linux/net/ceph/messenger.c
<<
>>
Prefs
   1#include <linux/ceph/ceph_debug.h>
   2
   3#include <linux/crc32c.h>
   4#include <linux/ctype.h>
   5#include <linux/highmem.h>
   6#include <linux/inet.h>
   7#include <linux/kthread.h>
   8#include <linux/net.h>
   9#include <linux/nsproxy.h>
  10#include <linux/sched/mm.h>
  11#include <linux/slab.h>
  12#include <linux/socket.h>
  13#include <linux/string.h>
  14#ifdef  CONFIG_BLOCK
  15#include <linux/bio.h>
  16#endif  /* CONFIG_BLOCK */
  17#include <linux/dns_resolver.h>
  18#include <net/tcp.h>
  19
  20#include <linux/ceph/ceph_features.h>
  21#include <linux/ceph/libceph.h>
  22#include <linux/ceph/messenger.h>
  23#include <linux/ceph/decode.h>
  24#include <linux/ceph/pagelist.h>
  25#include <linux/export.h>
  26
  27/*
  28 * Ceph uses the messenger to exchange ceph_msg messages with other
  29 * hosts in the system.  The messenger provides ordered and reliable
  30 * delivery.  We tolerate TCP disconnects by reconnecting (with
  31 * exponential backoff) in the case of a fault (disconnection, bad
  32 * crc, protocol error).  Acks allow sent messages to be discarded by
  33 * the sender.
  34 */
  35
  36/*
  37 * We track the state of the socket on a given connection using
  38 * values defined below.  The transition to a new socket state is
  39 * handled by a function which verifies we aren't coming from an
  40 * unexpected state.
  41 *
  42 *      --------
  43 *      | NEW* |  transient initial state
  44 *      --------
  45 *          | con_sock_state_init()
  46 *          v
  47 *      ----------
  48 *      | CLOSED |  initialized, but no socket (and no
  49 *      ----------  TCP connection)
  50 *       ^      \
  51 *       |       \ con_sock_state_connecting()
  52 *       |        ----------------------
  53 *       |                              \
  54 *       + con_sock_state_closed()       \
  55 *       |+---------------------------    \
  56 *       | \                          \    \
  57 *       |  -----------                \    \
  58 *       |  | CLOSING |  socket event;  \    \
  59 *       |  -----------  await close     \    \
  60 *       |       ^                        \   |
  61 *       |       |                         \  |
  62 *       |       + con_sock_state_closing() \ |
  63 *       |      / \                         | |
  64 *       |     /   ---------------          | |
  65 *       |    /                   \         v v
  66 *       |   /                    --------------
  67 *       |  /    -----------------| CONNECTING |  socket created, TCP
  68 *       |  |   /                 --------------  connect initiated
  69 *       |  |   | con_sock_state_connected()
  70 *       |  |   v
  71 *      -------------
  72 *      | CONNECTED |  TCP connection established
  73 *      -------------
  74 *
  75 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
  76 */
  77
  78#define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
  79#define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
  80#define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
  81#define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
  82#define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
  83
  84/*
  85 * connection states
  86 */
  87#define CON_STATE_CLOSED        1  /* -> PREOPEN */
  88#define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
  89#define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
  90#define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
  91#define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
  92#define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
  93
  94/*
  95 * ceph_connection flag bits
  96 */
  97#define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
  98                                       * messages on errors */
  99#define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
 100#define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
 101#define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
 102#define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
 103
 104static bool con_flag_valid(unsigned long con_flag)
 105{
 106        switch (con_flag) {
 107        case CON_FLAG_LOSSYTX:
 108        case CON_FLAG_KEEPALIVE_PENDING:
 109        case CON_FLAG_WRITE_PENDING:
 110        case CON_FLAG_SOCK_CLOSED:
 111        case CON_FLAG_BACKOFF:
 112                return true;
 113        default:
 114                return false;
 115        }
 116}
 117
 118static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
 119{
 120        BUG_ON(!con_flag_valid(con_flag));
 121
 122        clear_bit(con_flag, &con->flags);
 123}
 124
 125static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
 126{
 127        BUG_ON(!con_flag_valid(con_flag));
 128
 129        set_bit(con_flag, &con->flags);
 130}
 131
 132static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
 133{
 134        BUG_ON(!con_flag_valid(con_flag));
 135
 136        return test_bit(con_flag, &con->flags);
 137}
 138
 139static bool con_flag_test_and_clear(struct ceph_connection *con,
 140                                        unsigned long con_flag)
 141{
 142        BUG_ON(!con_flag_valid(con_flag));
 143
 144        return test_and_clear_bit(con_flag, &con->flags);
 145}
 146
 147static bool con_flag_test_and_set(struct ceph_connection *con,
 148                                        unsigned long con_flag)
 149{
 150        BUG_ON(!con_flag_valid(con_flag));
 151
 152        return test_and_set_bit(con_flag, &con->flags);
 153}
 154
 155/* Slab caches for frequently-allocated structures */
 156
 157static struct kmem_cache        *ceph_msg_cache;
 158static struct kmem_cache        *ceph_msg_data_cache;
 159
 160/* static tag bytes (protocol control messages) */
 161static char tag_msg = CEPH_MSGR_TAG_MSG;
 162static char tag_ack = CEPH_MSGR_TAG_ACK;
 163static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
 164static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
 165
 166#ifdef CONFIG_LOCKDEP
 167static struct lock_class_key socket_class;
 168#endif
 169
 170/*
 171 * When skipping (ignoring) a block of input we read it into a "skip
 172 * buffer," which is this many bytes in size.
 173 */
 174#define SKIP_BUF_SIZE   1024
 175
 176static void queue_con(struct ceph_connection *con);
 177static void cancel_con(struct ceph_connection *con);
 178static void ceph_con_workfn(struct work_struct *);
 179static void con_fault(struct ceph_connection *con);
 180
 181/*
 182 * Nicely render a sockaddr as a string.  An array of formatted
 183 * strings is used, to approximate reentrancy.
 184 */
 185#define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
 186#define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
 187#define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
 188#define MAX_ADDR_STR_LEN        64      /* 54 is enough */
 189
 190static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
 191static atomic_t addr_str_seq = ATOMIC_INIT(0);
 192
 193static struct page *zero_page;          /* used in certain error cases */
 194
 195const char *ceph_pr_addr(const struct sockaddr_storage *ss)
 196{
 197        int i;
 198        char *s;
 199        struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
 200        struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
 201
 202        i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
 203        s = addr_str[i];
 204
 205        switch (ss->ss_family) {
 206        case AF_INET:
 207                snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
 208                         ntohs(in4->sin_port));
 209                break;
 210
 211        case AF_INET6:
 212                snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
 213                         ntohs(in6->sin6_port));
 214                break;
 215
 216        default:
 217                snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
 218                         ss->ss_family);
 219        }
 220
 221        return s;
 222}
 223EXPORT_SYMBOL(ceph_pr_addr);
 224
 225static void encode_my_addr(struct ceph_messenger *msgr)
 226{
 227        memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
 228        ceph_encode_addr(&msgr->my_enc_addr);
 229}
 230
 231/*
 232 * work queue for all reading and writing to/from the socket.
 233 */
 234static struct workqueue_struct *ceph_msgr_wq;
 235
 236static int ceph_msgr_slab_init(void)
 237{
 238        BUG_ON(ceph_msg_cache);
 239        ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
 240        if (!ceph_msg_cache)
 241                return -ENOMEM;
 242
 243        BUG_ON(ceph_msg_data_cache);
 244        ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
 245        if (ceph_msg_data_cache)
 246                return 0;
 247
 248        kmem_cache_destroy(ceph_msg_cache);
 249        ceph_msg_cache = NULL;
 250
 251        return -ENOMEM;
 252}
 253
 254static void ceph_msgr_slab_exit(void)
 255{
 256        BUG_ON(!ceph_msg_data_cache);
 257        kmem_cache_destroy(ceph_msg_data_cache);
 258        ceph_msg_data_cache = NULL;
 259
 260        BUG_ON(!ceph_msg_cache);
 261        kmem_cache_destroy(ceph_msg_cache);
 262        ceph_msg_cache = NULL;
 263}
 264
 265static void _ceph_msgr_exit(void)
 266{
 267        if (ceph_msgr_wq) {
 268                destroy_workqueue(ceph_msgr_wq);
 269                ceph_msgr_wq = NULL;
 270        }
 271
 272        BUG_ON(zero_page == NULL);
 273        put_page(zero_page);
 274        zero_page = NULL;
 275
 276        ceph_msgr_slab_exit();
 277}
 278
 279int ceph_msgr_init(void)
 280{
 281        if (ceph_msgr_slab_init())
 282                return -ENOMEM;
 283
 284        BUG_ON(zero_page != NULL);
 285        zero_page = ZERO_PAGE(0);
 286        get_page(zero_page);
 287
 288        /*
 289         * The number of active work items is limited by the number of
 290         * connections, so leave @max_active at default.
 291         */
 292        ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
 293        if (ceph_msgr_wq)
 294                return 0;
 295
 296        pr_err("msgr_init failed to create workqueue\n");
 297        _ceph_msgr_exit();
 298
 299        return -ENOMEM;
 300}
 301EXPORT_SYMBOL(ceph_msgr_init);
 302
 303void ceph_msgr_exit(void)
 304{
 305        BUG_ON(ceph_msgr_wq == NULL);
 306
 307        _ceph_msgr_exit();
 308}
 309EXPORT_SYMBOL(ceph_msgr_exit);
 310
 311void ceph_msgr_flush(void)
 312{
 313        flush_workqueue(ceph_msgr_wq);
 314}
 315EXPORT_SYMBOL(ceph_msgr_flush);
 316
 317/* Connection socket state transition functions */
 318
 319static void con_sock_state_init(struct ceph_connection *con)
 320{
 321        int old_state;
 322
 323        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 324        if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
 325                printk("%s: unexpected old state %d\n", __func__, old_state);
 326        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 327             CON_SOCK_STATE_CLOSED);
 328}
 329
 330static void con_sock_state_connecting(struct ceph_connection *con)
 331{
 332        int old_state;
 333
 334        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
 335        if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
 336                printk("%s: unexpected old state %d\n", __func__, old_state);
 337        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 338             CON_SOCK_STATE_CONNECTING);
 339}
 340
 341static void con_sock_state_connected(struct ceph_connection *con)
 342{
 343        int old_state;
 344
 345        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
 346        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
 347                printk("%s: unexpected old state %d\n", __func__, old_state);
 348        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 349             CON_SOCK_STATE_CONNECTED);
 350}
 351
 352static void con_sock_state_closing(struct ceph_connection *con)
 353{
 354        int old_state;
 355
 356        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
 357        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
 358                        old_state != CON_SOCK_STATE_CONNECTED &&
 359                        old_state != CON_SOCK_STATE_CLOSING))
 360                printk("%s: unexpected old state %d\n", __func__, old_state);
 361        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 362             CON_SOCK_STATE_CLOSING);
 363}
 364
 365static void con_sock_state_closed(struct ceph_connection *con)
 366{
 367        int old_state;
 368
 369        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 370        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
 371                    old_state != CON_SOCK_STATE_CLOSING &&
 372                    old_state != CON_SOCK_STATE_CONNECTING &&
 373                    old_state != CON_SOCK_STATE_CLOSED))
 374                printk("%s: unexpected old state %d\n", __func__, old_state);
 375        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 376             CON_SOCK_STATE_CLOSED);
 377}
 378
 379/*
 380 * socket callback functions
 381 */
 382
 383/* data available on socket, or listen socket received a connect */
 384static void ceph_sock_data_ready(struct sock *sk)
 385{
 386        struct ceph_connection *con = sk->sk_user_data;
 387        if (atomic_read(&con->msgr->stopping)) {
 388                return;
 389        }
 390
 391        if (sk->sk_state != TCP_CLOSE_WAIT) {
 392                dout("%s on %p state = %lu, queueing work\n", __func__,
 393                     con, con->state);
 394                queue_con(con);
 395        }
 396}
 397
 398/* socket has buffer space for writing */
 399static void ceph_sock_write_space(struct sock *sk)
 400{
 401        struct ceph_connection *con = sk->sk_user_data;
 402
 403        /* only queue to workqueue if there is data we want to write,
 404         * and there is sufficient space in the socket buffer to accept
 405         * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
 406         * doesn't get called again until try_write() fills the socket
 407         * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
 408         * and net/core/stream.c:sk_stream_write_space().
 409         */
 410        if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
 411                if (sk_stream_is_writeable(sk)) {
 412                        dout("%s %p queueing write work\n", __func__, con);
 413                        clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 414                        queue_con(con);
 415                }
 416        } else {
 417                dout("%s %p nothing to write\n", __func__, con);
 418        }
 419}
 420
 421/* socket's state has changed */
 422static void ceph_sock_state_change(struct sock *sk)
 423{
 424        struct ceph_connection *con = sk->sk_user_data;
 425
 426        dout("%s %p state = %lu sk_state = %u\n", __func__,
 427             con, con->state, sk->sk_state);
 428
 429        switch (sk->sk_state) {
 430        case TCP_CLOSE:
 431                dout("%s TCP_CLOSE\n", __func__);
 432        case TCP_CLOSE_WAIT:
 433                dout("%s TCP_CLOSE_WAIT\n", __func__);
 434                con_sock_state_closing(con);
 435                con_flag_set(con, CON_FLAG_SOCK_CLOSED);
 436                queue_con(con);
 437                break;
 438        case TCP_ESTABLISHED:
 439                dout("%s TCP_ESTABLISHED\n", __func__);
 440                con_sock_state_connected(con);
 441                queue_con(con);
 442                break;
 443        default:        /* Everything else is uninteresting */
 444                break;
 445        }
 446}
 447
 448/*
 449 * set up socket callbacks
 450 */
 451static void set_sock_callbacks(struct socket *sock,
 452                               struct ceph_connection *con)
 453{
 454        struct sock *sk = sock->sk;
 455        sk->sk_user_data = con;
 456        sk->sk_data_ready = ceph_sock_data_ready;
 457        sk->sk_write_space = ceph_sock_write_space;
 458        sk->sk_state_change = ceph_sock_state_change;
 459}
 460
 461
 462/*
 463 * socket helpers
 464 */
 465
 466/*
 467 * initiate connection to a remote socket.
 468 */
 469static int ceph_tcp_connect(struct ceph_connection *con)
 470{
 471        struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
 472        struct socket *sock;
 473        unsigned int noio_flag;
 474        int ret;
 475
 476        BUG_ON(con->sock);
 477
 478        /* sock_create_kern() allocates with GFP_KERNEL */
 479        noio_flag = memalloc_noio_save();
 480        ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
 481                               SOCK_STREAM, IPPROTO_TCP, &sock);
 482        memalloc_noio_restore(noio_flag);
 483        if (ret)
 484                return ret;
 485        sock->sk->sk_allocation = GFP_NOFS;
 486
 487#ifdef CONFIG_LOCKDEP
 488        lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 489#endif
 490
 491        set_sock_callbacks(sock, con);
 492
 493        dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
 494
 495        con_sock_state_connecting(con);
 496        ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
 497                                 O_NONBLOCK);
 498        if (ret == -EINPROGRESS) {
 499                dout("connect %s EINPROGRESS sk_state = %u\n",
 500                     ceph_pr_addr(&con->peer_addr.in_addr),
 501                     sock->sk->sk_state);
 502        } else if (ret < 0) {
 503                pr_err("connect %s error %d\n",
 504                       ceph_pr_addr(&con->peer_addr.in_addr), ret);
 505                sock_release(sock);
 506                return ret;
 507        }
 508
 509        if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
 510                int optval = 1;
 511
 512                ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
 513                                        (char *)&optval, sizeof(optval));
 514                if (ret)
 515                        pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
 516                               ret);
 517        }
 518
 519        con->sock = sock;
 520        return 0;
 521}
 522
 523static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
 524{
 525        struct kvec iov = {buf, len};
 526        struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 527        int r;
 528
 529        iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
 530        r = sock_recvmsg(sock, &msg, msg.msg_flags);
 531        if (r == -EAGAIN)
 532                r = 0;
 533        return r;
 534}
 535
 536static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
 537                     int page_offset, size_t length)
 538{
 539        struct bio_vec bvec = {
 540                .bv_page = page,
 541                .bv_offset = page_offset,
 542                .bv_len = length
 543        };
 544        struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 545        int r;
 546
 547        BUG_ON(page_offset + length > PAGE_SIZE);
 548        iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
 549        r = sock_recvmsg(sock, &msg, msg.msg_flags);
 550        if (r == -EAGAIN)
 551                r = 0;
 552        return r;
 553}
 554
 555/*
 556 * write something.  @more is true if caller will be sending more data
 557 * shortly.
 558 */
 559static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
 560                     size_t kvlen, size_t len, int more)
 561{
 562        struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 563        int r;
 564
 565        if (more)
 566                msg.msg_flags |= MSG_MORE;
 567        else
 568                msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 569
 570        r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
 571        if (r == -EAGAIN)
 572                r = 0;
 573        return r;
 574}
 575
 576static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
 577                     int offset, size_t size, bool more)
 578{
 579        int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
 580        int ret;
 581
 582        ret = kernel_sendpage(sock, page, offset, size, flags);
 583        if (ret == -EAGAIN)
 584                ret = 0;
 585
 586        return ret;
 587}
 588
 589static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
 590                     int offset, size_t size, bool more)
 591{
 592        struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 593        struct bio_vec bvec;
 594        int ret;
 595
 596        /* sendpage cannot properly handle pages with page_count == 0,
 597         * we need to fallback to sendmsg if that's the case */
 598        if (page_count(page) >= 1)
 599                return __ceph_tcp_sendpage(sock, page, offset, size, more);
 600
 601        bvec.bv_page = page;
 602        bvec.bv_offset = offset;
 603        bvec.bv_len = size;
 604
 605        if (more)
 606                msg.msg_flags |= MSG_MORE;
 607        else
 608                msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 609
 610        iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
 611        ret = sock_sendmsg(sock, &msg);
 612        if (ret == -EAGAIN)
 613                ret = 0;
 614
 615        return ret;
 616}
 617
 618/*
 619 * Shutdown/close the socket for the given connection.
 620 */
 621static int con_close_socket(struct ceph_connection *con)
 622{
 623        int rc = 0;
 624
 625        dout("con_close_socket on %p sock %p\n", con, con->sock);
 626        if (con->sock) {
 627                rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 628                sock_release(con->sock);
 629                con->sock = NULL;
 630        }
 631
 632        /*
 633         * Forcibly clear the SOCK_CLOSED flag.  It gets set
 634         * independent of the connection mutex, and we could have
 635         * received a socket close event before we had the chance to
 636         * shut the socket down.
 637         */
 638        con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
 639
 640        con_sock_state_closed(con);
 641        return rc;
 642}
 643
 644/*
 645 * Reset a connection.  Discard all incoming and outgoing messages
 646 * and clear *_seq state.
 647 */
 648static void ceph_msg_remove(struct ceph_msg *msg)
 649{
 650        list_del_init(&msg->list_head);
 651
 652        ceph_msg_put(msg);
 653}
 654static void ceph_msg_remove_list(struct list_head *head)
 655{
 656        while (!list_empty(head)) {
 657                struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 658                                                        list_head);
 659                ceph_msg_remove(msg);
 660        }
 661}
 662
 663static void reset_connection(struct ceph_connection *con)
 664{
 665        /* reset connection, out_queue, msg_ and connect_seq */
 666        /* discard existing out_queue and msg_seq */
 667        dout("reset_connection %p\n", con);
 668        ceph_msg_remove_list(&con->out_queue);
 669        ceph_msg_remove_list(&con->out_sent);
 670
 671        if (con->in_msg) {
 672                BUG_ON(con->in_msg->con != con);
 673                ceph_msg_put(con->in_msg);
 674                con->in_msg = NULL;
 675        }
 676
 677        con->connect_seq = 0;
 678        con->out_seq = 0;
 679        if (con->out_msg) {
 680                BUG_ON(con->out_msg->con != con);
 681                ceph_msg_put(con->out_msg);
 682                con->out_msg = NULL;
 683        }
 684        con->in_seq = 0;
 685        con->in_seq_acked = 0;
 686
 687        con->out_skip = 0;
 688}
 689
 690/*
 691 * mark a peer down.  drop any open connections.
 692 */
 693void ceph_con_close(struct ceph_connection *con)
 694{
 695        mutex_lock(&con->mutex);
 696        dout("con_close %p peer %s\n", con,
 697             ceph_pr_addr(&con->peer_addr.in_addr));
 698        con->state = CON_STATE_CLOSED;
 699
 700        con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
 701        con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
 702        con_flag_clear(con, CON_FLAG_WRITE_PENDING);
 703        con_flag_clear(con, CON_FLAG_BACKOFF);
 704
 705        reset_connection(con);
 706        con->peer_global_seq = 0;
 707        cancel_con(con);
 708        con_close_socket(con);
 709        mutex_unlock(&con->mutex);
 710}
 711EXPORT_SYMBOL(ceph_con_close);
 712
 713/*
 714 * Reopen a closed connection, with a new peer address.
 715 */
 716void ceph_con_open(struct ceph_connection *con,
 717                   __u8 entity_type, __u64 entity_num,
 718                   struct ceph_entity_addr *addr)
 719{
 720        mutex_lock(&con->mutex);
 721        dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
 722
 723        WARN_ON(con->state != CON_STATE_CLOSED);
 724        con->state = CON_STATE_PREOPEN;
 725
 726        con->peer_name.type = (__u8) entity_type;
 727        con->peer_name.num = cpu_to_le64(entity_num);
 728
 729        memcpy(&con->peer_addr, addr, sizeof(*addr));
 730        con->delay = 0;      /* reset backoff memory */
 731        mutex_unlock(&con->mutex);
 732        queue_con(con);
 733}
 734EXPORT_SYMBOL(ceph_con_open);
 735
 736/*
 737 * return true if this connection ever successfully opened
 738 */
 739bool ceph_con_opened(struct ceph_connection *con)
 740{
 741        return con->connect_seq > 0;
 742}
 743
 744/*
 745 * initialize a new connection.
 746 */
 747void ceph_con_init(struct ceph_connection *con, void *private,
 748        const struct ceph_connection_operations *ops,
 749        struct ceph_messenger *msgr)
 750{
 751        dout("con_init %p\n", con);
 752        memset(con, 0, sizeof(*con));
 753        con->private = private;
 754        con->ops = ops;
 755        con->msgr = msgr;
 756
 757        con_sock_state_init(con);
 758
 759        mutex_init(&con->mutex);
 760        INIT_LIST_HEAD(&con->out_queue);
 761        INIT_LIST_HEAD(&con->out_sent);
 762        INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
 763
 764        con->state = CON_STATE_CLOSED;
 765}
 766EXPORT_SYMBOL(ceph_con_init);
 767
 768
 769/*
 770 * We maintain a global counter to order connection attempts.  Get
 771 * a unique seq greater than @gt.
 772 */
 773static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
 774{
 775        u32 ret;
 776
 777        spin_lock(&msgr->global_seq_lock);
 778        if (msgr->global_seq < gt)
 779                msgr->global_seq = gt;
 780        ret = ++msgr->global_seq;
 781        spin_unlock(&msgr->global_seq_lock);
 782        return ret;
 783}
 784
 785static void con_out_kvec_reset(struct ceph_connection *con)
 786{
 787        BUG_ON(con->out_skip);
 788
 789        con->out_kvec_left = 0;
 790        con->out_kvec_bytes = 0;
 791        con->out_kvec_cur = &con->out_kvec[0];
 792}
 793
 794static void con_out_kvec_add(struct ceph_connection *con,
 795                                size_t size, void *data)
 796{
 797        int index = con->out_kvec_left;
 798
 799        BUG_ON(con->out_skip);
 800        BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
 801
 802        con->out_kvec[index].iov_len = size;
 803        con->out_kvec[index].iov_base = data;
 804        con->out_kvec_left++;
 805        con->out_kvec_bytes += size;
 806}
 807
 808/*
 809 * Chop off a kvec from the end.  Return residual number of bytes for
 810 * that kvec, i.e. how many bytes would have been written if the kvec
 811 * hadn't been nuked.
 812 */
 813static int con_out_kvec_skip(struct ceph_connection *con)
 814{
 815        int off = con->out_kvec_cur - con->out_kvec;
 816        int skip = 0;
 817
 818        if (con->out_kvec_bytes > 0) {
 819                skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
 820                BUG_ON(con->out_kvec_bytes < skip);
 821                BUG_ON(!con->out_kvec_left);
 822                con->out_kvec_bytes -= skip;
 823                con->out_kvec_left--;
 824        }
 825
 826        return skip;
 827}
 828
 829#ifdef CONFIG_BLOCK
 830
 831/*
 832 * For a bio data item, a piece is whatever remains of the next
 833 * entry in the current bio iovec, or the first entry in the next
 834 * bio in the list.
 835 */
 836static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
 837                                        size_t length)
 838{
 839        struct ceph_msg_data *data = cursor->data;
 840        struct bio *bio;
 841
 842        BUG_ON(data->type != CEPH_MSG_DATA_BIO);
 843
 844        bio = data->bio;
 845        BUG_ON(!bio);
 846
 847        cursor->resid = min(length, data->bio_length);
 848        cursor->bio = bio;
 849        cursor->bvec_iter = bio->bi_iter;
 850        cursor->last_piece =
 851                cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
 852}
 853
 854static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
 855                                                size_t *page_offset,
 856                                                size_t *length)
 857{
 858        struct ceph_msg_data *data = cursor->data;
 859        struct bio *bio;
 860        struct bio_vec bio_vec;
 861
 862        BUG_ON(data->type != CEPH_MSG_DATA_BIO);
 863
 864        bio = cursor->bio;
 865        BUG_ON(!bio);
 866
 867        bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
 868
 869        *page_offset = (size_t) bio_vec.bv_offset;
 870        BUG_ON(*page_offset >= PAGE_SIZE);
 871        if (cursor->last_piece) /* pagelist offset is always 0 */
 872                *length = cursor->resid;
 873        else
 874                *length = (size_t) bio_vec.bv_len;
 875        BUG_ON(*length > cursor->resid);
 876        BUG_ON(*page_offset + *length > PAGE_SIZE);
 877
 878        return bio_vec.bv_page;
 879}
 880
 881static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
 882                                        size_t bytes)
 883{
 884        struct bio *bio;
 885        struct bio_vec bio_vec;
 886
 887        BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
 888
 889        bio = cursor->bio;
 890        BUG_ON(!bio);
 891
 892        bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
 893
 894        /* Advance the cursor offset */
 895
 896        BUG_ON(cursor->resid < bytes);
 897        cursor->resid -= bytes;
 898
 899        bio_advance_iter(bio, &cursor->bvec_iter, bytes);
 900
 901        if (bytes < bio_vec.bv_len)
 902                return false;   /* more bytes to process in this segment */
 903
 904        /* Move on to the next segment, and possibly the next bio */
 905
 906        if (!cursor->bvec_iter.bi_size) {
 907                bio = bio->bi_next;
 908                cursor->bio = bio;
 909                if (bio)
 910                        cursor->bvec_iter = bio->bi_iter;
 911                else
 912                        memset(&cursor->bvec_iter, 0,
 913                               sizeof(cursor->bvec_iter));
 914        }
 915
 916        if (!cursor->last_piece) {
 917                BUG_ON(!cursor->resid);
 918                BUG_ON(!bio);
 919                /* A short read is OK, so use <= rather than == */
 920                if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
 921                        cursor->last_piece = true;
 922        }
 923
 924        return true;
 925}
 926#endif /* CONFIG_BLOCK */
 927
 928/*
 929 * For a page array, a piece comes from the first page in the array
 930 * that has not already been fully consumed.
 931 */
 932static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
 933                                        size_t length)
 934{
 935        struct ceph_msg_data *data = cursor->data;
 936        int page_count;
 937
 938        BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 939
 940        BUG_ON(!data->pages);
 941        BUG_ON(!data->length);
 942
 943        cursor->resid = min(length, data->length);
 944        page_count = calc_pages_for(data->alignment, (u64)data->length);
 945        cursor->page_offset = data->alignment & ~PAGE_MASK;
 946        cursor->page_index = 0;
 947        BUG_ON(page_count > (int)USHRT_MAX);
 948        cursor->page_count = (unsigned short)page_count;
 949        BUG_ON(length > SIZE_MAX - cursor->page_offset);
 950        cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
 951}
 952
 953static struct page *
 954ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
 955                                        size_t *page_offset, size_t *length)
 956{
 957        struct ceph_msg_data *data = cursor->data;
 958
 959        BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 960
 961        BUG_ON(cursor->page_index >= cursor->page_count);
 962        BUG_ON(cursor->page_offset >= PAGE_SIZE);
 963
 964        *page_offset = cursor->page_offset;
 965        if (cursor->last_piece)
 966                *length = cursor->resid;
 967        else
 968                *length = PAGE_SIZE - *page_offset;
 969
 970        return data->pages[cursor->page_index];
 971}
 972
 973static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
 974                                                size_t bytes)
 975{
 976        BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
 977
 978        BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
 979
 980        /* Advance the cursor page offset */
 981
 982        cursor->resid -= bytes;
 983        cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
 984        if (!bytes || cursor->page_offset)
 985                return false;   /* more bytes to process in the current page */
 986
 987        if (!cursor->resid)
 988                return false;   /* no more data */
 989
 990        /* Move on to the next page; offset is already at 0 */
 991
 992        BUG_ON(cursor->page_index >= cursor->page_count);
 993        cursor->page_index++;
 994        cursor->last_piece = cursor->resid <= PAGE_SIZE;
 995
 996        return true;
 997}
 998
 999/*
1000 * For a pagelist, a piece is whatever remains to be consumed in the
1001 * first page in the list, or the front of the next page.
1002 */
1003static void
1004ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1005                                        size_t length)
1006{
1007        struct ceph_msg_data *data = cursor->data;
1008        struct ceph_pagelist *pagelist;
1009        struct page *page;
1010
1011        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1012
1013        pagelist = data->pagelist;
1014        BUG_ON(!pagelist);
1015
1016        if (!length)
1017                return;         /* pagelist can be assigned but empty */
1018
1019        BUG_ON(list_empty(&pagelist->head));
1020        page = list_first_entry(&pagelist->head, struct page, lru);
1021
1022        cursor->resid = min(length, pagelist->length);
1023        cursor->page = page;
1024        cursor->offset = 0;
1025        cursor->last_piece = cursor->resid <= PAGE_SIZE;
1026}
1027
1028static struct page *
1029ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1030                                size_t *page_offset, size_t *length)
1031{
1032        struct ceph_msg_data *data = cursor->data;
1033        struct ceph_pagelist *pagelist;
1034
1035        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1036
1037        pagelist = data->pagelist;
1038        BUG_ON(!pagelist);
1039
1040        BUG_ON(!cursor->page);
1041        BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1042
1043        /* offset of first page in pagelist is always 0 */
1044        *page_offset = cursor->offset & ~PAGE_MASK;
1045        if (cursor->last_piece)
1046                *length = cursor->resid;
1047        else
1048                *length = PAGE_SIZE - *page_offset;
1049
1050        return cursor->page;
1051}
1052
1053static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1054                                                size_t bytes)
1055{
1056        struct ceph_msg_data *data = cursor->data;
1057        struct ceph_pagelist *pagelist;
1058
1059        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1060
1061        pagelist = data->pagelist;
1062        BUG_ON(!pagelist);
1063
1064        BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1065        BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1066
1067        /* Advance the cursor offset */
1068
1069        cursor->resid -= bytes;
1070        cursor->offset += bytes;
1071        /* offset of first page in pagelist is always 0 */
1072        if (!bytes || cursor->offset & ~PAGE_MASK)
1073                return false;   /* more bytes to process in the current page */
1074
1075        if (!cursor->resid)
1076                return false;   /* no more data */
1077
1078        /* Move on to the next page */
1079
1080        BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1081        cursor->page = list_next_entry(cursor->page, lru);
1082        cursor->last_piece = cursor->resid <= PAGE_SIZE;
1083
1084        return true;
1085}
1086
1087/*
1088 * Message data is handled (sent or received) in pieces, where each
1089 * piece resides on a single page.  The network layer might not
1090 * consume an entire piece at once.  A data item's cursor keeps
1091 * track of which piece is next to process and how much remains to
1092 * be processed in that piece.  It also tracks whether the current
1093 * piece is the last one in the data item.
1094 */
1095static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1096{
1097        size_t length = cursor->total_resid;
1098
1099        switch (cursor->data->type) {
1100        case CEPH_MSG_DATA_PAGELIST:
1101                ceph_msg_data_pagelist_cursor_init(cursor, length);
1102                break;
1103        case CEPH_MSG_DATA_PAGES:
1104                ceph_msg_data_pages_cursor_init(cursor, length);
1105                break;
1106#ifdef CONFIG_BLOCK
1107        case CEPH_MSG_DATA_BIO:
1108                ceph_msg_data_bio_cursor_init(cursor, length);
1109                break;
1110#endif /* CONFIG_BLOCK */
1111        case CEPH_MSG_DATA_NONE:
1112        default:
1113                /* BUG(); */
1114                break;
1115        }
1116        cursor->need_crc = true;
1117}
1118
1119static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1120{
1121        struct ceph_msg_data_cursor *cursor = &msg->cursor;
1122        struct ceph_msg_data *data;
1123
1124        BUG_ON(!length);
1125        BUG_ON(length > msg->data_length);
1126        BUG_ON(list_empty(&msg->data));
1127
1128        cursor->data_head = &msg->data;
1129        cursor->total_resid = length;
1130        data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1131        cursor->data = data;
1132
1133        __ceph_msg_data_cursor_init(cursor);
1134}
1135
1136/*
1137 * Return the page containing the next piece to process for a given
1138 * data item, and supply the page offset and length of that piece.
1139 * Indicate whether this is the last piece in this data item.
1140 */
1141static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1142                                        size_t *page_offset, size_t *length,
1143                                        bool *last_piece)
1144{
1145        struct page *page;
1146
1147        switch (cursor->data->type) {
1148        case CEPH_MSG_DATA_PAGELIST:
1149                page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1150                break;
1151        case CEPH_MSG_DATA_PAGES:
1152                page = ceph_msg_data_pages_next(cursor, page_offset, length);
1153                break;
1154#ifdef CONFIG_BLOCK
1155        case CEPH_MSG_DATA_BIO:
1156                page = ceph_msg_data_bio_next(cursor, page_offset, length);
1157                break;
1158#endif /* CONFIG_BLOCK */
1159        case CEPH_MSG_DATA_NONE:
1160        default:
1161                page = NULL;
1162                break;
1163        }
1164        BUG_ON(!page);
1165        BUG_ON(*page_offset + *length > PAGE_SIZE);
1166        BUG_ON(!*length);
1167        if (last_piece)
1168                *last_piece = cursor->last_piece;
1169
1170        return page;
1171}
1172
1173/*
1174 * Returns true if the result moves the cursor on to the next piece
1175 * of the data item.
1176 */
1177static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1178                                  size_t bytes)
1179{
1180        bool new_piece;
1181
1182        BUG_ON(bytes > cursor->resid);
1183        switch (cursor->data->type) {
1184        case CEPH_MSG_DATA_PAGELIST:
1185                new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1186                break;
1187        case CEPH_MSG_DATA_PAGES:
1188                new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1189                break;
1190#ifdef CONFIG_BLOCK
1191        case CEPH_MSG_DATA_BIO:
1192                new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1193                break;
1194#endif /* CONFIG_BLOCK */
1195        case CEPH_MSG_DATA_NONE:
1196        default:
1197                BUG();
1198                break;
1199        }
1200        cursor->total_resid -= bytes;
1201
1202        if (!cursor->resid && cursor->total_resid) {
1203                WARN_ON(!cursor->last_piece);
1204                BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1205                cursor->data = list_next_entry(cursor->data, links);
1206                __ceph_msg_data_cursor_init(cursor);
1207                new_piece = true;
1208        }
1209        cursor->need_crc = new_piece;
1210}
1211
1212static size_t sizeof_footer(struct ceph_connection *con)
1213{
1214        return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1215            sizeof(struct ceph_msg_footer) :
1216            sizeof(struct ceph_msg_footer_old);
1217}
1218
1219static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1220{
1221        BUG_ON(!msg);
1222        BUG_ON(!data_len);
1223
1224        /* Initialize data cursor */
1225
1226        ceph_msg_data_cursor_init(msg, (size_t)data_len);
1227}
1228
1229/*
1230 * Prepare footer for currently outgoing message, and finish things
1231 * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1232 */
1233static void prepare_write_message_footer(struct ceph_connection *con)
1234{
1235        struct ceph_msg *m = con->out_msg;
1236
1237        m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1238
1239        dout("prepare_write_message_footer %p\n", con);
1240        con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1241        if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1242                if (con->ops->sign_message)
1243                        con->ops->sign_message(m);
1244                else
1245                        m->footer.sig = 0;
1246        } else {
1247                m->old_footer.flags = m->footer.flags;
1248        }
1249        con->out_more = m->more_to_follow;
1250        con->out_msg_done = true;
1251}
1252
1253/*
1254 * Prepare headers for the next outgoing message.
1255 */
1256static void prepare_write_message(struct ceph_connection *con)
1257{
1258        struct ceph_msg *m;
1259        u32 crc;
1260
1261        con_out_kvec_reset(con);
1262        con->out_msg_done = false;
1263
1264        /* Sneak an ack in there first?  If we can get it into the same
1265         * TCP packet that's a good thing. */
1266        if (con->in_seq > con->in_seq_acked) {
1267                con->in_seq_acked = con->in_seq;
1268                con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1269                con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1270                con_out_kvec_add(con, sizeof (con->out_temp_ack),
1271                        &con->out_temp_ack);
1272        }
1273
1274        BUG_ON(list_empty(&con->out_queue));
1275        m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1276        con->out_msg = m;
1277        BUG_ON(m->con != con);
1278
1279        /* put message on sent list */
1280        ceph_msg_get(m);
1281        list_move_tail(&m->list_head, &con->out_sent);
1282
1283        /*
1284         * only assign outgoing seq # if we haven't sent this message
1285         * yet.  if it is requeued, resend with it's original seq.
1286         */
1287        if (m->needs_out_seq) {
1288                m->hdr.seq = cpu_to_le64(++con->out_seq);
1289                m->needs_out_seq = false;
1290
1291                if (con->ops->reencode_message)
1292                        con->ops->reencode_message(m);
1293        }
1294
1295        dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1296             m, con->out_seq, le16_to_cpu(m->hdr.type),
1297             le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1298             m->data_length);
1299        WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1300        WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1301
1302        /* tag + hdr + front + middle */
1303        con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1304        con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1305        con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1306
1307        if (m->middle)
1308                con_out_kvec_add(con, m->middle->vec.iov_len,
1309                        m->middle->vec.iov_base);
1310
1311        /* fill in hdr crc and finalize hdr */
1312        crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1313        con->out_msg->hdr.crc = cpu_to_le32(crc);
1314        memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1315
1316        /* fill in front and middle crc, footer */
1317        crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1318        con->out_msg->footer.front_crc = cpu_to_le32(crc);
1319        if (m->middle) {
1320                crc = crc32c(0, m->middle->vec.iov_base,
1321                                m->middle->vec.iov_len);
1322                con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1323        } else
1324                con->out_msg->footer.middle_crc = 0;
1325        dout("%s front_crc %u middle_crc %u\n", __func__,
1326             le32_to_cpu(con->out_msg->footer.front_crc),
1327             le32_to_cpu(con->out_msg->footer.middle_crc));
1328        con->out_msg->footer.flags = 0;
1329
1330        /* is there a data payload? */
1331        con->out_msg->footer.data_crc = 0;
1332        if (m->data_length) {
1333                prepare_message_data(con->out_msg, m->data_length);
1334                con->out_more = 1;  /* data + footer will follow */
1335        } else {
1336                /* no, queue up footer too and be done */
1337                prepare_write_message_footer(con);
1338        }
1339
1340        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1341}
1342
1343/*
1344 * Prepare an ack.
1345 */
1346static void prepare_write_ack(struct ceph_connection *con)
1347{
1348        dout("prepare_write_ack %p %llu -> %llu\n", con,
1349             con->in_seq_acked, con->in_seq);
1350        con->in_seq_acked = con->in_seq;
1351
1352        con_out_kvec_reset(con);
1353
1354        con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1355
1356        con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1357        con_out_kvec_add(con, sizeof (con->out_temp_ack),
1358                                &con->out_temp_ack);
1359
1360        con->out_more = 1;  /* more will follow.. eventually.. */
1361        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1362}
1363
1364/*
1365 * Prepare to share the seq during handshake
1366 */
1367static void prepare_write_seq(struct ceph_connection *con)
1368{
1369        dout("prepare_write_seq %p %llu -> %llu\n", con,
1370             con->in_seq_acked, con->in_seq);
1371        con->in_seq_acked = con->in_seq;
1372
1373        con_out_kvec_reset(con);
1374
1375        con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1376        con_out_kvec_add(con, sizeof (con->out_temp_ack),
1377                         &con->out_temp_ack);
1378
1379        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1380}
1381
1382/*
1383 * Prepare to write keepalive byte.
1384 */
1385static void prepare_write_keepalive(struct ceph_connection *con)
1386{
1387        dout("prepare_write_keepalive %p\n", con);
1388        con_out_kvec_reset(con);
1389        if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1390                struct timespec now;
1391
1392                ktime_get_real_ts(&now);
1393                con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1394                ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1395                con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1396                                 &con->out_temp_keepalive2);
1397        } else {
1398                con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1399        }
1400        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1401}
1402
1403/*
1404 * Connection negotiation.
1405 */
1406
1407static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1408                                                int *auth_proto)
1409{
1410        struct ceph_auth_handshake *auth;
1411
1412        if (!con->ops->get_authorizer) {
1413                con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1414                con->out_connect.authorizer_len = 0;
1415                return NULL;
1416        }
1417
1418        auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1419        if (IS_ERR(auth))
1420                return auth;
1421
1422        con->auth_reply_buf = auth->authorizer_reply_buf;
1423        con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1424        return auth;
1425}
1426
1427/*
1428 * We connected to a peer and are saying hello.
1429 */
1430static void prepare_write_banner(struct ceph_connection *con)
1431{
1432        con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1433        con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1434                                        &con->msgr->my_enc_addr);
1435
1436        con->out_more = 0;
1437        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1438}
1439
1440static int prepare_write_connect(struct ceph_connection *con)
1441{
1442        unsigned int global_seq = get_global_seq(con->msgr, 0);
1443        int proto;
1444        int auth_proto;
1445        struct ceph_auth_handshake *auth;
1446
1447        switch (con->peer_name.type) {
1448        case CEPH_ENTITY_TYPE_MON:
1449                proto = CEPH_MONC_PROTOCOL;
1450                break;
1451        case CEPH_ENTITY_TYPE_OSD:
1452                proto = CEPH_OSDC_PROTOCOL;
1453                break;
1454        case CEPH_ENTITY_TYPE_MDS:
1455                proto = CEPH_MDSC_PROTOCOL;
1456                break;
1457        default:
1458                BUG();
1459        }
1460
1461        dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1462             con->connect_seq, global_seq, proto);
1463
1464        con->out_connect.features =
1465            cpu_to_le64(from_msgr(con->msgr)->supported_features);
1466        con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1467        con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1468        con->out_connect.global_seq = cpu_to_le32(global_seq);
1469        con->out_connect.protocol_version = cpu_to_le32(proto);
1470        con->out_connect.flags = 0;
1471
1472        auth_proto = CEPH_AUTH_UNKNOWN;
1473        auth = get_connect_authorizer(con, &auth_proto);
1474        if (IS_ERR(auth))
1475                return PTR_ERR(auth);
1476
1477        con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1478        con->out_connect.authorizer_len = auth ?
1479                cpu_to_le32(auth->authorizer_buf_len) : 0;
1480
1481        con_out_kvec_add(con, sizeof (con->out_connect),
1482                                        &con->out_connect);
1483        if (auth && auth->authorizer_buf_len)
1484                con_out_kvec_add(con, auth->authorizer_buf_len,
1485                                        auth->authorizer_buf);
1486
1487        con->out_more = 0;
1488        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1489
1490        return 0;
1491}
1492
1493/*
1494 * write as much of pending kvecs to the socket as we can.
1495 *  1 -> done
1496 *  0 -> socket full, but more to do
1497 * <0 -> error
1498 */
1499static int write_partial_kvec(struct ceph_connection *con)
1500{
1501        int ret;
1502
1503        dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1504        while (con->out_kvec_bytes > 0) {
1505                ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1506                                       con->out_kvec_left, con->out_kvec_bytes,
1507                                       con->out_more);
1508                if (ret <= 0)
1509                        goto out;
1510                con->out_kvec_bytes -= ret;
1511                if (con->out_kvec_bytes == 0)
1512                        break;            /* done */
1513
1514                /* account for full iov entries consumed */
1515                while (ret >= con->out_kvec_cur->iov_len) {
1516                        BUG_ON(!con->out_kvec_left);
1517                        ret -= con->out_kvec_cur->iov_len;
1518                        con->out_kvec_cur++;
1519                        con->out_kvec_left--;
1520                }
1521                /* and for a partially-consumed entry */
1522                if (ret) {
1523                        con->out_kvec_cur->iov_len -= ret;
1524                        con->out_kvec_cur->iov_base += ret;
1525                }
1526        }
1527        con->out_kvec_left = 0;
1528        ret = 1;
1529out:
1530        dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1531             con->out_kvec_bytes, con->out_kvec_left, ret);
1532        return ret;  /* done! */
1533}
1534
1535static u32 ceph_crc32c_page(u32 crc, struct page *page,
1536                                unsigned int page_offset,
1537                                unsigned int length)
1538{
1539        char *kaddr;
1540
1541        kaddr = kmap(page);
1542        BUG_ON(kaddr == NULL);
1543        crc = crc32c(crc, kaddr + page_offset, length);
1544        kunmap(page);
1545
1546        return crc;
1547}
1548/*
1549 * Write as much message data payload as we can.  If we finish, queue
1550 * up the footer.
1551 *  1 -> done, footer is now queued in out_kvec[].
1552 *  0 -> socket full, but more to do
1553 * <0 -> error
1554 */
1555static int write_partial_message_data(struct ceph_connection *con)
1556{
1557        struct ceph_msg *msg = con->out_msg;
1558        struct ceph_msg_data_cursor *cursor = &msg->cursor;
1559        bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1560        u32 crc;
1561
1562        dout("%s %p msg %p\n", __func__, con, msg);
1563
1564        if (list_empty(&msg->data))
1565                return -EINVAL;
1566
1567        /*
1568         * Iterate through each page that contains data to be
1569         * written, and send as much as possible for each.
1570         *
1571         * If we are calculating the data crc (the default), we will
1572         * need to map the page.  If we have no pages, they have
1573         * been revoked, so use the zero page.
1574         */
1575        crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1576        while (cursor->resid) {
1577                struct page *page;
1578                size_t page_offset;
1579                size_t length;
1580                bool last_piece;
1581                int ret;
1582
1583                page = ceph_msg_data_next(cursor, &page_offset, &length,
1584                                          &last_piece);
1585                ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1586                                        length, !last_piece);
1587                if (ret <= 0) {
1588                        if (do_datacrc)
1589                                msg->footer.data_crc = cpu_to_le32(crc);
1590
1591                        return ret;
1592                }
1593                if (do_datacrc && cursor->need_crc)
1594                        crc = ceph_crc32c_page(crc, page, page_offset, length);
1595                ceph_msg_data_advance(cursor, (size_t)ret);
1596        }
1597
1598        dout("%s %p msg %p done\n", __func__, con, msg);
1599
1600        /* prepare and queue up footer, too */
1601        if (do_datacrc)
1602                msg->footer.data_crc = cpu_to_le32(crc);
1603        else
1604                msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1605        con_out_kvec_reset(con);
1606        prepare_write_message_footer(con);
1607
1608        return 1;       /* must return > 0 to indicate success */
1609}
1610
1611/*
1612 * write some zeros
1613 */
1614static int write_partial_skip(struct ceph_connection *con)
1615{
1616        int ret;
1617
1618        dout("%s %p %d left\n", __func__, con, con->out_skip);
1619        while (con->out_skip > 0) {
1620                size_t size = min(con->out_skip, (int) PAGE_SIZE);
1621
1622                ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1623                if (ret <= 0)
1624                        goto out;
1625                con->out_skip -= ret;
1626        }
1627        ret = 1;
1628out:
1629        return ret;
1630}
1631
1632/*
1633 * Prepare to read connection handshake, or an ack.
1634 */
1635static void prepare_read_banner(struct ceph_connection *con)
1636{
1637        dout("prepare_read_banner %p\n", con);
1638        con->in_base_pos = 0;
1639}
1640
1641static void prepare_read_connect(struct ceph_connection *con)
1642{
1643        dout("prepare_read_connect %p\n", con);
1644        con->in_base_pos = 0;
1645}
1646
1647static void prepare_read_ack(struct ceph_connection *con)
1648{
1649        dout("prepare_read_ack %p\n", con);
1650        con->in_base_pos = 0;
1651}
1652
1653static void prepare_read_seq(struct ceph_connection *con)
1654{
1655        dout("prepare_read_seq %p\n", con);
1656        con->in_base_pos = 0;
1657        con->in_tag = CEPH_MSGR_TAG_SEQ;
1658}
1659
1660static void prepare_read_tag(struct ceph_connection *con)
1661{
1662        dout("prepare_read_tag %p\n", con);
1663        con->in_base_pos = 0;
1664        con->in_tag = CEPH_MSGR_TAG_READY;
1665}
1666
1667static void prepare_read_keepalive_ack(struct ceph_connection *con)
1668{
1669        dout("prepare_read_keepalive_ack %p\n", con);
1670        con->in_base_pos = 0;
1671}
1672
1673/*
1674 * Prepare to read a message.
1675 */
1676static int prepare_read_message(struct ceph_connection *con)
1677{
1678        dout("prepare_read_message %p\n", con);
1679        BUG_ON(con->in_msg != NULL);
1680        con->in_base_pos = 0;
1681        con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1682        return 0;
1683}
1684
1685
1686static int read_partial(struct ceph_connection *con,
1687                        int end, int size, void *object)
1688{
1689        while (con->in_base_pos < end) {
1690                int left = end - con->in_base_pos;
1691                int have = size - left;
1692                int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1693                if (ret <= 0)
1694                        return ret;
1695                con->in_base_pos += ret;
1696        }
1697        return 1;
1698}
1699
1700
1701/*
1702 * Read all or part of the connect-side handshake on a new connection
1703 */
1704static int read_partial_banner(struct ceph_connection *con)
1705{
1706        int size;
1707        int end;
1708        int ret;
1709
1710        dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1711
1712        /* peer's banner */
1713        size = strlen(CEPH_BANNER);
1714        end = size;
1715        ret = read_partial(con, end, size, con->in_banner);
1716        if (ret <= 0)
1717                goto out;
1718
1719        size = sizeof (con->actual_peer_addr);
1720        end += size;
1721        ret = read_partial(con, end, size, &con->actual_peer_addr);
1722        if (ret <= 0)
1723                goto out;
1724
1725        size = sizeof (con->peer_addr_for_me);
1726        end += size;
1727        ret = read_partial(con, end, size, &con->peer_addr_for_me);
1728        if (ret <= 0)
1729                goto out;
1730
1731out:
1732        return ret;
1733}
1734
1735static int read_partial_connect(struct ceph_connection *con)
1736{
1737        int size;
1738        int end;
1739        int ret;
1740
1741        dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1742
1743        size = sizeof (con->in_reply);
1744        end = size;
1745        ret = read_partial(con, end, size, &con->in_reply);
1746        if (ret <= 0)
1747                goto out;
1748
1749        size = le32_to_cpu(con->in_reply.authorizer_len);
1750        end += size;
1751        ret = read_partial(con, end, size, con->auth_reply_buf);
1752        if (ret <= 0)
1753                goto out;
1754
1755        dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1756             con, (int)con->in_reply.tag,
1757             le32_to_cpu(con->in_reply.connect_seq),
1758             le32_to_cpu(con->in_reply.global_seq));
1759out:
1760        return ret;
1761
1762}
1763
1764/*
1765 * Verify the hello banner looks okay.
1766 */
1767static int verify_hello(struct ceph_connection *con)
1768{
1769        if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1770                pr_err("connect to %s got bad banner\n",
1771                       ceph_pr_addr(&con->peer_addr.in_addr));
1772                con->error_msg = "protocol error, bad banner";
1773                return -1;
1774        }
1775        return 0;
1776}
1777
1778static bool addr_is_blank(struct sockaddr_storage *ss)
1779{
1780        struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1781        struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1782
1783        switch (ss->ss_family) {
1784        case AF_INET:
1785                return addr->s_addr == htonl(INADDR_ANY);
1786        case AF_INET6:
1787                return ipv6_addr_any(addr6);
1788        default:
1789                return true;
1790        }
1791}
1792
1793static int addr_port(struct sockaddr_storage *ss)
1794{
1795        switch (ss->ss_family) {
1796        case AF_INET:
1797                return ntohs(((struct sockaddr_in *)ss)->sin_port);
1798        case AF_INET6:
1799                return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1800        }
1801        return 0;
1802}
1803
1804static void addr_set_port(struct sockaddr_storage *ss, int p)
1805{
1806        switch (ss->ss_family) {
1807        case AF_INET:
1808                ((struct sockaddr_in *)ss)->sin_port = htons(p);
1809                break;
1810        case AF_INET6:
1811                ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1812                break;
1813        }
1814}
1815
1816/*
1817 * Unlike other *_pton function semantics, zero indicates success.
1818 */
1819static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1820                char delim, const char **ipend)
1821{
1822        struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1823        struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1824
1825        memset(ss, 0, sizeof(*ss));
1826
1827        if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1828                ss->ss_family = AF_INET;
1829                return 0;
1830        }
1831
1832        if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1833                ss->ss_family = AF_INET6;
1834                return 0;
1835        }
1836
1837        return -EINVAL;
1838}
1839
1840/*
1841 * Extract hostname string and resolve using kernel DNS facility.
1842 */
1843#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1844static int ceph_dns_resolve_name(const char *name, size_t namelen,
1845                struct sockaddr_storage *ss, char delim, const char **ipend)
1846{
1847        const char *end, *delim_p;
1848        char *colon_p, *ip_addr = NULL;
1849        int ip_len, ret;
1850
1851        /*
1852         * The end of the hostname occurs immediately preceding the delimiter or
1853         * the port marker (':') where the delimiter takes precedence.
1854         */
1855        delim_p = memchr(name, delim, namelen);
1856        colon_p = memchr(name, ':', namelen);
1857
1858        if (delim_p && colon_p)
1859                end = delim_p < colon_p ? delim_p : colon_p;
1860        else if (!delim_p && colon_p)
1861                end = colon_p;
1862        else {
1863                end = delim_p;
1864                if (!end) /* case: hostname:/ */
1865                        end = name + namelen;
1866        }
1867
1868        if (end <= name)
1869                return -EINVAL;
1870
1871        /* do dns_resolve upcall */
1872        ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1873        if (ip_len > 0)
1874                ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1875        else
1876                ret = -ESRCH;
1877
1878        kfree(ip_addr);
1879
1880        *ipend = end;
1881
1882        pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1883                        ret, ret ? "failed" : ceph_pr_addr(ss));
1884
1885        return ret;
1886}
1887#else
1888static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1889                struct sockaddr_storage *ss, char delim, const char **ipend)
1890{
1891        return -EINVAL;
1892}
1893#endif
1894
1895/*
1896 * Parse a server name (IP or hostname). If a valid IP address is not found
1897 * then try to extract a hostname to resolve using userspace DNS upcall.
1898 */
1899static int ceph_parse_server_name(const char *name, size_t namelen,
1900                        struct sockaddr_storage *ss, char delim, const char **ipend)
1901{
1902        int ret;
1903
1904        ret = ceph_pton(name, namelen, ss, delim, ipend);
1905        if (ret)
1906                ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1907
1908        return ret;
1909}
1910
1911/*
1912 * Parse an ip[:port] list into an addr array.  Use the default
1913 * monitor port if a port isn't specified.
1914 */
1915int ceph_parse_ips(const char *c, const char *end,
1916                   struct ceph_entity_addr *addr,
1917                   int max_count, int *count)
1918{
1919        int i, ret = -EINVAL;
1920        const char *p = c;
1921
1922        dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1923        for (i = 0; i < max_count; i++) {
1924                const char *ipend;
1925                struct sockaddr_storage *ss = &addr[i].in_addr;
1926                int port;
1927                char delim = ',';
1928
1929                if (*p == '[') {
1930                        delim = ']';
1931                        p++;
1932                }
1933
1934                ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1935                if (ret)
1936                        goto bad;
1937                ret = -EINVAL;
1938
1939                p = ipend;
1940
1941                if (delim == ']') {
1942                        if (*p != ']') {
1943                                dout("missing matching ']'\n");
1944                                goto bad;
1945                        }
1946                        p++;
1947                }
1948
1949                /* port? */
1950                if (p < end && *p == ':') {
1951                        port = 0;
1952                        p++;
1953                        while (p < end && *p >= '0' && *p <= '9') {
1954                                port = (port * 10) + (*p - '0');
1955                                p++;
1956                        }
1957                        if (port == 0)
1958                                port = CEPH_MON_PORT;
1959                        else if (port > 65535)
1960                                goto bad;
1961                } else {
1962                        port = CEPH_MON_PORT;
1963                }
1964
1965                addr_set_port(ss, port);
1966
1967                dout("parse_ips got %s\n", ceph_pr_addr(ss));
1968
1969                if (p == end)
1970                        break;
1971                if (*p != ',')
1972                        goto bad;
1973                p++;
1974        }
1975
1976        if (p != end)
1977                goto bad;
1978
1979        if (count)
1980                *count = i + 1;
1981        return 0;
1982
1983bad:
1984        pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1985        return ret;
1986}
1987EXPORT_SYMBOL(ceph_parse_ips);
1988
1989static int process_banner(struct ceph_connection *con)
1990{
1991        dout("process_banner on %p\n", con);
1992
1993        if (verify_hello(con) < 0)
1994                return -1;
1995
1996        ceph_decode_addr(&con->actual_peer_addr);
1997        ceph_decode_addr(&con->peer_addr_for_me);
1998
1999        /*
2000         * Make sure the other end is who we wanted.  note that the other
2001         * end may not yet know their ip address, so if it's 0.0.0.0, give
2002         * them the benefit of the doubt.
2003         */
2004        if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2005                   sizeof(con->peer_addr)) != 0 &&
2006            !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2007              con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2008                pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2009                        ceph_pr_addr(&con->peer_addr.in_addr),
2010                        (int)le32_to_cpu(con->peer_addr.nonce),
2011                        ceph_pr_addr(&con->actual_peer_addr.in_addr),
2012                        (int)le32_to_cpu(con->actual_peer_addr.nonce));
2013                con->error_msg = "wrong peer at address";
2014                return -1;
2015        }
2016
2017        /*
2018         * did we learn our address?
2019         */
2020        if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2021                int port = addr_port(&con->msgr->inst.addr.in_addr);
2022
2023                memcpy(&con->msgr->inst.addr.in_addr,
2024                       &con->peer_addr_for_me.in_addr,
2025                       sizeof(con->peer_addr_for_me.in_addr));
2026                addr_set_port(&con->msgr->inst.addr.in_addr, port);
2027                encode_my_addr(con->msgr);
2028                dout("process_banner learned my addr is %s\n",
2029                     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2030        }
2031
2032        return 0;
2033}
2034
2035static int process_connect(struct ceph_connection *con)
2036{
2037        u64 sup_feat = from_msgr(con->msgr)->supported_features;
2038        u64 req_feat = from_msgr(con->msgr)->required_features;
2039        u64 server_feat = le64_to_cpu(con->in_reply.features);
2040        int ret;
2041
2042        dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2043
2044        if (con->auth_reply_buf) {
2045                /*
2046                 * Any connection that defines ->get_authorizer()
2047                 * should also define ->verify_authorizer_reply().
2048                 * See get_connect_authorizer().
2049                 */
2050                ret = con->ops->verify_authorizer_reply(con);
2051                if (ret < 0) {
2052                        con->error_msg = "bad authorize reply";
2053                        return ret;
2054                }
2055        }
2056
2057        switch (con->in_reply.tag) {
2058        case CEPH_MSGR_TAG_FEATURES:
2059                pr_err("%s%lld %s feature set mismatch,"
2060                       " my %llx < server's %llx, missing %llx\n",
2061                       ENTITY_NAME(con->peer_name),
2062                       ceph_pr_addr(&con->peer_addr.in_addr),
2063                       sup_feat, server_feat, server_feat & ~sup_feat);
2064                con->error_msg = "missing required protocol features";
2065                reset_connection(con);
2066                return -1;
2067
2068        case CEPH_MSGR_TAG_BADPROTOVER:
2069                pr_err("%s%lld %s protocol version mismatch,"
2070                       " my %d != server's %d\n",
2071                       ENTITY_NAME(con->peer_name),
2072                       ceph_pr_addr(&con->peer_addr.in_addr),
2073                       le32_to_cpu(con->out_connect.protocol_version),
2074                       le32_to_cpu(con->in_reply.protocol_version));
2075                con->error_msg = "protocol version mismatch";
2076                reset_connection(con);
2077                return -1;
2078
2079        case CEPH_MSGR_TAG_BADAUTHORIZER:
2080                con->auth_retry++;
2081                dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2082                     con->auth_retry);
2083                if (con->auth_retry == 2) {
2084                        con->error_msg = "connect authorization failure";
2085                        return -1;
2086                }
2087                con_out_kvec_reset(con);
2088                ret = prepare_write_connect(con);
2089                if (ret < 0)
2090                        return ret;
2091                prepare_read_connect(con);
2092                break;
2093
2094        case CEPH_MSGR_TAG_RESETSESSION:
2095                /*
2096                 * If we connected with a large connect_seq but the peer
2097                 * has no record of a session with us (no connection, or
2098                 * connect_seq == 0), they will send RESETSESION to indicate
2099                 * that they must have reset their session, and may have
2100                 * dropped messages.
2101                 */
2102                dout("process_connect got RESET peer seq %u\n",
2103                     le32_to_cpu(con->in_reply.connect_seq));
2104                pr_err("%s%lld %s connection reset\n",
2105                       ENTITY_NAME(con->peer_name),
2106                       ceph_pr_addr(&con->peer_addr.in_addr));
2107                reset_connection(con);
2108                con_out_kvec_reset(con);
2109                ret = prepare_write_connect(con);
2110                if (ret < 0)
2111                        return ret;
2112                prepare_read_connect(con);
2113
2114                /* Tell ceph about it. */
2115                mutex_unlock(&con->mutex);
2116                pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2117                if (con->ops->peer_reset)
2118                        con->ops->peer_reset(con);
2119                mutex_lock(&con->mutex);
2120                if (con->state != CON_STATE_NEGOTIATING)
2121                        return -EAGAIN;
2122                break;
2123
2124        case CEPH_MSGR_TAG_RETRY_SESSION:
2125                /*
2126                 * If we sent a smaller connect_seq than the peer has, try
2127                 * again with a larger value.
2128                 */
2129                dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2130                     le32_to_cpu(con->out_connect.connect_seq),
2131                     le32_to_cpu(con->in_reply.connect_seq));
2132                con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2133                con_out_kvec_reset(con);
2134                ret = prepare_write_connect(con);
2135                if (ret < 0)
2136                        return ret;
2137                prepare_read_connect(con);
2138                break;
2139
2140        case CEPH_MSGR_TAG_RETRY_GLOBAL:
2141                /*
2142                 * If we sent a smaller global_seq than the peer has, try
2143                 * again with a larger value.
2144                 */
2145                dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2146                     con->peer_global_seq,
2147                     le32_to_cpu(con->in_reply.global_seq));
2148                get_global_seq(con->msgr,
2149                               le32_to_cpu(con->in_reply.global_seq));
2150                con_out_kvec_reset(con);
2151                ret = prepare_write_connect(con);
2152                if (ret < 0)
2153                        return ret;
2154                prepare_read_connect(con);
2155                break;
2156
2157        case CEPH_MSGR_TAG_SEQ:
2158        case CEPH_MSGR_TAG_READY:
2159                if (req_feat & ~server_feat) {
2160                        pr_err("%s%lld %s protocol feature mismatch,"
2161                               " my required %llx > server's %llx, need %llx\n",
2162                               ENTITY_NAME(con->peer_name),
2163                               ceph_pr_addr(&con->peer_addr.in_addr),
2164                               req_feat, server_feat, req_feat & ~server_feat);
2165                        con->error_msg = "missing required protocol features";
2166                        reset_connection(con);
2167                        return -1;
2168                }
2169
2170                WARN_ON(con->state != CON_STATE_NEGOTIATING);
2171                con->state = CON_STATE_OPEN;
2172                con->auth_retry = 0;    /* we authenticated; clear flag */
2173                con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2174                con->connect_seq++;
2175                con->peer_features = server_feat;
2176                dout("process_connect got READY gseq %d cseq %d (%d)\n",
2177                     con->peer_global_seq,
2178                     le32_to_cpu(con->in_reply.connect_seq),
2179                     con->connect_seq);
2180                WARN_ON(con->connect_seq !=
2181                        le32_to_cpu(con->in_reply.connect_seq));
2182
2183                if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2184                        con_flag_set(con, CON_FLAG_LOSSYTX);
2185
2186                con->delay = 0;      /* reset backoff memory */
2187
2188                if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2189                        prepare_write_seq(con);
2190                        prepare_read_seq(con);
2191                } else {
2192                        prepare_read_tag(con);
2193                }
2194                break;
2195
2196        case CEPH_MSGR_TAG_WAIT:
2197                /*
2198                 * If there is a connection race (we are opening
2199                 * connections to each other), one of us may just have
2200                 * to WAIT.  This shouldn't happen if we are the
2201                 * client.
2202                 */
2203                con->error_msg = "protocol error, got WAIT as client";
2204                return -1;
2205
2206        default:
2207                con->error_msg = "protocol error, garbage tag during connect";
2208                return -1;
2209        }
2210        return 0;
2211}
2212
2213
2214/*
2215 * read (part of) an ack
2216 */
2217static int read_partial_ack(struct ceph_connection *con)
2218{
2219        int size = sizeof (con->in_temp_ack);
2220        int end = size;
2221
2222        return read_partial(con, end, size, &con->in_temp_ack);
2223}
2224
2225/*
2226 * We can finally discard anything that's been acked.
2227 */
2228static void process_ack(struct ceph_connection *con)
2229{
2230        struct ceph_msg *m;
2231        u64 ack = le64_to_cpu(con->in_temp_ack);
2232        u64 seq;
2233        bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2234        struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2235
2236        /*
2237         * In the reconnect case, con_fault() has requeued messages
2238         * in out_sent. We should cleanup old messages according to
2239         * the reconnect seq.
2240         */
2241        while (!list_empty(list)) {
2242                m = list_first_entry(list, struct ceph_msg, list_head);
2243                if (reconnect && m->needs_out_seq)
2244                        break;
2245                seq = le64_to_cpu(m->hdr.seq);
2246                if (seq > ack)
2247                        break;
2248                dout("got ack for seq %llu type %d at %p\n", seq,
2249                     le16_to_cpu(m->hdr.type), m);
2250                m->ack_stamp = jiffies;
2251                ceph_msg_remove(m);
2252        }
2253
2254        prepare_read_tag(con);
2255}
2256
2257
2258static int read_partial_message_section(struct ceph_connection *con,
2259                                        struct kvec *section,
2260                                        unsigned int sec_len, u32 *crc)
2261{
2262        int ret, left;
2263
2264        BUG_ON(!section);
2265
2266        while (section->iov_len < sec_len) {
2267                BUG_ON(section->iov_base == NULL);
2268                left = sec_len - section->iov_len;
2269                ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2270                                       section->iov_len, left);
2271                if (ret <= 0)
2272                        return ret;
2273                section->iov_len += ret;
2274        }
2275        if (section->iov_len == sec_len)
2276                *crc = crc32c(0, section->iov_base, section->iov_len);
2277
2278        return 1;
2279}
2280
2281static int read_partial_msg_data(struct ceph_connection *con)
2282{
2283        struct ceph_msg *msg = con->in_msg;
2284        struct ceph_msg_data_cursor *cursor = &msg->cursor;
2285        bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2286        struct page *page;
2287        size_t page_offset;
2288        size_t length;
2289        u32 crc = 0;
2290        int ret;
2291
2292        BUG_ON(!msg);
2293        if (list_empty(&msg->data))
2294                return -EIO;
2295
2296        if (do_datacrc)
2297                crc = con->in_data_crc;
2298        while (cursor->resid) {
2299                page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2300                ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2301                if (ret <= 0) {
2302                        if (do_datacrc)
2303                                con->in_data_crc = crc;
2304
2305                        return ret;
2306                }
2307
2308                if (do_datacrc)
2309                        crc = ceph_crc32c_page(crc, page, page_offset, ret);
2310                ceph_msg_data_advance(cursor, (size_t)ret);
2311        }
2312        if (do_datacrc)
2313                con->in_data_crc = crc;
2314
2315        return 1;       /* must return > 0 to indicate success */
2316}
2317
2318/*
2319 * read (part of) a message.
2320 */
2321static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2322
2323static int read_partial_message(struct ceph_connection *con)
2324{
2325        struct ceph_msg *m = con->in_msg;
2326        int size;
2327        int end;
2328        int ret;
2329        unsigned int front_len, middle_len, data_len;
2330        bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2331        bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2332        u64 seq;
2333        u32 crc;
2334
2335        dout("read_partial_message con %p msg %p\n", con, m);
2336
2337        /* header */
2338        size = sizeof (con->in_hdr);
2339        end = size;
2340        ret = read_partial(con, end, size, &con->in_hdr);
2341        if (ret <= 0)
2342                return ret;
2343
2344        crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2345        if (cpu_to_le32(crc) != con->in_hdr.crc) {
2346                pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2347                       crc, con->in_hdr.crc);
2348                return -EBADMSG;
2349        }
2350
2351        front_len = le32_to_cpu(con->in_hdr.front_len);
2352        if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2353                return -EIO;
2354        middle_len = le32_to_cpu(con->in_hdr.middle_len);
2355        if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2356                return -EIO;
2357        data_len = le32_to_cpu(con->in_hdr.data_len);
2358        if (data_len > CEPH_MSG_MAX_DATA_LEN)
2359                return -EIO;
2360
2361        /* verify seq# */
2362        seq = le64_to_cpu(con->in_hdr.seq);
2363        if ((s64)seq - (s64)con->in_seq < 1) {
2364                pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2365                        ENTITY_NAME(con->peer_name),
2366                        ceph_pr_addr(&con->peer_addr.in_addr),
2367                        seq, con->in_seq + 1);
2368                con->in_base_pos = -front_len - middle_len - data_len -
2369                        sizeof_footer(con);
2370                con->in_tag = CEPH_MSGR_TAG_READY;
2371                return 1;
2372        } else if ((s64)seq - (s64)con->in_seq > 1) {
2373                pr_err("read_partial_message bad seq %lld expected %lld\n",
2374                       seq, con->in_seq + 1);
2375                con->error_msg = "bad message sequence # for incoming message";
2376                return -EBADE;
2377        }
2378
2379        /* allocate message? */
2380        if (!con->in_msg) {
2381                int skip = 0;
2382
2383                dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2384                     front_len, data_len);
2385                ret = ceph_con_in_msg_alloc(con, &skip);
2386                if (ret < 0)
2387                        return ret;
2388
2389                BUG_ON(!con->in_msg ^ skip);
2390                if (skip) {
2391                        /* skip this message */
2392                        dout("alloc_msg said skip message\n");
2393                        con->in_base_pos = -front_len - middle_len - data_len -
2394                                sizeof_footer(con);
2395                        con->in_tag = CEPH_MSGR_TAG_READY;
2396                        con->in_seq++;
2397                        return 1;
2398                }
2399
2400                BUG_ON(!con->in_msg);
2401                BUG_ON(con->in_msg->con != con);
2402                m = con->in_msg;
2403                m->front.iov_len = 0;    /* haven't read it yet */
2404                if (m->middle)
2405                        m->middle->vec.iov_len = 0;
2406
2407                /* prepare for data payload, if any */
2408
2409                if (data_len)
2410                        prepare_message_data(con->in_msg, data_len);
2411        }
2412
2413        /* front */
2414        ret = read_partial_message_section(con, &m->front, front_len,
2415                                           &con->in_front_crc);
2416        if (ret <= 0)
2417                return ret;
2418
2419        /* middle */
2420        if (m->middle) {
2421                ret = read_partial_message_section(con, &m->middle->vec,
2422                                                   middle_len,
2423                                                   &con->in_middle_crc);
2424                if (ret <= 0)
2425                        return ret;
2426        }
2427
2428        /* (page) data */
2429        if (data_len) {
2430                ret = read_partial_msg_data(con);
2431                if (ret <= 0)
2432                        return ret;
2433        }
2434
2435        /* footer */
2436        size = sizeof_footer(con);
2437        end += size;
2438        ret = read_partial(con, end, size, &m->footer);
2439        if (ret <= 0)
2440                return ret;
2441
2442        if (!need_sign) {
2443                m->footer.flags = m->old_footer.flags;
2444                m->footer.sig = 0;
2445        }
2446
2447        dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2448             m, front_len, m->footer.front_crc, middle_len,
2449             m->footer.middle_crc, data_len, m->footer.data_crc);
2450
2451        /* crc ok? */
2452        if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2453                pr_err("read_partial_message %p front crc %u != exp. %u\n",
2454                       m, con->in_front_crc, m->footer.front_crc);
2455                return -EBADMSG;
2456        }
2457        if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2458                pr_err("read_partial_message %p middle crc %u != exp %u\n",
2459                       m, con->in_middle_crc, m->footer.middle_crc);
2460                return -EBADMSG;
2461        }
2462        if (do_datacrc &&
2463            (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2464            con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2465                pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2466                       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2467                return -EBADMSG;
2468        }
2469
2470        if (need_sign && con->ops->check_message_signature &&
2471            con->ops->check_message_signature(m)) {
2472                pr_err("read_partial_message %p signature check failed\n", m);
2473                return -EBADMSG;
2474        }
2475
2476        return 1; /* done! */
2477}
2478
2479/*
2480 * Process message.  This happens in the worker thread.  The callback should
2481 * be careful not to do anything that waits on other incoming messages or it
2482 * may deadlock.
2483 */
2484static void process_message(struct ceph_connection *con)
2485{
2486        struct ceph_msg *msg = con->in_msg;
2487
2488        BUG_ON(con->in_msg->con != con);
2489        con->in_msg = NULL;
2490
2491        /* if first message, set peer_name */
2492        if (con->peer_name.type == 0)
2493                con->peer_name = msg->hdr.src;
2494
2495        con->in_seq++;
2496        mutex_unlock(&con->mutex);
2497
2498        dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2499             msg, le64_to_cpu(msg->hdr.seq),
2500             ENTITY_NAME(msg->hdr.src),
2501             le16_to_cpu(msg->hdr.type),
2502             ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2503             le32_to_cpu(msg->hdr.front_len),
2504             le32_to_cpu(msg->hdr.data_len),
2505             con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2506        con->ops->dispatch(con, msg);
2507
2508        mutex_lock(&con->mutex);
2509}
2510
2511static int read_keepalive_ack(struct ceph_connection *con)
2512{
2513        struct ceph_timespec ceph_ts;
2514        size_t size = sizeof(ceph_ts);
2515        int ret = read_partial(con, size, size, &ceph_ts);
2516        if (ret <= 0)
2517                return ret;
2518        ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2519        prepare_read_tag(con);
2520        return 1;
2521}
2522
2523/*
2524 * Write something to the socket.  Called in a worker thread when the
2525 * socket appears to be writeable and we have something ready to send.
2526 */
2527static int try_write(struct ceph_connection *con)
2528{
2529        int ret = 1;
2530
2531        dout("try_write start %p state %lu\n", con, con->state);
2532
2533more:
2534        dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2535
2536        /* open the socket first? */
2537        if (con->state == CON_STATE_PREOPEN) {
2538                BUG_ON(con->sock);
2539                con->state = CON_STATE_CONNECTING;
2540
2541                con_out_kvec_reset(con);
2542                prepare_write_banner(con);
2543                prepare_read_banner(con);
2544
2545                BUG_ON(con->in_msg);
2546                con->in_tag = CEPH_MSGR_TAG_READY;
2547                dout("try_write initiating connect on %p new state %lu\n",
2548                     con, con->state);
2549                ret = ceph_tcp_connect(con);
2550                if (ret < 0) {
2551                        con->error_msg = "connect error";
2552                        goto out;
2553                }
2554        }
2555
2556more_kvec:
2557        /* kvec data queued? */
2558        if (con->out_kvec_left) {
2559                ret = write_partial_kvec(con);
2560                if (ret <= 0)
2561                        goto out;
2562        }
2563        if (con->out_skip) {
2564                ret = write_partial_skip(con);
2565                if (ret <= 0)
2566                        goto out;
2567        }
2568
2569        /* msg pages? */
2570        if (con->out_msg) {
2571                if (con->out_msg_done) {
2572                        ceph_msg_put(con->out_msg);
2573                        con->out_msg = NULL;   /* we're done with this one */
2574                        goto do_next;
2575                }
2576
2577                ret = write_partial_message_data(con);
2578                if (ret == 1)
2579                        goto more_kvec;  /* we need to send the footer, too! */
2580                if (ret == 0)
2581                        goto out;
2582                if (ret < 0) {
2583                        dout("try_write write_partial_message_data err %d\n",
2584                             ret);
2585                        goto out;
2586                }
2587        }
2588
2589do_next:
2590        if (con->state == CON_STATE_OPEN) {
2591                if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2592                        prepare_write_keepalive(con);
2593                        goto more;
2594                }
2595                /* is anything else pending? */
2596                if (!list_empty(&con->out_queue)) {
2597                        prepare_write_message(con);
2598                        goto more;
2599                }
2600                if (con->in_seq > con->in_seq_acked) {
2601                        prepare_write_ack(con);
2602                        goto more;
2603                }
2604        }
2605
2606        /* Nothing to do! */
2607        con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2608        dout("try_write nothing else to write.\n");
2609        ret = 0;
2610out:
2611        dout("try_write done on %p ret %d\n", con, ret);
2612        return ret;
2613}
2614
2615
2616
2617/*
2618 * Read what we can from the socket.
2619 */
2620static int try_read(struct ceph_connection *con)
2621{
2622        int ret = -1;
2623
2624more:
2625        dout("try_read start on %p state %lu\n", con, con->state);
2626        if (con->state != CON_STATE_CONNECTING &&
2627            con->state != CON_STATE_NEGOTIATING &&
2628            con->state != CON_STATE_OPEN)
2629                return 0;
2630
2631        BUG_ON(!con->sock);
2632
2633        dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2634             con->in_base_pos);
2635
2636        if (con->state == CON_STATE_CONNECTING) {
2637                dout("try_read connecting\n");
2638                ret = read_partial_banner(con);
2639                if (ret <= 0)
2640                        goto out;
2641                ret = process_banner(con);
2642                if (ret < 0)
2643                        goto out;
2644
2645                con->state = CON_STATE_NEGOTIATING;
2646
2647                /*
2648                 * Received banner is good, exchange connection info.
2649                 * Do not reset out_kvec, as sending our banner raced
2650                 * with receiving peer banner after connect completed.
2651                 */
2652                ret = prepare_write_connect(con);
2653                if (ret < 0)
2654                        goto out;
2655                prepare_read_connect(con);
2656
2657                /* Send connection info before awaiting response */
2658                goto out;
2659        }
2660
2661        if (con->state == CON_STATE_NEGOTIATING) {
2662                dout("try_read negotiating\n");
2663                ret = read_partial_connect(con);
2664                if (ret <= 0)
2665                        goto out;
2666                ret = process_connect(con);
2667                if (ret < 0)
2668                        goto out;
2669                goto more;
2670        }
2671
2672        WARN_ON(con->state != CON_STATE_OPEN);
2673
2674        if (con->in_base_pos < 0) {
2675                /*
2676                 * skipping + discarding content.
2677                 *
2678                 * FIXME: there must be a better way to do this!
2679                 */
2680                static char buf[SKIP_BUF_SIZE];
2681                int skip = min((int) sizeof (buf), -con->in_base_pos);
2682
2683                dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2684                ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2685                if (ret <= 0)
2686                        goto out;
2687                con->in_base_pos += ret;
2688                if (con->in_base_pos)
2689                        goto more;
2690        }
2691        if (con->in_tag == CEPH_MSGR_TAG_READY) {
2692                /*
2693                 * what's next?
2694                 */
2695                ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2696                if (ret <= 0)
2697                        goto out;
2698                dout("try_read got tag %d\n", (int)con->in_tag);
2699                switch (con->in_tag) {
2700                case CEPH_MSGR_TAG_MSG:
2701                        prepare_read_message(con);
2702                        break;
2703                case CEPH_MSGR_TAG_ACK:
2704                        prepare_read_ack(con);
2705                        break;
2706                case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2707                        prepare_read_keepalive_ack(con);
2708                        break;
2709                case CEPH_MSGR_TAG_CLOSE:
2710                        con_close_socket(con);
2711                        con->state = CON_STATE_CLOSED;
2712                        goto out;
2713                default:
2714                        goto bad_tag;
2715                }
2716        }
2717        if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2718                ret = read_partial_message(con);
2719                if (ret <= 0) {
2720                        switch (ret) {
2721                        case -EBADMSG:
2722                                con->error_msg = "bad crc/signature";
2723                                /* fall through */
2724                        case -EBADE:
2725                                ret = -EIO;
2726                                break;
2727                        case -EIO:
2728                                con->error_msg = "io error";
2729                                break;
2730                        }
2731                        goto out;
2732                }
2733                if (con->in_tag == CEPH_MSGR_TAG_READY)
2734                        goto more;
2735                process_message(con);
2736                if (con->state == CON_STATE_OPEN)
2737                        prepare_read_tag(con);
2738                goto more;
2739        }
2740        if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2741            con->in_tag == CEPH_MSGR_TAG_SEQ) {
2742                /*
2743                 * the final handshake seq exchange is semantically
2744                 * equivalent to an ACK
2745                 */
2746                ret = read_partial_ack(con);
2747                if (ret <= 0)
2748                        goto out;
2749                process_ack(con);
2750                goto more;
2751        }
2752        if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2753                ret = read_keepalive_ack(con);
2754                if (ret <= 0)
2755                        goto out;
2756                goto more;
2757        }
2758
2759out:
2760        dout("try_read done on %p ret %d\n", con, ret);
2761        return ret;
2762
2763bad_tag:
2764        pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2765        con->error_msg = "protocol error, garbage tag";
2766        ret = -1;
2767        goto out;
2768}
2769
2770
2771/*
2772 * Atomically queue work on a connection after the specified delay.
2773 * Bump @con reference to avoid races with connection teardown.
2774 * Returns 0 if work was queued, or an error code otherwise.
2775 */
2776static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2777{
2778        if (!con->ops->get(con)) {
2779                dout("%s %p ref count 0\n", __func__, con);
2780                return -ENOENT;
2781        }
2782
2783        if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2784                dout("%s %p - already queued\n", __func__, con);
2785                con->ops->put(con);
2786                return -EBUSY;
2787        }
2788
2789        dout("%s %p %lu\n", __func__, con, delay);
2790        return 0;
2791}
2792
2793static void queue_con(struct ceph_connection *con)
2794{
2795        (void) queue_con_delay(con, 0);
2796}
2797
2798static void cancel_con(struct ceph_connection *con)
2799{
2800        if (cancel_delayed_work(&con->work)) {
2801                dout("%s %p\n", __func__, con);
2802                con->ops->put(con);
2803        }
2804}
2805
2806static bool con_sock_closed(struct ceph_connection *con)
2807{
2808        if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2809                return false;
2810
2811#define CASE(x)                                                         \
2812        case CON_STATE_ ## x:                                           \
2813                con->error_msg = "socket closed (con state " #x ")";    \
2814                break;
2815
2816        switch (con->state) {
2817        CASE(CLOSED);
2818        CASE(PREOPEN);
2819        CASE(CONNECTING);
2820        CASE(NEGOTIATING);
2821        CASE(OPEN);
2822        CASE(STANDBY);
2823        default:
2824                pr_warn("%s con %p unrecognized state %lu\n",
2825                        __func__, con, con->state);
2826                con->error_msg = "unrecognized con state";
2827                BUG();
2828                break;
2829        }
2830#undef CASE
2831
2832        return true;
2833}
2834
2835static bool con_backoff(struct ceph_connection *con)
2836{
2837        int ret;
2838
2839        if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2840                return false;
2841
2842        ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2843        if (ret) {
2844                dout("%s: con %p FAILED to back off %lu\n", __func__,
2845                        con, con->delay);
2846                BUG_ON(ret == -ENOENT);
2847                con_flag_set(con, CON_FLAG_BACKOFF);
2848        }
2849
2850        return true;
2851}
2852
2853/* Finish fault handling; con->mutex must *not* be held here */
2854
2855static void con_fault_finish(struct ceph_connection *con)
2856{
2857        dout("%s %p\n", __func__, con);
2858
2859        /*
2860         * in case we faulted due to authentication, invalidate our
2861         * current tickets so that we can get new ones.
2862         */
2863        if (con->auth_retry) {
2864                dout("auth_retry %d, invalidating\n", con->auth_retry);
2865                if (con->ops->invalidate_authorizer)
2866                        con->ops->invalidate_authorizer(con);
2867                con->auth_retry = 0;
2868        }
2869
2870        if (con->ops->fault)
2871                con->ops->fault(con);
2872}
2873
2874/*
2875 * Do some work on a connection.  Drop a connection ref when we're done.
2876 */
2877static void ceph_con_workfn(struct work_struct *work)
2878{
2879        struct ceph_connection *con = container_of(work, struct ceph_connection,
2880                                                   work.work);
2881        bool fault;
2882
2883        mutex_lock(&con->mutex);
2884        while (true) {
2885                int ret;
2886
2887                if ((fault = con_sock_closed(con))) {
2888                        dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2889                        break;
2890                }
2891                if (con_backoff(con)) {
2892                        dout("%s: con %p BACKOFF\n", __func__, con);
2893                        break;
2894                }
2895                if (con->state == CON_STATE_STANDBY) {
2896                        dout("%s: con %p STANDBY\n", __func__, con);
2897                        break;
2898                }
2899                if (con->state == CON_STATE_CLOSED) {
2900                        dout("%s: con %p CLOSED\n", __func__, con);
2901                        BUG_ON(con->sock);
2902                        break;
2903                }
2904                if (con->state == CON_STATE_PREOPEN) {
2905                        dout("%s: con %p PREOPEN\n", __func__, con);
2906                        BUG_ON(con->sock);
2907                }
2908
2909                ret = try_read(con);
2910                if (ret < 0) {
2911                        if (ret == -EAGAIN)
2912                                continue;
2913                        if (!con->error_msg)
2914                                con->error_msg = "socket error on read";
2915                        fault = true;
2916                        break;
2917                }
2918
2919                ret = try_write(con);
2920                if (ret < 0) {
2921                        if (ret == -EAGAIN)
2922                                continue;
2923                        if (!con->error_msg)
2924                                con->error_msg = "socket error on write";
2925                        fault = true;
2926                }
2927
2928                break;  /* If we make it to here, we're done */
2929        }
2930        if (fault)
2931                con_fault(con);
2932        mutex_unlock(&con->mutex);
2933
2934        if (fault)
2935                con_fault_finish(con);
2936
2937        con->ops->put(con);
2938}
2939
2940/*
2941 * Generic error/fault handler.  A retry mechanism is used with
2942 * exponential backoff
2943 */
2944static void con_fault(struct ceph_connection *con)
2945{
2946        dout("fault %p state %lu to peer %s\n",
2947             con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2948
2949        pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2950                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2951        con->error_msg = NULL;
2952
2953        WARN_ON(con->state != CON_STATE_CONNECTING &&
2954               con->state != CON_STATE_NEGOTIATING &&
2955               con->state != CON_STATE_OPEN);
2956
2957        con_close_socket(con);
2958
2959        if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2960                dout("fault on LOSSYTX channel, marking CLOSED\n");
2961                con->state = CON_STATE_CLOSED;
2962                return;
2963        }
2964
2965        if (con->in_msg) {
2966                BUG_ON(con->in_msg->con != con);
2967                ceph_msg_put(con->in_msg);
2968                con->in_msg = NULL;
2969        }
2970
2971        /* Requeue anything that hasn't been acked */
2972        list_splice_init(&con->out_sent, &con->out_queue);
2973
2974        /* If there are no messages queued or keepalive pending, place
2975         * the connection in a STANDBY state */
2976        if (list_empty(&con->out_queue) &&
2977            !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2978                dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2979                con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2980                con->state = CON_STATE_STANDBY;
2981        } else {
2982                /* retry after a delay. */
2983                con->state = CON_STATE_PREOPEN;
2984                if (con->delay == 0)
2985                        con->delay = BASE_DELAY_INTERVAL;
2986                else if (con->delay < MAX_DELAY_INTERVAL)
2987                        con->delay *= 2;
2988                con_flag_set(con, CON_FLAG_BACKOFF);
2989                queue_con(con);
2990        }
2991}
2992
2993
2994
2995/*
2996 * initialize a new messenger instance
2997 */
2998void ceph_messenger_init(struct ceph_messenger *msgr,
2999                         struct ceph_entity_addr *myaddr)
3000{
3001        spin_lock_init(&msgr->global_seq_lock);
3002
3003        if (myaddr)
3004                msgr->inst.addr = *myaddr;
3005
3006        /* select a random nonce */
3007        msgr->inst.addr.type = 0;
3008        get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3009        encode_my_addr(msgr);
3010
3011        atomic_set(&msgr->stopping, 0);
3012        write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3013
3014        dout("%s %p\n", __func__, msgr);
3015}
3016EXPORT_SYMBOL(ceph_messenger_init);
3017
3018void ceph_messenger_fini(struct ceph_messenger *msgr)
3019{
3020        put_net(read_pnet(&msgr->net));
3021}
3022EXPORT_SYMBOL(ceph_messenger_fini);
3023
3024static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3025{
3026        if (msg->con)
3027                msg->con->ops->put(msg->con);
3028
3029        msg->con = con ? con->ops->get(con) : NULL;
3030        BUG_ON(msg->con != con);
3031}
3032
3033static void clear_standby(struct ceph_connection *con)
3034{
3035        /* come back from STANDBY? */
3036        if (con->state == CON_STATE_STANDBY) {
3037                dout("clear_standby %p and ++connect_seq\n", con);
3038                con->state = CON_STATE_PREOPEN;
3039                con->connect_seq++;
3040                WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3041                WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3042        }
3043}
3044
3045/*
3046 * Queue up an outgoing message on the given connection.
3047 */
3048void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3049{
3050        /* set src+dst */
3051        msg->hdr.src = con->msgr->inst.name;
3052        BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3053        msg->needs_out_seq = true;
3054
3055        mutex_lock(&con->mutex);
3056
3057        if (con->state == CON_STATE_CLOSED) {
3058                dout("con_send %p closed, dropping %p\n", con, msg);
3059                ceph_msg_put(msg);
3060                mutex_unlock(&con->mutex);
3061                return;
3062        }
3063
3064        msg_con_set(msg, con);
3065
3066        BUG_ON(!list_empty(&msg->list_head));
3067        list_add_tail(&msg->list_head, &con->out_queue);
3068        dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3069             ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3070             ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3071             le32_to_cpu(msg->hdr.front_len),
3072             le32_to_cpu(msg->hdr.middle_len),
3073             le32_to_cpu(msg->hdr.data_len));
3074
3075        clear_standby(con);
3076        mutex_unlock(&con->mutex);
3077
3078        /* if there wasn't anything waiting to send before, queue
3079         * new work */
3080        if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3081                queue_con(con);
3082}
3083EXPORT_SYMBOL(ceph_con_send);
3084
3085/*
3086 * Revoke a message that was previously queued for send
3087 */
3088void ceph_msg_revoke(struct ceph_msg *msg)
3089{
3090        struct ceph_connection *con = msg->con;
3091
3092        if (!con) {
3093                dout("%s msg %p null con\n", __func__, msg);
3094                return;         /* Message not in our possession */
3095        }
3096
3097        mutex_lock(&con->mutex);
3098        if (!list_empty(&msg->list_head)) {
3099                dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3100                list_del_init(&msg->list_head);
3101                msg->hdr.seq = 0;
3102
3103                ceph_msg_put(msg);
3104        }
3105        if (con->out_msg == msg) {
3106                BUG_ON(con->out_skip);
3107                /* footer */
3108                if (con->out_msg_done) {
3109                        con->out_skip += con_out_kvec_skip(con);
3110                } else {
3111                        BUG_ON(!msg->data_length);
3112                        con->out_skip += sizeof_footer(con);
3113                }
3114                /* data, middle, front */
3115                if (msg->data_length)
3116                        con->out_skip += msg->cursor.total_resid;
3117                if (msg->middle)
3118                        con->out_skip += con_out_kvec_skip(con);
3119                con->out_skip += con_out_kvec_skip(con);
3120
3121                dout("%s %p msg %p - was sending, will write %d skip %d\n",
3122                     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3123                msg->hdr.seq = 0;
3124                con->out_msg = NULL;
3125                ceph_msg_put(msg);
3126        }
3127
3128        mutex_unlock(&con->mutex);
3129}
3130
3131/*
3132 * Revoke a message that we may be reading data into
3133 */
3134void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3135{
3136        struct ceph_connection *con = msg->con;
3137
3138        if (!con) {
3139                dout("%s msg %p null con\n", __func__, msg);
3140                return;         /* Message not in our possession */
3141        }
3142
3143        mutex_lock(&con->mutex);
3144        if (con->in_msg == msg) {
3145                unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3146                unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3147                unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3148
3149                /* skip rest of message */
3150                dout("%s %p msg %p revoked\n", __func__, con, msg);
3151                con->in_base_pos = con->in_base_pos -
3152                                sizeof(struct ceph_msg_header) -
3153                                front_len -
3154                                middle_len -
3155                                data_len -
3156                                sizeof(struct ceph_msg_footer);
3157                ceph_msg_put(con->in_msg);
3158                con->in_msg = NULL;
3159                con->in_tag = CEPH_MSGR_TAG_READY;
3160                con->in_seq++;
3161        } else {
3162                dout("%s %p in_msg %p msg %p no-op\n",
3163                     __func__, con, con->in_msg, msg);
3164        }
3165        mutex_unlock(&con->mutex);
3166}
3167
3168/*
3169 * Queue a keepalive byte to ensure the tcp connection is alive.
3170 */
3171void ceph_con_keepalive(struct ceph_connection *con)
3172{
3173        dout("con_keepalive %p\n", con);
3174        mutex_lock(&con->mutex);
3175        clear_standby(con);
3176        mutex_unlock(&con->mutex);
3177        if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3178            con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3179                queue_con(con);
3180}
3181EXPORT_SYMBOL(ceph_con_keepalive);
3182
3183bool ceph_con_keepalive_expired(struct ceph_connection *con,
3184                               unsigned long interval)
3185{
3186        if (interval > 0 &&
3187            (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3188                struct timespec now;
3189                struct timespec ts;
3190                ktime_get_real_ts(&now);
3191                jiffies_to_timespec(interval, &ts);
3192                ts = timespec_add(con->last_keepalive_ack, ts);
3193                return timespec_compare(&now, &ts) >= 0;
3194        }
3195        return false;
3196}
3197
3198static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3199{
3200        struct ceph_msg_data *data;
3201
3202        if (WARN_ON(!ceph_msg_data_type_valid(type)))
3203                return NULL;
3204
3205        data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3206        if (!data)
3207                return NULL;
3208
3209        data->type = type;
3210        INIT_LIST_HEAD(&data->links);
3211
3212        return data;
3213}
3214
3215static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3216{
3217        if (!data)
3218                return;
3219
3220        WARN_ON(!list_empty(&data->links));
3221        if (data->type == CEPH_MSG_DATA_PAGELIST)
3222                ceph_pagelist_release(data->pagelist);
3223        kmem_cache_free(ceph_msg_data_cache, data);
3224}
3225
3226void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3227                size_t length, size_t alignment)
3228{
3229        struct ceph_msg_data *data;
3230
3231        BUG_ON(!pages);
3232        BUG_ON(!length);
3233
3234        data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3235        BUG_ON(!data);
3236        data->pages = pages;
3237        data->length = length;
3238        data->alignment = alignment & ~PAGE_MASK;
3239
3240        list_add_tail(&data->links, &msg->data);
3241        msg->data_length += length;
3242}
3243EXPORT_SYMBOL(ceph_msg_data_add_pages);
3244
3245void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3246                                struct ceph_pagelist *pagelist)
3247{
3248        struct ceph_msg_data *data;
3249
3250        BUG_ON(!pagelist);
3251        BUG_ON(!pagelist->length);
3252
3253        data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3254        BUG_ON(!data);
3255        data->pagelist = pagelist;
3256
3257        list_add_tail(&data->links, &msg->data);
3258        msg->data_length += pagelist->length;
3259}
3260EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3261
3262#ifdef  CONFIG_BLOCK
3263void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3264                size_t length)
3265{
3266        struct ceph_msg_data *data;
3267
3268        BUG_ON(!bio);
3269
3270        data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3271        BUG_ON(!data);
3272        data->bio = bio;
3273        data->bio_length = length;
3274
3275        list_add_tail(&data->links, &msg->data);
3276        msg->data_length += length;
3277}
3278EXPORT_SYMBOL(ceph_msg_data_add_bio);
3279#endif  /* CONFIG_BLOCK */
3280
3281/*
3282 * construct a new message with given type, size
3283 * the new msg has a ref count of 1.
3284 */
3285struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3286                              bool can_fail)
3287{
3288        struct ceph_msg *m;
3289
3290        m = kmem_cache_zalloc(ceph_msg_cache, flags);
3291        if (m == NULL)
3292                goto out;
3293
3294        m->hdr.type = cpu_to_le16(type);
3295        m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3296        m->hdr.front_len = cpu_to_le32(front_len);
3297
3298        INIT_LIST_HEAD(&m->list_head);
3299        kref_init(&m->kref);
3300        INIT_LIST_HEAD(&m->data);
3301
3302        /* front */
3303        if (front_len) {
3304                m->front.iov_base = ceph_kvmalloc(front_len, flags);
3305                if (m->front.iov_base == NULL) {
3306                        dout("ceph_msg_new can't allocate %d bytes\n",
3307                             front_len);
3308                        goto out2;
3309                }
3310        } else {
3311                m->front.iov_base = NULL;
3312        }
3313        m->front_alloc_len = m->front.iov_len = front_len;
3314
3315        dout("ceph_msg_new %p front %d\n", m, front_len);
3316        return m;
3317
3318out2:
3319        ceph_msg_put(m);
3320out:
3321        if (!can_fail) {
3322                pr_err("msg_new can't create type %d front %d\n", type,
3323                       front_len);
3324                WARN_ON(1);
3325        } else {
3326                dout("msg_new can't create type %d front %d\n", type,
3327                     front_len);
3328        }
3329        return NULL;
3330}
3331EXPORT_SYMBOL(ceph_msg_new);
3332
3333/*
3334 * Allocate "middle" portion of a message, if it is needed and wasn't
3335 * allocated by alloc_msg.  This allows us to read a small fixed-size
3336 * per-type header in the front and then gracefully fail (i.e.,
3337 * propagate the error to the caller based on info in the front) when
3338 * the middle is too large.
3339 */
3340static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3341{
3342        int type = le16_to_cpu(msg->hdr.type);
3343        int middle_len = le32_to_cpu(msg->hdr.middle_len);
3344
3345        dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3346             ceph_msg_type_name(type), middle_len);
3347        BUG_ON(!middle_len);
3348        BUG_ON(msg->middle);
3349
3350        msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3351        if (!msg->middle)
3352                return -ENOMEM;
3353        return 0;
3354}
3355
3356/*
3357 * Allocate a message for receiving an incoming message on a
3358 * connection, and save the result in con->in_msg.  Uses the
3359 * connection's private alloc_msg op if available.
3360 *
3361 * Returns 0 on success, or a negative error code.
3362 *
3363 * On success, if we set *skip = 1:
3364 *  - the next message should be skipped and ignored.
3365 *  - con->in_msg == NULL
3366 * or if we set *skip = 0:
3367 *  - con->in_msg is non-null.
3368 * On error (ENOMEM, EAGAIN, ...),
3369 *  - con->in_msg == NULL
3370 */
3371static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3372{
3373        struct ceph_msg_header *hdr = &con->in_hdr;
3374        int middle_len = le32_to_cpu(hdr->middle_len);
3375        struct ceph_msg *msg;
3376        int ret = 0;
3377
3378        BUG_ON(con->in_msg != NULL);
3379        BUG_ON(!con->ops->alloc_msg);
3380
3381        mutex_unlock(&con->mutex);
3382        msg = con->ops->alloc_msg(con, hdr, skip);
3383        mutex_lock(&con->mutex);
3384        if (con->state != CON_STATE_OPEN) {
3385                if (msg)
3386                        ceph_msg_put(msg);
3387                return -EAGAIN;
3388        }
3389        if (msg) {
3390                BUG_ON(*skip);
3391                msg_con_set(msg, con);
3392                con->in_msg = msg;
3393        } else {
3394                /*
3395                 * Null message pointer means either we should skip
3396                 * this message or we couldn't allocate memory.  The
3397                 * former is not an error.
3398                 */
3399                if (*skip)
3400                        return 0;
3401
3402                con->error_msg = "error allocating memory for incoming message";
3403                return -ENOMEM;
3404        }
3405        memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3406
3407        if (middle_len && !con->in_msg->middle) {
3408                ret = ceph_alloc_middle(con, con->in_msg);
3409                if (ret < 0) {
3410                        ceph_msg_put(con->in_msg);
3411                        con->in_msg = NULL;
3412                }
3413        }
3414
3415        return ret;
3416}
3417
3418
3419/*
3420 * Free a generically kmalloc'd message.
3421 */
3422static void ceph_msg_free(struct ceph_msg *m)
3423{
3424        dout("%s %p\n", __func__, m);
3425        kvfree(m->front.iov_base);
3426        kmem_cache_free(ceph_msg_cache, m);
3427}
3428
3429static void ceph_msg_release(struct kref *kref)
3430{
3431        struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3432        struct ceph_msg_data *data, *next;
3433
3434        dout("%s %p\n", __func__, m);
3435        WARN_ON(!list_empty(&m->list_head));
3436
3437        msg_con_set(m, NULL);
3438
3439        /* drop middle, data, if any */
3440        if (m->middle) {
3441                ceph_buffer_put(m->middle);
3442                m->middle = NULL;
3443        }
3444
3445        list_for_each_entry_safe(data, next, &m->data, links) {
3446                list_del_init(&data->links);
3447                ceph_msg_data_destroy(data);
3448        }
3449        m->data_length = 0;
3450
3451        if (m->pool)
3452                ceph_msgpool_put(m->pool, m);
3453        else
3454                ceph_msg_free(m);
3455}
3456
3457struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3458{
3459        dout("%s %p (was %d)\n", __func__, msg,
3460             kref_read(&msg->kref));
3461        kref_get(&msg->kref);
3462        return msg;
3463}
3464EXPORT_SYMBOL(ceph_msg_get);
3465
3466void ceph_msg_put(struct ceph_msg *msg)
3467{
3468        dout("%s %p (was %d)\n", __func__, msg,
3469             kref_read(&msg->kref));
3470        kref_put(&msg->kref, ceph_msg_release);
3471}
3472EXPORT_SYMBOL(ceph_msg_put);
3473
3474void ceph_msg_dump(struct ceph_msg *msg)
3475{
3476        pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3477                 msg->front_alloc_len, msg->data_length);
3478        print_hex_dump(KERN_DEBUG, "header: ",
3479                       DUMP_PREFIX_OFFSET, 16, 1,
3480                       &msg->hdr, sizeof(msg->hdr), true);
3481        print_hex_dump(KERN_DEBUG, " front: ",
3482                       DUMP_PREFIX_OFFSET, 16, 1,
3483                       msg->front.iov_base, msg->front.iov_len, true);
3484        if (msg->middle)
3485                print_hex_dump(KERN_DEBUG, "middle: ",
3486                               DUMP_PREFIX_OFFSET, 16, 1,
3487                               msg->middle->vec.iov_base,
3488                               msg->middle->vec.iov_len, true);
3489        print_hex_dump(KERN_DEBUG, "footer: ",
3490                       DUMP_PREFIX_OFFSET, 16, 1,
3491                       &msg->footer, sizeof(msg->footer), true);
3492}
3493EXPORT_SYMBOL(ceph_msg_dump);
3494