linux/mm/vmalloc.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched/signal.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
  24#include <linux/notifier.h>
  25#include <linux/rbtree.h>
  26#include <linux/radix-tree.h>
  27#include <linux/rcupdate.h>
  28#include <linux/pfn.h>
  29#include <linux/kmemleak.h>
  30#include <linux/atomic.h>
  31#include <linux/compiler.h>
  32#include <linux/llist.h>
  33#include <linux/bitops.h>
  34
  35#include <linux/uaccess.h>
  36#include <asm/tlbflush.h>
  37#include <asm/shmparam.h>
  38
  39#include "internal.h"
  40
  41struct vfree_deferred {
  42        struct llist_head list;
  43        struct work_struct wq;
  44};
  45static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  46
  47static void __vunmap(const void *, int);
  48
  49static void free_work(struct work_struct *w)
  50{
  51        struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  52        struct llist_node *llnode = llist_del_all(&p->list);
  53        while (llnode) {
  54                void *p = llnode;
  55                llnode = llist_next(llnode);
  56                __vunmap(p, 1);
  57        }
  58}
  59
  60/*** Page table manipulation functions ***/
  61
  62static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  63{
  64        pte_t *pte;
  65
  66        pte = pte_offset_kernel(pmd, addr);
  67        do {
  68                pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  69                WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  70        } while (pte++, addr += PAGE_SIZE, addr != end);
  71}
  72
  73static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  74{
  75        pmd_t *pmd;
  76        unsigned long next;
  77
  78        pmd = pmd_offset(pud, addr);
  79        do {
  80                next = pmd_addr_end(addr, end);
  81                if (pmd_clear_huge(pmd))
  82                        continue;
  83                if (pmd_none_or_clear_bad(pmd))
  84                        continue;
  85                vunmap_pte_range(pmd, addr, next);
  86        } while (pmd++, addr = next, addr != end);
  87}
  88
  89static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
  90{
  91        pud_t *pud;
  92        unsigned long next;
  93
  94        pud = pud_offset(p4d, addr);
  95        do {
  96                next = pud_addr_end(addr, end);
  97                if (pud_clear_huge(pud))
  98                        continue;
  99                if (pud_none_or_clear_bad(pud))
 100                        continue;
 101                vunmap_pmd_range(pud, addr, next);
 102        } while (pud++, addr = next, addr != end);
 103}
 104
 105static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
 106{
 107        p4d_t *p4d;
 108        unsigned long next;
 109
 110        p4d = p4d_offset(pgd, addr);
 111        do {
 112                next = p4d_addr_end(addr, end);
 113                if (p4d_clear_huge(p4d))
 114                        continue;
 115                if (p4d_none_or_clear_bad(p4d))
 116                        continue;
 117                vunmap_pud_range(p4d, addr, next);
 118        } while (p4d++, addr = next, addr != end);
 119}
 120
 121static void vunmap_page_range(unsigned long addr, unsigned long end)
 122{
 123        pgd_t *pgd;
 124        unsigned long next;
 125
 126        BUG_ON(addr >= end);
 127        pgd = pgd_offset_k(addr);
 128        do {
 129                next = pgd_addr_end(addr, end);
 130                if (pgd_none_or_clear_bad(pgd))
 131                        continue;
 132                vunmap_p4d_range(pgd, addr, next);
 133        } while (pgd++, addr = next, addr != end);
 134}
 135
 136static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 137                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 138{
 139        pte_t *pte;
 140
 141        /*
 142         * nr is a running index into the array which helps higher level
 143         * callers keep track of where we're up to.
 144         */
 145
 146        pte = pte_alloc_kernel(pmd, addr);
 147        if (!pte)
 148                return -ENOMEM;
 149        do {
 150                struct page *page = pages[*nr];
 151
 152                if (WARN_ON(!pte_none(*pte)))
 153                        return -EBUSY;
 154                if (WARN_ON(!page))
 155                        return -ENOMEM;
 156                set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 157                (*nr)++;
 158        } while (pte++, addr += PAGE_SIZE, addr != end);
 159        return 0;
 160}
 161
 162static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 163                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 164{
 165        pmd_t *pmd;
 166        unsigned long next;
 167
 168        pmd = pmd_alloc(&init_mm, pud, addr);
 169        if (!pmd)
 170                return -ENOMEM;
 171        do {
 172                next = pmd_addr_end(addr, end);
 173                if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 174                        return -ENOMEM;
 175        } while (pmd++, addr = next, addr != end);
 176        return 0;
 177}
 178
 179static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
 180                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 181{
 182        pud_t *pud;
 183        unsigned long next;
 184
 185        pud = pud_alloc(&init_mm, p4d, addr);
 186        if (!pud)
 187                return -ENOMEM;
 188        do {
 189                next = pud_addr_end(addr, end);
 190                if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 191                        return -ENOMEM;
 192        } while (pud++, addr = next, addr != end);
 193        return 0;
 194}
 195
 196static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
 197                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 198{
 199        p4d_t *p4d;
 200        unsigned long next;
 201
 202        p4d = p4d_alloc(&init_mm, pgd, addr);
 203        if (!p4d)
 204                return -ENOMEM;
 205        do {
 206                next = p4d_addr_end(addr, end);
 207                if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
 208                        return -ENOMEM;
 209        } while (p4d++, addr = next, addr != end);
 210        return 0;
 211}
 212
 213/*
 214 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 215 * will have pfns corresponding to the "pages" array.
 216 *
 217 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 218 */
 219static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 220                                   pgprot_t prot, struct page **pages)
 221{
 222        pgd_t *pgd;
 223        unsigned long next;
 224        unsigned long addr = start;
 225        int err = 0;
 226        int nr = 0;
 227
 228        BUG_ON(addr >= end);
 229        pgd = pgd_offset_k(addr);
 230        do {
 231                next = pgd_addr_end(addr, end);
 232                err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
 233                if (err)
 234                        return err;
 235        } while (pgd++, addr = next, addr != end);
 236
 237        return nr;
 238}
 239
 240static int vmap_page_range(unsigned long start, unsigned long end,
 241                           pgprot_t prot, struct page **pages)
 242{
 243        int ret;
 244
 245        ret = vmap_page_range_noflush(start, end, prot, pages);
 246        flush_cache_vmap(start, end);
 247        return ret;
 248}
 249
 250int is_vmalloc_or_module_addr(const void *x)
 251{
 252        /*
 253         * ARM, x86-64 and sparc64 put modules in a special place,
 254         * and fall back on vmalloc() if that fails. Others
 255         * just put it in the vmalloc space.
 256         */
 257#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 258        unsigned long addr = (unsigned long)x;
 259        if (addr >= MODULES_VADDR && addr < MODULES_END)
 260                return 1;
 261#endif
 262        return is_vmalloc_addr(x);
 263}
 264
 265/*
 266 * Walk a vmap address to the struct page it maps.
 267 */
 268struct page *vmalloc_to_page(const void *vmalloc_addr)
 269{
 270        unsigned long addr = (unsigned long) vmalloc_addr;
 271        struct page *page = NULL;
 272        pgd_t *pgd = pgd_offset_k(addr);
 273        p4d_t *p4d;
 274        pud_t *pud;
 275        pmd_t *pmd;
 276        pte_t *ptep, pte;
 277
 278        /*
 279         * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 280         * architectures that do not vmalloc module space
 281         */
 282        VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 283
 284        if (pgd_none(*pgd))
 285                return NULL;
 286        p4d = p4d_offset(pgd, addr);
 287        if (p4d_none(*p4d))
 288                return NULL;
 289        pud = pud_offset(p4d, addr);
 290
 291        /*
 292         * Don't dereference bad PUD or PMD (below) entries. This will also
 293         * identify huge mappings, which we may encounter on architectures
 294         * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
 295         * identified as vmalloc addresses by is_vmalloc_addr(), but are
 296         * not [unambiguously] associated with a struct page, so there is
 297         * no correct value to return for them.
 298         */
 299        WARN_ON_ONCE(pud_bad(*pud));
 300        if (pud_none(*pud) || pud_bad(*pud))
 301                return NULL;
 302        pmd = pmd_offset(pud, addr);
 303        WARN_ON_ONCE(pmd_bad(*pmd));
 304        if (pmd_none(*pmd) || pmd_bad(*pmd))
 305                return NULL;
 306
 307        ptep = pte_offset_map(pmd, addr);
 308        pte = *ptep;
 309        if (pte_present(pte))
 310                page = pte_page(pte);
 311        pte_unmap(ptep);
 312        return page;
 313}
 314EXPORT_SYMBOL(vmalloc_to_page);
 315
 316/*
 317 * Map a vmalloc()-space virtual address to the physical page frame number.
 318 */
 319unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 320{
 321        return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 322}
 323EXPORT_SYMBOL(vmalloc_to_pfn);
 324
 325
 326/*** Global kva allocator ***/
 327
 328#define VM_LAZY_FREE    0x02
 329#define VM_VM_AREA      0x04
 330
 331static DEFINE_SPINLOCK(vmap_area_lock);
 332/* Export for kexec only */
 333LIST_HEAD(vmap_area_list);
 334static LLIST_HEAD(vmap_purge_list);
 335static struct rb_root vmap_area_root = RB_ROOT;
 336
 337/* The vmap cache globals are protected by vmap_area_lock */
 338static struct rb_node *free_vmap_cache;
 339static unsigned long cached_hole_size;
 340static unsigned long cached_vstart;
 341static unsigned long cached_align;
 342
 343static unsigned long vmap_area_pcpu_hole;
 344
 345static struct vmap_area *__find_vmap_area(unsigned long addr)
 346{
 347        struct rb_node *n = vmap_area_root.rb_node;
 348
 349        while (n) {
 350                struct vmap_area *va;
 351
 352                va = rb_entry(n, struct vmap_area, rb_node);
 353                if (addr < va->va_start)
 354                        n = n->rb_left;
 355                else if (addr >= va->va_end)
 356                        n = n->rb_right;
 357                else
 358                        return va;
 359        }
 360
 361        return NULL;
 362}
 363
 364static void __insert_vmap_area(struct vmap_area *va)
 365{
 366        struct rb_node **p = &vmap_area_root.rb_node;
 367        struct rb_node *parent = NULL;
 368        struct rb_node *tmp;
 369
 370        while (*p) {
 371                struct vmap_area *tmp_va;
 372
 373                parent = *p;
 374                tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 375                if (va->va_start < tmp_va->va_end)
 376                        p = &(*p)->rb_left;
 377                else if (va->va_end > tmp_va->va_start)
 378                        p = &(*p)->rb_right;
 379                else
 380                        BUG();
 381        }
 382
 383        rb_link_node(&va->rb_node, parent, p);
 384        rb_insert_color(&va->rb_node, &vmap_area_root);
 385
 386        /* address-sort this list */
 387        tmp = rb_prev(&va->rb_node);
 388        if (tmp) {
 389                struct vmap_area *prev;
 390                prev = rb_entry(tmp, struct vmap_area, rb_node);
 391                list_add_rcu(&va->list, &prev->list);
 392        } else
 393                list_add_rcu(&va->list, &vmap_area_list);
 394}
 395
 396static void purge_vmap_area_lazy(void);
 397
 398static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 399
 400/*
 401 * Allocate a region of KVA of the specified size and alignment, within the
 402 * vstart and vend.
 403 */
 404static struct vmap_area *alloc_vmap_area(unsigned long size,
 405                                unsigned long align,
 406                                unsigned long vstart, unsigned long vend,
 407                                int node, gfp_t gfp_mask)
 408{
 409        struct vmap_area *va;
 410        struct rb_node *n;
 411        unsigned long addr;
 412        int purged = 0;
 413        struct vmap_area *first;
 414
 415        BUG_ON(!size);
 416        BUG_ON(offset_in_page(size));
 417        BUG_ON(!is_power_of_2(align));
 418
 419        might_sleep();
 420
 421        va = kmalloc_node(sizeof(struct vmap_area),
 422                        gfp_mask & GFP_RECLAIM_MASK, node);
 423        if (unlikely(!va))
 424                return ERR_PTR(-ENOMEM);
 425
 426        /*
 427         * Only scan the relevant parts containing pointers to other objects
 428         * to avoid false negatives.
 429         */
 430        kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
 431
 432retry:
 433        spin_lock(&vmap_area_lock);
 434        /*
 435         * Invalidate cache if we have more permissive parameters.
 436         * cached_hole_size notes the largest hole noticed _below_
 437         * the vmap_area cached in free_vmap_cache: if size fits
 438         * into that hole, we want to scan from vstart to reuse
 439         * the hole instead of allocating above free_vmap_cache.
 440         * Note that __free_vmap_area may update free_vmap_cache
 441         * without updating cached_hole_size or cached_align.
 442         */
 443        if (!free_vmap_cache ||
 444                        size < cached_hole_size ||
 445                        vstart < cached_vstart ||
 446                        align < cached_align) {
 447nocache:
 448                cached_hole_size = 0;
 449                free_vmap_cache = NULL;
 450        }
 451        /* record if we encounter less permissive parameters */
 452        cached_vstart = vstart;
 453        cached_align = align;
 454
 455        /* find starting point for our search */
 456        if (free_vmap_cache) {
 457                first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 458                addr = ALIGN(first->va_end, align);
 459                if (addr < vstart)
 460                        goto nocache;
 461                if (addr + size < addr)
 462                        goto overflow;
 463
 464        } else {
 465                addr = ALIGN(vstart, align);
 466                if (addr + size < addr)
 467                        goto overflow;
 468
 469                n = vmap_area_root.rb_node;
 470                first = NULL;
 471
 472                while (n) {
 473                        struct vmap_area *tmp;
 474                        tmp = rb_entry(n, struct vmap_area, rb_node);
 475                        if (tmp->va_end >= addr) {
 476                                first = tmp;
 477                                if (tmp->va_start <= addr)
 478                                        break;
 479                                n = n->rb_left;
 480                        } else
 481                                n = n->rb_right;
 482                }
 483
 484                if (!first)
 485                        goto found;
 486        }
 487
 488        /* from the starting point, walk areas until a suitable hole is found */
 489        while (addr + size > first->va_start && addr + size <= vend) {
 490                if (addr + cached_hole_size < first->va_start)
 491                        cached_hole_size = first->va_start - addr;
 492                addr = ALIGN(first->va_end, align);
 493                if (addr + size < addr)
 494                        goto overflow;
 495
 496                if (list_is_last(&first->list, &vmap_area_list))
 497                        goto found;
 498
 499                first = list_next_entry(first, list);
 500        }
 501
 502found:
 503        if (addr + size > vend)
 504                goto overflow;
 505
 506        va->va_start = addr;
 507        va->va_end = addr + size;
 508        va->flags = 0;
 509        __insert_vmap_area(va);
 510        free_vmap_cache = &va->rb_node;
 511        spin_unlock(&vmap_area_lock);
 512
 513        BUG_ON(!IS_ALIGNED(va->va_start, align));
 514        BUG_ON(va->va_start < vstart);
 515        BUG_ON(va->va_end > vend);
 516
 517        return va;
 518
 519overflow:
 520        spin_unlock(&vmap_area_lock);
 521        if (!purged) {
 522                purge_vmap_area_lazy();
 523                purged = 1;
 524                goto retry;
 525        }
 526
 527        if (gfpflags_allow_blocking(gfp_mask)) {
 528                unsigned long freed = 0;
 529                blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
 530                if (freed > 0) {
 531                        purged = 0;
 532                        goto retry;
 533                }
 534        }
 535
 536        if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
 537                pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
 538                        size);
 539        kfree(va);
 540        return ERR_PTR(-EBUSY);
 541}
 542
 543int register_vmap_purge_notifier(struct notifier_block *nb)
 544{
 545        return blocking_notifier_chain_register(&vmap_notify_list, nb);
 546}
 547EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
 548
 549int unregister_vmap_purge_notifier(struct notifier_block *nb)
 550{
 551        return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
 552}
 553EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
 554
 555static void __free_vmap_area(struct vmap_area *va)
 556{
 557        BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 558
 559        if (free_vmap_cache) {
 560                if (va->va_end < cached_vstart) {
 561                        free_vmap_cache = NULL;
 562                } else {
 563                        struct vmap_area *cache;
 564                        cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 565                        if (va->va_start <= cache->va_start) {
 566                                free_vmap_cache = rb_prev(&va->rb_node);
 567                                /*
 568                                 * We don't try to update cached_hole_size or
 569                                 * cached_align, but it won't go very wrong.
 570                                 */
 571                        }
 572                }
 573        }
 574        rb_erase(&va->rb_node, &vmap_area_root);
 575        RB_CLEAR_NODE(&va->rb_node);
 576        list_del_rcu(&va->list);
 577
 578        /*
 579         * Track the highest possible candidate for pcpu area
 580         * allocation.  Areas outside of vmalloc area can be returned
 581         * here too, consider only end addresses which fall inside
 582         * vmalloc area proper.
 583         */
 584        if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 585                vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 586
 587        kfree_rcu(va, rcu_head);
 588}
 589
 590/*
 591 * Free a region of KVA allocated by alloc_vmap_area
 592 */
 593static void free_vmap_area(struct vmap_area *va)
 594{
 595        spin_lock(&vmap_area_lock);
 596        __free_vmap_area(va);
 597        spin_unlock(&vmap_area_lock);
 598}
 599
 600/*
 601 * Clear the pagetable entries of a given vmap_area
 602 */
 603static void unmap_vmap_area(struct vmap_area *va)
 604{
 605        vunmap_page_range(va->va_start, va->va_end);
 606}
 607
 608static void vmap_debug_free_range(unsigned long start, unsigned long end)
 609{
 610        /*
 611         * Unmap page tables and force a TLB flush immediately if pagealloc
 612         * debugging is enabled.  This catches use after free bugs similarly to
 613         * those in linear kernel virtual address space after a page has been
 614         * freed.
 615         *
 616         * All the lazy freeing logic is still retained, in order to minimise
 617         * intrusiveness of this debugging feature.
 618         *
 619         * This is going to be *slow* (linear kernel virtual address debugging
 620         * doesn't do a broadcast TLB flush so it is a lot faster).
 621         */
 622        if (debug_pagealloc_enabled()) {
 623                vunmap_page_range(start, end);
 624                flush_tlb_kernel_range(start, end);
 625        }
 626}
 627
 628/*
 629 * lazy_max_pages is the maximum amount of virtual address space we gather up
 630 * before attempting to purge with a TLB flush.
 631 *
 632 * There is a tradeoff here: a larger number will cover more kernel page tables
 633 * and take slightly longer to purge, but it will linearly reduce the number of
 634 * global TLB flushes that must be performed. It would seem natural to scale
 635 * this number up linearly with the number of CPUs (because vmapping activity
 636 * could also scale linearly with the number of CPUs), however it is likely
 637 * that in practice, workloads might be constrained in other ways that mean
 638 * vmap activity will not scale linearly with CPUs. Also, I want to be
 639 * conservative and not introduce a big latency on huge systems, so go with
 640 * a less aggressive log scale. It will still be an improvement over the old
 641 * code, and it will be simple to change the scale factor if we find that it
 642 * becomes a problem on bigger systems.
 643 */
 644static unsigned long lazy_max_pages(void)
 645{
 646        unsigned int log;
 647
 648        log = fls(num_online_cpus());
 649
 650        return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 651}
 652
 653static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 654
 655/*
 656 * Serialize vmap purging.  There is no actual criticial section protected
 657 * by this look, but we want to avoid concurrent calls for performance
 658 * reasons and to make the pcpu_get_vm_areas more deterministic.
 659 */
 660static DEFINE_MUTEX(vmap_purge_lock);
 661
 662/* for per-CPU blocks */
 663static void purge_fragmented_blocks_allcpus(void);
 664
 665/*
 666 * called before a call to iounmap() if the caller wants vm_area_struct's
 667 * immediately freed.
 668 */
 669void set_iounmap_nonlazy(void)
 670{
 671        atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 672}
 673
 674/*
 675 * Purges all lazily-freed vmap areas.
 676 */
 677static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
 678{
 679        struct llist_node *valist;
 680        struct vmap_area *va;
 681        struct vmap_area *n_va;
 682        bool do_free = false;
 683
 684        lockdep_assert_held(&vmap_purge_lock);
 685
 686        valist = llist_del_all(&vmap_purge_list);
 687        llist_for_each_entry(va, valist, purge_list) {
 688                if (va->va_start < start)
 689                        start = va->va_start;
 690                if (va->va_end > end)
 691                        end = va->va_end;
 692                do_free = true;
 693        }
 694
 695        if (!do_free)
 696                return false;
 697
 698        flush_tlb_kernel_range(start, end);
 699
 700        spin_lock(&vmap_area_lock);
 701        llist_for_each_entry_safe(va, n_va, valist, purge_list) {
 702                int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
 703
 704                __free_vmap_area(va);
 705                atomic_sub(nr, &vmap_lazy_nr);
 706                cond_resched_lock(&vmap_area_lock);
 707        }
 708        spin_unlock(&vmap_area_lock);
 709        return true;
 710}
 711
 712/*
 713 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 714 * is already purging.
 715 */
 716static void try_purge_vmap_area_lazy(void)
 717{
 718        if (mutex_trylock(&vmap_purge_lock)) {
 719                __purge_vmap_area_lazy(ULONG_MAX, 0);
 720                mutex_unlock(&vmap_purge_lock);
 721        }
 722}
 723
 724/*
 725 * Kick off a purge of the outstanding lazy areas.
 726 */
 727static void purge_vmap_area_lazy(void)
 728{
 729        mutex_lock(&vmap_purge_lock);
 730        purge_fragmented_blocks_allcpus();
 731        __purge_vmap_area_lazy(ULONG_MAX, 0);
 732        mutex_unlock(&vmap_purge_lock);
 733}
 734
 735/*
 736 * Free a vmap area, caller ensuring that the area has been unmapped
 737 * and flush_cache_vunmap had been called for the correct range
 738 * previously.
 739 */
 740static void free_vmap_area_noflush(struct vmap_area *va)
 741{
 742        int nr_lazy;
 743
 744        nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
 745                                    &vmap_lazy_nr);
 746
 747        /* After this point, we may free va at any time */
 748        llist_add(&va->purge_list, &vmap_purge_list);
 749
 750        if (unlikely(nr_lazy > lazy_max_pages()))
 751                try_purge_vmap_area_lazy();
 752}
 753
 754/*
 755 * Free and unmap a vmap area
 756 */
 757static void free_unmap_vmap_area(struct vmap_area *va)
 758{
 759        flush_cache_vunmap(va->va_start, va->va_end);
 760        unmap_vmap_area(va);
 761        free_vmap_area_noflush(va);
 762}
 763
 764static struct vmap_area *find_vmap_area(unsigned long addr)
 765{
 766        struct vmap_area *va;
 767
 768        spin_lock(&vmap_area_lock);
 769        va = __find_vmap_area(addr);
 770        spin_unlock(&vmap_area_lock);
 771
 772        return va;
 773}
 774
 775/*** Per cpu kva allocator ***/
 776
 777/*
 778 * vmap space is limited especially on 32 bit architectures. Ensure there is
 779 * room for at least 16 percpu vmap blocks per CPU.
 780 */
 781/*
 782 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 783 * to #define VMALLOC_SPACE             (VMALLOC_END-VMALLOC_START). Guess
 784 * instead (we just need a rough idea)
 785 */
 786#if BITS_PER_LONG == 32
 787#define VMALLOC_SPACE           (128UL*1024*1024)
 788#else
 789#define VMALLOC_SPACE           (128UL*1024*1024*1024)
 790#endif
 791
 792#define VMALLOC_PAGES           (VMALLOC_SPACE / PAGE_SIZE)
 793#define VMAP_MAX_ALLOC          BITS_PER_LONG   /* 256K with 4K pages */
 794#define VMAP_BBMAP_BITS_MAX     1024    /* 4MB with 4K pages */
 795#define VMAP_BBMAP_BITS_MIN     (VMAP_MAX_ALLOC*2)
 796#define VMAP_MIN(x, y)          ((x) < (y) ? (x) : (y)) /* can't use min() */
 797#define VMAP_MAX(x, y)          ((x) > (y) ? (x) : (y)) /* can't use max() */
 798#define VMAP_BBMAP_BITS         \
 799                VMAP_MIN(VMAP_BBMAP_BITS_MAX,   \
 800                VMAP_MAX(VMAP_BBMAP_BITS_MIN,   \
 801                        VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 802
 803#define VMAP_BLOCK_SIZE         (VMAP_BBMAP_BITS * PAGE_SIZE)
 804
 805static bool vmap_initialized __read_mostly = false;
 806
 807struct vmap_block_queue {
 808        spinlock_t lock;
 809        struct list_head free;
 810};
 811
 812struct vmap_block {
 813        spinlock_t lock;
 814        struct vmap_area *va;
 815        unsigned long free, dirty;
 816        unsigned long dirty_min, dirty_max; /*< dirty range */
 817        struct list_head free_list;
 818        struct rcu_head rcu_head;
 819        struct list_head purge;
 820};
 821
 822/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 823static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 824
 825/*
 826 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 827 * in the free path. Could get rid of this if we change the API to return a
 828 * "cookie" from alloc, to be passed to free. But no big deal yet.
 829 */
 830static DEFINE_SPINLOCK(vmap_block_tree_lock);
 831static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 832
 833/*
 834 * We should probably have a fallback mechanism to allocate virtual memory
 835 * out of partially filled vmap blocks. However vmap block sizing should be
 836 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 837 * big problem.
 838 */
 839
 840static unsigned long addr_to_vb_idx(unsigned long addr)
 841{
 842        addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 843        addr /= VMAP_BLOCK_SIZE;
 844        return addr;
 845}
 846
 847static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
 848{
 849        unsigned long addr;
 850
 851        addr = va_start + (pages_off << PAGE_SHIFT);
 852        BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
 853        return (void *)addr;
 854}
 855
 856/**
 857 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 858 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 859 * @order:    how many 2^order pages should be occupied in newly allocated block
 860 * @gfp_mask: flags for the page level allocator
 861 *
 862 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
 863 */
 864static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
 865{
 866        struct vmap_block_queue *vbq;
 867        struct vmap_block *vb;
 868        struct vmap_area *va;
 869        unsigned long vb_idx;
 870        int node, err;
 871        void *vaddr;
 872
 873        node = numa_node_id();
 874
 875        vb = kmalloc_node(sizeof(struct vmap_block),
 876                        gfp_mask & GFP_RECLAIM_MASK, node);
 877        if (unlikely(!vb))
 878                return ERR_PTR(-ENOMEM);
 879
 880        va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 881                                        VMALLOC_START, VMALLOC_END,
 882                                        node, gfp_mask);
 883        if (IS_ERR(va)) {
 884                kfree(vb);
 885                return ERR_CAST(va);
 886        }
 887
 888        err = radix_tree_preload(gfp_mask);
 889        if (unlikely(err)) {
 890                kfree(vb);
 891                free_vmap_area(va);
 892                return ERR_PTR(err);
 893        }
 894
 895        vaddr = vmap_block_vaddr(va->va_start, 0);
 896        spin_lock_init(&vb->lock);
 897        vb->va = va;
 898        /* At least something should be left free */
 899        BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
 900        vb->free = VMAP_BBMAP_BITS - (1UL << order);
 901        vb->dirty = 0;
 902        vb->dirty_min = VMAP_BBMAP_BITS;
 903        vb->dirty_max = 0;
 904        INIT_LIST_HEAD(&vb->free_list);
 905
 906        vb_idx = addr_to_vb_idx(va->va_start);
 907        spin_lock(&vmap_block_tree_lock);
 908        err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 909        spin_unlock(&vmap_block_tree_lock);
 910        BUG_ON(err);
 911        radix_tree_preload_end();
 912
 913        vbq = &get_cpu_var(vmap_block_queue);
 914        spin_lock(&vbq->lock);
 915        list_add_tail_rcu(&vb->free_list, &vbq->free);
 916        spin_unlock(&vbq->lock);
 917        put_cpu_var(vmap_block_queue);
 918
 919        return vaddr;
 920}
 921
 922static void free_vmap_block(struct vmap_block *vb)
 923{
 924        struct vmap_block *tmp;
 925        unsigned long vb_idx;
 926
 927        vb_idx = addr_to_vb_idx(vb->va->va_start);
 928        spin_lock(&vmap_block_tree_lock);
 929        tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 930        spin_unlock(&vmap_block_tree_lock);
 931        BUG_ON(tmp != vb);
 932
 933        free_vmap_area_noflush(vb->va);
 934        kfree_rcu(vb, rcu_head);
 935}
 936
 937static void purge_fragmented_blocks(int cpu)
 938{
 939        LIST_HEAD(purge);
 940        struct vmap_block *vb;
 941        struct vmap_block *n_vb;
 942        struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 943
 944        rcu_read_lock();
 945        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 946
 947                if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 948                        continue;
 949
 950                spin_lock(&vb->lock);
 951                if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 952                        vb->free = 0; /* prevent further allocs after releasing lock */
 953                        vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 954                        vb->dirty_min = 0;
 955                        vb->dirty_max = VMAP_BBMAP_BITS;
 956                        spin_lock(&vbq->lock);
 957                        list_del_rcu(&vb->free_list);
 958                        spin_unlock(&vbq->lock);
 959                        spin_unlock(&vb->lock);
 960                        list_add_tail(&vb->purge, &purge);
 961                } else
 962                        spin_unlock(&vb->lock);
 963        }
 964        rcu_read_unlock();
 965
 966        list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 967                list_del(&vb->purge);
 968                free_vmap_block(vb);
 969        }
 970}
 971
 972static void purge_fragmented_blocks_allcpus(void)
 973{
 974        int cpu;
 975
 976        for_each_possible_cpu(cpu)
 977                purge_fragmented_blocks(cpu);
 978}
 979
 980static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 981{
 982        struct vmap_block_queue *vbq;
 983        struct vmap_block *vb;
 984        void *vaddr = NULL;
 985        unsigned int order;
 986
 987        BUG_ON(offset_in_page(size));
 988        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 989        if (WARN_ON(size == 0)) {
 990                /*
 991                 * Allocating 0 bytes isn't what caller wants since
 992                 * get_order(0) returns funny result. Just warn and terminate
 993                 * early.
 994                 */
 995                return NULL;
 996        }
 997        order = get_order(size);
 998
 999        rcu_read_lock();
1000        vbq = &get_cpu_var(vmap_block_queue);
1001        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1002                unsigned long pages_off;
1003
1004                spin_lock(&vb->lock);
1005                if (vb->free < (1UL << order)) {
1006                        spin_unlock(&vb->lock);
1007                        continue;
1008                }
1009
1010                pages_off = VMAP_BBMAP_BITS - vb->free;
1011                vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1012                vb->free -= 1UL << order;
1013                if (vb->free == 0) {
1014                        spin_lock(&vbq->lock);
1015                        list_del_rcu(&vb->free_list);
1016                        spin_unlock(&vbq->lock);
1017                }
1018
1019                spin_unlock(&vb->lock);
1020                break;
1021        }
1022
1023        put_cpu_var(vmap_block_queue);
1024        rcu_read_unlock();
1025
1026        /* Allocate new block if nothing was found */
1027        if (!vaddr)
1028                vaddr = new_vmap_block(order, gfp_mask);
1029
1030        return vaddr;
1031}
1032
1033static void vb_free(const void *addr, unsigned long size)
1034{
1035        unsigned long offset;
1036        unsigned long vb_idx;
1037        unsigned int order;
1038        struct vmap_block *vb;
1039
1040        BUG_ON(offset_in_page(size));
1041        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1042
1043        flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1044
1045        order = get_order(size);
1046
1047        offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1048        offset >>= PAGE_SHIFT;
1049
1050        vb_idx = addr_to_vb_idx((unsigned long)addr);
1051        rcu_read_lock();
1052        vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1053        rcu_read_unlock();
1054        BUG_ON(!vb);
1055
1056        vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1057
1058        spin_lock(&vb->lock);
1059
1060        /* Expand dirty range */
1061        vb->dirty_min = min(vb->dirty_min, offset);
1062        vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1063
1064        vb->dirty += 1UL << order;
1065        if (vb->dirty == VMAP_BBMAP_BITS) {
1066                BUG_ON(vb->free);
1067                spin_unlock(&vb->lock);
1068                free_vmap_block(vb);
1069        } else
1070                spin_unlock(&vb->lock);
1071}
1072
1073/**
1074 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1075 *
1076 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1077 * to amortize TLB flushing overheads. What this means is that any page you
1078 * have now, may, in a former life, have been mapped into kernel virtual
1079 * address by the vmap layer and so there might be some CPUs with TLB entries
1080 * still referencing that page (additional to the regular 1:1 kernel mapping).
1081 *
1082 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1083 * be sure that none of the pages we have control over will have any aliases
1084 * from the vmap layer.
1085 */
1086void vm_unmap_aliases(void)
1087{
1088        unsigned long start = ULONG_MAX, end = 0;
1089        int cpu;
1090        int flush = 0;
1091
1092        if (unlikely(!vmap_initialized))
1093                return;
1094
1095        might_sleep();
1096
1097        for_each_possible_cpu(cpu) {
1098                struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1099                struct vmap_block *vb;
1100
1101                rcu_read_lock();
1102                list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1103                        spin_lock(&vb->lock);
1104                        if (vb->dirty) {
1105                                unsigned long va_start = vb->va->va_start;
1106                                unsigned long s, e;
1107
1108                                s = va_start + (vb->dirty_min << PAGE_SHIFT);
1109                                e = va_start + (vb->dirty_max << PAGE_SHIFT);
1110
1111                                start = min(s, start);
1112                                end   = max(e, end);
1113
1114                                flush = 1;
1115                        }
1116                        spin_unlock(&vb->lock);
1117                }
1118                rcu_read_unlock();
1119        }
1120
1121        mutex_lock(&vmap_purge_lock);
1122        purge_fragmented_blocks_allcpus();
1123        if (!__purge_vmap_area_lazy(start, end) && flush)
1124                flush_tlb_kernel_range(start, end);
1125        mutex_unlock(&vmap_purge_lock);
1126}
1127EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1128
1129/**
1130 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1131 * @mem: the pointer returned by vm_map_ram
1132 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1133 */
1134void vm_unmap_ram(const void *mem, unsigned int count)
1135{
1136        unsigned long size = (unsigned long)count << PAGE_SHIFT;
1137        unsigned long addr = (unsigned long)mem;
1138        struct vmap_area *va;
1139
1140        might_sleep();
1141        BUG_ON(!addr);
1142        BUG_ON(addr < VMALLOC_START);
1143        BUG_ON(addr > VMALLOC_END);
1144        BUG_ON(!PAGE_ALIGNED(addr));
1145
1146        debug_check_no_locks_freed(mem, size);
1147        vmap_debug_free_range(addr, addr+size);
1148
1149        if (likely(count <= VMAP_MAX_ALLOC)) {
1150                vb_free(mem, size);
1151                return;
1152        }
1153
1154        va = find_vmap_area(addr);
1155        BUG_ON(!va);
1156        free_unmap_vmap_area(va);
1157}
1158EXPORT_SYMBOL(vm_unmap_ram);
1159
1160/**
1161 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1162 * @pages: an array of pointers to the pages to be mapped
1163 * @count: number of pages
1164 * @node: prefer to allocate data structures on this node
1165 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1166 *
1167 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1168 * faster than vmap so it's good.  But if you mix long-life and short-life
1169 * objects with vm_map_ram(), it could consume lots of address space through
1170 * fragmentation (especially on a 32bit machine).  You could see failures in
1171 * the end.  Please use this function for short-lived objects.
1172 *
1173 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1174 */
1175void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1176{
1177        unsigned long size = (unsigned long)count << PAGE_SHIFT;
1178        unsigned long addr;
1179        void *mem;
1180
1181        if (likely(count <= VMAP_MAX_ALLOC)) {
1182                mem = vb_alloc(size, GFP_KERNEL);
1183                if (IS_ERR(mem))
1184                        return NULL;
1185                addr = (unsigned long)mem;
1186        } else {
1187                struct vmap_area *va;
1188                va = alloc_vmap_area(size, PAGE_SIZE,
1189                                VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1190                if (IS_ERR(va))
1191                        return NULL;
1192
1193                addr = va->va_start;
1194                mem = (void *)addr;
1195        }
1196        if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1197                vm_unmap_ram(mem, count);
1198                return NULL;
1199        }
1200        return mem;
1201}
1202EXPORT_SYMBOL(vm_map_ram);
1203
1204static struct vm_struct *vmlist __initdata;
1205/**
1206 * vm_area_add_early - add vmap area early during boot
1207 * @vm: vm_struct to add
1208 *
1209 * This function is used to add fixed kernel vm area to vmlist before
1210 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1211 * should contain proper values and the other fields should be zero.
1212 *
1213 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1214 */
1215void __init vm_area_add_early(struct vm_struct *vm)
1216{
1217        struct vm_struct *tmp, **p;
1218
1219        BUG_ON(vmap_initialized);
1220        for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1221                if (tmp->addr >= vm->addr) {
1222                        BUG_ON(tmp->addr < vm->addr + vm->size);
1223                        break;
1224                } else
1225                        BUG_ON(tmp->addr + tmp->size > vm->addr);
1226        }
1227        vm->next = *p;
1228        *p = vm;
1229}
1230
1231/**
1232 * vm_area_register_early - register vmap area early during boot
1233 * @vm: vm_struct to register
1234 * @align: requested alignment
1235 *
1236 * This function is used to register kernel vm area before
1237 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1238 * proper values on entry and other fields should be zero.  On return,
1239 * vm->addr contains the allocated address.
1240 *
1241 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1242 */
1243void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1244{
1245        static size_t vm_init_off __initdata;
1246        unsigned long addr;
1247
1248        addr = ALIGN(VMALLOC_START + vm_init_off, align);
1249        vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1250
1251        vm->addr = (void *)addr;
1252
1253        vm_area_add_early(vm);
1254}
1255
1256void __init vmalloc_init(void)
1257{
1258        struct vmap_area *va;
1259        struct vm_struct *tmp;
1260        int i;
1261
1262        for_each_possible_cpu(i) {
1263                struct vmap_block_queue *vbq;
1264                struct vfree_deferred *p;
1265
1266                vbq = &per_cpu(vmap_block_queue, i);
1267                spin_lock_init(&vbq->lock);
1268                INIT_LIST_HEAD(&vbq->free);
1269                p = &per_cpu(vfree_deferred, i);
1270                init_llist_head(&p->list);
1271                INIT_WORK(&p->wq, free_work);
1272        }
1273
1274        /* Import existing vmlist entries. */
1275        for (tmp = vmlist; tmp; tmp = tmp->next) {
1276                va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1277                va->flags = VM_VM_AREA;
1278                va->va_start = (unsigned long)tmp->addr;
1279                va->va_end = va->va_start + tmp->size;
1280                va->vm = tmp;
1281                __insert_vmap_area(va);
1282        }
1283
1284        vmap_area_pcpu_hole = VMALLOC_END;
1285
1286        vmap_initialized = true;
1287}
1288
1289/**
1290 * map_kernel_range_noflush - map kernel VM area with the specified pages
1291 * @addr: start of the VM area to map
1292 * @size: size of the VM area to map
1293 * @prot: page protection flags to use
1294 * @pages: pages to map
1295 *
1296 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1297 * specify should have been allocated using get_vm_area() and its
1298 * friends.
1299 *
1300 * NOTE:
1301 * This function does NOT do any cache flushing.  The caller is
1302 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1303 * before calling this function.
1304 *
1305 * RETURNS:
1306 * The number of pages mapped on success, -errno on failure.
1307 */
1308int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1309                             pgprot_t prot, struct page **pages)
1310{
1311        return vmap_page_range_noflush(addr, addr + size, prot, pages);
1312}
1313
1314/**
1315 * unmap_kernel_range_noflush - unmap kernel VM area
1316 * @addr: start of the VM area to unmap
1317 * @size: size of the VM area to unmap
1318 *
1319 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1320 * specify should have been allocated using get_vm_area() and its
1321 * friends.
1322 *
1323 * NOTE:
1324 * This function does NOT do any cache flushing.  The caller is
1325 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1326 * before calling this function and flush_tlb_kernel_range() after.
1327 */
1328void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1329{
1330        vunmap_page_range(addr, addr + size);
1331}
1332EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1333
1334/**
1335 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1336 * @addr: start of the VM area to unmap
1337 * @size: size of the VM area to unmap
1338 *
1339 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1340 * the unmapping and tlb after.
1341 */
1342void unmap_kernel_range(unsigned long addr, unsigned long size)
1343{
1344        unsigned long end = addr + size;
1345
1346        flush_cache_vunmap(addr, end);
1347        vunmap_page_range(addr, end);
1348        flush_tlb_kernel_range(addr, end);
1349}
1350EXPORT_SYMBOL_GPL(unmap_kernel_range);
1351
1352int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1353{
1354        unsigned long addr = (unsigned long)area->addr;
1355        unsigned long end = addr + get_vm_area_size(area);
1356        int err;
1357
1358        err = vmap_page_range(addr, end, prot, pages);
1359
1360        return err > 0 ? 0 : err;
1361}
1362EXPORT_SYMBOL_GPL(map_vm_area);
1363
1364static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1365                              unsigned long flags, const void *caller)
1366{
1367        spin_lock(&vmap_area_lock);
1368        vm->flags = flags;
1369        vm->addr = (void *)va->va_start;
1370        vm->size = va->va_end - va->va_start;
1371        vm->caller = caller;
1372        va->vm = vm;
1373        va->flags |= VM_VM_AREA;
1374        spin_unlock(&vmap_area_lock);
1375}
1376
1377static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1378{
1379        /*
1380         * Before removing VM_UNINITIALIZED,
1381         * we should make sure that vm has proper values.
1382         * Pair with smp_rmb() in show_numa_info().
1383         */
1384        smp_wmb();
1385        vm->flags &= ~VM_UNINITIALIZED;
1386}
1387
1388static struct vm_struct *__get_vm_area_node(unsigned long size,
1389                unsigned long align, unsigned long flags, unsigned long start,
1390                unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1391{
1392        struct vmap_area *va;
1393        struct vm_struct *area;
1394
1395        BUG_ON(in_interrupt());
1396        size = PAGE_ALIGN(size);
1397        if (unlikely(!size))
1398                return NULL;
1399
1400        if (flags & VM_IOREMAP)
1401                align = 1ul << clamp_t(int, get_count_order_long(size),
1402                                       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1403
1404        area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1405        if (unlikely(!area))
1406                return NULL;
1407
1408        if (!(flags & VM_NO_GUARD))
1409                size += PAGE_SIZE;
1410
1411        va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1412        if (IS_ERR(va)) {
1413                kfree(area);
1414                return NULL;
1415        }
1416
1417        setup_vmalloc_vm(area, va, flags, caller);
1418
1419        return area;
1420}
1421
1422struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1423                                unsigned long start, unsigned long end)
1424{
1425        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1426                                  GFP_KERNEL, __builtin_return_address(0));
1427}
1428EXPORT_SYMBOL_GPL(__get_vm_area);
1429
1430struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1431                                       unsigned long start, unsigned long end,
1432                                       const void *caller)
1433{
1434        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1435                                  GFP_KERNEL, caller);
1436}
1437
1438/**
1439 *      get_vm_area  -  reserve a contiguous kernel virtual area
1440 *      @size:          size of the area
1441 *      @flags:         %VM_IOREMAP for I/O mappings or VM_ALLOC
1442 *
1443 *      Search an area of @size in the kernel virtual mapping area,
1444 *      and reserved it for out purposes.  Returns the area descriptor
1445 *      on success or %NULL on failure.
1446 */
1447struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1448{
1449        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1450                                  NUMA_NO_NODE, GFP_KERNEL,
1451                                  __builtin_return_address(0));
1452}
1453
1454struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1455                                const void *caller)
1456{
1457        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1458                                  NUMA_NO_NODE, GFP_KERNEL, caller);
1459}
1460
1461/**
1462 *      find_vm_area  -  find a continuous kernel virtual area
1463 *      @addr:          base address
1464 *
1465 *      Search for the kernel VM area starting at @addr, and return it.
1466 *      It is up to the caller to do all required locking to keep the returned
1467 *      pointer valid.
1468 */
1469struct vm_struct *find_vm_area(const void *addr)
1470{
1471        struct vmap_area *va;
1472
1473        va = find_vmap_area((unsigned long)addr);
1474        if (va && va->flags & VM_VM_AREA)
1475                return va->vm;
1476
1477        return NULL;
1478}
1479
1480/**
1481 *      remove_vm_area  -  find and remove a continuous kernel virtual area
1482 *      @addr:          base address
1483 *
1484 *      Search for the kernel VM area starting at @addr, and remove it.
1485 *      This function returns the found VM area, but using it is NOT safe
1486 *      on SMP machines, except for its size or flags.
1487 */
1488struct vm_struct *remove_vm_area(const void *addr)
1489{
1490        struct vmap_area *va;
1491
1492        might_sleep();
1493
1494        va = find_vmap_area((unsigned long)addr);
1495        if (va && va->flags & VM_VM_AREA) {
1496                struct vm_struct *vm = va->vm;
1497
1498                spin_lock(&vmap_area_lock);
1499                va->vm = NULL;
1500                va->flags &= ~VM_VM_AREA;
1501                va->flags |= VM_LAZY_FREE;
1502                spin_unlock(&vmap_area_lock);
1503
1504                vmap_debug_free_range(va->va_start, va->va_end);
1505                kasan_free_shadow(vm);
1506                free_unmap_vmap_area(va);
1507
1508                return vm;
1509        }
1510        return NULL;
1511}
1512
1513static void __vunmap(const void *addr, int deallocate_pages)
1514{
1515        struct vm_struct *area;
1516
1517        if (!addr)
1518                return;
1519
1520        if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1521                        addr))
1522                return;
1523
1524        area = remove_vm_area(addr);
1525        if (unlikely(!area)) {
1526                WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1527                                addr);
1528                return;
1529        }
1530
1531        debug_check_no_locks_freed(addr, get_vm_area_size(area));
1532        debug_check_no_obj_freed(addr, get_vm_area_size(area));
1533
1534        if (deallocate_pages) {
1535                int i;
1536
1537                for (i = 0; i < area->nr_pages; i++) {
1538                        struct page *page = area->pages[i];
1539
1540                        BUG_ON(!page);
1541                        __free_pages(page, 0);
1542                }
1543
1544                kvfree(area->pages);
1545        }
1546
1547        kfree(area);
1548        return;
1549}
1550
1551static inline void __vfree_deferred(const void *addr)
1552{
1553        /*
1554         * Use raw_cpu_ptr() because this can be called from preemptible
1555         * context. Preemption is absolutely fine here, because the llist_add()
1556         * implementation is lockless, so it works even if we are adding to
1557         * nother cpu's list.  schedule_work() should be fine with this too.
1558         */
1559        struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1560
1561        if (llist_add((struct llist_node *)addr, &p->list))
1562                schedule_work(&p->wq);
1563}
1564
1565/**
1566 *      vfree_atomic  -  release memory allocated by vmalloc()
1567 *      @addr:          memory base address
1568 *
1569 *      This one is just like vfree() but can be called in any atomic context
1570 *      except NMIs.
1571 */
1572void vfree_atomic(const void *addr)
1573{
1574        BUG_ON(in_nmi());
1575
1576        kmemleak_free(addr);
1577
1578        if (!addr)
1579                return;
1580        __vfree_deferred(addr);
1581}
1582
1583/**
1584 *      vfree  -  release memory allocated by vmalloc()
1585 *      @addr:          memory base address
1586 *
1587 *      Free the virtually continuous memory area starting at @addr, as
1588 *      obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1589 *      NULL, no operation is performed.
1590 *
1591 *      Must not be called in NMI context (strictly speaking, only if we don't
1592 *      have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1593 *      conventions for vfree() arch-depenedent would be a really bad idea)
1594 *
1595 *      NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1596 */
1597void vfree(const void *addr)
1598{
1599        BUG_ON(in_nmi());
1600
1601        kmemleak_free(addr);
1602
1603        if (!addr)
1604                return;
1605        if (unlikely(in_interrupt()))
1606                __vfree_deferred(addr);
1607        else
1608                __vunmap(addr, 1);
1609}
1610EXPORT_SYMBOL(vfree);
1611
1612/**
1613 *      vunmap  -  release virtual mapping obtained by vmap()
1614 *      @addr:          memory base address
1615 *
1616 *      Free the virtually contiguous memory area starting at @addr,
1617 *      which was created from the page array passed to vmap().
1618 *
1619 *      Must not be called in interrupt context.
1620 */
1621void vunmap(const void *addr)
1622{
1623        BUG_ON(in_interrupt());
1624        might_sleep();
1625        if (addr)
1626                __vunmap(addr, 0);
1627}
1628EXPORT_SYMBOL(vunmap);
1629
1630/**
1631 *      vmap  -  map an array of pages into virtually contiguous space
1632 *      @pages:         array of page pointers
1633 *      @count:         number of pages to map
1634 *      @flags:         vm_area->flags
1635 *      @prot:          page protection for the mapping
1636 *
1637 *      Maps @count pages from @pages into contiguous kernel virtual
1638 *      space.
1639 */
1640void *vmap(struct page **pages, unsigned int count,
1641                unsigned long flags, pgprot_t prot)
1642{
1643        struct vm_struct *area;
1644        unsigned long size;             /* In bytes */
1645
1646        might_sleep();
1647
1648        if (count > totalram_pages)
1649                return NULL;
1650
1651        size = (unsigned long)count << PAGE_SHIFT;
1652        area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1653        if (!area)
1654                return NULL;
1655
1656        if (map_vm_area(area, prot, pages)) {
1657                vunmap(area->addr);
1658                return NULL;
1659        }
1660
1661        return area->addr;
1662}
1663EXPORT_SYMBOL(vmap);
1664
1665static void *__vmalloc_node(unsigned long size, unsigned long align,
1666                            gfp_t gfp_mask, pgprot_t prot,
1667                            int node, const void *caller);
1668static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1669                                 pgprot_t prot, int node)
1670{
1671        struct page **pages;
1672        unsigned int nr_pages, array_size, i;
1673        const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1674        const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1675        const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1676                                        0 :
1677                                        __GFP_HIGHMEM;
1678
1679        nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1680        array_size = (nr_pages * sizeof(struct page *));
1681
1682        area->nr_pages = nr_pages;
1683        /* Please note that the recursion is strictly bounded. */
1684        if (array_size > PAGE_SIZE) {
1685                pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
1686                                PAGE_KERNEL, node, area->caller);
1687        } else {
1688                pages = kmalloc_node(array_size, nested_gfp, node);
1689        }
1690        area->pages = pages;
1691        if (!area->pages) {
1692                remove_vm_area(area->addr);
1693                kfree(area);
1694                return NULL;
1695        }
1696
1697        for (i = 0; i < area->nr_pages; i++) {
1698                struct page *page;
1699
1700                if (fatal_signal_pending(current)) {
1701                        area->nr_pages = i;
1702                        goto fail_no_warn;
1703                }
1704
1705                if (node == NUMA_NO_NODE)
1706                        page = alloc_page(alloc_mask|highmem_mask);
1707                else
1708                        page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
1709
1710                if (unlikely(!page)) {
1711                        /* Successfully allocated i pages, free them in __vunmap() */
1712                        area->nr_pages = i;
1713                        goto fail;
1714                }
1715                area->pages[i] = page;
1716                if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
1717                        cond_resched();
1718        }
1719
1720        if (map_vm_area(area, prot, pages))
1721                goto fail;
1722        return area->addr;
1723
1724fail:
1725        warn_alloc(gfp_mask, NULL,
1726                          "vmalloc: allocation failure, allocated %ld of %ld bytes",
1727                          (area->nr_pages*PAGE_SIZE), area->size);
1728fail_no_warn:
1729        vfree(area->addr);
1730        return NULL;
1731}
1732
1733/**
1734 *      __vmalloc_node_range  -  allocate virtually contiguous memory
1735 *      @size:          allocation size
1736 *      @align:         desired alignment
1737 *      @start:         vm area range start
1738 *      @end:           vm area range end
1739 *      @gfp_mask:      flags for the page level allocator
1740 *      @prot:          protection mask for the allocated pages
1741 *      @vm_flags:      additional vm area flags (e.g. %VM_NO_GUARD)
1742 *      @node:          node to use for allocation or NUMA_NO_NODE
1743 *      @caller:        caller's return address
1744 *
1745 *      Allocate enough pages to cover @size from the page level
1746 *      allocator with @gfp_mask flags.  Map them into contiguous
1747 *      kernel virtual space, using a pagetable protection of @prot.
1748 */
1749void *__vmalloc_node_range(unsigned long size, unsigned long align,
1750                        unsigned long start, unsigned long end, gfp_t gfp_mask,
1751                        pgprot_t prot, unsigned long vm_flags, int node,
1752                        const void *caller)
1753{
1754        struct vm_struct *area;
1755        void *addr;
1756        unsigned long real_size = size;
1757
1758        size = PAGE_ALIGN(size);
1759        if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1760                goto fail;
1761
1762        area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1763                                vm_flags, start, end, node, gfp_mask, caller);
1764        if (!area)
1765                goto fail;
1766
1767        addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1768        if (!addr)
1769                return NULL;
1770
1771        /*
1772         * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1773         * flag. It means that vm_struct is not fully initialized.
1774         * Now, it is fully initialized, so remove this flag here.
1775         */
1776        clear_vm_uninitialized_flag(area);
1777
1778        kmemleak_vmalloc(area, size, gfp_mask);
1779
1780        return addr;
1781
1782fail:
1783        warn_alloc(gfp_mask, NULL,
1784                          "vmalloc: allocation failure: %lu bytes", real_size);
1785        return NULL;
1786}
1787
1788/**
1789 *      __vmalloc_node  -  allocate virtually contiguous memory
1790 *      @size:          allocation size
1791 *      @align:         desired alignment
1792 *      @gfp_mask:      flags for the page level allocator
1793 *      @prot:          protection mask for the allocated pages
1794 *      @node:          node to use for allocation or NUMA_NO_NODE
1795 *      @caller:        caller's return address
1796 *
1797 *      Allocate enough pages to cover @size from the page level
1798 *      allocator with @gfp_mask flags.  Map them into contiguous
1799 *      kernel virtual space, using a pagetable protection of @prot.
1800 *
1801 *      Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1802 *      and __GFP_NOFAIL are not supported
1803 *
1804 *      Any use of gfp flags outside of GFP_KERNEL should be consulted
1805 *      with mm people.
1806 *
1807 */
1808static void *__vmalloc_node(unsigned long size, unsigned long align,
1809                            gfp_t gfp_mask, pgprot_t prot,
1810                            int node, const void *caller)
1811{
1812        return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1813                                gfp_mask, prot, 0, node, caller);
1814}
1815
1816void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1817{
1818        return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1819                                __builtin_return_address(0));
1820}
1821EXPORT_SYMBOL(__vmalloc);
1822
1823static inline void *__vmalloc_node_flags(unsigned long size,
1824                                        int node, gfp_t flags)
1825{
1826        return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1827                                        node, __builtin_return_address(0));
1828}
1829
1830
1831void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1832                                  void *caller)
1833{
1834        return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1835}
1836
1837/**
1838 *      vmalloc  -  allocate virtually contiguous memory
1839 *      @size:          allocation size
1840 *      Allocate enough pages to cover @size from the page level
1841 *      allocator and map them into contiguous kernel virtual space.
1842 *
1843 *      For tight control over page level allocator and protection flags
1844 *      use __vmalloc() instead.
1845 */
1846void *vmalloc(unsigned long size)
1847{
1848        return __vmalloc_node_flags(size, NUMA_NO_NODE,
1849                                    GFP_KERNEL);
1850}
1851EXPORT_SYMBOL(vmalloc);
1852
1853/**
1854 *      vzalloc - allocate virtually contiguous memory with zero fill
1855 *      @size:  allocation size
1856 *      Allocate enough pages to cover @size from the page level
1857 *      allocator and map them into contiguous kernel virtual space.
1858 *      The memory allocated is set to zero.
1859 *
1860 *      For tight control over page level allocator and protection flags
1861 *      use __vmalloc() instead.
1862 */
1863void *vzalloc(unsigned long size)
1864{
1865        return __vmalloc_node_flags(size, NUMA_NO_NODE,
1866                                GFP_KERNEL | __GFP_ZERO);
1867}
1868EXPORT_SYMBOL(vzalloc);
1869
1870/**
1871 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1872 * @size: allocation size
1873 *
1874 * The resulting memory area is zeroed so it can be mapped to userspace
1875 * without leaking data.
1876 */
1877void *vmalloc_user(unsigned long size)
1878{
1879        struct vm_struct *area;
1880        void *ret;
1881
1882        ret = __vmalloc_node(size, SHMLBA,
1883                             GFP_KERNEL | __GFP_ZERO,
1884                             PAGE_KERNEL, NUMA_NO_NODE,
1885                             __builtin_return_address(0));
1886        if (ret) {
1887                area = find_vm_area(ret);
1888                area->flags |= VM_USERMAP;
1889        }
1890        return ret;
1891}
1892EXPORT_SYMBOL(vmalloc_user);
1893
1894/**
1895 *      vmalloc_node  -  allocate memory on a specific node
1896 *      @size:          allocation size
1897 *      @node:          numa node
1898 *
1899 *      Allocate enough pages to cover @size from the page level
1900 *      allocator and map them into contiguous kernel virtual space.
1901 *
1902 *      For tight control over page level allocator and protection flags
1903 *      use __vmalloc() instead.
1904 */
1905void *vmalloc_node(unsigned long size, int node)
1906{
1907        return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
1908                                        node, __builtin_return_address(0));
1909}
1910EXPORT_SYMBOL(vmalloc_node);
1911
1912/**
1913 * vzalloc_node - allocate memory on a specific node with zero fill
1914 * @size:       allocation size
1915 * @node:       numa node
1916 *
1917 * Allocate enough pages to cover @size from the page level
1918 * allocator and map them into contiguous kernel virtual space.
1919 * The memory allocated is set to zero.
1920 *
1921 * For tight control over page level allocator and protection flags
1922 * use __vmalloc_node() instead.
1923 */
1924void *vzalloc_node(unsigned long size, int node)
1925{
1926        return __vmalloc_node_flags(size, node,
1927                         GFP_KERNEL | __GFP_ZERO);
1928}
1929EXPORT_SYMBOL(vzalloc_node);
1930
1931#ifndef PAGE_KERNEL_EXEC
1932# define PAGE_KERNEL_EXEC PAGE_KERNEL
1933#endif
1934
1935/**
1936 *      vmalloc_exec  -  allocate virtually contiguous, executable memory
1937 *      @size:          allocation size
1938 *
1939 *      Kernel-internal function to allocate enough pages to cover @size
1940 *      the page level allocator and map them into contiguous and
1941 *      executable kernel virtual space.
1942 *
1943 *      For tight control over page level allocator and protection flags
1944 *      use __vmalloc() instead.
1945 */
1946
1947void *vmalloc_exec(unsigned long size)
1948{
1949        return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
1950                              NUMA_NO_NODE, __builtin_return_address(0));
1951}
1952
1953#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1954#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1955#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1956#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1957#else
1958#define GFP_VMALLOC32 GFP_KERNEL
1959#endif
1960
1961/**
1962 *      vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1963 *      @size:          allocation size
1964 *
1965 *      Allocate enough 32bit PA addressable pages to cover @size from the
1966 *      page level allocator and map them into contiguous kernel virtual space.
1967 */
1968void *vmalloc_32(unsigned long size)
1969{
1970        return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1971                              NUMA_NO_NODE, __builtin_return_address(0));
1972}
1973EXPORT_SYMBOL(vmalloc_32);
1974
1975/**
1976 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1977 *      @size:          allocation size
1978 *
1979 * The resulting memory area is 32bit addressable and zeroed so it can be
1980 * mapped to userspace without leaking data.
1981 */
1982void *vmalloc_32_user(unsigned long size)
1983{
1984        struct vm_struct *area;
1985        void *ret;
1986
1987        ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1988                             NUMA_NO_NODE, __builtin_return_address(0));
1989        if (ret) {
1990                area = find_vm_area(ret);
1991                area->flags |= VM_USERMAP;
1992        }
1993        return ret;
1994}
1995EXPORT_SYMBOL(vmalloc_32_user);
1996
1997/*
1998 * small helper routine , copy contents to buf from addr.
1999 * If the page is not present, fill zero.
2000 */
2001
2002static int aligned_vread(char *buf, char *addr, unsigned long count)
2003{
2004        struct page *p;
2005        int copied = 0;
2006
2007        while (count) {
2008                unsigned long offset, length;
2009
2010                offset = offset_in_page(addr);
2011                length = PAGE_SIZE - offset;
2012                if (length > count)
2013                        length = count;
2014                p = vmalloc_to_page(addr);
2015                /*
2016                 * To do safe access to this _mapped_ area, we need
2017                 * lock. But adding lock here means that we need to add
2018                 * overhead of vmalloc()/vfree() calles for this _debug_
2019                 * interface, rarely used. Instead of that, we'll use
2020                 * kmap() and get small overhead in this access function.
2021                 */
2022                if (p) {
2023                        /*
2024                         * we can expect USER0 is not used (see vread/vwrite's
2025                         * function description)
2026                         */
2027                        void *map = kmap_atomic(p);
2028                        memcpy(buf, map + offset, length);
2029                        kunmap_atomic(map);
2030                } else
2031                        memset(buf, 0, length);
2032
2033                addr += length;
2034                buf += length;
2035                copied += length;
2036                count -= length;
2037        }
2038        return copied;
2039}
2040
2041static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2042{
2043        struct page *p;
2044        int copied = 0;
2045
2046        while (count) {
2047                unsigned long offset, length;
2048
2049                offset = offset_in_page(addr);
2050                length = PAGE_SIZE - offset;
2051                if (length > count)
2052                        length = count;
2053                p = vmalloc_to_page(addr);
2054                /*
2055                 * To do safe access to this _mapped_ area, we need
2056                 * lock. But adding lock here means that we need to add
2057                 * overhead of vmalloc()/vfree() calles for this _debug_
2058                 * interface, rarely used. Instead of that, we'll use
2059                 * kmap() and get small overhead in this access function.
2060                 */
2061                if (p) {
2062                        /*
2063                         * we can expect USER0 is not used (see vread/vwrite's
2064                         * function description)
2065                         */
2066                        void *map = kmap_atomic(p);
2067                        memcpy(map + offset, buf, length);
2068                        kunmap_atomic(map);
2069                }
2070                addr += length;
2071                buf += length;
2072                copied += length;
2073                count -= length;
2074        }
2075        return copied;
2076}
2077
2078/**
2079 *      vread() -  read vmalloc area in a safe way.
2080 *      @buf:           buffer for reading data
2081 *      @addr:          vm address.
2082 *      @count:         number of bytes to be read.
2083 *
2084 *      Returns # of bytes which addr and buf should be increased.
2085 *      (same number to @count). Returns 0 if [addr...addr+count) doesn't
2086 *      includes any intersect with alive vmalloc area.
2087 *
2088 *      This function checks that addr is a valid vmalloc'ed area, and
2089 *      copy data from that area to a given buffer. If the given memory range
2090 *      of [addr...addr+count) includes some valid address, data is copied to
2091 *      proper area of @buf. If there are memory holes, they'll be zero-filled.
2092 *      IOREMAP area is treated as memory hole and no copy is done.
2093 *
2094 *      If [addr...addr+count) doesn't includes any intersects with alive
2095 *      vm_struct area, returns 0. @buf should be kernel's buffer.
2096 *
2097 *      Note: In usual ops, vread() is never necessary because the caller
2098 *      should know vmalloc() area is valid and can use memcpy().
2099 *      This is for routines which have to access vmalloc area without
2100 *      any informaion, as /dev/kmem.
2101 *
2102 */
2103
2104long vread(char *buf, char *addr, unsigned long count)
2105{
2106        struct vmap_area *va;
2107        struct vm_struct *vm;
2108        char *vaddr, *buf_start = buf;
2109        unsigned long buflen = count;
2110        unsigned long n;
2111
2112        /* Don't allow overflow */
2113        if ((unsigned long) addr + count < count)
2114                count = -(unsigned long) addr;
2115
2116        spin_lock(&vmap_area_lock);
2117        list_for_each_entry(va, &vmap_area_list, list) {
2118                if (!count)
2119                        break;
2120
2121                if (!(va->flags & VM_VM_AREA))
2122                        continue;
2123
2124                vm = va->vm;
2125                vaddr = (char *) vm->addr;
2126                if (addr >= vaddr + get_vm_area_size(vm))
2127                        continue;
2128                while (addr < vaddr) {
2129                        if (count == 0)
2130                                goto finished;
2131                        *buf = '\0';
2132                        buf++;
2133                        addr++;
2134                        count--;
2135                }
2136                n = vaddr + get_vm_area_size(vm) - addr;
2137                if (n > count)
2138                        n = count;
2139                if (!(vm->flags & VM_IOREMAP))
2140                        aligned_vread(buf, addr, n);
2141                else /* IOREMAP area is treated as memory hole */
2142                        memset(buf, 0, n);
2143                buf += n;
2144                addr += n;
2145                count -= n;
2146        }
2147finished:
2148        spin_unlock(&vmap_area_lock);
2149
2150        if (buf == buf_start)
2151                return 0;
2152        /* zero-fill memory holes */
2153        if (buf != buf_start + buflen)
2154                memset(buf, 0, buflen - (buf - buf_start));
2155
2156        return buflen;
2157}
2158
2159/**
2160 *      vwrite() -  write vmalloc area in a safe way.
2161 *      @buf:           buffer for source data
2162 *      @addr:          vm address.
2163 *      @count:         number of bytes to be read.
2164 *
2165 *      Returns # of bytes which addr and buf should be incresed.
2166 *      (same number to @count).
2167 *      If [addr...addr+count) doesn't includes any intersect with valid
2168 *      vmalloc area, returns 0.
2169 *
2170 *      This function checks that addr is a valid vmalloc'ed area, and
2171 *      copy data from a buffer to the given addr. If specified range of
2172 *      [addr...addr+count) includes some valid address, data is copied from
2173 *      proper area of @buf. If there are memory holes, no copy to hole.
2174 *      IOREMAP area is treated as memory hole and no copy is done.
2175 *
2176 *      If [addr...addr+count) doesn't includes any intersects with alive
2177 *      vm_struct area, returns 0. @buf should be kernel's buffer.
2178 *
2179 *      Note: In usual ops, vwrite() is never necessary because the caller
2180 *      should know vmalloc() area is valid and can use memcpy().
2181 *      This is for routines which have to access vmalloc area without
2182 *      any informaion, as /dev/kmem.
2183 */
2184
2185long vwrite(char *buf, char *addr, unsigned long count)
2186{
2187        struct vmap_area *va;
2188        struct vm_struct *vm;
2189        char *vaddr;
2190        unsigned long n, buflen;
2191        int copied = 0;
2192
2193        /* Don't allow overflow */
2194        if ((unsigned long) addr + count < count)
2195                count = -(unsigned long) addr;
2196        buflen = count;
2197
2198        spin_lock(&vmap_area_lock);
2199        list_for_each_entry(va, &vmap_area_list, list) {
2200                if (!count)
2201                        break;
2202
2203                if (!(va->flags & VM_VM_AREA))
2204                        continue;
2205
2206                vm = va->vm;
2207                vaddr = (char *) vm->addr;
2208                if (addr >= vaddr + get_vm_area_size(vm))
2209                        continue;
2210                while (addr < vaddr) {
2211                        if (count == 0)
2212                                goto finished;
2213                        buf++;
2214                        addr++;
2215                        count--;
2216                }
2217                n = vaddr + get_vm_area_size(vm) - addr;
2218                if (n > count)
2219                        n = count;
2220                if (!(vm->flags & VM_IOREMAP)) {
2221                        aligned_vwrite(buf, addr, n);
2222                        copied++;
2223                }
2224                buf += n;
2225                addr += n;
2226                count -= n;
2227        }
2228finished:
2229        spin_unlock(&vmap_area_lock);
2230        if (!copied)
2231                return 0;
2232        return buflen;
2233}
2234
2235/**
2236 *      remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2237 *      @vma:           vma to cover
2238 *      @uaddr:         target user address to start at
2239 *      @kaddr:         virtual address of vmalloc kernel memory
2240 *      @size:          size of map area
2241 *
2242 *      Returns:        0 for success, -Exxx on failure
2243 *
2244 *      This function checks that @kaddr is a valid vmalloc'ed area,
2245 *      and that it is big enough to cover the range starting at
2246 *      @uaddr in @vma. Will return failure if that criteria isn't
2247 *      met.
2248 *
2249 *      Similar to remap_pfn_range() (see mm/memory.c)
2250 */
2251int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2252                                void *kaddr, unsigned long size)
2253{
2254        struct vm_struct *area;
2255
2256        size = PAGE_ALIGN(size);
2257
2258        if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2259                return -EINVAL;
2260
2261        area = find_vm_area(kaddr);
2262        if (!area)
2263                return -EINVAL;
2264
2265        if (!(area->flags & VM_USERMAP))
2266                return -EINVAL;
2267
2268        if (kaddr + size > area->addr + area->size)
2269                return -EINVAL;
2270
2271        do {
2272                struct page *page = vmalloc_to_page(kaddr);
2273                int ret;
2274
2275                ret = vm_insert_page(vma, uaddr, page);
2276                if (ret)
2277                        return ret;
2278
2279                uaddr += PAGE_SIZE;
2280                kaddr += PAGE_SIZE;
2281                size -= PAGE_SIZE;
2282        } while (size > 0);
2283
2284        vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2285
2286        return 0;
2287}
2288EXPORT_SYMBOL(remap_vmalloc_range_partial);
2289
2290/**
2291 *      remap_vmalloc_range  -  map vmalloc pages to userspace
2292 *      @vma:           vma to cover (map full range of vma)
2293 *      @addr:          vmalloc memory
2294 *      @pgoff:         number of pages into addr before first page to map
2295 *
2296 *      Returns:        0 for success, -Exxx on failure
2297 *
2298 *      This function checks that addr is a valid vmalloc'ed area, and
2299 *      that it is big enough to cover the vma. Will return failure if
2300 *      that criteria isn't met.
2301 *
2302 *      Similar to remap_pfn_range() (see mm/memory.c)
2303 */
2304int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2305                                                unsigned long pgoff)
2306{
2307        return remap_vmalloc_range_partial(vma, vma->vm_start,
2308                                           addr + (pgoff << PAGE_SHIFT),
2309                                           vma->vm_end - vma->vm_start);
2310}
2311EXPORT_SYMBOL(remap_vmalloc_range);
2312
2313/*
2314 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2315 * have one.
2316 */
2317void __weak vmalloc_sync_all(void)
2318{
2319}
2320
2321
2322static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2323{
2324        pte_t ***p = data;
2325
2326        if (p) {
2327                *(*p) = pte;
2328                (*p)++;
2329        }
2330        return 0;
2331}
2332
2333/**
2334 *      alloc_vm_area - allocate a range of kernel address space
2335 *      @size:          size of the area
2336 *      @ptes:          returns the PTEs for the address space
2337 *
2338 *      Returns:        NULL on failure, vm_struct on success
2339 *
2340 *      This function reserves a range of kernel address space, and
2341 *      allocates pagetables to map that range.  No actual mappings
2342 *      are created.
2343 *
2344 *      If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2345 *      allocated for the VM area are returned.
2346 */
2347struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2348{
2349        struct vm_struct *area;
2350
2351        area = get_vm_area_caller(size, VM_IOREMAP,
2352                                __builtin_return_address(0));
2353        if (area == NULL)
2354                return NULL;
2355
2356        /*
2357         * This ensures that page tables are constructed for this region
2358         * of kernel virtual address space and mapped into init_mm.
2359         */
2360        if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2361                                size, f, ptes ? &ptes : NULL)) {
2362                free_vm_area(area);
2363                return NULL;
2364        }
2365
2366        return area;
2367}
2368EXPORT_SYMBOL_GPL(alloc_vm_area);
2369
2370void free_vm_area(struct vm_struct *area)
2371{
2372        struct vm_struct *ret;
2373        ret = remove_vm_area(area->addr);
2374        BUG_ON(ret != area);
2375        kfree(area);
2376}
2377EXPORT_SYMBOL_GPL(free_vm_area);
2378
2379#ifdef CONFIG_SMP
2380static struct vmap_area *node_to_va(struct rb_node *n)
2381{
2382        return rb_entry_safe(n, struct vmap_area, rb_node);
2383}
2384
2385/**
2386 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2387 * @end: target address
2388 * @pnext: out arg for the next vmap_area
2389 * @pprev: out arg for the previous vmap_area
2390 *
2391 * Returns: %true if either or both of next and prev are found,
2392 *          %false if no vmap_area exists
2393 *
2394 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2395 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2396 */
2397static bool pvm_find_next_prev(unsigned long end,
2398                               struct vmap_area **pnext,
2399                               struct vmap_area **pprev)
2400{
2401        struct rb_node *n = vmap_area_root.rb_node;
2402        struct vmap_area *va = NULL;
2403
2404        while (n) {
2405                va = rb_entry(n, struct vmap_area, rb_node);
2406                if (end < va->va_end)
2407                        n = n->rb_left;
2408                else if (end > va->va_end)
2409                        n = n->rb_right;
2410                else
2411                        break;
2412        }
2413
2414        if (!va)
2415                return false;
2416
2417        if (va->va_end > end) {
2418                *pnext = va;
2419                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2420        } else {
2421                *pprev = va;
2422                *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2423        }
2424        return true;
2425}
2426
2427/**
2428 * pvm_determine_end - find the highest aligned address between two vmap_areas
2429 * @pnext: in/out arg for the next vmap_area
2430 * @pprev: in/out arg for the previous vmap_area
2431 * @align: alignment
2432 *
2433 * Returns: determined end address
2434 *
2435 * Find the highest aligned address between *@pnext and *@pprev below
2436 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2437 * down address is between the end addresses of the two vmap_areas.
2438 *
2439 * Please note that the address returned by this function may fall
2440 * inside *@pnext vmap_area.  The caller is responsible for checking
2441 * that.
2442 */
2443static unsigned long pvm_determine_end(struct vmap_area **pnext,
2444                                       struct vmap_area **pprev,
2445                                       unsigned long align)
2446{
2447        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2448        unsigned long addr;
2449
2450        if (*pnext)
2451                addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2452        else
2453                addr = vmalloc_end;
2454
2455        while (*pprev && (*pprev)->va_end > addr) {
2456                *pnext = *pprev;
2457                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2458        }
2459
2460        return addr;
2461}
2462
2463/**
2464 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2465 * @offsets: array containing offset of each area
2466 * @sizes: array containing size of each area
2467 * @nr_vms: the number of areas to allocate
2468 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2469 *
2470 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2471 *          vm_structs on success, %NULL on failure
2472 *
2473 * Percpu allocator wants to use congruent vm areas so that it can
2474 * maintain the offsets among percpu areas.  This function allocates
2475 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2476 * be scattered pretty far, distance between two areas easily going up
2477 * to gigabytes.  To avoid interacting with regular vmallocs, these
2478 * areas are allocated from top.
2479 *
2480 * Despite its complicated look, this allocator is rather simple.  It
2481 * does everything top-down and scans areas from the end looking for
2482 * matching slot.  While scanning, if any of the areas overlaps with
2483 * existing vmap_area, the base address is pulled down to fit the
2484 * area.  Scanning is repeated till all the areas fit and then all
2485 * necessary data structres are inserted and the result is returned.
2486 */
2487struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2488                                     const size_t *sizes, int nr_vms,
2489                                     size_t align)
2490{
2491        const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2492        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2493        struct vmap_area **vas, *prev, *next;
2494        struct vm_struct **vms;
2495        int area, area2, last_area, term_area;
2496        unsigned long base, start, end, last_end;
2497        bool purged = false;
2498
2499        /* verify parameters and allocate data structures */
2500        BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2501        for (last_area = 0, area = 0; area < nr_vms; area++) {
2502                start = offsets[area];
2503                end = start + sizes[area];
2504
2505                /* is everything aligned properly? */
2506                BUG_ON(!IS_ALIGNED(offsets[area], align));
2507                BUG_ON(!IS_ALIGNED(sizes[area], align));
2508
2509                /* detect the area with the highest address */
2510                if (start > offsets[last_area])
2511                        last_area = area;
2512
2513                for (area2 = 0; area2 < nr_vms; area2++) {
2514                        unsigned long start2 = offsets[area2];
2515                        unsigned long end2 = start2 + sizes[area2];
2516
2517                        if (area2 == area)
2518                                continue;
2519
2520                        BUG_ON(start2 >= start && start2 < end);
2521                        BUG_ON(end2 <= end && end2 > start);
2522                }
2523        }
2524        last_end = offsets[last_area] + sizes[last_area];
2525
2526        if (vmalloc_end - vmalloc_start < last_end) {
2527                WARN_ON(true);
2528                return NULL;
2529        }
2530
2531        vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2532        vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2533        if (!vas || !vms)
2534                goto err_free2;
2535
2536        for (area = 0; area < nr_vms; area++) {
2537                vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2538                vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2539                if (!vas[area] || !vms[area])
2540                        goto err_free;
2541        }
2542retry:
2543        spin_lock(&vmap_area_lock);
2544
2545        /* start scanning - we scan from the top, begin with the last area */
2546        area = term_area = last_area;
2547        start = offsets[area];
2548        end = start + sizes[area];
2549
2550        if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2551                base = vmalloc_end - last_end;
2552                goto found;
2553        }
2554        base = pvm_determine_end(&next, &prev, align) - end;
2555
2556        while (true) {
2557                BUG_ON(next && next->va_end <= base + end);
2558                BUG_ON(prev && prev->va_end > base + end);
2559
2560                /*
2561                 * base might have underflowed, add last_end before
2562                 * comparing.
2563                 */
2564                if (base + last_end < vmalloc_start + last_end) {
2565                        spin_unlock(&vmap_area_lock);
2566                        if (!purged) {
2567                                purge_vmap_area_lazy();
2568                                purged = true;
2569                                goto retry;
2570                        }
2571                        goto err_free;
2572                }
2573
2574                /*
2575                 * If next overlaps, move base downwards so that it's
2576                 * right below next and then recheck.
2577                 */
2578                if (next && next->va_start < base + end) {
2579                        base = pvm_determine_end(&next, &prev, align) - end;
2580                        term_area = area;
2581                        continue;
2582                }
2583
2584                /*
2585                 * If prev overlaps, shift down next and prev and move
2586                 * base so that it's right below new next and then
2587                 * recheck.
2588                 */
2589                if (prev && prev->va_end > base + start)  {
2590                        next = prev;
2591                        prev = node_to_va(rb_prev(&next->rb_node));
2592                        base = pvm_determine_end(&next, &prev, align) - end;
2593                        term_area = area;
2594                        continue;
2595                }
2596
2597                /*
2598                 * This area fits, move on to the previous one.  If
2599                 * the previous one is the terminal one, we're done.
2600                 */
2601                area = (area + nr_vms - 1) % nr_vms;
2602                if (area == term_area)
2603                        break;
2604                start = offsets[area];
2605                end = start + sizes[area];
2606                pvm_find_next_prev(base + end, &next, &prev);
2607        }
2608found:
2609        /* we've found a fitting base, insert all va's */
2610        for (area = 0; area < nr_vms; area++) {
2611                struct vmap_area *va = vas[area];
2612
2613                va->va_start = base + offsets[area];
2614                va->va_end = va->va_start + sizes[area];
2615                __insert_vmap_area(va);
2616        }
2617
2618        vmap_area_pcpu_hole = base + offsets[last_area];
2619
2620        spin_unlock(&vmap_area_lock);
2621
2622        /* insert all vm's */
2623        for (area = 0; area < nr_vms; area++)
2624                setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2625                                 pcpu_get_vm_areas);
2626
2627        kfree(vas);
2628        return vms;
2629
2630err_free:
2631        for (area = 0; area < nr_vms; area++) {
2632                kfree(vas[area]);
2633                kfree(vms[area]);
2634        }
2635err_free2:
2636        kfree(vas);
2637        kfree(vms);
2638        return NULL;
2639}
2640
2641/**
2642 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2643 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2644 * @nr_vms: the number of allocated areas
2645 *
2646 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2647 */
2648void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2649{
2650        int i;
2651
2652        for (i = 0; i < nr_vms; i++)
2653                free_vm_area(vms[i]);
2654        kfree(vms);
2655}
2656#endif  /* CONFIG_SMP */
2657
2658#ifdef CONFIG_PROC_FS
2659static void *s_start(struct seq_file *m, loff_t *pos)
2660        __acquires(&vmap_area_lock)
2661{
2662        spin_lock(&vmap_area_lock);
2663        return seq_list_start(&vmap_area_list, *pos);
2664}
2665
2666static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2667{
2668        return seq_list_next(p, &vmap_area_list, pos);
2669}
2670
2671static void s_stop(struct seq_file *m, void *p)
2672        __releases(&vmap_area_lock)
2673{
2674        spin_unlock(&vmap_area_lock);
2675}
2676
2677static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2678{
2679        if (IS_ENABLED(CONFIG_NUMA)) {
2680                unsigned int nr, *counters = m->private;
2681
2682                if (!counters)
2683                        return;
2684
2685                if (v->flags & VM_UNINITIALIZED)
2686                        return;
2687                /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2688                smp_rmb();
2689
2690                memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2691
2692                for (nr = 0; nr < v->nr_pages; nr++)
2693                        counters[page_to_nid(v->pages[nr])]++;
2694
2695                for_each_node_state(nr, N_HIGH_MEMORY)
2696                        if (counters[nr])
2697                                seq_printf(m, " N%u=%u", nr, counters[nr]);
2698        }
2699}
2700
2701static int s_show(struct seq_file *m, void *p)
2702{
2703        struct vmap_area *va;
2704        struct vm_struct *v;
2705
2706        va = list_entry(p, struct vmap_area, list);
2707
2708        /*
2709         * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2710         * behalf of vmap area is being tear down or vm_map_ram allocation.
2711         */
2712        if (!(va->flags & VM_VM_AREA)) {
2713                seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2714                        (void *)va->va_start, (void *)va->va_end,
2715                        va->va_end - va->va_start,
2716                        va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2717
2718                return 0;
2719        }
2720
2721        v = va->vm;
2722
2723        seq_printf(m, "0x%pK-0x%pK %7ld",
2724                v->addr, v->addr + v->size, v->size);
2725
2726        if (v->caller)
2727                seq_printf(m, " %pS", v->caller);
2728
2729        if (v->nr_pages)
2730                seq_printf(m, " pages=%d", v->nr_pages);
2731
2732        if (v->phys_addr)
2733                seq_printf(m, " phys=%pa", &v->phys_addr);
2734
2735        if (v->flags & VM_IOREMAP)
2736                seq_puts(m, " ioremap");
2737
2738        if (v->flags & VM_ALLOC)
2739                seq_puts(m, " vmalloc");
2740
2741        if (v->flags & VM_MAP)
2742                seq_puts(m, " vmap");
2743
2744        if (v->flags & VM_USERMAP)
2745                seq_puts(m, " user");
2746
2747        if (is_vmalloc_addr(v->pages))
2748                seq_puts(m, " vpages");
2749
2750        show_numa_info(m, v);
2751        seq_putc(m, '\n');
2752        return 0;
2753}
2754
2755static const struct seq_operations vmalloc_op = {
2756        .start = s_start,
2757        .next = s_next,
2758        .stop = s_stop,
2759        .show = s_show,
2760};
2761
2762static int vmalloc_open(struct inode *inode, struct file *file)
2763{
2764        if (IS_ENABLED(CONFIG_NUMA))
2765                return seq_open_private(file, &vmalloc_op,
2766                                        nr_node_ids * sizeof(unsigned int));
2767        else
2768                return seq_open(file, &vmalloc_op);
2769}
2770
2771static const struct file_operations proc_vmalloc_operations = {
2772        .open           = vmalloc_open,
2773        .read           = seq_read,
2774        .llseek         = seq_lseek,
2775        .release        = seq_release_private,
2776};
2777
2778static int __init proc_vmalloc_init(void)
2779{
2780        proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2781        return 0;
2782}
2783module_init(proc_vmalloc_init);
2784
2785#endif
2786
2787