 438{
 439        struct swap_cluster_info *ci = si->cluster_info + idx;
 440
 441        VM_BUG_ON(cluster_count(ci) != 0);
 442        /*
 443         * If the swap is discardable, prepare discard the cluster
 444         * instead of free it immediately. The cluster will be freed
 445         * after discard.
 446         */
 447        if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 448            (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 449                swap_cluster_schedule_discard(si, idx);
 450                return;
 451        }
 452
 453        __free_cluster(si, idx);
 454}
 455
 456/*
 457 * The cluster corresponding to page_nr will be used. The cluster will be
 458 * removed from free cluster list and its usage counter will be increased.
 459 */
 460static void inc_cluster_info_page(struct swap_info_struct *p,
 461        struct swap_cluster_info *cluster_info, unsigned long page_nr)
 462{
 463        unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 464
 465        if (!cluster_info)
 466                return;
 467        if (cluster_is_free(&cluster_info[idx]))
 468                alloc_cluster(p, idx);
 469
 470        VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 471        cluster_set_count(&cluster_info[idx],
 472                cluster_count(&cluster_info[idx]) + 1);
 473}
 474
 475/*
 476 * The cluster corresponding to page_nr decreases one usage. If the usage
 477 * counter becomes 0, which means no page in the cluster is in using, we can
 478 * optionally discard the cluster and add it to free cluster list.
 479 */
 480static void dec_cluster_info_page(struct swap_info_struct *p,
 481        struct swap_cluster_info *cluster_info, unsigned long page_nr)
 482{
 483        unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 484
 485        if (!cluster_info)
 486                return;
 487
 488        VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 489        cluster_set_count(&cluster_info[idx],
 490                cluster_count(&cluster_info[idx]) - 1);
 491
 492        if (cluster_count(&cluster_info[idx]) == 0)
 493                free_cluster(p, idx);
 494}
 495
 496/*
 497 * It's possible scan_swap_map() uses a free cluster in the middle of free
 498 * cluster list. Avoiding such abuse to avoid list corruption.
 499 */
 500static bool
 501scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 502        unsigned long offset)
 503{
 504        struct percpu_cluster *percpu_cluster;
 505        bool conflict;
 506
 507        offset /= SWAPFILE_CLUSTER;
 508        conflict = !cluster_list_empty(&si->free_clusters) &&
 509                offset != cluster_list_first(&si->free_clusters) &&
 510                cluster_is_free(&si->cluster_info[offset]);
 511
 512        if (!conflict)
 513                return false;
 514
 515        percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 516        cluster_set_null(&percpu_cluster->index);
 517        return true;
 518}
 519
 520/*
 521 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 522 * might involve allocating a new cluster for current CPU too.
 523 */
 524static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 525        unsigned long *offset, unsigned long *scan_base)
 526{
 527        struct percpu_cluster *cluster;
 528        struct swap_cluster_info *ci;
 529        bool found_free;
 530        unsigned long tmp, max;
 531
 532new_cluster:
 533        cluster = this_cpu_ptr(si->percpu_cluster);
 534        if (cluster_is_null(&cluster->index)) {
 535                if (!cluster_list_empty(&si->free_clusters)) {
 536                        cluster->index = si->free_clusters.head;
 537                        cluster->next = cluster_next(&cluster->index) *
 538                                        SWAPFILE_CLUSTER;
 539                } else if (!cluster_list_empty(&si->discard_clusters)) {
 540                        /*
 541                         * we don't have free cluster but have some clusters in
 542                         * discarding, do discard now and reclaim them
 543                         */
 544                        swap_do_scheduled_discard(si);
 545                        *scan_base = *offset = si->cluster_next;
 546                        goto new_cluster;
 547                } else
 548                        return false;
 549        }
 550
 551        found_free = false;
 552
 553        /*
 554         * Other CPUs can use our cluster if they can't find a free cluster,
 555         * check if there is still free entry in the cluster
 556         */
 557        tmp = cluster->next;
 558        max = min_t(unsigned long, si->max,
 559                    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
 560        if (tmp >= max) {
 561                cluster_set_null(&cluster->index);
 562                goto new_cluster;
 563        }
 564        ci = lock_cluster(si, tmp);
 565        while (tmp < max) {
 566                if (!si->swap_map[tmp]) {
 567                        found_free = true;
 568                        break;
 569                }
 570                tmp++;
 571        }
 572        unlock_cluster(ci);
 573        if (!found_free) {
 574                cluster_set_null(&cluster->index);
 575                goto new_cluster;
 576        }
 577        cluster->next = tmp + 1;
 578        *offset = tmp;
 579        *scan_base = tmp;
 580        return found_free;
 581}
 582
 583static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
 584                             unsigned int nr_entries)
 585{
 586        unsigned int end = offset + nr_entries - 1;
 587
 588        if (offset == si->lowest_bit)
 589                si->lowest_bit += nr_entries;
 590        if (end == si->highest_bit)
 591                si->highest_bit -= nr_entries;
 592        si->inuse_pages += nr_entries;
 593        if (si->inuse_pages == si->pages) {
 594                si->lowest_bit = si->max;
 595                si->highest_bit = 0;
 596                spin_lock(&swap_avail_lock);
 597                plist_del(&si->avail_list, &swap_avail_head);
 598                spin_unlock(&swap_avail_lock);
 599        }
 600}
 601
 602static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 603                            unsigned int nr_entries)
 604{
 605        unsigned long end = offset + nr_entries - 1;
 606        void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 607
 608        if (offset < si->lowest_bit)
 609                si->lowest_bit = offset;
 610        if (end > si->highest_bit) {
 611                bool was_full = !si->highest_bit;
 612
 613                si->highest_bit = end;
 614                if (was_full && (si->flags & SWP_WRITEOK)) {
 615                        spin_lock(&swap_avail_lock);
 616                        WARN_ON(!plist_node_empty(&si->avail_list));
 617                        if (plist_node_empty(&si->avail_list))
 618                                plist_add(&si->avail_list, &swap_avail_head);
 619                        spin_unlock(&swap_avail_lock);
 620                }
 621        }
 622        atomic_long_add(nr_entries, &nr_swap_pages);
 623        si->inuse_pages -= nr_entries;
 624        if (si->flags & SWP_BLKDEV)
 625                swap_slot_free_notify =
 626                        si->bdev->bd_disk->fops->swap_slot_free_notify;
 627        else
 628                swap_slot_free_notify = NULL;
 629        while (offset <= end) {
 630                frontswap_invalidate_page(si->type, offset);
 631                if (swap_slot_free_notify)
 632                        swap_slot_free_notify(si->bdev, offset);
 633                offset++;
 634        }
 635}
 636
 637static int scan_swap_map_slots(struct swap_info_struct *si,
 638                               unsigned char usage, int nr,
 639                               swp_entry_t slots[])
 640{
 641        struct swap_cluster_info *ci;
 642        unsigned long offset;
 643        unsigned long scan_base;
 644        unsigned long last_in_cluster = 0;
 645        int latency_ration = LATENCY_LIMIT;
 646        int n_ret = 0;
 647
 648        if (nr > SWAP_BATCH)
 649                nr = SWAP_BATCH;
 650
 651        /*
 652         * We try to cluster swap pages by allocating them sequentially
 653         * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 654         * way, however, we resort to first-free allocation, starting
 655         * a new cluster.  This prevents us from scattering swap pages
 656         * all over the entire swap partition, so that we reduce
 657         * overall disk seek times between swap pages.  -- sct
 658         * But we do now try to find an empty cluster.  -Andrea
 659         * And we let swap pages go all over an SSD partition.  Hugh
 660         */
 661
 662        si->flags += SWP_SCANNING;
 663        scan_base = offset = si->cluster_next;
 664
 665        /* SSD algorithm */
 666        if (si->cluster_info) {
 667                if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 668                        goto checks;
 669                else
 670                        goto scan;
 671        }
 672
 673        if (unlikely(!si->cluster_nr--)) {
 674                if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 675                        si->cluster_nr = SWAPFILE_CLUSTER - 1;
 676                        goto checks;
 677                }
 678
 679                spin_unlock(&si->lock);
 680
 681                /*
 682                 * If seek is expensive, start searching for new cluster from
 683                 * start of partition, to minimize the span of allocated swap.
 684                 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
 685                 * case, just handled by scan_swap_map_try_ssd_cluster() above.
 686                 */
 687                scan_base = offset = si->lowest_bit;
 688                last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 689
 690                /* Locate the first empty (unaligned) cluster */
 691                for (; last_in_cluster <= si->highest_bit; offset++) {
 692                        if (si->swap_map[offset])
 693                                last_in_cluster = offset + SWAPFILE_CLUSTER;
 694                        else if (offset == last_in_cluster) {
 695                                spin_lock(&si->lock);
 696                                offset -= SWAPFILE_CLUSTER - 1;
 697                                si->cluster_next = offset;
 698                                si->cluster_nr = SWAPFILE_CLUSTER - 1;
 699                                goto checks;
 700                        }
 701                        if (unlikely(--latency_ration < 0)) {
 702                                cond_resched();
 703                                latency_ration = LATENCY_LIMIT;
 704                        }
 705                }
 706
 707                offset = scan_base;
 708                spin_lock(&si->lock);
 709                si->cluster_nr = SWAPFILE_CLUSTER - 1;
 710        }
 711
 712checks:
 713        if (si->cluster_info) {
 714                while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
 715                /* take a break if we already got some slots */
 716                        if (n_ret)
 717                                goto done;
 718                        if (!scan_swap_map_try_ssd_cluster(si, &offset,
 719                                                        &scan_base))
 720                                goto scan;
 721                }
 722        }
 723        if (!(si->flags & SWP_WRITEOK))
 724                goto no_page;
 725        if (!si->highest_bit)
 726                goto no_page;
 727        if (offset > si->highest_bit)
 728                scan_base = offset = si->lowest_bit;
 729
 730        ci = lock_cluster(si, offset);
 731        /* reuse swap entry of cache-only swap if not busy. */
 732        if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 733                int swap_was_freed;
 734                unlock_cluster(ci);
 735                spin_unlock(&si->lock);
 736                swap_was_freed = __try_to_reclaim_swap(si, offset);
 737                spin_lock(&si->lock);
 738                /* entry was freed successfully, try to use this again */
 739                if (swap_was_freed)
 740                        goto checks;
 741                goto scan; /* check next one */
 742        }
 743
 744        if (si->swap_map[offset]) {
 745                unlock_cluster(ci);
 746                if (!n_ret)
 747                        goto scan;
 748                else
 749                        goto done;
 750        }
 751        si->swap_map[offset] = usage;
 752        inc_cluster_info_page(si, si->cluster_info, offset);
 753        unlock_cluster(ci);
 754
 755        swap_range_alloc(si, offset, 1);
 756        si->cluster_next = offset + 1;
 757        slots[n_ret++] = swp_entry(si->type, offset);
 758
 759        /* got enough slots or reach max slots? */
 760        if ((n_ret == nr) || (offset >= si->highest_bit))
 761                goto done;
 762
 763        /* search for next available slot */
 764
 765        /* time to take a break? */
 766        if (unlikely(--latency_ration < 0)) {
 767                if (n_ret)
 768                        goto done;
 769                spin_unlock(&si->lock);
 770                cond_resched();
 771                spin_lock(&si->lock);
 772                latency_ration = LATENCY_LIMIT;
 773        }
 774
 775        /* try to get more slots in cluster */
 776        if (si->cluster_info) {
 777                if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 778                        goto checks;
 779                else
 780                        goto done;
 781        }
 782        /* non-ssd case */
 783        ++offset;
 784
 785        /* non-ssd case, still more slots in cluster? */
 786        if (si->cluster_nr && !si->swap_map[offset]) {
 787                --si->cluster_nr;
 788                goto checks;
 789        }
 790
 791done:
 792        si->flags -= SWP_SCANNING;
 793        return n_ret;
 794
 795scan:
 796        spin_unlock(&si->lock);
 797        while (++offset <= si->highest_bit) {
 798                if (!si->swap_map[offset]) {
 799                        spin_lock(&si->lock);
 800                        goto checks;
 801                }
 802                if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 803                        spin_lock(&si->lock);
 804                        goto checks;
 805                }
 806                if (unlikely(--latency_ration < 0)) {
 807                        cond_resched();
 808                        latency_ration = LATENCY_LIMIT;
 809                }
 810        }
 811        offset = si->lowest_bit;
 812        while (offset < scan_base) {
 813                if (!si->swap_map[offset]) {
 814                        spin_lock(&si->lock);
 815                        goto checks;
 816                }
 817                if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 818                        spin_lock(&si->lock);
 819                        goto checks;
 820                }
 821                if (unlikely(--latency_ration < 0)) {
 822                        cond_resched();
 823                        latency_ration = LATENCY_LIMIT;
 824                }
 825                offset++;
 826        }
 827        spin_lock(&si->lock);
 828
 829no_page:
 830        si->flags -= SWP_SCANNING;
 831        return n_ret;
 832}
 833
 834#ifdef CONFIG_THP_SWAP
 835static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
 836{
 837        unsigned long idx;
 838        struct swap_cluster_info *ci;
 839        unsigned long offset, i;
 840        unsigned char *map;
 841
 842        if (cluster_list_empty(&si->free_clusters))
 843                return 0;
 844
 845        idx = cluster_list_first(&si->free_clusters);
 846        offset = idx * SWAPFILE_CLUSTER;
 847        ci = lock_cluster(si, offset);
 848        alloc_cluster(si, idx);
 849        cluster_set_count_flag(ci, SWAPFILE_CLUSTER, 0);
 850
 851        map = si->swap_map + offset;
 852        for (i = 0; i < SWAPFILE_CLUSTER; i++)
 853                map[i] = SWAP_HAS_CACHE;
 854        unlock_cluster(ci);
 855        swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
 856        *slot = swp_entry(si->type, offset);
 857
 858        return 1;
 859}
 860
 861static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
 862{
 863        unsigned long offset = idx * SWAPFILE_CLUSTER;
 864        struct swap_cluster_info *ci;
 865
 866        ci = lock_cluster(si, offset);
 867        cluster_set_count_flag(ci, 0, 0);
 868        free_cluster(si, idx);
 869        unlock_cluster(ci);
 870        swap_range_free(si, offset, SWAPFILE_CLUSTER);
 871}
 872#else
 873static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
 874{
 875        VM_WARN_ON_ONCE(1);
 876        return 0;
 877}
 878#endif /* CONFIG_THP_SWAP */
 879
 880static unsigned long scan_swap_map(struct swap_info_struct *si,
 881                                   unsigned char usage)
 882{
 883        swp_entry_t entry;
 884        int n_ret;
 885
 886        n_ret = scan_swap_map_slots(si, usage, 1, &entry);
 887
 888        if (n_ret)
 889                return swp_offset(entry);
 890        else
 891                return 0;
 892
 893}
 894
 895int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
 896{
 897        unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
 898        struct swap_info_struct *si, *next;
 899        long avail_pgs;
 900        int n_ret = 0;
 901
 902        /* Only single cluster request supported */
 903        WARN_ON_ONCE(n_goal > 1 && cluster);
 904
 905        avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
 906        if (avail_pgs <= 0)
 907                goto noswap;
 908
 909        if (n_goal > SWAP_BATCH)
 910                n_goal = SWAP_BATCH;
 911
 912        if (n_goal > avail_pgs)
 913                n_goal = avail_pgs;
 914
 915        atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
 916
 917        spin_lock(&swap_avail_lock);
 918
 919start_over:
 920        plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
 921                /* requeue si to after same-priority siblings */
 922                plist_requeue(&si->avail_list, &swap_avail_head);
 923                spin_unlock(&swap_avail_lock);
 924                spin_lock(&si->lock);
 925                if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
 926                        spin_lock(&swap_avail_lock);
 927                        if (plist_node_empty(&si->avail_list)) {
 928                                spin_unlock(&si->lock);
 929                                goto nextsi;
 930                        }
 931                        WARN(!si->highest_bit,
 932                             "swap_info %d in list but !highest_bit\n",
 933                             si->type);
 934                        WARN(!(si->flags & SWP_WRITEOK),
 935                             "swap_info %d in list but !SWP_WRITEOK\n",
 936                             si->type);
 937                        plist_del(&si->avail_list, &swap_avail_head);
 938                        spin_unlock(&si->lock);
 939                        goto nextsi;
 940                }
 941                if (cluster)
 942                        n_ret = swap_alloc_cluster(si, swp_entries);
 943                else
 944                        n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
 945                                                    n_goal, swp_entries);
 946                spin_unlock(&si->lock);
 947                if (n_ret || cluster)
 948                        goto check_out;
 949                pr_debug("scan_swap_map of si %d failed to find offset\n",
 950                        si->type);
 951
 952                spin_lock(&swap_avail_lock);
 953nextsi:
 954                /*
 955                 * if we got here, it's likely that si was almost full before,
 956                 * and since scan_swap_map() can drop the si->lock, multiple
 957                 * callers probably all tried to get a page from the same si
 958                 * and it filled up before we could get one; or, the si filled
 959                 * up between us dropping swap_avail_lock and taking si->lock.
 960                 * Since we dropped the swap_avail_lock, the swap_avail_head
 961                 * list may have been modified; so if next is still in the
 962                 * swap_avail_head list then try it, otherwise start over
 963                 * if we have not gotten any slots.
 964                 */
 965                if (plist_node_empty(&next->avail_list))
 966                        goto start_over;
 967        }
 968
 969        spin_unlock(&swap_avail_lock);
 970
 971check_out:
 972        if (n_ret < n_goal)
 973                atomic_long_add((long)(n_goal - n_ret) * nr_pages,
 974                                &nr_swap_pages);
 975noswap:
 976        return n_ret;
 977}
 978
 979/* The only caller of this function is now suspend routine */
 980swp_entry_t get_swap_page_of_type(int type)
 981{
 982        struct swap_info_struct *si;
 983        pgoff_t offset;
 984
 985        si = swap_info[type];
 986        spin_lock(&si->lock);
 987        if (si && (si->flags & SWP_WRITEOK)) {
 988                atomic_long_dec(&nr_swap_pages);
 989                /* This is called for allocating swap entry, not cache */
 990                offset = scan_swap_map(si, 1);
 991                if (offset) {
 992                        spin_unlock(&si->lock);
 993                        return swp_entry(type, offset);
 994                }
 995                atomic_long_inc(&nr_swap_pages);
 996        }
 997        spin_unlock(&si->lock);
 998        return (swp_entry_t) {0};
 999}
1000
1001static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1002{
1003        struct swap_info_struct *p;
1004        unsigned long offset, type;
1005
1006        if (!entry.val)
1007                goto out;
1008        type = swp_type(entry);
1009        if (type >= nr_swapfiles)
1010                goto bad_nofile;
1011        p = swap_info[type];
1012        if (!(p->flags & SWP_USED))
1013                goto bad_device;
1014        offset = swp_offset(entry);
1015        if (offset >= p->max)
1016                goto bad_offset;
1017        return p;
1018
1019bad_offset:
1020        pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1021        goto out;
1022bad_device:
1023        pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1024        goto out;
1025bad_nofile:
1026        pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1027out:
1028        return NULL;
1029}
1030
1031static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1032{
1033        struct swap_info_struct *p;
1034
1035        p = __swap_info_get(entry);
1036        if (!p)
1037                goto out;
1038        if (!p->swap_map[swp_offset(entry)])
1039                goto bad_free;
1040        return p;
1041
1042bad_free:
1043        pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1044        goto out;
1045out:
1046        return NULL;
1047}
1048
1049static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1050{
1051        struct swap_info_struct *p;
1052
1053        p = _swap_info_get(entry);
1054        if (p)
1055                spin_lock(&p->lock);
1056        return p;
1057}
1058
1059static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1060                                        struct swap_info_struct *q)
1061{
1062        struct swap_info_struct *p;
1063
1064        p = _swap_info_get(entry);
1065
1066        if (p != q) {
1067                if (q != NULL)
1068                        spin_unlock(&q->lock);
1069                if (p != NULL)
1070                        spin_lock(&p->lock);
1071        }
1072        return p;
1073}
1074
1075static unsigned char __swap_entry_free(struct swap_info_struct *p,
1076                                       swp_entry_t entry, unsigned char usage)
1077{
1078        struct swap_cluster_info *ci;
1079        unsigned long offset = swp_offset(entry);
1080        unsigned char count;
1081        unsigned char has_cache;
1082
1083        ci = lock_cluster_or_swap_info(p, offset);
1084
1085        count = p->swap_map[offset];
1086
1087        has_cache = count & SWAP_HAS_CACHE;
1088        count &= ~SWAP_HAS_CACHE;
1089
1090        if (usage == SWAP_HAS_CACHE) {
1091                VM_BUG_ON(!has_cache);
1092                has_cache = 0;
1093        } else if (count == SWAP_MAP_SHMEM) {
1094                /*
1095                 * Or we could insist on shmem.c using a special
1096                 * swap_shmem_free() and free_shmem_swap_and_cache()...
1097                 */
1098                count = 0;
1099        } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1100                if (count == COUNT_CONTINUED) {
1101                        if (swap_count_continued(p, offset, count))
1102                                count = SWAP_MAP_MAX | COUNT_CONTINUED;
1103                        else
1104                                count = SWAP_MAP_MAX;
1105                } else
1106                        count--;
1107        }
1108
1109        usage = count | has_cache;
1110        p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1111
1112        unlock_cluster_or_swap_info(p, ci);
1113
1114        return usage;
1115}
1116
1117static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1118{
1119        struct swap_cluster_info *ci;
1120        unsigned long offset = swp_offset(entry);
1121        unsigned char count;
1122
1123        ci = lock_cluster(p, offset);
1124        count = p->swap_map[offset];
1125        VM_BUG_ON(count != SWAP_HAS_CACHE);
1126        p->swap_map[offset] = 0;
1127        dec_cluster_info_page(p, p->cluster_info, offset);
1128        unlock_cluster(ci);
1129
1130        mem_cgroup_uncharge_swap(entry, 1);
1131        swap_range_free(p, offset, 1);
1132}
1133
1134/*
1135 * Caller has made sure that the swap device corresponding to entry
1136 * is still around or has not been recycled.
1137 */
1138void swap_free(swp_entry_t entry)
1139{
1140        struct swap_info_struct *p;
1141
1142        p = _swap_info_get(entry);
1143        if (p) {
1144                if (!__swap_entry_free(p, entry, 1))
1145                        free_swap_slot(entry);
1146        }
1147}
1148
1149/*
1150 * Called after dropping swapcache to decrease refcnt to swap entries.
1151 */
1152static void swapcache_free(swp_entry_t entry)
1153{
1154        struct swap_info_struct *p;
1155
1156        p = _swap_info_get(entry);
1157        if (p) {
1158                if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1159                        free_swap_slot(entry);
1160        }
1161}
1162
1163#ifdef CONFIG_THP_SWAP
1164static void swapcache_free_cluster(swp_entry_t entry)
1165{
1166        unsigned long offset = swp_offset(entry);
1167        unsigned long idx = offset / SWAPFILE_CLUSTER;
1168        struct swap_cluster_info *ci;
1169        struct swap_info_struct *si;
1170        unsigned char *map;
1171        unsigned int i;
1172
1173        si = swap_info_get(entry);
1174        if (!si)
1175                return;
1176
1177        ci = lock_cluster(si, offset);
1178        map = si->swap_map + offset;
1179        for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1180                VM_BUG_ON(map[i] != SWAP_HAS_CACHE);
1181                map[i] = 0;
1182        }
1183        unlock_cluster(ci);
1184        mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1185        swap_free_cluster(si, idx);
1186        spin_unlock(&si->lock);
1187}
1188#else
1189static inline void swapcache_free_cluster(swp_entry_t entry)
1190{
1191}
1192#endif /* CONFIG_THP_SWAP */
1193
1194void put_swap_page(struct page *page, swp_entry_t entry)
1195{
1196        if (!PageTransHuge(page))
1197                swapcache_free(entry);
1198        else
1199                swapcache_free_cluster(entry);
1200}
1201
1202static int swp_entry_cmp(const void *ent1, const void *ent2)
1203{
1204        const swp_entry_t *e1 = ent1, *e2 = ent2;
1205
1206        return (int)swp_type(*e1) - (int)swp_type(*e2);
1207}
1208
1209void swapcache_free_entries(swp_entry_t *entries, int n)
1210{
1211        struct swap_info_struct *p, *prev;
1212        int i;
1213
1214        if (n <= 0)
1215                return;
1216
1217        prev = NULL;
1218        p = NULL;
1219
1220        /*
1221         * Sort swap entries by swap device, so each lock is only taken once.
1222         * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1223         * so low that it isn't necessary to optimize further.
1224         */
1225        if (nr_swapfiles > 1)
1226                sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1227        for (i = 0; i < n; ++i) {
1228                p = swap_info_get_cont(entries[i], prev);
1229                if (p)
1230                        swap_entry_free(p, entries[i]);
1231                prev = p;
1232        }
1233        if (p)
1234                spin_unlock(&p->lock);
1235}
1236
1237/*
1238 * How many references to page are currently swapped out?
1239 * This does not give an exact answer when swap count is continued,
1240 * but does include the high COUNT_CONTINUED flag to allow for that.
1241 */
1242int page_swapcount(struct page *page)
1243{
1244        int count = 0;
1245        struct swap_info_struct *p;
1246        struct swap_cluster_info *ci;
1247        swp_entry_t entry;
1248        unsigned long offset;
1249
1250        entry.val = page_private(page);
1251        p = _swap_info_get(entry);
1252        if (p) {
1253                offset = swp_offset(entry);
1254                ci = lock_cluster_or_swap_info(p, offset);
1255                count = swap_count(p->swap_map[offset]);
1256                unlock_cluster_or_swap_info(p, ci);
1257        }
1258        return count;
1259}
1260
1261static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1262{
1263        int count = 0;
1264        pgoff_t offset = swp_offset(entry);
1265        struct swap_cluster_info *ci;
1266
1267        ci = lock_cluster_or_swap_info(si, offset);
1268        count = swap_count(si->swap_map[offset]);
1269        unlock_cluster_or_swap_info(si, ci);
1270        return count;
1271}
1272
1273/*
1274 * How many references to @entry are currently swapped out?
1275 * This does not give an exact answer when swap count is continued,
1276 * but does include the high COUNT_CONTINUED flag to allow for that.
1277 */
1278int __swp_swapcount(swp_entry_t entry)
1279{
1280        int count = 0;
1281        struct swap_info_struct *si;
1282
1283        si = __swap_info_get(entry);
1284        if (si)
1285                count = swap_swapcount(si, entry);
1286        return count;
1287}
1288
1289/*
1290 * How many references to @entry are currently swapped out?
1291 * This considers COUNT_CONTINUED so it returns exact answer.
1292 */
1293int swp_swapcount(swp_entry_t entry)
1294{
1295        int count, tmp_count, n;
1296        struct swap_info_struct *p;
1297        struct swap_cluster_info *ci;
1298        struct page *page;
1299        pgoff_t offset;
1300        unsigned char *map;
1301
1302        p = _swap_info_get(entry);
1303        if (!p)
1304                return 0;
1305
1306        offset = swp_offset(entry);
1307
1308        ci = lock_cluster_or_swap_info(p, offset);
1309
1310        count = swap_count(p->swap_map[offset]);
1311        if (!(count & COUNT_CONTINUED))
1312                goto out;
1313
1314        count &= ~COUNT_CONTINUED;
1315        n = SWAP_MAP_MAX + 1;
1316
1317        page = vmalloc_to_page(p->swap_map + offset);
1318        offset &= ~PAGE_MASK;
1319        VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1320
1321        do {
1322                page = list_next_entry(page, lru);
1323                map = kmap_atomic(page);
1324                tmp_count = map[offset];
1325                kunmap_atomic(map);
1326
1327                count += (tmp_count & ~COUNT_CONTINUED) * n;
1328                n *= (SWAP_CONT_MAX + 1);
1329        } while (tmp_count & COUNT_CONTINUED);
1330out:
1331        unlock_cluster_or_swap_info(p, ci);
1332        return count;
1333}
1334
1335/*
1336 * We can write to an anon page without COW if there are no other references
1337 * to it.  And as a side-effect, free up its swap: because the old content
1338 * on disk will never be read, and seeking back there to write new content
1339 * later would only waste time away from clustering.
1340 *
1341 * NOTE: total_mapcount should not be relied upon by the caller if
1342 * reuse_swap_page() returns false, but it may be always overwritten
1343 * (see the other implementation for CONFIG_SWAP=n).
1344 */
1345bool reuse_swap_page(struct page *page, int *total_mapcount)
1346{
1347        int count;
1348
1349        VM_BUG_ON_PAGE(!PageLocked(page), page);
1350        if (unlikely(PageKsm(page)))
1351                return false;
1352        count = page_trans_huge_mapcount(page, total_mapcount);
1353        if (count <= 1 && PageSwapCache(page)) {
1354                count += page_swapcount(page);
1355                if (count != 1)
1356                        goto out;
1357                if (!PageWriteback(page)) {
1358                        delete_from_swap_cache(page);
1359                        SetPageDirty(page);
1360                } else {
1361                        swp_entry_t entry;
1362                        struct swap_info_struct *p;
1363
1364                        entry.val = page_private(page);
1365                        p = swap_info_get(entry);
1366                        if (p->flags & SWP_STABLE_WRITES) {
1367                                spin_unlock(&p->lock);
1368                                return false;
1369                        }
1370                        spin_unlock(&p->lock);
1371                }
1372        }
1373out:
1374        return count <= 1;
1375}
1376
1377/*
1378 * If swap is getting full, or if there are no more mappings of this page,
1379 * then try_to_free_swap is called to free its swap space.
1380 */
1381int try_to_free_swap(struct page *page)
1382{
1383        VM_BUG_ON_PAGE(!PageLocked(page), page);
1384
1385        if (!PageSwapCache(page))
1386                return 0;
1387        if (PageWriteback(page))
1388                return 0;
1389        if (page_swapcount(page))
1390                return 0;
1391
1392        /*
1393         * Once hibernation has begun to create its image of memory,
1394         * there's a danger that one of the calls to try_to_free_swap()
1395         * - most probably a call from __try_to_reclaim_swap() while
1396         * hibernation is allocating its own swap pages for the image,
1397         * but conceivably even a call from memory reclaim - will free
1398         * the swap from a page which has already been recorded in the
1399         * image as a clean swapcache page, and then reuse its swap for
1400         * another page of the image.  On waking from hibernation, the
1401         * original page might be freed under memory pressure, then
1402         * later read back in from swap, now with the wrong data.
1403         *
1404         * Hibernation suspends storage while it is writing the image
1405         * to disk so check that here.
1406         */
1407        if (pm_suspended_storage())
1408                return 0;
1409
1410        delete_from_swap_cache(page);
1411        SetPageDirty(page);
1412        return 1;
1413}
1414
1415/*
1416 * Free the swap entry like above, but also try to
1417 * free the page cache entry if it is the last user.
1418 */
1419int free_swap_and_cache(swp_entry_t entry)
1420{
1421        struct swap_info_struct *p;
1422        struct page *page = NULL;
1423        unsigned char count;
1424
1425        if (non_swap_entry(entry))
1426                return 1;
1427
1428        p = _swap_info_get(entry);
1429        if (p) {
1430                count = __swap_entry_free(p, entry, 1);
1431                if (count == SWAP_HAS_CACHE) {
1432                        page = find_get_page(swap_address_space(entry),
1433                                             swp_offset(entry));
1434                        if (page && !trylock_page(page)) {
1435                                put_page(page);
1436                                page = NULL;
1437                        }
1438                } else if (!count)
1439                        free_swap_slot(entry);
1440        }
1441        if (page) {
1442                /*
1443                 * Not mapped elsewhere, or swap space full? Free it!
1444                 * Also recheck PageSwapCache now page is locked (above).
1445                 */
1446                if (PageSwapCache(page) && !PageWriteback(page) &&
1447                    (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1448                    !swap_swapcount(p, entry)) {
1449                        delete_from_swap_cache(page);
1450                        SetPageDirty(page);
1451                }
1452                unlock_page(page);
1453                put_page(page);
1454        }
1455        return p != NULL;
1456}
1457
1458#ifdef CONFIG_HIBERNATION
1459/*
1460 * Find the swap type that corresponds to given device (if any).
1461 *
1462 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1463 * from 0, in which the swap header is expected to be located.
1464 *
1465 * This is needed for the suspend to disk (aka swsusp).
1466 */
1467int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1468{
1469        struct block_device *bdev = NULL;
1470        int type;
1471
1472        if (device)
1473                bdev = bdget(device);
1474
1475        spin_lock(&swap_lock);
1476        for (type = 0; type < nr_swapfiles; type++) {
1477                struct swap_info_struct *sis = swap_info[type];
1478
1479                if (!(sis->flags & SWP_WRITEOK))
1480                        continue;
1481
1482                if (!bdev) {
1483                        if (bdev_p)
1484                                *bdev_p = bdgrab(sis->bdev);
1485
1486                        spin_unlock(&swap_lock);
1487                        return type;
1488                }
1489                if (bdev == sis->bdev) {
1490                        struct swap_extent *se = &sis->first_swap_extent;
1491
1492                        if (se->start_block == offset) {
1493                                if (bdev_p)
1494                                        *bdev_p = bdgrab(sis->bdev);
1495
1496                                spin_unlock(&swap_lock);
1497                                bdput(bdev);
1498                                return type;
1499                        }
1500                }
1501        }
1502        spin_unlock(&swap_lock);
1503        if (bdev)
1504                bdput(bdev);
1505
1506        return -ENODEV;
1507}
1508
1509/*
1510 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1511 * corresponding to given index in swap_info (swap type).
1512 */
1513sector_t swapdev_block(int type, pgoff_t offset)
1514{
1515        struct block_device *bdev;
1516
1517        if ((unsigned int)type >= nr_swapfiles)
1518                return 0;
1519        if (!(swap_info[type]->flags & SWP_WRITEOK))
1520                return 0;
1521        return map_swap_entry(swp_entry(type, offset), &bdev);
1522}
1523
1524/*
1525 * Return either the total number of swap pages of given type, or the number
1526 * of free pages of that type (depending on @free)
1527 *
1528 * This is needed for software suspend
1529 */
1530unsigned int count_swap_pages(int type, int free)
1531{
1532        unsigned int n = 0;
1533
1534        spin_lock(&swap_lock);
1535        if ((unsigned int)type < nr_swapfiles) {
1536                struct swap_info_struct *sis = swap_info[type];
1537
1538                spin_lock(&sis->lock);
1539                if (sis->flags & SWP_WRITEOK) {
1540                        n = sis->pages;
1541                        if (free)
1542                                n -= sis->inuse_pages;
1543                }
1544                spin_unlock(&sis->lock);
1545        }
1546        spin_unlock(&swap_lock);
1547        return n;
1548}
1549#endif /* CONFIG_HIBERNATION */
1550
1551static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1552{
1553        return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1554}
1555
1556/*
1557 * No need to decide whether this PTE shares the swap entry with others,
1558 * just let do_wp_page work it out if a write is requested later - to
1559 * force COW, vm_page_prot omits write permission from any private vma.
1560 */
1561static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1562                unsigned long addr, swp_entry_t entry, struct page *page)
1563{
1564        struct page *swapcache;
1565        struct mem_cgroup *memcg;
1566        spinlock_t *ptl;
1567        pte_t *pte;
1568        int ret = 1;
1569
1570        swapcache = page;
1571        page = ksm_might_need_to_copy(page, vma, addr);
1572        if (unlikely(!page))
1573                return -ENOMEM;
1574
1575        if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1576                                &memcg, false)) {
1577                ret = -ENOMEM;
1578                goto out_nolock;
1579        }
1580
1581        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1582        if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1583                mem_cgroup_cancel_charge(page, memcg, false);
1584                ret = 0;
1585                goto out;
1586        }
1587
1588        dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1589        inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1590        get_page(page);
1591        set_pte_at(vma->vm_mm, addr, pte,
1592                   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1593        if (page == swapcache) {
1594                page_add_anon_rmap(page, vma, addr, false);
1595                mem_cgroup_commit_charge(page, memcg, true, false);
1596        } else { /* ksm created a completely new copy */
1597                page_add_new_anon_rmap(page, vma, addr, false);
1598                mem_cgroup_commit_charge(page, memcg, false, false);
1599                lru_cache_add_active_or_unevictable(page, vma);
1600        }
1601        swap_free(entry);
1602        /*
1603         * Move the page to the active list so it is not
1604         * immediately swapped out again after swapon.
1605         */
1606        activate_page(page);
1607out:
1608        pte_unmap_unlock(pte, ptl);
1609out_nolock:
1610        if (page != swapcache) {
1611                unlock_page(page);
1612                put_page(page);
1613        }
1614        return ret;
1615}
1616
1617static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1618                                unsigned long addr, unsigned long end,
1619                                swp_entry_t entry, struct page *page)
1620{
1621        pte_t swp_pte = swp_entry_to_pte(entry);
1622        pte_t *pte;
1623        int ret = 0;
1624
1625        /*
1626         * We don't actually need pte lock while scanning for swp_pte: since
1627         * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1628         * page table while we're scanning; though it could get zapped, and on
1629         * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1630         * of unmatched parts which look like swp_pte, so unuse_pte must
1631         * recheck under pte lock.  Scanning without pte lock lets it be
1632         * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1633         */
1634        pte = pte_offset_map(pmd, addr);
1635        do {
1636                /*
1637                 * swapoff spends a _lot_ of time in this loop!
1638                 * Test inline before going to call unuse_pte.
1639                 */
1640                if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1641                        pte_unmap(pte);
1642                        ret = unuse_pte(vma, pmd, addr, entry, page);
1643                        if (ret)
1644                                goto out;
1645                        pte = pte_offset_map(pmd, addr);
1646                }
1647        } while (pte++, addr += PAGE_SIZE, addr != end);
1648        pte_unmap(pte - 1);
1649out:
1650        return ret;
1651}
1652
1653static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1654                                unsigned long addr, unsigned long end,
1655                                swp_entry_t entry, struct page *page)
1656{
1657        pmd_t *pmd;
1658        unsigned long next;
1659        int ret;
1660
1661        pmd = pmd_offset(pud, addr);
1662        do {
1663                cond_resched();
1664                next = pmd_addr_end(addr, end);
1665                if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1666                        continue;
1667                ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1668                if (ret)
1669                        return ret;
1670        } while (pmd++, addr = next, addr != end);
1671        return 0;
1672}
1673
1674static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1675                                unsigned long addr, unsigned long end,
1676                                swp_entry_t entry, struct page *page)
1677{
1678        pud_t *pud;
1679        unsigned long next;
1680        int ret;
1681
1682        pud = pud_offset(p4d, addr);
1683        do {
1684                next = pud_addr_end(addr, end);
1685                if (pud_none_or_clear_bad(pud))
1686                        continue;
1687                ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1688                if (ret)
1689                        return ret;
1690        } while (pud++, addr = next, addr != end);
1691        return 0;
1692}
1693
1694static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1695                                unsigned long addr, unsigned long end,
1696                                swp_entry_t entry, struct page *page)
1697{
1698        p4d_t *p4d;
1699        unsigned long next;
1700        int ret;
1701
1702        p4d = p4d_offset(pgd, addr);
1703        do {
1704                next = p4d_addr_end(addr, end);
1705                if (p4d_none_or_clear_bad(p4d))
1706                        continue;
1707                ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1708                if (ret)
1709                        return ret;
1710        } while (p4d++, addr = next, addr != end);
1711        return 0;
1712}
1713
1714static int unuse_vma(struct vm_area_struct *vma,
1715                                swp_entry_t entry, struct page *page)
1716{
1717        pgd_t *pgd;
1718        unsigned long addr, end, next;
1719        int ret;
1720
1721        if (page_anon_vma(page)) {
1722                addr = page_address_in_vma(page, vma);
1723                if (addr == -EFAULT)
1724                        return 0;
1725                else
1726                        end = addr + PAGE_SIZE;
1727        } else {
1728                addr = vma->vm_start;
1729                end = vma->vm_end;
1730        }
1731
1732        pgd = pgd_offset(vma->vm_mm, addr);
1733        do {
1734                next = pgd_addr_end(addr, end);
1735                if (pgd_none_or_clear_bad(pgd))
1736                        continue;
1737                ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1738                if (ret)
1739                        return ret;
1740        } while (pgd++, addr = next, addr != end);
1741        return 0;
1742}
1743
1744static int unuse_mm(struct mm_struct *mm,
1745                                swp_entry_t entry, struct page *page)
1746{
1747        struct vm_area_struct *vma;
1748        int ret = 0;
1749
1750        if (!down_read_trylock(&mm->mmap_sem)) {
1751                /*
1752                 * Activate page so shrink_inactive_list is unlikely to unmap
1753                 * its ptes while lock is dropped, so swapoff can make progress.
1754                 */
1755                activate_page(page);
1756                unlock_page(page);
1757                down_read(&mm->mmap_sem);
1758                lock_page(page);
1759        }
1760        for (vma = mm->mmap; vma; vma = vma->vm_next) {
1761                if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1762                        break;
1763                cond_resched();
1764        }
1765        up_read(&mm->mmap_sem);
1766        return (ret < 0)? ret: 0;
1767}
1768
1769/*
1770 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1771 * from current position to next entry still in use.
1772 * Recycle to start on reaching the end, returning 0 when empty.
1773 */
1774static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1775                                        unsigned int prev, bool frontswap)
1776{
1777        unsigned int max = si->max;
1778        unsigned int i = prev;
1779        unsigned char count;
1780
1781        /*
1782         * No need for swap_lock here: we're just looking
1783         * for whether an entry is in use, not modifying it; false
1784         * hits are okay, and sys_swapoff() has already prevented new
1785         * allocations from this area (while holding swap_lock).
1786         */
1787        for (;;) {
1788                if (++i >= max) {
1789                        if (!prev) {
1790                                i = 0;
1791                                break;
1792                        }
1793                        /*
1794                         * No entries in use at top of swap_map,
1795                         * loop back to start and recheck there.
1796                         */
1797                        max = prev + 1;
1798                        prev = 0;
1799                        i = 1;
1800                }
1801                count = READ_ONCE(si->swap_map[i]);
1802                if (count && swap_count(count) != SWAP_MAP_BAD)
1803                        if (!frontswap || frontswap_test(si, i))
1804                                break;
1805                if ((i % LATENCY_LIMIT) == 0)
1806                        cond_resched();
1807        }
1808        return i;
1809}
1810
1811/*
1812 * We completely avoid races by reading each swap page in advance,
1813 * and then search for the process using it.  All the necessary
1814 * page table adjustments can then be made atomically.
1815 *
1816 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1817 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1818 */
1819int try_to_unuse(unsigned int type, bool frontswap,
1820                 unsigned long pages_to_unuse)
1821{
1822        struct swap_info_struct *si = swap_info[type];
1823        struct mm_struct *start_mm;
1824        volatile unsigned char *swap_map; /* swap_map is accessed without
1825                                           * locking. Mark it as volatile
1826                                           * to prevent compiler doing
1827                                           * something odd.
1828                                           */
1829        unsigned char swcount;
1830        struct page *page;
1831        swp_entry_t entry;
1832        unsigned int i = 0;
1833        int retval = 0;
1834
1835        /*
1836         * When searching mms for an entry, a good strategy is to
1837         * start at the first mm we freed the previous entry from
1838         * (though actually we don't notice whether we or coincidence
1839         * freed the entry).  Initialize this start_mm with a hold.
1840         *
1841         * A simpler strategy would be to start at the last mm we
1842         * freed the previous entry from; but that would take less
1843         * advantage of mmlist ordering, which clusters forked mms
1844         * together, child after parent.  If we race with dup_mmap(), we
1845         * prefer to resolve parent before child, lest we miss entries
1846         * duplicated after we scanned child: using last mm would invert
1847         * that.
1848         */
1849        start_mm = &init_mm;
1850        mmget(&init_mm);
1851
1852        /*
1853         * Keep on scanning until all entries have gone.  Usually,
1854         * one pass through swap_map is enough, but not necessarily:
1855         * there are races when an instance of an entry might be missed.
1856         */
1857        while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1858                if (signal_pending(current)) {
1859                        retval = -EINTR;
1860                        break;
1861                }
1862
1863                /*
1864                 * Get a page for the entry, using the existing swap
1865                 * cache page if there is one.  Otherwise, get a clean
1866                 * page and read the swap into it.
1867                 */
1868                swap_map = &si->swap_map[i];
1869                entry = swp_entry(type, i);
1870                page = read_swap_cache_async(entry,
1871                                        GFP_HIGHUSER_MOVABLE, NULL, 0, false);
1872                if (!page) {
1873                        /*
1874                         * Either swap_duplicate() failed because entry
1875                         * has been freed independently, and will not be
1876                         * reused since sys_swapoff() already disabled
1877                         * allocation from here, or alloc_page() failed.
1878                         */
1879                        swcount = *swap_map;
1880                        /*
1881                         * We don't hold lock here, so the swap entry could be
1882                         * SWAP_MAP_BAD (when the cluster is discarding).
1883                         * Instead of fail out, We can just skip the swap
1884                         * entry because swapoff will wait for discarding
1885                         * finish anyway.
1886                         */
1887                        if (!swcount || swcount == SWAP_MAP_BAD)
1888                                continue;
1889                        retval = -ENOMEM;
1890                        break;
1891                }
1892
1893                /*
1894                 * Don't hold on to start_mm if it looks like exiting.
1895                 */
1896                if (atomic_read(&start_mm->mm_users) == 1) {
1897                        mmput(start_mm);
1898                        start_mm = &init_mm;
1899                        mmget(&init_mm);
1900                }
1901
1902                /*
1903                 * Wait for and lock page.  When do_swap_page races with
1904                 * try_to_unuse, do_swap_page can handle the fault much
1905                 * faster than try_to_unuse can locate the entry.  This
1906                 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1907                 * defer to do_swap_page in such a case - in some tests,
1908                 * do_swap_page and try_to_unuse repeatedly compete.
1909                 */
1910                wait_on_page_locked(page);
1911                wait_on_page_writeback(page);
1912                lock_page(page);
1913                wait_on_page_writeback(page);
1914
1915                /*
1916                 * Remove all references to entry.
1917                 */
1918                swcount = *swap_map;
1919                if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1920                        retval = shmem_unuse(entry, page);
1921                        /* page has already been unlocked and released */
1922                        if (retval < 0)
1923                                break;
1924                        continue;
1925                }
1926                if (swap_count(swcount) && start_mm != &init_mm)
1927                        retval = unuse_mm(start_mm, entry, page);
1928
1929                if (swap_count(*swap_map)) {
1930                        int set_start_mm = (*swap_map >= swcount);
1931                        struct list_head *p = &start_mm->mmlist;
1932                        struct mm_struct *new_start_mm = start_mm;
1933                        struct mm_struct *prev_mm = start_mm;
1934                        struct mm_struct *mm;
1935
1936                        mmget(new_start_mm);
1937                        mmget(prev_mm);
1938                        spin_lock(&mmlist_lock);
1939                        while (swap_count(*swap_map) && !retval &&
1940                                        (p = p->next) != &start_mm->mmlist) {
1941                                mm = list_entry(p, struct mm_struct, mmlist);
1942                                if (!mmget_not_zero(mm))
1943                                        continue;
1944                                spin_unlock(&mmlist_lock);
1945                                mmput(prev_mm);
1946                                prev_mm = mm;
1947
1948                                cond_resched();
1949
1950                                swcount = *swap_map;
1951                                if (!swap_count(swcount)) /* any usage ? */
1952                                        ;
1953                                else if (mm == &init_mm)
1954                                        set_start_mm = 1;
1955                                else
1956                                        retval = unuse_mm(mm, entry, page);
1957
1958                                if (set_start_mm && *swap_map < swcount) {
1959                                        mmput(new_start_mm);
1960                                        mmget(mm);
1961                                        new_start_mm = mm;
1962                                        set_start_mm = 0;
1963                                }
1964                                spin_lock(&mmlist_lock);
1965                        }
1966                        spin_unlock(&mmlist_lock);
1967                        mmput(prev_mm);
1968                        mmput(start_mm);
1969                        start_mm = new_start_mm;
1970                }
1971                if (retval) {
1972                        unlock_page(page);
1973                        put_page(page);
1974                        break;
1975                }
1976
1977                /*
1978                 * If a reference remains (rare), we would like to leave
1979                 * the page in the swap cache; but try_to_unmap could
1980                 * then re-duplicate the entry once we drop page lock,
1981                 * so we might loop indefinitely; also, that page could
1982                 * not be swapped out to other storage meanwhile.  So:
1983                 * delete from cache even if there's another reference,
1984                 * after ensuring that the data has been saved to disk -
1985                 * since if the reference remains (rarer), it will be
1986                 * read from disk into another page.  Splitting into two
1987                 * pages would be incorrect if swap supported "shared
1988                 * private" pages, but they are handled by tmpfs files.
1989                 *
1990                 * Given how unuse_vma() targets one particular offset
1991                 * in an anon_vma, once the anon_vma has been determined,
1992                 * this splitting happens to be just what is needed to
1993                 * handle where KSM pages have been swapped out: re-reading
1994                 * is unnecessarily slow, but we can fix that later on.
1995                 */
1996                if (swap_count(*swap_map) &&
1997                     PageDirty(page) && PageSwapCache(page)) {
1998                        struct writeback_control wbc = {
1999                                .sync_mode = WB_SYNC_NONE,
2000                        };
2001
2002                        swap_writepage(page, &wbc);
2003                        lock_page(page);
2004                        wait_on_page_writeback(page);
2005                }
2006
2007                /*
2008                 * It is conceivable that a racing task removed this page from
2009                 * swap cache just before we acquired the page lock at the top,
2010                 * or while we dropped it in unuse_mm().  The page might even
2011                 * be back in swap cache on another swap area: that we must not
2012                 * delete, since it may not have been written out to swap yet.
2013                 */
2014                if (PageSwapCache(page) &&
2015                    likely(page_private(page) == entry.val))
2016                        delete_from_swap_cache(page);
2017
2018                /*
2019                 * So we could skip searching mms once swap count went
2020                 * to 1, we did not mark any present ptes as dirty: must
2021                 * mark page dirty so shrink_page_list will preserve it.
2022                 */
2023                SetPageDirty(page);
2024                unlock_page(page);
2025                put_page(page);
2026
2027                /*
2028                 * Make sure that we aren't completely killing
2029                 * interactive performance.
2030                 */
2031                cond_resched();
2032                if (frontswap && pages_to_unuse > 0) {
2033                        if (!--pages_to_unuse)
2034                                break;
2035                }
2036        }
2037
2038        mmput(start_mm);
2039        return retval;
2040}
2041
2042/*
2043 * After a successful try_to_unuse, if no swap is now in use, we know
2044 * we can empty the mmlist.  swap_lock must be held on entry and exit.
2045 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2046 * added to the mmlist just after page_duplicate - before would be racy.
2047 */
2048static void drain_mmlist(void)
2049{
2050        struct list_head *p, *next;
2051        unsigned int type;
2052
2053        for (type = 0; type < nr_swapfiles; type++)
2054                if (swap_info[type]->inuse_pages)
2055                        return;
2056        spin_lock(&mmlist_lock);
2057        list_for_each_safe(p, next, &init_mm.mmlist)
2058                list_del_init(p);
2059        spin_unlock(&mmlist_lock);
2060}
2061
2062/*
2063 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2064 * corresponds to page offset for the specified swap entry.
2065 * Note that the type of this function is sector_t, but it returns page offset
2066 * into the bdev, not sector offset.
2067 */
2068static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2069{
2070        struct swap_info_struct *sis;
2071        struct swap_extent *start_se;
2072        struct swap_extent *se;
2073        pgoff_t offset;
2074
2075        sis = swap_info[swp_type(entry)];
2076        *bdev = sis->bdev;
2077
2078        offset = swp_offset(entry);
2079        start_se = sis->curr_swap_extent;
2080        se = start_se;
2081
2082        for ( ; ; ) {
2083                if (se->start_page <= offset &&
2084                                offset < (se->start_page + se->nr_pages)) {
2085                        return se->start_block + (offset - se->start_page);
2086                }
2087                se = list_next_entry(se, list);
2088                sis->curr_swap_extent = se;
2089                BUG_ON(se == start_se);         /* It *must* be present */
2090        }
2091}
2092
2093/*
2094 * Returns the page offset into bdev for the specified page's swap entry.
2095 */
2096sector_t map_swap_page(struct page *page, struct block_device **bdev)
2097{
2098        swp_entry_t entry;
2099        entry.val = page_private(page);
2100        return map_swap_entry(entry, bdev);
2101}
2102
2103/*
2104 * Free all of a swapdev's extent information
2105 */
2106static void destroy_swap_extents(struct swap_info_struct *sis)
2107{
2108        while (!list_empty(&sis->first_swap_extent.list)) {
2109                struct swap_extent *se;
2110
2111                se = list_first_entry(&sis->first_swap_extent.list,
2112                                struct swap_extent, list);
2113                list_del(&se->list);
2114                kfree(se);
2115        }
2116
2117        if (sis->flags & SWP_FILE) {
2118                struct file *swap_file = sis->swap_file;
2119                struct address_space *mapping = swap_file->f_mapping;
2120
2121                sis->flags &= ~SWP_FILE;
2122                mapping->a_ops->swap_deactivate(swap_file);
2123        }
2124}
2125
2126/*
2127 * Add a block range (and the corresponding page range) into this swapdev's
2128 * extent list.  The extent list is kept sorted in page order.
2129 *
2130 * This function rather assumes that it is called in ascending page order.
2131 */
2132int
2133add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2134                unsigned long nr_pages, sector_t start_block)
2135{
2136        struct swap_extent *se;
2137        struct swap_extent *new_se;
2138        struct list_head *lh;
2139
2140        if (start_page == 0) {
2141                se = &sis->first_swap_extent;
2142                sis->curr_swap_extent = se;
2143                se->start_page = 0;
2144                se->nr_pages = nr_pages;
2145                se->start_block = start_block;
2146                return 1;
2147        } else {
2148                lh = sis->first_swap_extent.list.prev;  /* Highest extent */
2149                se = list_entry(lh, struct swap_extent, list);
2150                BUG_ON(se->start_page + se->nr_pages != start_page);
2151                if (se->start_block + se->nr_pages == start_block) {
2152                        /* Merge it */
2153                        se->nr_pages += nr_pages;
2154                        return 0;
2155                }
2156        }
2157
2158        /*
2159         * No merge.  Insert a new extent, preserving ordering.
2160         */
2161        new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2162        if (new_se == NULL)
2163                return -ENOMEM;
2164        new_se->start_page = start_page;
2165        new_se->nr_pages = nr_pages;
2166        new_se->start_block = start_block;
2167
2168        list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2169        return 1;
2170}
2171
2172/*
2173 * A `swap extent' is a simple thing which maps a contiguous range of pages
2174 * onto a contiguous range of disk blocks.  An ordered list of swap extents
2175 * is built at swapon time and is then used at swap_writepage/swap_readpage
2176 * time for locating where on disk a page belongs.
2177 *
2178 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2179 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2180 * swap files identically.
2181 *
2182 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2183 * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2184 * swapfiles are handled *identically* after swapon time.
2185 *
2186 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2187 * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2188 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2189 * requirements, they are simply tossed out - we will never use those blocks
2190 * for swapping.
2191 *
2192 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2193 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2194 * which will scribble on the fs.
2195 *
2196 * The amount of disk space which a single swap extent represents varies.
2197 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2198 * extents in the list.  To avoid much list walking, we cache the previous
2199 * search location in `curr_swap_extent', and start new searches from there.
2200 * This is extremely effective.  The average number of iterations in
2201 * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2202 */
2203static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2204{
2205        struct file *swap_file = sis->swap_file;
2206        struct address_space *mapping = swap_file->f_mapping;
2207        struct inode *inode = mapping->host;
2208        int ret;
2209
2210        if (S_ISBLK(inode->i_mode)) {
2211                ret = add_swap_extent(sis, 0, sis->max, 0);
2212                *span = sis->pages;
2213                return ret;
2214        }
2215
2216        if (mapping->a_ops->swap_activate) {
2217                ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2218                if (!ret) {
2219                        sis->flags |= SWP_FILE;
2220                        ret = add_swap_extent(sis, 0, sis->max, 0);
2221                        *span = sis->pages;
2222                }
2223                return ret;
2224        }
2225
2226        return generic_swapfile_activate(sis, swap_file, span);
2227}
2228
2229static void _enable_swap_info(struct swap_info_struct *p, int prio,
2230                                unsigned char *swap_map,
2231                                struct swap_cluster_info *cluster_info)
2232{
2233        if (prio >= 0)
2234                p->prio = prio;
2235        else
2236                p->prio = --least_priority;
2237        /*
2238         * the plist prio is negated because plist ordering is
2239         * low-to-high, while swap ordering is high-to-low
2240         */
2241        p->list.prio = -p->prio;
2242        p->avail_list.prio = -p->prio;
2243        p->swap_map = swap_map;
2244        p->cluster_info = cluster_info;
2245        p->flags |= SWP_WRITEOK;
2246        atomic_long_add(p->pages, &nr_swap_pages);
2247        total_swap_pages += p->pages;
2248
2249        assert_spin_locked(&swap_lock);
2250        /*
2251         * both lists are plists, and thus priority ordered.
2252         * swap_active_head needs to be priority ordered for swapoff(),
2253         * which on removal of any swap_info_struct with an auto-assigned
2254         * (i.e. negative) priority increments the auto-assigned priority
2255         * of any lower-priority swap_info_structs.
2256         * swap_avail_head needs to be priority ordered for get_swap_page(),
2257         * which allocates swap pages from the highest available priority
2258         * swap_info_struct.
2259         */
2260        plist_add(&p->list, &swap_active_head);
2261        spin_lock(&swap_avail_lock);
2262        plist_add(&p->avail_list, &swap_avail_head);
2263        spin_unlock(&swap_avail_lock);
2264}
2265
2266static void enable_swap_info(struct swap_info_struct *p, int prio,
2267                                unsigned char *swap_map,
2268                                struct swap_cluster_info *cluster_info,
2269                                unsigned long *frontswap_map)
2270{
2271        frontswap_init(p->type, frontswap_map);
2272        spin_lock(&swap_lock);
2273        spin_lock(&p->lock);
2274         _enable_swap_info(p, prio, swap_map, cluster_info);
2275        spin_unlock(&p->lock);
2276        spin_unlock(&swap_lock);
2277}
2278
2279static void reinsert_swap_info(struct swap_info_struct *p)
2280{
2281        spin_lock(&swap_lock);
2282        spin_lock(&p->lock);
2283        _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2284        spin_unlock(&p->lock);
2285        spin_unlock(&swap_lock);
2286}
2287
2288bool has_usable_swap(void)
2289{
2290        bool ret = true;
2291
2292        spin_lock(&swap_lock);
2293        if (plist_head_empty(&swap_active_head))
2294                ret = false;
2295        spin_unlock(&swap_lock);
2296        return ret;
2297}
2298
2299SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2300{
2301        struct swap_info_struct *p = NULL;
2302        unsigned char *swap_map;
2303        struct swap_cluster_info *cluster_info;
2304        unsigned long *frontswap_map;
2305        struct file *swap_file, *victim;
2306        struct address_space *mapping;
2307        struct inode *inode;
2308        struct filename *pathname;
2309        int err, found = 0;
2310        unsigned int old_block_size;
2311
2312        if (!capable(CAP_SYS_ADMIN))
2313                return -EPERM;
2314
2315        BUG_ON(!current->mm);
2316
2317        pathname = getname(specialfile);
2318        if (IS_ERR(pathname))
2319                return PTR_ERR(pathname);
2320
2321        victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2322        err = PTR_ERR(victim);
2323        if (IS_ERR(victim))
2324                goto out;
2325
2326        mapping = victim->f_mapping;
2327        spin_lock(&swap_lock);
2328        plist_for_each_entry(p, &swap_active_head, list) {
2329                if (p->flags & SWP_WRITEOK) {
2330                        if (p->swap_file->f_mapping == mapping) {
2331                                found = 1;
2332                                break;
2333                        }
2334                }
2335        }
2336        if (!found) {
2337                err = -EINVAL;
2338                spin_unlock(&swap_lock);
2339                goto out_dput;
2340        }
2341        if (!security_vm_enough_memory_mm(current->mm, p->pages))
2342                vm_unacct_memory(p->pages);
2343        else {
2344                err = -ENOMEM;
2345                spin_unlock(&swap_lock);
2346                goto out_dput;
2347        }
2348        spin_lock(&swap_avail_lock);
2349        plist_del(&p->avail_list, &swap_avail_head);
2350        spin_unlock(&swap_avail_lock);
2351        spin_lock(&p->lock);
2352        if (p->prio < 0) {
2353                struct swap_info_struct *si = p;
2354
2355                plist_for_each_entry_continue(si, &swap_active_head, list) {
2356                        si->prio++;
2357                        si->list.prio--;
2358                        si->avail_list.prio--;
2359                }
2360                least_priority++;
2361        }
2362        plist_del(&p->list, &swap_active_head);
2363        atomic_long_sub(p->pages, &nr_swap_pages);
2364        total_swap_pages -= p->pages;
2365        p->flags &= ~SWP_WRITEOK;
2366        spin_unlock(&p->lock);
2367        spin_unlock(&swap_lock);
2368
2369        disable_swap_slots_cache_lock();
2370
2371        set_current_oom_origin();
2372        err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2373        clear_current_oom_origin();
2374
2375        if (err) {
2376                /* re-insert swap space back into swap_list */
2377                reinsert_swap_info(p);
2378                reenable_swap_slots_cache_unlock();
2379                goto out_dput;
2380        }
2381
2382        reenable_swap_slots_cache_unlock();
2383
2384        flush_work(&p->discard_work);
2385
2386        destroy_swap_extents(p);
2387        if (p->flags & SWP_CONTINUED)
2388                free_swap_count_continuations(p);
2389
2390        mutex_lock(&swapon_mutex);
2391        spin_lock(&swap_lock);
2392        spin_lock(&p->lock);
2393        drain_mmlist();
2394
2395        /* wait for anyone still in scan_swap_map */
2396        p->highest_bit = 0;             /* cuts scans short */
2397        while (p->flags >= SWP_SCANNING) {
2398                spin_unlock(&p->lock);
2399                spin_unlock(&swap_lock);
2400                schedule_timeout_uninterruptible(1);
2401                spin_lock(&swap_lock);
2402                spin_lock(&p->lock);
2403        }
2404
2405        swap_file = p->swap_file;
2406        old_block_size = p->old_block_size;
2407        p->swap_file = NULL;
2408        p->max = 0;
2409        swap_map = p->swap_map;
2410        p->swap_map = NULL;
2411        cluster_info = p->cluster_info;
2412        p->cluster_info = NULL;
2413        frontswap_map = frontswap_map_get(p);
2414        spin_unlock(&p->lock);
2415        spin_unlock(&swap_lock);
2416        frontswap_invalidate_area(p->type);
2417        frontswap_map_set(p, NULL);
2418        mutex_unlock(&swapon_mutex);
2419        free_percpu(p->percpu_cluster);
2420        p->percpu_cluster = NULL;
2421        vfree(swap_map);
2422        kvfree(cluster_info);
2423        kvfree(frontswap_map);
2424        /* Destroy swap account information */
2425        swap_cgroup_swapoff(p->type);
2426        exit_swap_address_space(p->type);
2427
2428        inode = mapping->host;
2429        if (S_ISBLK(inode->i_mode)) {
2430                struct block_device *bdev = I_BDEV(inode);
2431                set_blocksize(bdev, old_block_size);
2432                blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2433        } else {
2434                inode_lock(inode);
2435                inode->i_flags &= ~S_SWAPFILE;
2436                inode_unlock(inode);
2437        }
2438        filp_close(swap_file, NULL);
2439
2440        /*
2441         * Clear the SWP_USED flag after all resources are freed so that swapon
2442         * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2443         * not hold p->lock after we cleared its SWP_WRITEOK.
2444         */
2445        spin_lock(&swap_lock);
2446        p->flags = 0;
2447        spin_unlock(&swap_lock);
2448
2449        err = 0;
2450        atomic_inc(&proc_poll_event);
2451        wake_up_interruptible(&proc_poll_wait);
2452
2453out_dput:
2454        filp_close(victim, NULL);
2455out:
2456        putname(pathname);
2457        return err;
2458}
2459
2460#ifdef CONFIG_PROC_FS
2461static unsigned swaps_poll(struct file *file, poll_table *wait)
2462{
2463        struct seq_file *seq = file->private_data;
2464
2465        poll_wait(file, &proc_poll_wait, wait);
2466
2467        if (seq->poll_event != atomic_read(&proc_poll_event)) {
2468                seq->poll_event = atomic_read(&proc_poll_event);
2469                return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2470        }
2471
2472        return POLLIN | POLLRDNORM;
2473}
2474
2475/* iterator */
2476static void *swap_start(struct seq_file *swap, loff_t *pos)
2477{
2478        struct swap_info_struct *si;
2479        int type;
2480        loff_t l = *pos;
2481
2482        mutex_lock(&swapon_mutex);
2483
2484        if (!l)
2485                return SEQ_START_TOKEN;
2486
2487        for (type = 0; type < nr_swapfiles; type++) {
2488                smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2489                si = swap_info[type];
2490                if (!(si->flags & SWP_USED) || !si->swap_map)
2491                        continue;
2492                if (!--l)
2493                        return si;
2494        }
2495
2496        return NULL;
2497}
2498
2499static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2500{
2501        struct swap_info_struct *si = v;
2502        int type;
2503
2504        if (v == SEQ_START_TOKEN)
2505                type = 0;
2506        else
2507                type = si->type + 1;
2508
2509        for (; type < nr_swapfiles; type++) {
2510                smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2511                si = swap_info[type];
2512                if (!(si->flags & SWP_USED) || !si->swap_map)
2513                        continue;
2514                ++*pos;
2515                return si;
2516        }
2517
2518        return NULL;
2519}
2520
2521static void swap_stop(struct seq_file *swap, void *v)
2522{
2523        mutex_unlock(&swapon_mutex);
2524}
2525
2526static int swap_show(struct seq_file *swap, void *v)
2527{
2528        struct swap_info_struct *si = v;
2529        struct file *file;
2530        int len;
2531
2532        if (si == SEQ_START_TOKEN) {
2533                seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2534                return 0;
2535        }
2536
2537        file = si->swap_file;
2538        len = seq_file_path(swap, file, " \t\n\\");
2539        seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2540                        len < 40 ? 40 - len : 1, " ",
2541                        S_ISBLK(file_inode(file)->i_mode) ?
2542                                "partition" : "file\t",
2543                        si->pages << (PAGE_SHIFT - 10),
2544                        si->inuse_pages << (PAGE_SHIFT - 10),
2545                        si->prio);
2546        return 0;
2547}
2548
2549static const struct seq_operations swaps_op = {
2550        .start =        swap_start,
2551        .next =         swap_next,
2552        .stop =         swap_stop,
2553        .show =         swap_show
2554};
2555
2556static int swaps_open(struct inode *inode, struct file *file)
2557{
2558        struct seq_file *seq;
2559        int ret;
2560
2561        ret = seq_open(file, &swaps_op);
2562        if (ret)
2563                return ret;
2564
2565        seq = file->private_data;
2566        seq->poll_event = atomic_read(&proc_poll_event);
2567        return 0;
2568}
2569
2570static const struct file_operations proc_swaps_operations = {
2571        .open           = swaps_open,
2572        .read           = seq_read,
2573        .llseek         = seq_lseek,
2574        .release        = seq_release,
2575        .poll           = swaps_poll,
2576};
2577
2578static int __init procswaps_init(void)
2579{
2580        proc_create("swaps", 0, NULL, &proc_swaps_operations);
2581        return 0;
2582}
2583__initcall(procswaps_init);
2584#endif /* CONFIG_PROC_FS */
2585
2586#ifdef MAX_SWAPFILES_CHECK
2587static int __init max_swapfiles_check(void)
2588{
2589        MAX_SWAPFILES_CHECK();
2590        return 0;
2591}
2592late_initcall(max_swapfiles_check);
2593#endif
2594
2595static struct swap_info_struct *alloc_swap_info(void)
2596{
2597        struct swap_info_struct *p;
2598        unsigned int type;
2599
2600        p = kzalloc(sizeof(*p), GFP_KERNEL);
2601        if (!p)
2602                return ERR_PTR(-ENOMEM);
2603
2604        spin_lock(&swap_lock);
2605        for (type = 0; type < nr_swapfiles; type++) {
2606                if (!(swap_info[type]->flags & SWP_USED))
2607                        break;
2608        }
2609        if (type >= MAX_SWAPFILES) {
2610                spin_unlock(&swap_lock);
2611                kfree(p);
2612                return ERR_PTR(-EPERM);
2613        }
2614        if (type >= nr_swapfiles) {
2615                p->type = type;
2616                swap_info[type] = p;
2617                /*
2618                 * Write swap_info[type] before nr_swapfiles, in case a
2619                 * racing procfs swap_start() or swap_next() is reading them.
2620                 * (We never shrink nr_swapfiles, we never free this entry.)
2621                 */
2622                smp_wmb();
2623                nr_swapfiles++;
2624        } else {
2625                kfree(p);
2626                p = swap_info[type];
2627                /*
2628                 * Do not memset this entry: a racing procfs swap_next()
2629                 * would be relying on p->type to remain valid.
2630                 */
2631        }
2632        INIT_LIST_HEAD(&p->first_swap_extent.list);
2633        plist_node_init(&p->list, 0);
2634        plist_node_init(&p->avail_list, 0);
2635        p->flags = SWP_USED;
2636        spin_unlock(&swap_lock);
2637        spin_lock_init(&p->lock);
2638
2639        return p;
2640}
2641
2642static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2643{
2644        int error;
2645
2646        if (S_ISBLK(inode->i_mode)) {
2647                p->bdev = bdgrab(I_BDEV(inode));
2648                error = blkdev_get(p->bdev,
2649                                   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2650                if (error < 0) {
2651                        p->bdev = NULL;
2652                        return error;
2653                }
2654                p->old_block_size = block_size(p->bdev);
2655                error = set_blocksize(p->bdev, PAGE_SIZE);
2656                if (error < 0)
2657                        return error;
2658                p->flags |= SWP_BLKDEV;
2659        } else if (S_ISREG(inode->i_mode)) {
2660                p->bdev = inode->i_sb->s_bdev;
2661                inode_lock(inode);
2662                if (IS_SWAPFILE(inode))
2663                        return -EBUSY;
2664        } else
2665                return -EINVAL;
2666
2667        return 0;
2668}
2669
2670static unsigned long read_swap_header(struct swap_info_struct *p,
2671                                        union swap_header *swap_header,
2672                                        struct inode *inode)
2673{
2674        int i;
2675        unsigned long maxpages;
2676        unsigned long swapfilepages;
2677        unsigned long last_page;
2678
2679        if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2680                pr_err("Unable to find swap-space signature\n");
2681                return 0;
2682        }
2683
2684        /* swap partition endianess hack... */
2685        if (swab32(swap_header->info.version) == 1) {
2686                swab32s(&swap_header->info.version);
2687                swab32s(&swap_header->info.last_page);
2688                swab32s(&swap_header->info.nr_badpages);
2689                if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2690                        return 0;
2691                for (i = 0; i < swap_header->info.nr_badpages; i++)
2692                        swab32s(&swap_header->info.badpages[i]);
2693        }
2694        /* Check the swap header's sub-version */
2695        if (swap_header->info.version != 1) {
2696                pr_warn("Unable to handle swap header version %d\n",
2697                        swap_header->info.version);
2698                return 0;
2699        }
2700
2701        p->lowest_bit  = 1;
2702        p->cluster_next = 1;
2703        p->cluster_nr = 0;
2704
2705        /*
2706         * Find out how many pages are allowed for a single swap
2707         * device. There are two limiting factors: 1) the number
2708         * of bits for the swap offset in the swp_entry_t type, and
2709         * 2) the number of bits in the swap pte as defined by the
2710         * different architectures. In order to find the
2711         * largest possible bit mask, a swap entry with swap type 0
2712         * and swap offset ~0UL is created, encoded to a swap pte,
2713         * decoded to a swp_entry_t again, and finally the swap
2714         * offset is extracted. This will mask all the bits from
2715         * the initial ~0UL mask that can't be encoded in either
2716         * the swp_entry_t or the architecture definition of a
2717         * swap pte.
2718         */
2719        maxpages = swp_offset(pte_to_swp_entry(
2720                        swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2721        last_page = swap_header->info.last_page;
2722        if (last_page > maxpages) {
2723                pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2724                        maxpages << (PAGE_SHIFT - 10),
2725                        last_page << (PAGE_SHIFT - 10));
2726        }
2727        if (maxpages > last_page) {
2728                maxpages = last_page + 1;
2729                /* p->max is an unsigned int: don't overflow it */
2730                if ((unsigned int)maxpages == 0)
2731                        maxpages = UINT_MAX;
2732        }
2733        p->highest_bit = maxpages - 1;
2734
2735        if (!maxpages)
2736                return 0;
2737        swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2738        if (swapfilepages && maxpages > swapfilepages) {
2739                pr_warn("Swap area shorter than signature indicates\n");
2740                return 0;
2741        }
2742        if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2743                return 0;
2744        if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2745                return 0;
2746
2747        return maxpages;
2748}
2749
2750#define SWAP_CLUSTER_INFO_COLS                                          \
2751        DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2752#define SWAP_CLUSTER_SPACE_COLS                                         \
2753        DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2754#define SWAP_CLUSTER_COLS                                               \
2755        max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2756
2757static int setup_swap_map_and_extents(struct swap_info_struct *p,
2758                                        union swap_header *swap_header,
2759                                        unsigned char *swap_map,
2760                                        struct swap_cluster_info *cluster_info,
2761                                        unsigned long maxpages,
2762                                        sector_t *span)
2763{
2764        unsigned int j, k;
2765        unsigned int nr_good_pages;
2766        int nr_extents;
2767        unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2768        unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2769        unsigned long i, idx;
2770
2771        nr_good_pages = maxpages - 1;   /* omit header page */
2772
2773        cluster_list_init(&p->free_clusters);
2774        cluster_list_init(&p->discard_clusters);
2775
2776        for (i = 0; i < swap_header->info.nr_badpages; i++) {
2777                unsigned int page_nr = swap_header->info.badpages[i];
2778                if (page_nr == 0 || page_nr > swap_header->info.last_page)
2779                        return -EINVAL;
2780                if (page_nr < maxpages) {
2781                        swap_map[page_nr] = SWAP_MAP_BAD;
2782                        nr_good_pages--;
2783                        /*
2784                         * Haven't marked the cluster free yet, no list
2785                         * operation involved
2786                         */
2787                        inc_cluster_info_page(p, cluster_info, page_nr);
2788                }
2789        }
2790
2791        /* Haven't marked the cluster free yet, no list operation involved */
2792        for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2793                inc_cluster_info_page(p, cluster_info, i);
2794
2795        if (nr_good_pages) {
2796                swap_map[0] = SWAP_MAP_BAD;
2797                /*
2798                 * Not mark the cluster free yet, no list
2799                 * operation involved
2800                 */
2801                inc_cluster_info_page(p, cluster_info, 0);
2802                p->max = maxpages;
2803                p->pages = nr_good_pages;
2804                nr_extents = setup_swap_extents(p, span);
2805                if (nr_extents < 0)
2806                        return nr_extents;
2807                nr_good_pages = p->pages;
2808        }
2809        if (!nr_good_pages) {
2810                pr_warn("Empty swap-file\n");
2811                return -EINVAL;
2812        }
2813
2814        if (!cluster_info)
2815                return nr_extents;
2816
2817
2818        /*
2819         * Reduce false cache line sharing between cluster_info and
2820         * sharing same address space.
2821         */
2822        for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2823                j = (k + col) % SWAP_CLUSTER_COLS;
2824                for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2825                        idx = i * SWAP_CLUSTER_COLS + j;
2826                        if (idx >= nr_clusters)
2827                                continue;
2828                        if (cluster_count(&cluster_info[idx]))
2829                                continue;
2830                        cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2831                        cluster_list_add_tail(&p->free_clusters, cluster_info,
2832                                              idx);
2833                }
2834        }
2835        return nr_extents;
2836}
2837
2838/*
2839 * Helper to sys_swapon determining if a given swap
2840 * backing device queue supports DISCARD operations.
2841 */
2842static bool swap_discardable(struct swap_info_struct *si)
2843{
2844        struct request_queue *q = bdev_get_queue(si->bdev);
2845
2846        if (!q || !blk_queue_discard(q))
2847                return false;
2848
2849        return true;
2850}
2851
2852SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2853{
2854        struct swap_info_struct *p;
2855        struct filename *name;
2856        struct file *swap_file = NULL;
2857        struct address_space *mapping;
2858        int prio;
2859        int error;
2860        union swap_header *swap_header;
2861        int nr_extents;
2862        sector_t span;
2863        unsigned long maxpages;
2864        unsigned char *swap_map = NULL;
2865        struct swap_cluster_info *cluster_info = NULL;
2866        unsigned long *frontswap_map = NULL;
2867        struct page *page = NULL;
2868        struct inode *inode = NULL;
2869
2870        if (swap_flags & ~SWAP_FLAGS_VALID)
2871                return -EINVAL;
2872
2873        if (!capable(CAP_SYS_ADMIN))
2874                return -EPERM;
2875
2876        p = alloc_swap_info();
2877        if (IS_ERR(p))
2878                return PTR_ERR(p);
2879
2880        INIT_WORK(&p->discard_work, swap_discard_work);
2881
2882        name = getname(specialfile);
2883        if (IS_ERR(name)) {
2884                error = PTR_ERR(name);
2885                name = NULL;
2886                goto bad_swap;
2887        }
2888        swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2889        if (IS_ERR(swap_file)) {
2890                error = PTR_ERR(swap_file);
2891                swap_file = NULL;
2892                goto bad_swap;
2893        }
2894
2895        p->swap_file = swap_file;
2896        mapping = swap_file->f_mapping;
2897        inode = mapping->host;
2898
2899        /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2900        error = claim_swapfile(p, inode);
2901        if (unlikely(error))
2902                goto bad_swap;
2903
2904        /*
2905         * Read the swap header.
2906         */
2907        if (!mapping->a_ops->readpage) {
2908                error = -EINVAL;
2909                goto bad_swap;
2910        }
2911        page = read_mapping_page(mapping, 0, swap_file);
2912        if (IS_ERR(page)) {
2913                error = PTR_ERR(page);
2914                goto bad_swap;
2915        }
2916        swap_header = kmap(page);
2917
2918        maxpages = read_swap_header(p, swap_header, inode);
2919        if (unlikely(!maxpages)) {
2920                error = -EINVAL;
2921                goto bad_swap;
2922        }
2923
2924        /* OK, set up the swap map and apply the bad block list */
2925        swap_map = vzalloc(maxpages);
2926        if (!swap_map) {
2927                error = -ENOMEM;
2928                goto bad_swap;
2929        }
2930
2931        if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2932                p->flags |= SWP_STABLE_WRITES;
2933
2934        if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2935                int cpu;
2936                unsigned long ci, nr_cluster;
2937
2938                p->flags |= SWP_SOLIDSTATE;
2939                /*
2940                 * select a random position to start with to help wear leveling
2941                 * SSD
2942                 */
2943                p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2944                nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2945
2946                cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
2947                                        GFP_KERNEL);
2948                if (!cluster_info) {
2949                        error = -ENOMEM;
2950                        goto bad_swap;
2951                }
2952
2953                for (ci = 0; ci < nr_cluster; ci++)
2954                        spin_lock_init(&((cluster_info + ci)->lock));
2955
2956                p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2957                if (!p->percpu_cluster) {
2958                        error = -ENOMEM;
2959                        goto bad_swap;
2960                }
2961                for_each_possible_cpu(cpu) {
2962                        struct percpu_cluster *cluster;
2963                        cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2964                        cluster_set_null(&cluster->index);
2965                }
2966        }
2967
2968        error = swap_cgroup_swapon(p->type, maxpages);
2969        if (error)
2970                goto bad_swap;
2971
2972        nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2973                cluster_info, maxpages, &span);
2974        if (unlikely(nr_extents < 0)) {
2975                error = nr_extents;
2976                goto bad_swap;
2977        }
2978        /* frontswap enabled? set up bit-per-page map for frontswap */
2979        if (IS_ENABLED(CONFIG_FRONTSWAP))
2980                frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
2981                                         GFP_KERNEL);
2982
2983        if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2984                /*
2985                 * When discard is enabled for swap with no particular
2986                 * policy flagged, we set all swap discard flags here in
2987                 * order to sustain backward compatibility with older
2988                 * swapon(8) releases.
2989                 */
2990                p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2991                             SWP_PAGE_DISCARD);
2992
2993                /*
2994                 * By flagging sys_swapon, a sysadmin can tell us to
2995                 * either do single-time area discards only, or to just
2996                 * perform discards for released swap page-clusters.
2997                 * Now it's time to adjust the p->flags accordingly.
2998                 */
2999                if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3000                        p->flags &= ~SWP_PAGE_DISCARD;
3001                else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3002                        p->flags &= ~SWP_AREA_DISCARD;
3003
3004                /* issue a swapon-time discard if it's still required */
3005                if (p->flags & SWP_AREA_DISCARD) {
3006                        int err = discard_swap(p);
3007                        if (unlikely(err))
3008                                pr_err("swapon: discard_swap(%p): %d\n",
3009                                        p, err);
3010                }
3011        }
3012
3013        error = init_swap_address_space(p->type, maxpages);
3014        if (error)
3015                goto bad_swap;
3016
3017        mutex_lock(&swapon_mutex);
3018        prio = -1;
3019        if (swap_flags & SWAP_FLAG_PREFER)
3020                prio =
3021                  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3022        enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3023
3024        pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3025                p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3026                nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3027                (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3028                (p->flags & SWP_DISCARDABLE) ? "D" : "",
3029                (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3030                (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3031                (frontswap_map) ? "FS" : "");
3032
3033        mutex_unlock(&swapon_mutex);
3034        atomic_inc(&proc_poll_event);
3035        wake_up_interruptible(&proc_poll_wait);
3036
3037        if (S_ISREG(inode->i_mode))
3038                inode->i_flags |= S_SWAPFILE;
3039        error = 0;
3040        goto out;
3041bad_swap:
3042        free_percpu(p->percpu_cluster);
3043        p->percpu_cluster = NULL;
3044        if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3045                set_blocksize(p->bdev, p->old_block_size);
3046                blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3047        }
3048        destroy_swap_extents(p);
3049        swap_cgroup_swapoff(p->type);
3050        spin_lock(&swap_lock);
3051        p->swap_file = NULL;
3052        p->flags = 0;
3053        spin_unlock(&swap_lock);
3054        vfree(swap_map);
3055        vfree(cluster_info);
3056        if (swap_file) {
3057                if (inode && S_ISREG(inode->i_mode)) {
3058                        inode_unlock(inode);
3059                        inode = NULL;
3060                }
3061                filp_close(swap_file, NULL);
3062        }
3063out:
3064        if (page && !IS_ERR(page)) {
3065                kunmap(page);
3066                put_page(page);
3067        }
3068        if (name)
3069                putname(name);
3070        if (inode && S_ISREG(inode->i_mode))
3071                inode_unlock(inode);
3072        if (!error)
3073                enable_swap_slots_cache();
3074        return error;
3075}
3076
3077void si_swapinfo(struct sysinfo *val)
3078{
3079        unsigned int type;
3080        unsigned long nr_to_be_unused = 0;
3081
3082        spin_lock(&swap_lock);
3083        for (type = 0; type < nr_swapfiles; type++) {
3084                struct swap_info_struct *si = swap_info[type];
3085
3086                if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3087                        nr_to_be_unused += si->inuse_pages;
3088        }
3089        val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3090        val->totalswap = total_swap_pages + nr_to_be_unused;
3091        spin_unlock(&swap_lock);
3092}
3093
3094/*
3095 * Verify that a swap entry is valid and increment its swap map count.
3096 *
3097 * Returns error code in following case.
3098 * - success -> 0
3099 * - swp_entry is invalid -> EINVAL
3100 * - swp_entry is migration entry -> EINVAL
3101 * - swap-cache reference is requested but there is already one. -> EEXIST
3102 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3103 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3104 */
3105static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3106{
3107        struct swap_info_struct *p;
3108        struct swap_cluster_info *ci;
3109        unsigned long offset, type;
3110        unsigned char count;
3111        unsigned char has_cache;
3112        int err = -EINVAL;
3113
3114        if (non_swap_entry(entry))
3115                goto out;
3116
3117        type = swp_type(entry);
3118        if (type >= nr_swapfiles)
3119                goto bad_file;
3120        p = swap_info[type];
3121        offset = swp_offset(entry);
3122        if (unlikely(offset >= p->max))
3123                goto out;
3124
3125        ci = lock_cluster_or_swap_info(p, offset);
3126
3127        count = p->swap_map[offset];
3128
3129        /*
3130         * swapin_readahead() doesn't check if a swap entry is valid, so the
3131         * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3132         */
3133        if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3134                err = -ENOENT;
3135                goto unlock_out;
3136        }
3137
3138        has_cache = count & SWAP_HAS_CACHE;
3139        count &= ~SWAP_HAS_CACHE;
3140        err = 0;
3141
3142        if (usage == SWAP_HAS_CACHE) {
3143
3144                /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3145                if (!has_cache && count)
3146                        has_cache = SWAP_HAS_CACHE;
3147                else if (has_cache)             /* someone else added cache */
3148                        err = -EEXIST;
3149                else                            /* no users remaining */
3150                        err = -ENOENT;
3151
3152        } else if (count || has_cache) {
3153
3154                if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3155                        count += usage;
3156                else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3157                        err = -EINVAL;
3158                else if (swap_count_continued(p, offset, count))
3159                        count = COUNT_CONTINUED;
3160                else
3161                        err = -ENOMEM;
3162        } else
3163                err = -ENOENT;                  /* unused swap entry */
3164
3165        p->swap_map[offset] = count | has_cache;
3166
3167unlock_out:
3168        unlock_cluster_or_swap_info(p, ci);
3169out:
3170        return err;
3171
3172bad_file:
3173        pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3174        goto out;
3175}
3176
3177/*
3178 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3179 * (in which case its reference count is never incremented).
3180 */
3181void swap_shmem_alloc(swp_entry_t entry)
3182{
3183        __swap_duplicate(entry, SWAP_MAP_SHMEM);
3184}
3185
3186/*
3187 * Increase reference count of swap entry by 1.
3188 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3189 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3190 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3191 * might occur if a page table entry has got corrupted.
3192 */
3193int swap_duplicate(swp_entry_t entry)
3194{
3195        int err = 0;
3196
3197        while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3198                err = add_swap_count_continuation(entry, GFP_ATOMIC);
3199        return err;
3200}
3201
3202/*
3203 * @entry: swap entry for which we allocate swap cache.
3204 *
3205 * Called when allocating swap cache for existing swap entry,
3206 * This can return error codes. Returns 0 at success.
3207 * -EBUSY means there is a swap cache.
3208 * Note: return code is different from swap_duplicate().
3209 */
3210int swapcache_prepare(swp_entry_t entry)
3211{
3212        return __swap_duplicate(entry, SWAP_HAS_CACHE);
3213}
3214
3215struct swap_info_struct *page_swap_info(struct page *page)
3216{
3217        swp_entry_t swap = { .val = page_private(page) };
3218        return swap_info[swp_type(swap)];
3219}
3220
3221/*
3222 * out-of-line __page_file_ methods to avoid include hell.
3223 */
3224struct address_space *__page_file_mapping(struct page *page)
3225{
3226        VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3227        return page_swap_info(page)->swap_file->f_mapping;
3228}
3229EXPORT_SYMBOL_GPL(__page_file_mapping);
3230
3231pgoff_t __page_file_index(struct page *page)
3232{
3233        swp_entry_t swap = { .val = page_private(page) };
3234        VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3235        return swp_offset(swap);
3236}
3237EXPORT_SYMBOL_GPL(__page_file_index);
3238
3239/*
3240 * add_swap_count_continuation - called when a swap count is duplicated
3241 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3242 * page of the original vmalloc'ed swap_map, to hold the continuation count
3243 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3244 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3245 *
3246 * These continuation pages are seldom referenced: the common paths all work
3247 * on the original swap_map, only referring to a continuation page when the
3248 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3249 *
3250 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3251 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3252 * can be called after dropping locks.
3253 */
3254int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3255{
3256        struct swap_info_struct *si;
3257        struct swap_cluster_info *ci;
3258        struct page *head;
3259        struct page *page;
3260        struct page *list_page;
3261        pgoff_t offset;
3262        unsigned char count;
3263
3264        /*
3265         * When debugging, it's easier to use __GFP_ZERO here; but it's better
3266         * for latency not to zero a page while GFP_ATOMIC and holding locks.
3267         */
3268        page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3269
3270        si = swap_info_get(entry);
3271        if (!si) {
3272                /*
3273                 * An acceptable race has occurred since the failing
3274                 * __swap_duplicate(): the swap entry has been freed,
3275                 * perhaps even the whole swap_map cleared for swapoff.
3276                 */
3277                goto outer;
3278        }
3279
3280        offset = swp_offset(entry);
3281
3282        ci = lock_cluster(si, offset);
3283
3284        count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3285
3286        if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3287                /*
3288                 * The higher the swap count, the more likely it is that tasks
3289                 * will race to add swap count continuation: we need to avoid
3290                 * over-provisioning.
3291                 */
3292                goto out;
3293        }
3294
3295        if (!page) {
3296                unlock_cluster(ci);
3297                spin_unlock(&si->lock);
3298                return -ENOMEM;
3299        }
3300
3301        /*
3302         * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3303         * no architecture is using highmem pages for kernel page tables: so it
3304         * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3305         */
3306        head = vmalloc_to_page(si->swap_map + offset);
3307        offset &= ~PAGE_MASK;
3308
3309        /*
3310         * Page allocation does not initialize the page's lru field,
3311         * but it does always reset its private field.
3312         */
3313        if (!page_private(head)) {
3314                BUG_ON(count & COUNT_CONTINUED);
3315                INIT_LIST_HEAD(&head->lru);
3316                set_page_private(head, SWP_CONTINUED);
3317                si->flags |= SWP_CONTINUED;
3318        }
3319
3320        list_for_each_entry(list_page, &head->lru, lru) {
3321                unsigned char *map;
3322
3323                /*
3324                 * If the previous map said no continuation, but we've found
3325                 * a continuation page, free our allocation and use this one.
3326                 */
3327                if (!(count & COUNT_CONTINUED))
3328                        goto out;
3329
3330                map = kmap_atomic(list_page) + offset;
3331                count = *map;
3332                kunmap_atomic(map);
3333
3334                /*
3335                 * If this continuation count now has some space in it,
3336                 * free our allocation and use this one.
3337                 */
3338                if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3339                        goto out;
3340        }
3341
3342        list_add_tail(&page->lru, &head->lru);
3343        page = NULL;                    /* now it's attached, don't free it */
3344out:
3345        unlock_cluster(ci);
3346        spin_unlock(&si->lock);
3347outer:
3348        if (page)
3349                __free_page(page);
3350        return 0;
3351}
3352
3353/*
3354 * swap_count_continued - when the original swap_map count is incremented
3355 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3356 * into, carry if so, or else fail until a new continuation page is allocated;
3357 * when the original swap_map count is decremented from 0 with continuation,
3358 * borrow from the continuation and report whether it still holds more.
3359 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3360 * lock.
3361 */
3362static bool swap_count_continued(struct swap_info_struct *si,
3363                                 pgoff_t offset, unsigned char count)
3364{
3365        struct page *head;
3366        struct page *page;
3367        unsigned char *map;
3368
3369        head = vmalloc_to_page(si->swap_map + offset);
3370        if (page_private(head) != SWP_CONTINUED) {
3371                BUG_ON(count & COUNT_CONTINUED);
3372                return false;           /* need to add count continuation */
3373        }
3374
3375        offset &= ~PAGE_MASK;
3376        page = list_entry(head->lru.next, struct page, lru);
3377        map = kmap_atomic(page) + offset;
3378
3379        if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3380                goto init_map;          /* jump over SWAP_CONT_MAX checks */
3381
3382        if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3383                /*
3384                 * Think of how you add 1 to 999
3385                 */
3386                while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3387                        kunmap_atomic(map);
3388                        page = list_entry(page->lru.next, struct page, lru);
3389                        BUG_ON(page == head);
3390                        map = kmap_atomic(page) + offset;
3391                }
3392                if (*map == SWAP_CONT_MAX) {
3393                        kunmap_atomic(map);
3394                        page = list_entry(page->lru.next, struct page, lru);
3395                        if (page == head)
3396                                return false;   /* add count continuation */
3397                        map = kmap_atomic(page) + offset;
3398init_map:               *map = 0;               /* we didn't zero the page */
3399                }
3400                *map += 1;
3401                kunmap_atomic(map);
3402                page = list_entry(page->lru.prev, struct page, lru);
3403                while (page != head) {
3404                        map = kmap_atomic(page) + offset;
3405                        *map = COUNT_CONTINUED;
3406                        kunmap_atomic(map);
3407                        page = list_entry(page->lru.prev, struct page, lru);
3408                }
3409                return true;                    /* incremented */
3410
3411        } else {                                /* decrementing */
3412                /*
3413                 * Think of how you subtract 1 from 1000
3414                 */
3415                BUG_ON(count != COUNT_CONTINUED);
3416                while (*map == COUNT_CONTINUED) {
3417                        kunmap_atomic(map);
3418                        page = list_entry(page->lru.next, struct page, lru);
3419                        BUG_ON(page == head);
3420                        map = kmap_atomic(page) + offset;
3421                }
3422                BUG_ON(*map == 0);
3423                *map -= 1;
3424                if (*map == 0)
3425                        count = 0;
3426                kunmap_atomic(map);
3427                page = list_entry(page->lru.prev, struct page, lru);
3428                while (page != head) {
3429                        map = kmap_atomic(page) + offset;
3430                        *map = SWAP_CONT_MAX | count;
3431                        count = COUNT_CONTINUED;
3432                        kunmap_atomic(map);
3433                        page = list_entry(page->lru.prev, struct page, lru);
3434                }
3435                return count == COUNT_CONTINUED;
3436        }
3437}
3438
3439/*
3440 * free_swap_count_continuations - swapoff free all the continuation pages
3441 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3442 */
3443static void free_swap_count_continuations(struct swap_info_struct *si)
3444{
3445        pgoff_t offset;
3446
3447        for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3448                struct page *head;
3449                head = vmalloc_to_page(si->swap_map + offset);
3450                if (page_private(head)) {
3451                        struct page *page, *next;
3452
3453                        list_for_each_entry_safe(page, next, &head->lru, lru) {
3454                                list_del(&page->lru);
3455                                __free_page(page);
3456                        }
3457                }
3458        }
3459}
3460