linux/mm/vmstat.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmstat.c
   3 *
   4 *  Manages VM statistics
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  zoned VM statistics
   8 *  Copyright (C) 2006 Silicon Graphics, Inc.,
   9 *              Christoph Lameter <christoph@lameter.com>
  10 *  Copyright (C) 2008-2014 Christoph Lameter
  11 */
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/err.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/cpu.h>
  18#include <linux/cpumask.h>
  19#include <linux/vmstat.h>
  20#include <linux/proc_fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/debugfs.h>
  23#include <linux/sched.h>
  24#include <linux/math64.h>
  25#include <linux/writeback.h>
  26#include <linux/compaction.h>
  27#include <linux/mm_inline.h>
  28#include <linux/page_ext.h>
  29#include <linux/page_owner.h>
  30
  31#include "internal.h"
  32
  33#ifdef CONFIG_VM_EVENT_COUNTERS
  34DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
  35EXPORT_PER_CPU_SYMBOL(vm_event_states);
  36
  37static void sum_vm_events(unsigned long *ret)
  38{
  39        int cpu;
  40        int i;
  41
  42        memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
  43
  44        for_each_online_cpu(cpu) {
  45                struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
  46
  47                for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
  48                        ret[i] += this->event[i];
  49        }
  50}
  51
  52/*
  53 * Accumulate the vm event counters across all CPUs.
  54 * The result is unavoidably approximate - it can change
  55 * during and after execution of this function.
  56*/
  57void all_vm_events(unsigned long *ret)
  58{
  59        get_online_cpus();
  60        sum_vm_events(ret);
  61        put_online_cpus();
  62}
  63EXPORT_SYMBOL_GPL(all_vm_events);
  64
  65/*
  66 * Fold the foreign cpu events into our own.
  67 *
  68 * This is adding to the events on one processor
  69 * but keeps the global counts constant.
  70 */
  71void vm_events_fold_cpu(int cpu)
  72{
  73        struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
  74        int i;
  75
  76        for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
  77                count_vm_events(i, fold_state->event[i]);
  78                fold_state->event[i] = 0;
  79        }
  80}
  81
  82#endif /* CONFIG_VM_EVENT_COUNTERS */
  83
  84/*
  85 * Manage combined zone based / global counters
  86 *
  87 * vm_stat contains the global counters
  88 */
  89atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
  90atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
  91EXPORT_SYMBOL(vm_zone_stat);
  92EXPORT_SYMBOL(vm_node_stat);
  93
  94#ifdef CONFIG_SMP
  95
  96int calculate_pressure_threshold(struct zone *zone)
  97{
  98        int threshold;
  99        int watermark_distance;
 100
 101        /*
 102         * As vmstats are not up to date, there is drift between the estimated
 103         * and real values. For high thresholds and a high number of CPUs, it
 104         * is possible for the min watermark to be breached while the estimated
 105         * value looks fine. The pressure threshold is a reduced value such
 106         * that even the maximum amount of drift will not accidentally breach
 107         * the min watermark
 108         */
 109        watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
 110        threshold = max(1, (int)(watermark_distance / num_online_cpus()));
 111
 112        /*
 113         * Maximum threshold is 125
 114         */
 115        threshold = min(125, threshold);
 116
 117        return threshold;
 118}
 119
 120int calculate_normal_threshold(struct zone *zone)
 121{
 122        int threshold;
 123        int mem;        /* memory in 128 MB units */
 124
 125        /*
 126         * The threshold scales with the number of processors and the amount
 127         * of memory per zone. More memory means that we can defer updates for
 128         * longer, more processors could lead to more contention.
 129         * fls() is used to have a cheap way of logarithmic scaling.
 130         *
 131         * Some sample thresholds:
 132         *
 133         * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
 134         * ------------------------------------------------------------------
 135         * 8            1               1       0.9-1 GB        4
 136         * 16           2               2       0.9-1 GB        4
 137         * 20           2               2       1-2 GB          5
 138         * 24           2               2       2-4 GB          6
 139         * 28           2               2       4-8 GB          7
 140         * 32           2               2       8-16 GB         8
 141         * 4            2               2       <128M           1
 142         * 30           4               3       2-4 GB          5
 143         * 48           4               3       8-16 GB         8
 144         * 32           8               4       1-2 GB          4
 145         * 32           8               4       0.9-1GB         4
 146         * 10           16              5       <128M           1
 147         * 40           16              5       900M            4
 148         * 70           64              7       2-4 GB          5
 149         * 84           64              7       4-8 GB          6
 150         * 108          512             9       4-8 GB          6
 151         * 125          1024            10      8-16 GB         8
 152         * 125          1024            10      16-32 GB        9
 153         */
 154
 155        mem = zone->managed_pages >> (27 - PAGE_SHIFT);
 156
 157        threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
 158
 159        /*
 160         * Maximum threshold is 125
 161         */
 162        threshold = min(125, threshold);
 163
 164        return threshold;
 165}
 166
 167/*
 168 * Refresh the thresholds for each zone.
 169 */
 170void refresh_zone_stat_thresholds(void)
 171{
 172        struct pglist_data *pgdat;
 173        struct zone *zone;
 174        int cpu;
 175        int threshold;
 176
 177        /* Zero current pgdat thresholds */
 178        for_each_online_pgdat(pgdat) {
 179                for_each_online_cpu(cpu) {
 180                        per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
 181                }
 182        }
 183
 184        for_each_populated_zone(zone) {
 185                struct pglist_data *pgdat = zone->zone_pgdat;
 186                unsigned long max_drift, tolerate_drift;
 187
 188                threshold = calculate_normal_threshold(zone);
 189
 190                for_each_online_cpu(cpu) {
 191                        int pgdat_threshold;
 192
 193                        per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 194                                                        = threshold;
 195
 196                        /* Base nodestat threshold on the largest populated zone. */
 197                        pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
 198                        per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
 199                                = max(threshold, pgdat_threshold);
 200                }
 201
 202                /*
 203                 * Only set percpu_drift_mark if there is a danger that
 204                 * NR_FREE_PAGES reports the low watermark is ok when in fact
 205                 * the min watermark could be breached by an allocation
 206                 */
 207                tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
 208                max_drift = num_online_cpus() * threshold;
 209                if (max_drift > tolerate_drift)
 210                        zone->percpu_drift_mark = high_wmark_pages(zone) +
 211                                        max_drift;
 212        }
 213}
 214
 215void set_pgdat_percpu_threshold(pg_data_t *pgdat,
 216                                int (*calculate_pressure)(struct zone *))
 217{
 218        struct zone *zone;
 219        int cpu;
 220        int threshold;
 221        int i;
 222
 223        for (i = 0; i < pgdat->nr_zones; i++) {
 224                zone = &pgdat->node_zones[i];
 225                if (!zone->percpu_drift_mark)
 226                        continue;
 227
 228                threshold = (*calculate_pressure)(zone);
 229                for_each_online_cpu(cpu)
 230                        per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 231                                                        = threshold;
 232        }
 233}
 234
 235/*
 236 * For use when we know that interrupts are disabled,
 237 * or when we know that preemption is disabled and that
 238 * particular counter cannot be updated from interrupt context.
 239 */
 240void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 241                           long delta)
 242{
 243        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 244        s8 __percpu *p = pcp->vm_stat_diff + item;
 245        long x;
 246        long t;
 247
 248        x = delta + __this_cpu_read(*p);
 249
 250        t = __this_cpu_read(pcp->stat_threshold);
 251
 252        if (unlikely(x > t || x < -t)) {
 253                zone_page_state_add(x, zone, item);
 254                x = 0;
 255        }
 256        __this_cpu_write(*p, x);
 257}
 258EXPORT_SYMBOL(__mod_zone_page_state);
 259
 260void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 261                                long delta)
 262{
 263        struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 264        s8 __percpu *p = pcp->vm_node_stat_diff + item;
 265        long x;
 266        long t;
 267
 268        x = delta + __this_cpu_read(*p);
 269
 270        t = __this_cpu_read(pcp->stat_threshold);
 271
 272        if (unlikely(x > t || x < -t)) {
 273                node_page_state_add(x, pgdat, item);
 274                x = 0;
 275        }
 276        __this_cpu_write(*p, x);
 277}
 278EXPORT_SYMBOL(__mod_node_page_state);
 279
 280/*
 281 * Optimized increment and decrement functions.
 282 *
 283 * These are only for a single page and therefore can take a struct page *
 284 * argument instead of struct zone *. This allows the inclusion of the code
 285 * generated for page_zone(page) into the optimized functions.
 286 *
 287 * No overflow check is necessary and therefore the differential can be
 288 * incremented or decremented in place which may allow the compilers to
 289 * generate better code.
 290 * The increment or decrement is known and therefore one boundary check can
 291 * be omitted.
 292 *
 293 * NOTE: These functions are very performance sensitive. Change only
 294 * with care.
 295 *
 296 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 297 * However, the code must first determine the differential location in a zone
 298 * based on the processor number and then inc/dec the counter. There is no
 299 * guarantee without disabling preemption that the processor will not change
 300 * in between and therefore the atomicity vs. interrupt cannot be exploited
 301 * in a useful way here.
 302 */
 303void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
 304{
 305        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 306        s8 __percpu *p = pcp->vm_stat_diff + item;
 307        s8 v, t;
 308
 309        v = __this_cpu_inc_return(*p);
 310        t = __this_cpu_read(pcp->stat_threshold);
 311        if (unlikely(v > t)) {
 312                s8 overstep = t >> 1;
 313
 314                zone_page_state_add(v + overstep, zone, item);
 315                __this_cpu_write(*p, -overstep);
 316        }
 317}
 318
 319void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 320{
 321        struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 322        s8 __percpu *p = pcp->vm_node_stat_diff + item;
 323        s8 v, t;
 324
 325        v = __this_cpu_inc_return(*p);
 326        t = __this_cpu_read(pcp->stat_threshold);
 327        if (unlikely(v > t)) {
 328                s8 overstep = t >> 1;
 329
 330                node_page_state_add(v + overstep, pgdat, item);
 331                __this_cpu_write(*p, -overstep);
 332        }
 333}
 334
 335void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
 336{
 337        __inc_zone_state(page_zone(page), item);
 338}
 339EXPORT_SYMBOL(__inc_zone_page_state);
 340
 341void __inc_node_page_state(struct page *page, enum node_stat_item item)
 342{
 343        __inc_node_state(page_pgdat(page), item);
 344}
 345EXPORT_SYMBOL(__inc_node_page_state);
 346
 347void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
 348{
 349        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 350        s8 __percpu *p = pcp->vm_stat_diff + item;
 351        s8 v, t;
 352
 353        v = __this_cpu_dec_return(*p);
 354        t = __this_cpu_read(pcp->stat_threshold);
 355        if (unlikely(v < - t)) {
 356                s8 overstep = t >> 1;
 357
 358                zone_page_state_add(v - overstep, zone, item);
 359                __this_cpu_write(*p, overstep);
 360        }
 361}
 362
 363void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 364{
 365        struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 366        s8 __percpu *p = pcp->vm_node_stat_diff + item;
 367        s8 v, t;
 368
 369        v = __this_cpu_dec_return(*p);
 370        t = __this_cpu_read(pcp->stat_threshold);
 371        if (unlikely(v < - t)) {
 372                s8 overstep = t >> 1;
 373
 374                node_page_state_add(v - overstep, pgdat, item);
 375                __this_cpu_write(*p, overstep);
 376        }
 377}
 378
 379void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
 380{
 381        __dec_zone_state(page_zone(page), item);
 382}
 383EXPORT_SYMBOL(__dec_zone_page_state);
 384
 385void __dec_node_page_state(struct page *page, enum node_stat_item item)
 386{
 387        __dec_node_state(page_pgdat(page), item);
 388}
 389EXPORT_SYMBOL(__dec_node_page_state);
 390
 391#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
 392/*
 393 * If we have cmpxchg_local support then we do not need to incur the overhead
 394 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 395 *
 396 * mod_state() modifies the zone counter state through atomic per cpu
 397 * operations.
 398 *
 399 * Overstep mode specifies how overstep should handled:
 400 *     0       No overstepping
 401 *     1       Overstepping half of threshold
 402 *     -1      Overstepping minus half of threshold
 403*/
 404static inline void mod_zone_state(struct zone *zone,
 405       enum zone_stat_item item, long delta, int overstep_mode)
 406{
 407        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 408        s8 __percpu *p = pcp->vm_stat_diff + item;
 409        long o, n, t, z;
 410
 411        do {
 412                z = 0;  /* overflow to zone counters */
 413
 414                /*
 415                 * The fetching of the stat_threshold is racy. We may apply
 416                 * a counter threshold to the wrong the cpu if we get
 417                 * rescheduled while executing here. However, the next
 418                 * counter update will apply the threshold again and
 419                 * therefore bring the counter under the threshold again.
 420                 *
 421                 * Most of the time the thresholds are the same anyways
 422                 * for all cpus in a zone.
 423                 */
 424                t = this_cpu_read(pcp->stat_threshold);
 425
 426                o = this_cpu_read(*p);
 427                n = delta + o;
 428
 429                if (n > t || n < -t) {
 430                        int os = overstep_mode * (t >> 1) ;
 431
 432                        /* Overflow must be added to zone counters */
 433                        z = n + os;
 434                        n = -os;
 435                }
 436        } while (this_cpu_cmpxchg(*p, o, n) != o);
 437
 438        if (z)
 439                zone_page_state_add(z, zone, item);
 440}
 441
 442void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 443                         long delta)
 444{
 445        mod_zone_state(zone, item, delta, 0);
 446}
 447EXPORT_SYMBOL(mod_zone_page_state);
 448
 449void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 450{
 451        mod_zone_state(page_zone(page), item, 1, 1);
 452}
 453EXPORT_SYMBOL(inc_zone_page_state);
 454
 455void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 456{
 457        mod_zone_state(page_zone(page), item, -1, -1);
 458}
 459EXPORT_SYMBOL(dec_zone_page_state);
 460
 461static inline void mod_node_state(struct pglist_data *pgdat,
 462       enum node_stat_item item, int delta, int overstep_mode)
 463{
 464        struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 465        s8 __percpu *p = pcp->vm_node_stat_diff + item;
 466        long o, n, t, z;
 467
 468        do {
 469                z = 0;  /* overflow to node counters */
 470
 471                /*
 472                 * The fetching of the stat_threshold is racy. We may apply
 473                 * a counter threshold to the wrong the cpu if we get
 474                 * rescheduled while executing here. However, the next
 475                 * counter update will apply the threshold again and
 476                 * therefore bring the counter under the threshold again.
 477                 *
 478                 * Most of the time the thresholds are the same anyways
 479                 * for all cpus in a node.
 480                 */
 481                t = this_cpu_read(pcp->stat_threshold);
 482
 483                o = this_cpu_read(*p);
 484                n = delta + o;
 485
 486                if (n > t || n < -t) {
 487                        int os = overstep_mode * (t >> 1) ;
 488
 489                        /* Overflow must be added to node counters */
 490                        z = n + os;
 491                        n = -os;
 492                }
 493        } while (this_cpu_cmpxchg(*p, o, n) != o);
 494
 495        if (z)
 496                node_page_state_add(z, pgdat, item);
 497}
 498
 499void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 500                                        long delta)
 501{
 502        mod_node_state(pgdat, item, delta, 0);
 503}
 504EXPORT_SYMBOL(mod_node_page_state);
 505
 506void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 507{
 508        mod_node_state(pgdat, item, 1, 1);
 509}
 510
 511void inc_node_page_state(struct page *page, enum node_stat_item item)
 512{
 513        mod_node_state(page_pgdat(page), item, 1, 1);
 514}
 515EXPORT_SYMBOL(inc_node_page_state);
 516
 517void dec_node_page_state(struct page *page, enum node_stat_item item)
 518{
 519        mod_node_state(page_pgdat(page), item, -1, -1);
 520}
 521EXPORT_SYMBOL(dec_node_page_state);
 522#else
 523/*
 524 * Use interrupt disable to serialize counter updates
 525 */
 526void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 527                         long delta)
 528{
 529        unsigned long flags;
 530
 531        local_irq_save(flags);
 532        __mod_zone_page_state(zone, item, delta);
 533        local_irq_restore(flags);
 534}
 535EXPORT_SYMBOL(mod_zone_page_state);
 536
 537void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 538{
 539        unsigned long flags;
 540        struct zone *zone;
 541
 542        zone = page_zone(page);
 543        local_irq_save(flags);
 544        __inc_zone_state(zone, item);
 545        local_irq_restore(flags);
 546}
 547EXPORT_SYMBOL(inc_zone_page_state);
 548
 549void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 550{
 551        unsigned long flags;
 552
 553        local_irq_save(flags);
 554        __dec_zone_page_state(page, item);
 555        local_irq_restore(flags);
 556}
 557EXPORT_SYMBOL(dec_zone_page_state);
 558
 559void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 560{
 561        unsigned long flags;
 562
 563        local_irq_save(flags);
 564        __inc_node_state(pgdat, item);
 565        local_irq_restore(flags);
 566}
 567EXPORT_SYMBOL(inc_node_state);
 568
 569void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 570                                        long delta)
 571{
 572        unsigned long flags;
 573
 574        local_irq_save(flags);
 575        __mod_node_page_state(pgdat, item, delta);
 576        local_irq_restore(flags);
 577}
 578EXPORT_SYMBOL(mod_node_page_state);
 579
 580void inc_node_page_state(struct page *page, enum node_stat_item item)
 581{
 582        unsigned long flags;
 583        struct pglist_data *pgdat;
 584
 585        pgdat = page_pgdat(page);
 586        local_irq_save(flags);
 587        __inc_node_state(pgdat, item);
 588        local_irq_restore(flags);
 589}
 590EXPORT_SYMBOL(inc_node_page_state);
 591
 592void dec_node_page_state(struct page *page, enum node_stat_item item)
 593{
 594        unsigned long flags;
 595
 596        local_irq_save(flags);
 597        __dec_node_page_state(page, item);
 598        local_irq_restore(flags);
 599}
 600EXPORT_SYMBOL(dec_node_page_state);
 601#endif
 602
 603/*
 604 * Fold a differential into the global counters.
 605 * Returns the number of counters updated.
 606 */
 607static int fold_diff(int *zone_diff, int *node_diff)
 608{
 609        int i;
 610        int changes = 0;
 611
 612        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 613                if (zone_diff[i]) {
 614                        atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
 615                        changes++;
 616        }
 617
 618        for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 619                if (node_diff[i]) {
 620                        atomic_long_add(node_diff[i], &vm_node_stat[i]);
 621                        changes++;
 622        }
 623        return changes;
 624}
 625
 626/*
 627 * Update the zone counters for the current cpu.
 628 *
 629 * Note that refresh_cpu_vm_stats strives to only access
 630 * node local memory. The per cpu pagesets on remote zones are placed
 631 * in the memory local to the processor using that pageset. So the
 632 * loop over all zones will access a series of cachelines local to
 633 * the processor.
 634 *
 635 * The call to zone_page_state_add updates the cachelines with the
 636 * statistics in the remote zone struct as well as the global cachelines
 637 * with the global counters. These could cause remote node cache line
 638 * bouncing and will have to be only done when necessary.
 639 *
 640 * The function returns the number of global counters updated.
 641 */
 642static int refresh_cpu_vm_stats(bool do_pagesets)
 643{
 644        struct pglist_data *pgdat;
 645        struct zone *zone;
 646        int i;
 647        int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 648        int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
 649        int changes = 0;
 650
 651        for_each_populated_zone(zone) {
 652                struct per_cpu_pageset __percpu *p = zone->pageset;
 653
 654                for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 655                        int v;
 656
 657                        v = this_cpu_xchg(p->vm_stat_diff[i], 0);
 658                        if (v) {
 659
 660                                atomic_long_add(v, &zone->vm_stat[i]);
 661                                global_zone_diff[i] += v;
 662#ifdef CONFIG_NUMA
 663                                /* 3 seconds idle till flush */
 664                                __this_cpu_write(p->expire, 3);
 665#endif
 666                        }
 667                }
 668#ifdef CONFIG_NUMA
 669                if (do_pagesets) {
 670                        cond_resched();
 671                        /*
 672                         * Deal with draining the remote pageset of this
 673                         * processor
 674                         *
 675                         * Check if there are pages remaining in this pageset
 676                         * if not then there is nothing to expire.
 677                         */
 678                        if (!__this_cpu_read(p->expire) ||
 679                               !__this_cpu_read(p->pcp.count))
 680                                continue;
 681
 682                        /*
 683                         * We never drain zones local to this processor.
 684                         */
 685                        if (zone_to_nid(zone) == numa_node_id()) {
 686                                __this_cpu_write(p->expire, 0);
 687                                continue;
 688                        }
 689
 690                        if (__this_cpu_dec_return(p->expire))
 691                                continue;
 692
 693                        if (__this_cpu_read(p->pcp.count)) {
 694                                drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
 695                                changes++;
 696                        }
 697                }
 698#endif
 699        }
 700
 701        for_each_online_pgdat(pgdat) {
 702                struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
 703
 704                for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
 705                        int v;
 706
 707                        v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
 708                        if (v) {
 709                                atomic_long_add(v, &pgdat->vm_stat[i]);
 710                                global_node_diff[i] += v;
 711                        }
 712                }
 713        }
 714
 715        changes += fold_diff(global_zone_diff, global_node_diff);
 716        return changes;
 717}
 718
 719/*
 720 * Fold the data for an offline cpu into the global array.
 721 * There cannot be any access by the offline cpu and therefore
 722 * synchronization is simplified.
 723 */
 724void cpu_vm_stats_fold(int cpu)
 725{
 726        struct pglist_data *pgdat;
 727        struct zone *zone;
 728        int i;
 729        int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 730        int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
 731
 732        for_each_populated_zone(zone) {
 733                struct per_cpu_pageset *p;
 734
 735                p = per_cpu_ptr(zone->pageset, cpu);
 736
 737                for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 738                        if (p->vm_stat_diff[i]) {
 739                                int v;
 740
 741                                v = p->vm_stat_diff[i];
 742                                p->vm_stat_diff[i] = 0;
 743                                atomic_long_add(v, &zone->vm_stat[i]);
 744                                global_zone_diff[i] += v;
 745                        }
 746        }
 747
 748        for_each_online_pgdat(pgdat) {
 749                struct per_cpu_nodestat *p;
 750
 751                p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
 752
 753                for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 754                        if (p->vm_node_stat_diff[i]) {
 755                                int v;
 756
 757                                v = p->vm_node_stat_diff[i];
 758                                p->vm_node_stat_diff[i] = 0;
 759                                atomic_long_add(v, &pgdat->vm_stat[i]);
 760                                global_node_diff[i] += v;
 761                        }
 762        }
 763
 764        fold_diff(global_zone_diff, global_node_diff);
 765}
 766
 767/*
 768 * this is only called if !populated_zone(zone), which implies no other users of
 769 * pset->vm_stat_diff[] exsist.
 770 */
 771void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
 772{
 773        int i;
 774
 775        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 776                if (pset->vm_stat_diff[i]) {
 777                        int v = pset->vm_stat_diff[i];
 778                        pset->vm_stat_diff[i] = 0;
 779                        atomic_long_add(v, &zone->vm_stat[i]);
 780                        atomic_long_add(v, &vm_zone_stat[i]);
 781                }
 782}
 783#endif
 784
 785#ifdef CONFIG_NUMA
 786/*
 787 * Determine the per node value of a stat item. This function
 788 * is called frequently in a NUMA machine, so try to be as
 789 * frugal as possible.
 790 */
 791unsigned long sum_zone_node_page_state(int node,
 792                                 enum zone_stat_item item)
 793{
 794        struct zone *zones = NODE_DATA(node)->node_zones;
 795        int i;
 796        unsigned long count = 0;
 797
 798        for (i = 0; i < MAX_NR_ZONES; i++)
 799                count += zone_page_state(zones + i, item);
 800
 801        return count;
 802}
 803
 804/*
 805 * Determine the per node value of a stat item.
 806 */
 807unsigned long node_page_state(struct pglist_data *pgdat,
 808                                enum node_stat_item item)
 809{
 810        long x = atomic_long_read(&pgdat->vm_stat[item]);
 811#ifdef CONFIG_SMP
 812        if (x < 0)
 813                x = 0;
 814#endif
 815        return x;
 816}
 817#endif
 818
 819#ifdef CONFIG_COMPACTION
 820
 821struct contig_page_info {
 822        unsigned long free_pages;
 823        unsigned long free_blocks_total;
 824        unsigned long free_blocks_suitable;
 825};
 826
 827/*
 828 * Calculate the number of free pages in a zone, how many contiguous
 829 * pages are free and how many are large enough to satisfy an allocation of
 830 * the target size. Note that this function makes no attempt to estimate
 831 * how many suitable free blocks there *might* be if MOVABLE pages were
 832 * migrated. Calculating that is possible, but expensive and can be
 833 * figured out from userspace
 834 */
 835static void fill_contig_page_info(struct zone *zone,
 836                                unsigned int suitable_order,
 837                                struct contig_page_info *info)
 838{
 839        unsigned int order;
 840
 841        info->free_pages = 0;
 842        info->free_blocks_total = 0;
 843        info->free_blocks_suitable = 0;
 844
 845        for (order = 0; order < MAX_ORDER; order++) {
 846                unsigned long blocks;
 847
 848                /* Count number of free blocks */
 849                blocks = zone->free_area[order].nr_free;
 850                info->free_blocks_total += blocks;
 851
 852                /* Count free base pages */
 853                info->free_pages += blocks << order;
 854
 855                /* Count the suitable free blocks */
 856                if (order >= suitable_order)
 857                        info->free_blocks_suitable += blocks <<
 858                                                (order - suitable_order);
 859        }
 860}
 861
 862/*
 863 * A fragmentation index only makes sense if an allocation of a requested
 864 * size would fail. If that is true, the fragmentation index indicates
 865 * whether external fragmentation or a lack of memory was the problem.
 866 * The value can be used to determine if page reclaim or compaction
 867 * should be used
 868 */
 869static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
 870{
 871        unsigned long requested = 1UL << order;
 872
 873        if (!info->free_blocks_total)
 874                return 0;
 875
 876        /* Fragmentation index only makes sense when a request would fail */
 877        if (info->free_blocks_suitable)
 878                return -1000;
 879
 880        /*
 881         * Index is between 0 and 1 so return within 3 decimal places
 882         *
 883         * 0 => allocation would fail due to lack of memory
 884         * 1 => allocation would fail due to fragmentation
 885         */
 886        return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
 887}
 888
 889/* Same as __fragmentation index but allocs contig_page_info on stack */
 890int fragmentation_index(struct zone *zone, unsigned int order)
 891{
 892        struct contig_page_info info;
 893
 894        fill_contig_page_info(zone, order, &info);
 895        return __fragmentation_index(order, &info);
 896}
 897#endif
 898
 899#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
 900#ifdef CONFIG_ZONE_DMA
 901#define TEXT_FOR_DMA(xx) xx "_dma",
 902#else
 903#define TEXT_FOR_DMA(xx)
 904#endif
 905
 906#ifdef CONFIG_ZONE_DMA32
 907#define TEXT_FOR_DMA32(xx) xx "_dma32",
 908#else
 909#define TEXT_FOR_DMA32(xx)
 910#endif
 911
 912#ifdef CONFIG_HIGHMEM
 913#define TEXT_FOR_HIGHMEM(xx) xx "_high",
 914#else
 915#define TEXT_FOR_HIGHMEM(xx)
 916#endif
 917
 918#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
 919                                        TEXT_FOR_HIGHMEM(xx) xx "_movable",
 920
 921const char * const vmstat_text[] = {
 922        /* enum zone_stat_item countes */
 923        "nr_free_pages",
 924        "nr_zone_inactive_anon",
 925        "nr_zone_active_anon",
 926        "nr_zone_inactive_file",
 927        "nr_zone_active_file",
 928        "nr_zone_unevictable",
 929        "nr_zone_write_pending",
 930        "nr_mlock",
 931        "nr_page_table_pages",
 932        "nr_kernel_stack",
 933        "nr_bounce",
 934#if IS_ENABLED(CONFIG_ZSMALLOC)
 935        "nr_zspages",
 936#endif
 937#ifdef CONFIG_NUMA
 938        "numa_hit",
 939        "numa_miss",
 940        "numa_foreign",
 941        "numa_interleave",
 942        "numa_local",
 943        "numa_other",
 944#endif
 945        "nr_free_cma",
 946
 947        /* Node-based counters */
 948        "nr_inactive_anon",
 949        "nr_active_anon",
 950        "nr_inactive_file",
 951        "nr_active_file",
 952        "nr_unevictable",
 953        "nr_slab_reclaimable",
 954        "nr_slab_unreclaimable",
 955        "nr_isolated_anon",
 956        "nr_isolated_file",
 957        "workingset_refault",
 958        "workingset_activate",
 959        "workingset_nodereclaim",
 960        "nr_anon_pages",
 961        "nr_mapped",
 962        "nr_file_pages",
 963        "nr_dirty",
 964        "nr_writeback",
 965        "nr_writeback_temp",
 966        "nr_shmem",
 967        "nr_shmem_hugepages",
 968        "nr_shmem_pmdmapped",
 969        "nr_anon_transparent_hugepages",
 970        "nr_unstable",
 971        "nr_vmscan_write",
 972        "nr_vmscan_immediate_reclaim",
 973        "nr_dirtied",
 974        "nr_written",
 975
 976        /* enum writeback_stat_item counters */
 977        "nr_dirty_threshold",
 978        "nr_dirty_background_threshold",
 979
 980#ifdef CONFIG_VM_EVENT_COUNTERS
 981        /* enum vm_event_item counters */
 982        "pgpgin",
 983        "pgpgout",
 984        "pswpin",
 985        "pswpout",
 986
 987        TEXTS_FOR_ZONES("pgalloc")
 988        TEXTS_FOR_ZONES("allocstall")
 989        TEXTS_FOR_ZONES("pgskip")
 990
 991        "pgfree",
 992        "pgactivate",
 993        "pgdeactivate",
 994        "pglazyfree",
 995
 996        "pgfault",
 997        "pgmajfault",
 998        "pglazyfreed",
 999
1000        "pgrefill",
1001        "pgsteal_kswapd",
1002        "pgsteal_direct",
1003        "pgscan_kswapd",
1004        "pgscan_direct",
1005        "pgscan_direct_throttle",
1006
1007#ifdef CONFIG_NUMA
1008        "zone_reclaim_failed",
1009#endif
1010        "pginodesteal",
1011        "slabs_scanned",
1012        "kswapd_inodesteal",
1013        "kswapd_low_wmark_hit_quickly",
1014        "kswapd_high_wmark_hit_quickly",
1015        "pageoutrun",
1016
1017        "pgrotated",
1018
1019        "drop_pagecache",
1020        "drop_slab",
1021        "oom_kill",
1022
1023#ifdef CONFIG_NUMA_BALANCING
1024        "numa_pte_updates",
1025        "numa_huge_pte_updates",
1026        "numa_hint_faults",
1027        "numa_hint_faults_local",
1028        "numa_pages_migrated",
1029#endif
1030#ifdef CONFIG_MIGRATION
1031        "pgmigrate_success",
1032        "pgmigrate_fail",
1033#endif
1034#ifdef CONFIG_COMPACTION
1035        "compact_migrate_scanned",
1036        "compact_free_scanned",
1037        "compact_isolated",
1038        "compact_stall",
1039        "compact_fail",
1040        "compact_success",
1041        "compact_daemon_wake",
1042        "compact_daemon_migrate_scanned",
1043        "compact_daemon_free_scanned",
1044#endif
1045
1046#ifdef CONFIG_HUGETLB_PAGE
1047        "htlb_buddy_alloc_success",
1048        "htlb_buddy_alloc_fail",
1049#endif
1050        "unevictable_pgs_culled",
1051        "unevictable_pgs_scanned",
1052        "unevictable_pgs_rescued",
1053        "unevictable_pgs_mlocked",
1054        "unevictable_pgs_munlocked",
1055        "unevictable_pgs_cleared",
1056        "unevictable_pgs_stranded",
1057
1058#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1059        "thp_fault_alloc",
1060        "thp_fault_fallback",
1061        "thp_collapse_alloc",
1062        "thp_collapse_alloc_failed",
1063        "thp_file_alloc",
1064        "thp_file_mapped",
1065        "thp_split_page",
1066        "thp_split_page_failed",
1067        "thp_deferred_split_page",
1068        "thp_split_pmd",
1069#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1070        "thp_split_pud",
1071#endif
1072        "thp_zero_page_alloc",
1073        "thp_zero_page_alloc_failed",
1074#endif
1075#ifdef CONFIG_MEMORY_BALLOON
1076        "balloon_inflate",
1077        "balloon_deflate",
1078#ifdef CONFIG_BALLOON_COMPACTION
1079        "balloon_migrate",
1080#endif
1081#endif /* CONFIG_MEMORY_BALLOON */
1082#ifdef CONFIG_DEBUG_TLBFLUSH
1083#ifdef CONFIG_SMP
1084        "nr_tlb_remote_flush",
1085        "nr_tlb_remote_flush_received",
1086#endif /* CONFIG_SMP */
1087        "nr_tlb_local_flush_all",
1088        "nr_tlb_local_flush_one",
1089#endif /* CONFIG_DEBUG_TLBFLUSH */
1090
1091#ifdef CONFIG_DEBUG_VM_VMACACHE
1092        "vmacache_find_calls",
1093        "vmacache_find_hits",
1094        "vmacache_full_flushes",
1095#endif
1096#endif /* CONFIG_VM_EVENTS_COUNTERS */
1097};
1098#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
1099
1100
1101#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1102     defined(CONFIG_PROC_FS)
1103static void *frag_start(struct seq_file *m, loff_t *pos)
1104{
1105        pg_data_t *pgdat;
1106        loff_t node = *pos;
1107
1108        for (pgdat = first_online_pgdat();
1109             pgdat && node;
1110             pgdat = next_online_pgdat(pgdat))
1111                --node;
1112
1113        return pgdat;
1114}
1115
1116static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1117{
1118        pg_data_t *pgdat = (pg_data_t *)arg;
1119
1120        (*pos)++;
1121        return next_online_pgdat(pgdat);
1122}
1123
1124static void frag_stop(struct seq_file *m, void *arg)
1125{
1126}
1127
1128/*
1129 * Walk zones in a node and print using a callback.
1130 * If @assert_populated is true, only use callback for zones that are populated.
1131 */
1132static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1133                bool assert_populated, bool nolock,
1134                void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1135{
1136        struct zone *zone;
1137        struct zone *node_zones = pgdat->node_zones;
1138        unsigned long flags;
1139
1140        for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1141                if (assert_populated && !populated_zone(zone))
1142                        continue;
1143
1144                if (!nolock)
1145                        spin_lock_irqsave(&zone->lock, flags);
1146                print(m, pgdat, zone);
1147                if (!nolock)
1148                        spin_unlock_irqrestore(&zone->lock, flags);
1149        }
1150}
1151#endif
1152
1153#ifdef CONFIG_PROC_FS
1154static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1155                                                struct zone *zone)
1156{
1157        int order;
1158
1159        seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1160        for (order = 0; order < MAX_ORDER; ++order)
1161                seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1162        seq_putc(m, '\n');
1163}
1164
1165/*
1166 * This walks the free areas for each zone.
1167 */
1168static int frag_show(struct seq_file *m, void *arg)
1169{
1170        pg_data_t *pgdat = (pg_data_t *)arg;
1171        walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1172        return 0;
1173}
1174
1175static void pagetypeinfo_showfree_print(struct seq_file *m,
1176                                        pg_data_t *pgdat, struct zone *zone)
1177{
1178        int order, mtype;
1179
1180        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1181                seq_printf(m, "Node %4d, zone %8s, type %12s ",
1182                                        pgdat->node_id,
1183                                        zone->name,
1184                                        migratetype_names[mtype]);
1185                for (order = 0; order < MAX_ORDER; ++order) {
1186                        unsigned long freecount = 0;
1187                        struct free_area *area;
1188                        struct list_head *curr;
1189
1190                        area = &(zone->free_area[order]);
1191
1192                        list_for_each(curr, &area->free_list[mtype])
1193                                freecount++;
1194                        seq_printf(m, "%6lu ", freecount);
1195                }
1196                seq_putc(m, '\n');
1197        }
1198}
1199
1200/* Print out the free pages at each order for each migatetype */
1201static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1202{
1203        int order;
1204        pg_data_t *pgdat = (pg_data_t *)arg;
1205
1206        /* Print header */
1207        seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1208        for (order = 0; order < MAX_ORDER; ++order)
1209                seq_printf(m, "%6d ", order);
1210        seq_putc(m, '\n');
1211
1212        walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1213
1214        return 0;
1215}
1216
1217static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1218                                        pg_data_t *pgdat, struct zone *zone)
1219{
1220        int mtype;
1221        unsigned long pfn;
1222        unsigned long start_pfn = zone->zone_start_pfn;
1223        unsigned long end_pfn = zone_end_pfn(zone);
1224        unsigned long count[MIGRATE_TYPES] = { 0, };
1225
1226        for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1227                struct page *page;
1228
1229                page = pfn_to_online_page(pfn);
1230                if (!page)
1231                        continue;
1232
1233                /* Watch for unexpected holes punched in the memmap */
1234                if (!memmap_valid_within(pfn, page, zone))
1235                        continue;
1236
1237                if (page_zone(page) != zone)
1238                        continue;
1239
1240                mtype = get_pageblock_migratetype(page);
1241
1242                if (mtype < MIGRATE_TYPES)
1243                        count[mtype]++;
1244        }
1245
1246        /* Print counts */
1247        seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1248        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1249                seq_printf(m, "%12lu ", count[mtype]);
1250        seq_putc(m, '\n');
1251}
1252
1253/* Print out the free pages at each order for each migratetype */
1254static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1255{
1256        int mtype;
1257        pg_data_t *pgdat = (pg_data_t *)arg;
1258
1259        seq_printf(m, "\n%-23s", "Number of blocks type ");
1260        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1261                seq_printf(m, "%12s ", migratetype_names[mtype]);
1262        seq_putc(m, '\n');
1263        walk_zones_in_node(m, pgdat, true, false,
1264                pagetypeinfo_showblockcount_print);
1265
1266        return 0;
1267}
1268
1269/*
1270 * Print out the number of pageblocks for each migratetype that contain pages
1271 * of other types. This gives an indication of how well fallbacks are being
1272 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1273 * to determine what is going on
1274 */
1275static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1276{
1277#ifdef CONFIG_PAGE_OWNER
1278        int mtype;
1279
1280        if (!static_branch_unlikely(&page_owner_inited))
1281                return;
1282
1283        drain_all_pages(NULL);
1284
1285        seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1286        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1287                seq_printf(m, "%12s ", migratetype_names[mtype]);
1288        seq_putc(m, '\n');
1289
1290        walk_zones_in_node(m, pgdat, true, true,
1291                pagetypeinfo_showmixedcount_print);
1292#endif /* CONFIG_PAGE_OWNER */
1293}
1294
1295/*
1296 * This prints out statistics in relation to grouping pages by mobility.
1297 * It is expensive to collect so do not constantly read the file.
1298 */
1299static int pagetypeinfo_show(struct seq_file *m, void *arg)
1300{
1301        pg_data_t *pgdat = (pg_data_t *)arg;
1302
1303        /* check memoryless node */
1304        if (!node_state(pgdat->node_id, N_MEMORY))
1305                return 0;
1306
1307        seq_printf(m, "Page block order: %d\n", pageblock_order);
1308        seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1309        seq_putc(m, '\n');
1310        pagetypeinfo_showfree(m, pgdat);
1311        pagetypeinfo_showblockcount(m, pgdat);
1312        pagetypeinfo_showmixedcount(m, pgdat);
1313
1314        return 0;
1315}
1316
1317static const struct seq_operations fragmentation_op = {
1318        .start  = frag_start,
1319        .next   = frag_next,
1320        .stop   = frag_stop,
1321        .show   = frag_show,
1322};
1323
1324static int fragmentation_open(struct inode *inode, struct file *file)
1325{
1326        return seq_open(file, &fragmentation_op);
1327}
1328
1329static const struct file_operations buddyinfo_file_operations = {
1330        .open           = fragmentation_open,
1331        .read           = seq_read,
1332        .llseek         = seq_lseek,
1333        .release        = seq_release,
1334};
1335
1336static const struct seq_operations pagetypeinfo_op = {
1337        .start  = frag_start,
1338        .next   = frag_next,
1339        .stop   = frag_stop,
1340        .show   = pagetypeinfo_show,
1341};
1342
1343static int pagetypeinfo_open(struct inode *inode, struct file *file)
1344{
1345        return seq_open(file, &pagetypeinfo_op);
1346}
1347
1348static const struct file_operations pagetypeinfo_file_operations = {
1349        .open           = pagetypeinfo_open,
1350        .read           = seq_read,
1351        .llseek         = seq_lseek,
1352        .release        = seq_release,
1353};
1354
1355static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1356{
1357        int zid;
1358
1359        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1360                struct zone *compare = &pgdat->node_zones[zid];
1361
1362                if (populated_zone(compare))
1363                        return zone == compare;
1364        }
1365
1366        return false;
1367}
1368
1369static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1370                                                        struct zone *zone)
1371{
1372        int i;
1373        seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1374        if (is_zone_first_populated(pgdat, zone)) {
1375                seq_printf(m, "\n  per-node stats");
1376                for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1377                        seq_printf(m, "\n      %-12s %lu",
1378                                vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
1379                                node_page_state(pgdat, i));
1380                }
1381        }
1382        seq_printf(m,
1383                   "\n  pages free     %lu"
1384                   "\n        min      %lu"
1385                   "\n        low      %lu"
1386                   "\n        high     %lu"
1387                   "\n        spanned  %lu"
1388                   "\n        present  %lu"
1389                   "\n        managed  %lu",
1390                   zone_page_state(zone, NR_FREE_PAGES),
1391                   min_wmark_pages(zone),
1392                   low_wmark_pages(zone),
1393                   high_wmark_pages(zone),
1394                   zone->spanned_pages,
1395                   zone->present_pages,
1396                   zone->managed_pages);
1397
1398        seq_printf(m,
1399                   "\n        protection: (%ld",
1400                   zone->lowmem_reserve[0]);
1401        for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1402                seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1403        seq_putc(m, ')');
1404
1405        /* If unpopulated, no other information is useful */
1406        if (!populated_zone(zone)) {
1407                seq_putc(m, '\n');
1408                return;
1409        }
1410
1411        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1412                seq_printf(m, "\n      %-12s %lu", vmstat_text[i],
1413                                zone_page_state(zone, i));
1414
1415        seq_printf(m, "\n  pagesets");
1416        for_each_online_cpu(i) {
1417                struct per_cpu_pageset *pageset;
1418
1419                pageset = per_cpu_ptr(zone->pageset, i);
1420                seq_printf(m,
1421                           "\n    cpu: %i"
1422                           "\n              count: %i"
1423                           "\n              high:  %i"
1424                           "\n              batch: %i",
1425                           i,
1426                           pageset->pcp.count,
1427                           pageset->pcp.high,
1428                           pageset->pcp.batch);
1429#ifdef CONFIG_SMP
1430                seq_printf(m, "\n  vm stats threshold: %d",
1431                                pageset->stat_threshold);
1432#endif
1433        }
1434        seq_printf(m,
1435                   "\n  node_unreclaimable:  %u"
1436                   "\n  start_pfn:           %lu"
1437                   "\n  node_inactive_ratio: %u",
1438                   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1439                   zone->zone_start_pfn,
1440                   zone->zone_pgdat->inactive_ratio);
1441        seq_putc(m, '\n');
1442}
1443
1444/*
1445 * Output information about zones in @pgdat.  All zones are printed regardless
1446 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1447 * set of all zones and userspace would not be aware of such zones if they are
1448 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1449 */
1450static int zoneinfo_show(struct seq_file *m, void *arg)
1451{
1452        pg_data_t *pgdat = (pg_data_t *)arg;
1453        walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1454        return 0;
1455}
1456
1457static const struct seq_operations zoneinfo_op = {
1458        .start  = frag_start, /* iterate over all zones. The same as in
1459                               * fragmentation. */
1460        .next   = frag_next,
1461        .stop   = frag_stop,
1462        .show   = zoneinfo_show,
1463};
1464
1465static int zoneinfo_open(struct inode *inode, struct file *file)
1466{
1467        return seq_open(file, &zoneinfo_op);
1468}
1469
1470static const struct file_operations zoneinfo_file_operations = {
1471        .open           = zoneinfo_open,
1472        .read           = seq_read,
1473        .llseek         = seq_lseek,
1474        .release        = seq_release,
1475};
1476
1477enum writeback_stat_item {
1478        NR_DIRTY_THRESHOLD,
1479        NR_DIRTY_BG_THRESHOLD,
1480        NR_VM_WRITEBACK_STAT_ITEMS,
1481};
1482
1483static void *vmstat_start(struct seq_file *m, loff_t *pos)
1484{
1485        unsigned long *v;
1486        int i, stat_items_size;
1487
1488        if (*pos >= ARRAY_SIZE(vmstat_text))
1489                return NULL;
1490        stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1491                          NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
1492                          NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1493
1494#ifdef CONFIG_VM_EVENT_COUNTERS
1495        stat_items_size += sizeof(struct vm_event_state);
1496#endif
1497
1498        v = kmalloc(stat_items_size, GFP_KERNEL);
1499        m->private = v;
1500        if (!v)
1501                return ERR_PTR(-ENOMEM);
1502        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1503                v[i] = global_page_state(i);
1504        v += NR_VM_ZONE_STAT_ITEMS;
1505
1506        for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1507                v[i] = global_node_page_state(i);
1508        v += NR_VM_NODE_STAT_ITEMS;
1509
1510        global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1511                            v + NR_DIRTY_THRESHOLD);
1512        v += NR_VM_WRITEBACK_STAT_ITEMS;
1513
1514#ifdef CONFIG_VM_EVENT_COUNTERS
1515        all_vm_events(v);
1516        v[PGPGIN] /= 2;         /* sectors -> kbytes */
1517        v[PGPGOUT] /= 2;
1518#endif
1519        return (unsigned long *)m->private + *pos;
1520}
1521
1522static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1523{
1524        (*pos)++;
1525        if (*pos >= ARRAY_SIZE(vmstat_text))
1526                return NULL;
1527        return (unsigned long *)m->private + *pos;
1528}
1529
1530static int vmstat_show(struct seq_file *m, void *arg)
1531{
1532        unsigned long *l = arg;
1533        unsigned long off = l - (unsigned long *)m->private;
1534
1535        seq_puts(m, vmstat_text[off]);
1536        seq_put_decimal_ull(m, " ", *l);
1537        seq_putc(m, '\n');
1538        return 0;
1539}
1540
1541static void vmstat_stop(struct seq_file *m, void *arg)
1542{
1543        kfree(m->private);
1544        m->private = NULL;
1545}
1546
1547static const struct seq_operations vmstat_op = {
1548        .start  = vmstat_start,
1549        .next   = vmstat_next,
1550        .stop   = vmstat_stop,
1551        .show   = vmstat_show,
1552};
1553
1554static int vmstat_open(struct inode *inode, struct file *file)
1555{
1556        return seq_open(file, &vmstat_op);
1557}
1558
1559static const struct file_operations vmstat_file_operations = {
1560        .open           = vmstat_open,
1561        .read           = seq_read,
1562        .llseek         = seq_lseek,
1563        .release        = seq_release,
1564};
1565#endif /* CONFIG_PROC_FS */
1566
1567#ifdef CONFIG_SMP
1568static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1569int sysctl_stat_interval __read_mostly = HZ;
1570
1571#ifdef CONFIG_PROC_FS
1572static void refresh_vm_stats(struct work_struct *work)
1573{
1574        refresh_cpu_vm_stats(true);
1575}
1576
1577int vmstat_refresh(struct ctl_table *table, int write,
1578                   void __user *buffer, size_t *lenp, loff_t *ppos)
1579{
1580        long val;
1581        int err;
1582        int i;
1583
1584        /*
1585         * The regular update, every sysctl_stat_interval, may come later
1586         * than expected: leaving a significant amount in per_cpu buckets.
1587         * This is particularly misleading when checking a quantity of HUGE
1588         * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1589         * which can equally be echo'ed to or cat'ted from (by root),
1590         * can be used to update the stats just before reading them.
1591         *
1592         * Oh, and since global_page_state() etc. are so careful to hide
1593         * transiently negative values, report an error here if any of
1594         * the stats is negative, so we know to go looking for imbalance.
1595         */
1596        err = schedule_on_each_cpu(refresh_vm_stats);
1597        if (err)
1598                return err;
1599        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1600                val = atomic_long_read(&vm_zone_stat[i]);
1601                if (val < 0) {
1602                        pr_warn("%s: %s %ld\n",
1603                                __func__, vmstat_text[i], val);
1604                        err = -EINVAL;
1605                }
1606        }
1607        if (err)
1608                return err;
1609        if (write)
1610                *ppos += *lenp;
1611        else
1612                *lenp = 0;
1613        return 0;
1614}
1615#endif /* CONFIG_PROC_FS */
1616
1617static void vmstat_update(struct work_struct *w)
1618{
1619        if (refresh_cpu_vm_stats(true)) {
1620                /*
1621                 * Counters were updated so we expect more updates
1622                 * to occur in the future. Keep on running the
1623                 * update worker thread.
1624                 */
1625                queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1626                                this_cpu_ptr(&vmstat_work),
1627                                round_jiffies_relative(sysctl_stat_interval));
1628        }
1629}
1630
1631/*
1632 * Switch off vmstat processing and then fold all the remaining differentials
1633 * until the diffs stay at zero. The function is used by NOHZ and can only be
1634 * invoked when tick processing is not active.
1635 */
1636/*
1637 * Check if the diffs for a certain cpu indicate that
1638 * an update is needed.
1639 */
1640static bool need_update(int cpu)
1641{
1642        struct zone *zone;
1643
1644        for_each_populated_zone(zone) {
1645                struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1646
1647                BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1648                /*
1649                 * The fast way of checking if there are any vmstat diffs.
1650                 * This works because the diffs are byte sized items.
1651                 */
1652                if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1653                        return true;
1654
1655        }
1656        return false;
1657}
1658
1659/*
1660 * Switch off vmstat processing and then fold all the remaining differentials
1661 * until the diffs stay at zero. The function is used by NOHZ and can only be
1662 * invoked when tick processing is not active.
1663 */
1664void quiet_vmstat(void)
1665{
1666        if (system_state != SYSTEM_RUNNING)
1667                return;
1668
1669        if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1670                return;
1671
1672        if (!need_update(smp_processor_id()))
1673                return;
1674
1675        /*
1676         * Just refresh counters and do not care about the pending delayed
1677         * vmstat_update. It doesn't fire that often to matter and canceling
1678         * it would be too expensive from this path.
1679         * vmstat_shepherd will take care about that for us.
1680         */
1681        refresh_cpu_vm_stats(false);
1682}
1683
1684/*
1685 * Shepherd worker thread that checks the
1686 * differentials of processors that have their worker
1687 * threads for vm statistics updates disabled because of
1688 * inactivity.
1689 */
1690static void vmstat_shepherd(struct work_struct *w);
1691
1692static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1693
1694static void vmstat_shepherd(struct work_struct *w)
1695{
1696        int cpu;
1697
1698        get_online_cpus();
1699        /* Check processors whose vmstat worker threads have been disabled */
1700        for_each_online_cpu(cpu) {
1701                struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1702
1703                if (!delayed_work_pending(dw) && need_update(cpu))
1704                        queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1705        }
1706        put_online_cpus();
1707
1708        schedule_delayed_work(&shepherd,
1709                round_jiffies_relative(sysctl_stat_interval));
1710}
1711
1712static void __init start_shepherd_timer(void)
1713{
1714        int cpu;
1715
1716        for_each_possible_cpu(cpu)
1717                INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1718                        vmstat_update);
1719
1720        schedule_delayed_work(&shepherd,
1721                round_jiffies_relative(sysctl_stat_interval));
1722}
1723
1724static void __init init_cpu_node_state(void)
1725{
1726        int node;
1727
1728        for_each_online_node(node) {
1729                if (cpumask_weight(cpumask_of_node(node)) > 0)
1730                        node_set_state(node, N_CPU);
1731        }
1732}
1733
1734static int vmstat_cpu_online(unsigned int cpu)
1735{
1736        refresh_zone_stat_thresholds();
1737        node_set_state(cpu_to_node(cpu), N_CPU);
1738        return 0;
1739}
1740
1741static int vmstat_cpu_down_prep(unsigned int cpu)
1742{
1743        cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1744        return 0;
1745}
1746
1747static int vmstat_cpu_dead(unsigned int cpu)
1748{
1749        const struct cpumask *node_cpus;
1750        int node;
1751
1752        node = cpu_to_node(cpu);
1753
1754        refresh_zone_stat_thresholds();
1755        node_cpus = cpumask_of_node(node);
1756        if (cpumask_weight(node_cpus) > 0)
1757                return 0;
1758
1759        node_clear_state(node, N_CPU);
1760        return 0;
1761}
1762
1763#endif
1764
1765struct workqueue_struct *mm_percpu_wq;
1766
1767void __init init_mm_internals(void)
1768{
1769        int ret __maybe_unused;
1770
1771        mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
1772
1773#ifdef CONFIG_SMP
1774        ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
1775                                        NULL, vmstat_cpu_dead);
1776        if (ret < 0)
1777                pr_err("vmstat: failed to register 'dead' hotplug state\n");
1778
1779        ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
1780                                        vmstat_cpu_online,
1781                                        vmstat_cpu_down_prep);
1782        if (ret < 0)
1783                pr_err("vmstat: failed to register 'online' hotplug state\n");
1784
1785        get_online_cpus();
1786        init_cpu_node_state();
1787        put_online_cpus();
1788
1789        start_shepherd_timer();
1790#endif
1791#ifdef CONFIG_PROC_FS
1792        proc_create("buddyinfo", 0444, NULL, &buddyinfo_file_operations);
1793        proc_create("pagetypeinfo", 0444, NULL, &pagetypeinfo_file_operations);
1794        proc_create("vmstat", 0444, NULL, &vmstat_file_operations);
1795        proc_create("zoneinfo", 0444, NULL, &zoneinfo_file_operations);
1796#endif
1797}
1798
1799#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1800
1801/*
1802 * Return an index indicating how much of the available free memory is
1803 * unusable for an allocation of the requested size.
1804 */
1805static int unusable_free_index(unsigned int order,
1806                                struct contig_page_info *info)
1807{
1808        /* No free memory is interpreted as all free memory is unusable */
1809        if (info->free_pages == 0)
1810                return 1000;
1811
1812        /*
1813         * Index should be a value between 0 and 1. Return a value to 3
1814         * decimal places.
1815         *
1816         * 0 => no fragmentation
1817         * 1 => high fragmentation
1818         */
1819        return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1820
1821}
1822
1823static void unusable_show_print(struct seq_file *m,
1824                                        pg_data_t *pgdat, struct zone *zone)
1825{
1826        unsigned int order;
1827        int index;
1828        struct contig_page_info info;
1829
1830        seq_printf(m, "Node %d, zone %8s ",
1831                                pgdat->node_id,
1832                                zone->name);
1833        for (order = 0; order < MAX_ORDER; ++order) {
1834                fill_contig_page_info(zone, order, &info);
1835                index = unusable_free_index(order, &info);
1836                seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1837        }
1838
1839        seq_putc(m, '\n');
1840}
1841
1842/*
1843 * Display unusable free space index
1844 *
1845 * The unusable free space index measures how much of the available free
1846 * memory cannot be used to satisfy an allocation of a given size and is a
1847 * value between 0 and 1. The higher the value, the more of free memory is
1848 * unusable and by implication, the worse the external fragmentation is. This
1849 * can be expressed as a percentage by multiplying by 100.
1850 */
1851static int unusable_show(struct seq_file *m, void *arg)
1852{
1853        pg_data_t *pgdat = (pg_data_t *)arg;
1854
1855        /* check memoryless node */
1856        if (!node_state(pgdat->node_id, N_MEMORY))
1857                return 0;
1858
1859        walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
1860
1861        return 0;
1862}
1863
1864static const struct seq_operations unusable_op = {
1865        .start  = frag_start,
1866        .next   = frag_next,
1867        .stop   = frag_stop,
1868        .show   = unusable_show,
1869};
1870
1871static int unusable_open(struct inode *inode, struct file *file)
1872{
1873        return seq_open(file, &unusable_op);
1874}
1875
1876static const struct file_operations unusable_file_ops = {
1877        .open           = unusable_open,
1878        .read           = seq_read,
1879        .llseek         = seq_lseek,
1880        .release        = seq_release,
1881};
1882
1883static void extfrag_show_print(struct seq_file *m,
1884                                        pg_data_t *pgdat, struct zone *zone)
1885{
1886        unsigned int order;
1887        int index;
1888
1889        /* Alloc on stack as interrupts are disabled for zone walk */
1890        struct contig_page_info info;
1891
1892        seq_printf(m, "Node %d, zone %8s ",
1893                                pgdat->node_id,
1894                                zone->name);
1895        for (order = 0; order < MAX_ORDER; ++order) {
1896                fill_contig_page_info(zone, order, &info);
1897                index = __fragmentation_index(order, &info);
1898                seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1899        }
1900
1901        seq_putc(m, '\n');
1902}
1903
1904/*
1905 * Display fragmentation index for orders that allocations would fail for
1906 */
1907static int extfrag_show(struct seq_file *m, void *arg)
1908{
1909        pg_data_t *pgdat = (pg_data_t *)arg;
1910
1911        walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
1912
1913        return 0;
1914}
1915
1916static const struct seq_operations extfrag_op = {
1917        .start  = frag_start,
1918        .next   = frag_next,
1919        .stop   = frag_stop,
1920        .show   = extfrag_show,
1921};
1922
1923static int extfrag_open(struct inode *inode, struct file *file)
1924{
1925        return seq_open(file, &extfrag_op);
1926}
1927
1928static const struct file_operations extfrag_file_ops = {
1929        .open           = extfrag_open,
1930        .read           = seq_read,
1931        .llseek         = seq_lseek,
1932        .release        = seq_release,
1933};
1934
1935static int __init extfrag_debug_init(void)
1936{
1937        struct dentry *extfrag_debug_root;
1938
1939        extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1940        if (!extfrag_debug_root)
1941                return -ENOMEM;
1942
1943        if (!debugfs_create_file("unusable_index", 0444,
1944                        extfrag_debug_root, NULL, &unusable_file_ops))
1945                goto fail;
1946
1947        if (!debugfs_create_file("extfrag_index", 0444,
1948                        extfrag_debug_root, NULL, &extfrag_file_ops))
1949                goto fail;
1950
1951        return 0;
1952fail:
1953        debugfs_remove_recursive(extfrag_debug_root);
1954        return -ENOMEM;
1955}
1956
1957module_init(extfrag_debug_init);
1958#endif
1959