linux/net/core/dev.c
<<
>>
Prefs
   1/*
   2 *      NET3    Protocol independent device support routines.
   3 *
   4 *              This program is free software; you can redistribute it and/or
   5 *              modify it under the terms of the GNU General Public License
   6 *              as published by the Free Software Foundation; either version
   7 *              2 of the License, or (at your option) any later version.
   8 *
   9 *      Derived from the non IP parts of dev.c 1.0.19
  10 *              Authors:        Ross Biro
  11 *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
  13 *
  14 *      Additional Authors:
  15 *              Florian la Roche <rzsfl@rz.uni-sb.de>
  16 *              Alan Cox <gw4pts@gw4pts.ampr.org>
  17 *              David Hinds <dahinds@users.sourceforge.net>
  18 *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  19 *              Adam Sulmicki <adam@cfar.umd.edu>
  20 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
  21 *
  22 *      Changes:
  23 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
  24 *                                      to 2 if register_netdev gets called
  25 *                                      before net_dev_init & also removed a
  26 *                                      few lines of code in the process.
  27 *              Alan Cox        :       device private ioctl copies fields back.
  28 *              Alan Cox        :       Transmit queue code does relevant
  29 *                                      stunts to keep the queue safe.
  30 *              Alan Cox        :       Fixed double lock.
  31 *              Alan Cox        :       Fixed promisc NULL pointer trap
  32 *              ????????        :       Support the full private ioctl range
  33 *              Alan Cox        :       Moved ioctl permission check into
  34 *                                      drivers
  35 *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
  36 *              Alan Cox        :       100 backlog just doesn't cut it when
  37 *                                      you start doing multicast video 8)
  38 *              Alan Cox        :       Rewrote net_bh and list manager.
  39 *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
  40 *              Alan Cox        :       Took out transmit every packet pass
  41 *                                      Saved a few bytes in the ioctl handler
  42 *              Alan Cox        :       Network driver sets packet type before
  43 *                                      calling netif_rx. Saves a function
  44 *                                      call a packet.
  45 *              Alan Cox        :       Hashed net_bh()
  46 *              Richard Kooijman:       Timestamp fixes.
  47 *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
  48 *              Alan Cox        :       Device lock protection.
  49 *              Alan Cox        :       Fixed nasty side effect of device close
  50 *                                      changes.
  51 *              Rudi Cilibrasi  :       Pass the right thing to
  52 *                                      set_mac_address()
  53 *              Dave Miller     :       32bit quantity for the device lock to
  54 *                                      make it work out on a Sparc.
  55 *              Bjorn Ekwall    :       Added KERNELD hack.
  56 *              Alan Cox        :       Cleaned up the backlog initialise.
  57 *              Craig Metz      :       SIOCGIFCONF fix if space for under
  58 *                                      1 device.
  59 *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
  60 *                                      is no device open function.
  61 *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
  62 *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
  63 *              Cyrus Durgin    :       Cleaned for KMOD
  64 *              Adam Sulmicki   :       Bug Fix : Network Device Unload
  65 *                                      A network device unload needs to purge
  66 *                                      the backlog queue.
  67 *      Paul Rusty Russell      :       SIOCSIFNAME
  68 *              Pekka Riikonen  :       Netdev boot-time settings code
  69 *              Andrew Morton   :       Make unregister_netdevice wait
  70 *                                      indefinitely on dev->refcnt
  71 *              J Hadi Salim    :       - Backlog queue sampling
  72 *                                      - netif_rx() feedback
  73 */
  74
  75#include <linux/uaccess.h>
  76#include <linux/bitops.h>
  77#include <linux/capability.h>
  78#include <linux/cpu.h>
  79#include <linux/types.h>
  80#include <linux/kernel.h>
  81#include <linux/hash.h>
  82#include <linux/slab.h>
  83#include <linux/sched.h>
  84#include <linux/sched/mm.h>
  85#include <linux/mutex.h>
  86#include <linux/string.h>
  87#include <linux/mm.h>
  88#include <linux/socket.h>
  89#include <linux/sockios.h>
  90#include <linux/errno.h>
  91#include <linux/interrupt.h>
  92#include <linux/if_ether.h>
  93#include <linux/netdevice.h>
  94#include <linux/etherdevice.h>
  95#include <linux/ethtool.h>
  96#include <linux/notifier.h>
  97#include <linux/skbuff.h>
  98#include <linux/bpf.h>
  99#include <linux/bpf_trace.h>
 100#include <net/net_namespace.h>
 101#include <net/sock.h>
 102#include <net/busy_poll.h>
 103#include <linux/rtnetlink.h>
 104#include <linux/stat.h>
 105#include <net/dst.h>
 106#include <net/dst_metadata.h>
 107#include <net/pkt_sched.h>
 108#include <net/pkt_cls.h>
 109#include <net/checksum.h>
 110#include <net/xfrm.h>
 111#include <linux/highmem.h>
 112#include <linux/init.h>
 113#include <linux/module.h>
 114#include <linux/netpoll.h>
 115#include <linux/rcupdate.h>
 116#include <linux/delay.h>
 117#include <net/iw_handler.h>
 118#include <asm/current.h>
 119#include <linux/audit.h>
 120#include <linux/dmaengine.h>
 121#include <linux/err.h>
 122#include <linux/ctype.h>
 123#include <linux/if_arp.h>
 124#include <linux/if_vlan.h>
 125#include <linux/ip.h>
 126#include <net/ip.h>
 127#include <net/mpls.h>
 128#include <linux/ipv6.h>
 129#include <linux/in.h>
 130#include <linux/jhash.h>
 131#include <linux/random.h>
 132#include <trace/events/napi.h>
 133#include <trace/events/net.h>
 134#include <trace/events/skb.h>
 135#include <linux/pci.h>
 136#include <linux/inetdevice.h>
 137#include <linux/cpu_rmap.h>
 138#include <linux/static_key.h>
 139#include <linux/hashtable.h>
 140#include <linux/vmalloc.h>
 141#include <linux/if_macvlan.h>
 142#include <linux/errqueue.h>
 143#include <linux/hrtimer.h>
 144#include <linux/netfilter_ingress.h>
 145#include <linux/crash_dump.h>
 146#include <linux/sctp.h>
 147
 148#include "net-sysfs.h"
 149
 150/* Instead of increasing this, you should create a hash table. */
 151#define MAX_GRO_SKBS 8
 152
 153/* This should be increased if a protocol with a bigger head is added. */
 154#define GRO_MAX_HEAD (MAX_HEADER + 128)
 155
 156static DEFINE_SPINLOCK(ptype_lock);
 157static DEFINE_SPINLOCK(offload_lock);
 158struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
 159struct list_head ptype_all __read_mostly;       /* Taps */
 160static struct list_head offload_base __read_mostly;
 161
 162static int netif_rx_internal(struct sk_buff *skb);
 163static int call_netdevice_notifiers_info(unsigned long val,
 164                                         struct net_device *dev,
 165                                         struct netdev_notifier_info *info);
 166static struct napi_struct *napi_by_id(unsigned int napi_id);
 167
 168/*
 169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
 170 * semaphore.
 171 *
 172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
 173 *
 174 * Writers must hold the rtnl semaphore while they loop through the
 175 * dev_base_head list, and hold dev_base_lock for writing when they do the
 176 * actual updates.  This allows pure readers to access the list even
 177 * while a writer is preparing to update it.
 178 *
 179 * To put it another way, dev_base_lock is held for writing only to
 180 * protect against pure readers; the rtnl semaphore provides the
 181 * protection against other writers.
 182 *
 183 * See, for example usages, register_netdevice() and
 184 * unregister_netdevice(), which must be called with the rtnl
 185 * semaphore held.
 186 */
 187DEFINE_RWLOCK(dev_base_lock);
 188EXPORT_SYMBOL(dev_base_lock);
 189
 190/* protects napi_hash addition/deletion and napi_gen_id */
 191static DEFINE_SPINLOCK(napi_hash_lock);
 192
 193static unsigned int napi_gen_id = NR_CPUS;
 194static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
 195
 196static seqcount_t devnet_rename_seq;
 197
 198static inline void dev_base_seq_inc(struct net *net)
 199{
 200        while (++net->dev_base_seq == 0)
 201                ;
 202}
 203
 204static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
 205{
 206        unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
 207
 208        return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
 209}
 210
 211static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
 212{
 213        return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
 214}
 215
 216static inline void rps_lock(struct softnet_data *sd)
 217{
 218#ifdef CONFIG_RPS
 219        spin_lock(&sd->input_pkt_queue.lock);
 220#endif
 221}
 222
 223static inline void rps_unlock(struct softnet_data *sd)
 224{
 225#ifdef CONFIG_RPS
 226        spin_unlock(&sd->input_pkt_queue.lock);
 227#endif
 228}
 229
 230/* Device list insertion */
 231static void list_netdevice(struct net_device *dev)
 232{
 233        struct net *net = dev_net(dev);
 234
 235        ASSERT_RTNL();
 236
 237        write_lock_bh(&dev_base_lock);
 238        list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
 239        hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
 240        hlist_add_head_rcu(&dev->index_hlist,
 241                           dev_index_hash(net, dev->ifindex));
 242        write_unlock_bh(&dev_base_lock);
 243
 244        dev_base_seq_inc(net);
 245}
 246
 247/* Device list removal
 248 * caller must respect a RCU grace period before freeing/reusing dev
 249 */
 250static void unlist_netdevice(struct net_device *dev)
 251{
 252        ASSERT_RTNL();
 253
 254        /* Unlink dev from the device chain */
 255        write_lock_bh(&dev_base_lock);
 256        list_del_rcu(&dev->dev_list);
 257        hlist_del_rcu(&dev->name_hlist);
 258        hlist_del_rcu(&dev->index_hlist);
 259        write_unlock_bh(&dev_base_lock);
 260
 261        dev_base_seq_inc(dev_net(dev));
 262}
 263
 264/*
 265 *      Our notifier list
 266 */
 267
 268static RAW_NOTIFIER_HEAD(netdev_chain);
 269
 270/*
 271 *      Device drivers call our routines to queue packets here. We empty the
 272 *      queue in the local softnet handler.
 273 */
 274
 275DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
 276EXPORT_PER_CPU_SYMBOL(softnet_data);
 277
 278#ifdef CONFIG_LOCKDEP
 279/*
 280 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
 281 * according to dev->type
 282 */
 283static const unsigned short netdev_lock_type[] = {
 284         ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
 285         ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
 286         ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
 287         ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
 288         ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
 289         ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
 290         ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
 291         ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
 292         ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
 293         ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
 294         ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
 295         ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
 296         ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
 297         ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
 298         ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
 299
 300static const char *const netdev_lock_name[] = {
 301        "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
 302        "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
 303        "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
 304        "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
 305        "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
 306        "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
 307        "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
 308        "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
 309        "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
 310        "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
 311        "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
 312        "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
 313        "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
 314        "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
 315        "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
 316
 317static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
 318static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
 319
 320static inline unsigned short netdev_lock_pos(unsigned short dev_type)
 321{
 322        int i;
 323
 324        for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
 325                if (netdev_lock_type[i] == dev_type)
 326                        return i;
 327        /* the last key is used by default */
 328        return ARRAY_SIZE(netdev_lock_type) - 1;
 329}
 330
 331static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 332                                                 unsigned short dev_type)
 333{
 334        int i;
 335
 336        i = netdev_lock_pos(dev_type);
 337        lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
 338                                   netdev_lock_name[i]);
 339}
 340
 341static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 342{
 343        int i;
 344
 345        i = netdev_lock_pos(dev->type);
 346        lockdep_set_class_and_name(&dev->addr_list_lock,
 347                                   &netdev_addr_lock_key[i],
 348                                   netdev_lock_name[i]);
 349}
 350#else
 351static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 352                                                 unsigned short dev_type)
 353{
 354}
 355static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 356{
 357}
 358#endif
 359
 360/*******************************************************************************
 361 *
 362 *              Protocol management and registration routines
 363 *
 364 *******************************************************************************/
 365
 366
 367/*
 368 *      Add a protocol ID to the list. Now that the input handler is
 369 *      smarter we can dispense with all the messy stuff that used to be
 370 *      here.
 371 *
 372 *      BEWARE!!! Protocol handlers, mangling input packets,
 373 *      MUST BE last in hash buckets and checking protocol handlers
 374 *      MUST start from promiscuous ptype_all chain in net_bh.
 375 *      It is true now, do not change it.
 376 *      Explanation follows: if protocol handler, mangling packet, will
 377 *      be the first on list, it is not able to sense, that packet
 378 *      is cloned and should be copied-on-write, so that it will
 379 *      change it and subsequent readers will get broken packet.
 380 *                                                      --ANK (980803)
 381 */
 382
 383static inline struct list_head *ptype_head(const struct packet_type *pt)
 384{
 385        if (pt->type == htons(ETH_P_ALL))
 386                return pt->dev ? &pt->dev->ptype_all : &ptype_all;
 387        else
 388                return pt->dev ? &pt->dev->ptype_specific :
 389                                 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
 390}
 391
 392/**
 393 *      dev_add_pack - add packet handler
 394 *      @pt: packet type declaration
 395 *
 396 *      Add a protocol handler to the networking stack. The passed &packet_type
 397 *      is linked into kernel lists and may not be freed until it has been
 398 *      removed from the kernel lists.
 399 *
 400 *      This call does not sleep therefore it can not
 401 *      guarantee all CPU's that are in middle of receiving packets
 402 *      will see the new packet type (until the next received packet).
 403 */
 404
 405void dev_add_pack(struct packet_type *pt)
 406{
 407        struct list_head *head = ptype_head(pt);
 408
 409        spin_lock(&ptype_lock);
 410        list_add_rcu(&pt->list, head);
 411        spin_unlock(&ptype_lock);
 412}
 413EXPORT_SYMBOL(dev_add_pack);
 414
 415/**
 416 *      __dev_remove_pack        - remove packet handler
 417 *      @pt: packet type declaration
 418 *
 419 *      Remove a protocol handler that was previously added to the kernel
 420 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 421 *      from the kernel lists and can be freed or reused once this function
 422 *      returns.
 423 *
 424 *      The packet type might still be in use by receivers
 425 *      and must not be freed until after all the CPU's have gone
 426 *      through a quiescent state.
 427 */
 428void __dev_remove_pack(struct packet_type *pt)
 429{
 430        struct list_head *head = ptype_head(pt);
 431        struct packet_type *pt1;
 432
 433        spin_lock(&ptype_lock);
 434
 435        list_for_each_entry(pt1, head, list) {
 436                if (pt == pt1) {
 437                        list_del_rcu(&pt->list);
 438                        goto out;
 439                }
 440        }
 441
 442        pr_warn("dev_remove_pack: %p not found\n", pt);
 443out:
 444        spin_unlock(&ptype_lock);
 445}
 446EXPORT_SYMBOL(__dev_remove_pack);
 447
 448/**
 449 *      dev_remove_pack  - remove packet handler
 450 *      @pt: packet type declaration
 451 *
 452 *      Remove a protocol handler that was previously added to the kernel
 453 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 454 *      from the kernel lists and can be freed or reused once this function
 455 *      returns.
 456 *
 457 *      This call sleeps to guarantee that no CPU is looking at the packet
 458 *      type after return.
 459 */
 460void dev_remove_pack(struct packet_type *pt)
 461{
 462        __dev_remove_pack(pt);
 463
 464        synchronize_net();
 465}
 466EXPORT_SYMBOL(dev_remove_pack);
 467
 468
 469/**
 470 *      dev_add_offload - register offload handlers
 471 *      @po: protocol offload declaration
 472 *
 473 *      Add protocol offload handlers to the networking stack. The passed
 474 *      &proto_offload is linked into kernel lists and may not be freed until
 475 *      it has been removed from the kernel lists.
 476 *
 477 *      This call does not sleep therefore it can not
 478 *      guarantee all CPU's that are in middle of receiving packets
 479 *      will see the new offload handlers (until the next received packet).
 480 */
 481void dev_add_offload(struct packet_offload *po)
 482{
 483        struct packet_offload *elem;
 484
 485        spin_lock(&offload_lock);
 486        list_for_each_entry(elem, &offload_base, list) {
 487                if (po->priority < elem->priority)
 488                        break;
 489        }
 490        list_add_rcu(&po->list, elem->list.prev);
 491        spin_unlock(&offload_lock);
 492}
 493EXPORT_SYMBOL(dev_add_offload);
 494
 495/**
 496 *      __dev_remove_offload     - remove offload handler
 497 *      @po: packet offload declaration
 498 *
 499 *      Remove a protocol offload handler that was previously added to the
 500 *      kernel offload handlers by dev_add_offload(). The passed &offload_type
 501 *      is removed from the kernel lists and can be freed or reused once this
 502 *      function returns.
 503 *
 504 *      The packet type might still be in use by receivers
 505 *      and must not be freed until after all the CPU's have gone
 506 *      through a quiescent state.
 507 */
 508static void __dev_remove_offload(struct packet_offload *po)
 509{
 510        struct list_head *head = &offload_base;
 511        struct packet_offload *po1;
 512
 513        spin_lock(&offload_lock);
 514
 515        list_for_each_entry(po1, head, list) {
 516                if (po == po1) {
 517                        list_del_rcu(&po->list);
 518                        goto out;
 519                }
 520        }
 521
 522        pr_warn("dev_remove_offload: %p not found\n", po);
 523out:
 524        spin_unlock(&offload_lock);
 525}
 526
 527/**
 528 *      dev_remove_offload       - remove packet offload handler
 529 *      @po: packet offload declaration
 530 *
 531 *      Remove a packet offload handler that was previously added to the kernel
 532 *      offload handlers by dev_add_offload(). The passed &offload_type is
 533 *      removed from the kernel lists and can be freed or reused once this
 534 *      function returns.
 535 *
 536 *      This call sleeps to guarantee that no CPU is looking at the packet
 537 *      type after return.
 538 */
 539void dev_remove_offload(struct packet_offload *po)
 540{
 541        __dev_remove_offload(po);
 542
 543        synchronize_net();
 544}
 545EXPORT_SYMBOL(dev_remove_offload);
 546
 547/******************************************************************************
 548 *
 549 *                    Device Boot-time Settings Routines
 550 *
 551 ******************************************************************************/
 552
 553/* Boot time configuration table */
 554static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
 555
 556/**
 557 *      netdev_boot_setup_add   - add new setup entry
 558 *      @name: name of the device
 559 *      @map: configured settings for the device
 560 *
 561 *      Adds new setup entry to the dev_boot_setup list.  The function
 562 *      returns 0 on error and 1 on success.  This is a generic routine to
 563 *      all netdevices.
 564 */
 565static int netdev_boot_setup_add(char *name, struct ifmap *map)
 566{
 567        struct netdev_boot_setup *s;
 568        int i;
 569
 570        s = dev_boot_setup;
 571        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 572                if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
 573                        memset(s[i].name, 0, sizeof(s[i].name));
 574                        strlcpy(s[i].name, name, IFNAMSIZ);
 575                        memcpy(&s[i].map, map, sizeof(s[i].map));
 576                        break;
 577                }
 578        }
 579
 580        return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
 581}
 582
 583/**
 584 * netdev_boot_setup_check      - check boot time settings
 585 * @dev: the netdevice
 586 *
 587 * Check boot time settings for the device.
 588 * The found settings are set for the device to be used
 589 * later in the device probing.
 590 * Returns 0 if no settings found, 1 if they are.
 591 */
 592int netdev_boot_setup_check(struct net_device *dev)
 593{
 594        struct netdev_boot_setup *s = dev_boot_setup;
 595        int i;
 596
 597        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 598                if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
 599                    !strcmp(dev->name, s[i].name)) {
 600                        dev->irq = s[i].map.irq;
 601                        dev->base_addr = s[i].map.base_addr;
 602                        dev->mem_start = s[i].map.mem_start;
 603                        dev->mem_end = s[i].map.mem_end;
 604                        return 1;
 605                }
 606        }
 607        return 0;
 608}
 609EXPORT_SYMBOL(netdev_boot_setup_check);
 610
 611
 612/**
 613 * netdev_boot_base     - get address from boot time settings
 614 * @prefix: prefix for network device
 615 * @unit: id for network device
 616 *
 617 * Check boot time settings for the base address of device.
 618 * The found settings are set for the device to be used
 619 * later in the device probing.
 620 * Returns 0 if no settings found.
 621 */
 622unsigned long netdev_boot_base(const char *prefix, int unit)
 623{
 624        const struct netdev_boot_setup *s = dev_boot_setup;
 625        char name[IFNAMSIZ];
 626        int i;
 627
 628        sprintf(name, "%s%d", prefix, unit);
 629
 630        /*
 631         * If device already registered then return base of 1
 632         * to indicate not to probe for this interface
 633         */
 634        if (__dev_get_by_name(&init_net, name))
 635                return 1;
 636
 637        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
 638                if (!strcmp(name, s[i].name))
 639                        return s[i].map.base_addr;
 640        return 0;
 641}
 642
 643/*
 644 * Saves at boot time configured settings for any netdevice.
 645 */
 646int __init netdev_boot_setup(char *str)
 647{
 648        int ints[5];
 649        struct ifmap map;
 650
 651        str = get_options(str, ARRAY_SIZE(ints), ints);
 652        if (!str || !*str)
 653                return 0;
 654
 655        /* Save settings */
 656        memset(&map, 0, sizeof(map));
 657        if (ints[0] > 0)
 658                map.irq = ints[1];
 659        if (ints[0] > 1)
 660                map.base_addr = ints[2];
 661        if (ints[0] > 2)
 662                map.mem_start = ints[3];
 663        if (ints[0] > 3)
 664                map.mem_end = ints[4];
 665
 666        /* Add new entry to the list */
 667        return netdev_boot_setup_add(str, &map);
 668}
 669
 670__setup("netdev=", netdev_boot_setup);
 671
 672/*******************************************************************************
 673 *
 674 *                          Device Interface Subroutines
 675 *
 676 *******************************************************************************/
 677
 678/**
 679 *      dev_get_iflink  - get 'iflink' value of a interface
 680 *      @dev: targeted interface
 681 *
 682 *      Indicates the ifindex the interface is linked to.
 683 *      Physical interfaces have the same 'ifindex' and 'iflink' values.
 684 */
 685
 686int dev_get_iflink(const struct net_device *dev)
 687{
 688        if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
 689                return dev->netdev_ops->ndo_get_iflink(dev);
 690
 691        return dev->ifindex;
 692}
 693EXPORT_SYMBOL(dev_get_iflink);
 694
 695/**
 696 *      dev_fill_metadata_dst - Retrieve tunnel egress information.
 697 *      @dev: targeted interface
 698 *      @skb: The packet.
 699 *
 700 *      For better visibility of tunnel traffic OVS needs to retrieve
 701 *      egress tunnel information for a packet. Following API allows
 702 *      user to get this info.
 703 */
 704int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
 705{
 706        struct ip_tunnel_info *info;
 707
 708        if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
 709                return -EINVAL;
 710
 711        info = skb_tunnel_info_unclone(skb);
 712        if (!info)
 713                return -ENOMEM;
 714        if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
 715                return -EINVAL;
 716
 717        return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
 718}
 719EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
 720
 721/**
 722 *      __dev_get_by_name       - find a device by its name
 723 *      @net: the applicable net namespace
 724 *      @name: name to find
 725 *
 726 *      Find an interface by name. Must be called under RTNL semaphore
 727 *      or @dev_base_lock. If the name is found a pointer to the device
 728 *      is returned. If the name is not found then %NULL is returned. The
 729 *      reference counters are not incremented so the caller must be
 730 *      careful with locks.
 731 */
 732
 733struct net_device *__dev_get_by_name(struct net *net, const char *name)
 734{
 735        struct net_device *dev;
 736        struct hlist_head *head = dev_name_hash(net, name);
 737
 738        hlist_for_each_entry(dev, head, name_hlist)
 739                if (!strncmp(dev->name, name, IFNAMSIZ))
 740                        return dev;
 741
 742        return NULL;
 743}
 744EXPORT_SYMBOL(__dev_get_by_name);
 745
 746/**
 747 * dev_get_by_name_rcu  - find a device by its name
 748 * @net: the applicable net namespace
 749 * @name: name to find
 750 *
 751 * Find an interface by name.
 752 * If the name is found a pointer to the device is returned.
 753 * If the name is not found then %NULL is returned.
 754 * The reference counters are not incremented so the caller must be
 755 * careful with locks. The caller must hold RCU lock.
 756 */
 757
 758struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
 759{
 760        struct net_device *dev;
 761        struct hlist_head *head = dev_name_hash(net, name);
 762
 763        hlist_for_each_entry_rcu(dev, head, name_hlist)
 764                if (!strncmp(dev->name, name, IFNAMSIZ))
 765                        return dev;
 766
 767        return NULL;
 768}
 769EXPORT_SYMBOL(dev_get_by_name_rcu);
 770
 771/**
 772 *      dev_get_by_name         - find a device by its name
 773 *      @net: the applicable net namespace
 774 *      @name: name to find
 775 *
 776 *      Find an interface by name. This can be called from any
 777 *      context and does its own locking. The returned handle has
 778 *      the usage count incremented and the caller must use dev_put() to
 779 *      release it when it is no longer needed. %NULL is returned if no
 780 *      matching device is found.
 781 */
 782
 783struct net_device *dev_get_by_name(struct net *net, const char *name)
 784{
 785        struct net_device *dev;
 786
 787        rcu_read_lock();
 788        dev = dev_get_by_name_rcu(net, name);
 789        if (dev)
 790                dev_hold(dev);
 791        rcu_read_unlock();
 792        return dev;
 793}
 794EXPORT_SYMBOL(dev_get_by_name);
 795
 796/**
 797 *      __dev_get_by_index - find a device by its ifindex
 798 *      @net: the applicable net namespace
 799 *      @ifindex: index of device
 800 *
 801 *      Search for an interface by index. Returns %NULL if the device
 802 *      is not found or a pointer to the device. The device has not
 803 *      had its reference counter increased so the caller must be careful
 804 *      about locking. The caller must hold either the RTNL semaphore
 805 *      or @dev_base_lock.
 806 */
 807
 808struct net_device *__dev_get_by_index(struct net *net, int ifindex)
 809{
 810        struct net_device *dev;
 811        struct hlist_head *head = dev_index_hash(net, ifindex);
 812
 813        hlist_for_each_entry(dev, head, index_hlist)
 814                if (dev->ifindex == ifindex)
 815                        return dev;
 816
 817        return NULL;
 818}
 819EXPORT_SYMBOL(__dev_get_by_index);
 820
 821/**
 822 *      dev_get_by_index_rcu - find a device by its ifindex
 823 *      @net: the applicable net namespace
 824 *      @ifindex: index of device
 825 *
 826 *      Search for an interface by index. Returns %NULL if the device
 827 *      is not found or a pointer to the device. The device has not
 828 *      had its reference counter increased so the caller must be careful
 829 *      about locking. The caller must hold RCU lock.
 830 */
 831
 832struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
 833{
 834        struct net_device *dev;
 835        struct hlist_head *head = dev_index_hash(net, ifindex);
 836
 837        hlist_for_each_entry_rcu(dev, head, index_hlist)
 838                if (dev->ifindex == ifindex)
 839                        return dev;
 840
 841        return NULL;
 842}
 843EXPORT_SYMBOL(dev_get_by_index_rcu);
 844
 845
 846/**
 847 *      dev_get_by_index - find a device by its ifindex
 848 *      @net: the applicable net namespace
 849 *      @ifindex: index of device
 850 *
 851 *      Search for an interface by index. Returns NULL if the device
 852 *      is not found or a pointer to the device. The device returned has
 853 *      had a reference added and the pointer is safe until the user calls
 854 *      dev_put to indicate they have finished with it.
 855 */
 856
 857struct net_device *dev_get_by_index(struct net *net, int ifindex)
 858{
 859        struct net_device *dev;
 860
 861        rcu_read_lock();
 862        dev = dev_get_by_index_rcu(net, ifindex);
 863        if (dev)
 864                dev_hold(dev);
 865        rcu_read_unlock();
 866        return dev;
 867}
 868EXPORT_SYMBOL(dev_get_by_index);
 869
 870/**
 871 *      dev_get_by_napi_id - find a device by napi_id
 872 *      @napi_id: ID of the NAPI struct
 873 *
 874 *      Search for an interface by NAPI ID. Returns %NULL if the device
 875 *      is not found or a pointer to the device. The device has not had
 876 *      its reference counter increased so the caller must be careful
 877 *      about locking. The caller must hold RCU lock.
 878 */
 879
 880struct net_device *dev_get_by_napi_id(unsigned int napi_id)
 881{
 882        struct napi_struct *napi;
 883
 884        WARN_ON_ONCE(!rcu_read_lock_held());
 885
 886        if (napi_id < MIN_NAPI_ID)
 887                return NULL;
 888
 889        napi = napi_by_id(napi_id);
 890
 891        return napi ? napi->dev : NULL;
 892}
 893EXPORT_SYMBOL(dev_get_by_napi_id);
 894
 895/**
 896 *      netdev_get_name - get a netdevice name, knowing its ifindex.
 897 *      @net: network namespace
 898 *      @name: a pointer to the buffer where the name will be stored.
 899 *      @ifindex: the ifindex of the interface to get the name from.
 900 *
 901 *      The use of raw_seqcount_begin() and cond_resched() before
 902 *      retrying is required as we want to give the writers a chance
 903 *      to complete when CONFIG_PREEMPT is not set.
 904 */
 905int netdev_get_name(struct net *net, char *name, int ifindex)
 906{
 907        struct net_device *dev;
 908        unsigned int seq;
 909
 910retry:
 911        seq = raw_seqcount_begin(&devnet_rename_seq);
 912        rcu_read_lock();
 913        dev = dev_get_by_index_rcu(net, ifindex);
 914        if (!dev) {
 915                rcu_read_unlock();
 916                return -ENODEV;
 917        }
 918
 919        strcpy(name, dev->name);
 920        rcu_read_unlock();
 921        if (read_seqcount_retry(&devnet_rename_seq, seq)) {
 922                cond_resched();
 923                goto retry;
 924        }
 925
 926        return 0;
 927}
 928
 929/**
 930 *      dev_getbyhwaddr_rcu - find a device by its hardware address
 931 *      @net: the applicable net namespace
 932 *      @type: media type of device
 933 *      @ha: hardware address
 934 *
 935 *      Search for an interface by MAC address. Returns NULL if the device
 936 *      is not found or a pointer to the device.
 937 *      The caller must hold RCU or RTNL.
 938 *      The returned device has not had its ref count increased
 939 *      and the caller must therefore be careful about locking
 940 *
 941 */
 942
 943struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
 944                                       const char *ha)
 945{
 946        struct net_device *dev;
 947
 948        for_each_netdev_rcu(net, dev)
 949                if (dev->type == type &&
 950                    !memcmp(dev->dev_addr, ha, dev->addr_len))
 951                        return dev;
 952
 953        return NULL;
 954}
 955EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
 956
 957struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
 958{
 959        struct net_device *dev;
 960
 961        ASSERT_RTNL();
 962        for_each_netdev(net, dev)
 963                if (dev->type == type)
 964                        return dev;
 965
 966        return NULL;
 967}
 968EXPORT_SYMBOL(__dev_getfirstbyhwtype);
 969
 970struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
 971{
 972        struct net_device *dev, *ret = NULL;
 973
 974        rcu_read_lock();
 975        for_each_netdev_rcu(net, dev)
 976                if (dev->type == type) {
 977                        dev_hold(dev);
 978                        ret = dev;
 979                        break;
 980                }
 981        rcu_read_unlock();
 982        return ret;
 983}
 984EXPORT_SYMBOL(dev_getfirstbyhwtype);
 985
 986/**
 987 *      __dev_get_by_flags - find any device with given flags
 988 *      @net: the applicable net namespace
 989 *      @if_flags: IFF_* values
 990 *      @mask: bitmask of bits in if_flags to check
 991 *
 992 *      Search for any interface with the given flags. Returns NULL if a device
 993 *      is not found or a pointer to the device. Must be called inside
 994 *      rtnl_lock(), and result refcount is unchanged.
 995 */
 996
 997struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
 998                                      unsigned short mask)
 999{
1000        struct net_device *dev, *ret;
1001
1002        ASSERT_RTNL();
1003
1004        ret = NULL;
1005        for_each_netdev(net, dev) {
1006                if (((dev->flags ^ if_flags) & mask) == 0) {
1007                        ret = dev;
1008                        break;
1009                }
1010        }
1011        return ret;
1012}
1013EXPORT_SYMBOL(__dev_get_by_flags);
1014
1015/**
1016 *      dev_valid_name - check if name is okay for network device
1017 *      @name: name string
1018 *
1019 *      Network device names need to be valid file names to
1020 *      to allow sysfs to work.  We also disallow any kind of
1021 *      whitespace.
1022 */
1023bool dev_valid_name(const char *name)
1024{
1025        if (*name == '\0')
1026                return false;
1027        if (strlen(name) >= IFNAMSIZ)
1028                return false;
1029        if (!strcmp(name, ".") || !strcmp(name, ".."))
1030                return false;
1031
1032        while (*name) {
1033                if (*name == '/' || *name == ':' || isspace(*name))
1034                        return false;
1035                name++;
1036        }
1037        return true;
1038}
1039EXPORT_SYMBOL(dev_valid_name);
1040
1041/**
1042 *      __dev_alloc_name - allocate a name for a device
1043 *      @net: network namespace to allocate the device name in
1044 *      @name: name format string
1045 *      @buf:  scratch buffer and result name string
1046 *
1047 *      Passed a format string - eg "lt%d" it will try and find a suitable
1048 *      id. It scans list of devices to build up a free map, then chooses
1049 *      the first empty slot. The caller must hold the dev_base or rtnl lock
1050 *      while allocating the name and adding the device in order to avoid
1051 *      duplicates.
1052 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1053 *      Returns the number of the unit assigned or a negative errno code.
1054 */
1055
1056static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1057{
1058        int i = 0;
1059        const char *p;
1060        const int max_netdevices = 8*PAGE_SIZE;
1061        unsigned long *inuse;
1062        struct net_device *d;
1063
1064        p = strnchr(name, IFNAMSIZ-1, '%');
1065        if (p) {
1066                /*
1067                 * Verify the string as this thing may have come from
1068                 * the user.  There must be either one "%d" and no other "%"
1069                 * characters.
1070                 */
1071                if (p[1] != 'd' || strchr(p + 2, '%'))
1072                        return -EINVAL;
1073
1074                /* Use one page as a bit array of possible slots */
1075                inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1076                if (!inuse)
1077                        return -ENOMEM;
1078
1079                for_each_netdev(net, d) {
1080                        if (!sscanf(d->name, name, &i))
1081                                continue;
1082                        if (i < 0 || i >= max_netdevices)
1083                                continue;
1084
1085                        /*  avoid cases where sscanf is not exact inverse of printf */
1086                        snprintf(buf, IFNAMSIZ, name, i);
1087                        if (!strncmp(buf, d->name, IFNAMSIZ))
1088                                set_bit(i, inuse);
1089                }
1090
1091                i = find_first_zero_bit(inuse, max_netdevices);
1092                free_page((unsigned long) inuse);
1093        }
1094
1095        if (buf != name)
1096                snprintf(buf, IFNAMSIZ, name, i);
1097        if (!__dev_get_by_name(net, buf))
1098                return i;
1099
1100        /* It is possible to run out of possible slots
1101         * when the name is long and there isn't enough space left
1102         * for the digits, or if all bits are used.
1103         */
1104        return -ENFILE;
1105}
1106
1107/**
1108 *      dev_alloc_name - allocate a name for a device
1109 *      @dev: device
1110 *      @name: name format string
1111 *
1112 *      Passed a format string - eg "lt%d" it will try and find a suitable
1113 *      id. It scans list of devices to build up a free map, then chooses
1114 *      the first empty slot. The caller must hold the dev_base or rtnl lock
1115 *      while allocating the name and adding the device in order to avoid
1116 *      duplicates.
1117 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118 *      Returns the number of the unit assigned or a negative errno code.
1119 */
1120
1121int dev_alloc_name(struct net_device *dev, const char *name)
1122{
1123        char buf[IFNAMSIZ];
1124        struct net *net;
1125        int ret;
1126
1127        BUG_ON(!dev_net(dev));
1128        net = dev_net(dev);
1129        ret = __dev_alloc_name(net, name, buf);
1130        if (ret >= 0)
1131                strlcpy(dev->name, buf, IFNAMSIZ);
1132        return ret;
1133}
1134EXPORT_SYMBOL(dev_alloc_name);
1135
1136static int dev_alloc_name_ns(struct net *net,
1137                             struct net_device *dev,
1138                             const char *name)
1139{
1140        char buf[IFNAMSIZ];
1141        int ret;
1142
1143        ret = __dev_alloc_name(net, name, buf);
1144        if (ret >= 0)
1145                strlcpy(dev->name, buf, IFNAMSIZ);
1146        return ret;
1147}
1148
1149static int dev_get_valid_name(struct net *net,
1150                              struct net_device *dev,
1151                              const char *name)
1152{
1153        BUG_ON(!net);
1154
1155        if (!dev_valid_name(name))
1156                return -EINVAL;
1157
1158        if (strchr(name, '%'))
1159                return dev_alloc_name_ns(net, dev, name);
1160        else if (__dev_get_by_name(net, name))
1161                return -EEXIST;
1162        else if (dev->name != name)
1163                strlcpy(dev->name, name, IFNAMSIZ);
1164
1165        return 0;
1166}
1167
1168/**
1169 *      dev_change_name - change name of a device
1170 *      @dev: device
1171 *      @newname: name (or format string) must be at least IFNAMSIZ
1172 *
1173 *      Change name of a device, can pass format strings "eth%d".
1174 *      for wildcarding.
1175 */
1176int dev_change_name(struct net_device *dev, const char *newname)
1177{
1178        unsigned char old_assign_type;
1179        char oldname[IFNAMSIZ];
1180        int err = 0;
1181        int ret;
1182        struct net *net;
1183
1184        ASSERT_RTNL();
1185        BUG_ON(!dev_net(dev));
1186
1187        net = dev_net(dev);
1188        if (dev->flags & IFF_UP)
1189                return -EBUSY;
1190
1191        write_seqcount_begin(&devnet_rename_seq);
1192
1193        if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1194                write_seqcount_end(&devnet_rename_seq);
1195                return 0;
1196        }
1197
1198        memcpy(oldname, dev->name, IFNAMSIZ);
1199
1200        err = dev_get_valid_name(net, dev, newname);
1201        if (err < 0) {
1202                write_seqcount_end(&devnet_rename_seq);
1203                return err;
1204        }
1205
1206        if (oldname[0] && !strchr(oldname, '%'))
1207                netdev_info(dev, "renamed from %s\n", oldname);
1208
1209        old_assign_type = dev->name_assign_type;
1210        dev->name_assign_type = NET_NAME_RENAMED;
1211
1212rollback:
1213        ret = device_rename(&dev->dev, dev->name);
1214        if (ret) {
1215                memcpy(dev->name, oldname, IFNAMSIZ);
1216                dev->name_assign_type = old_assign_type;
1217                write_seqcount_end(&devnet_rename_seq);
1218                return ret;
1219        }
1220
1221        write_seqcount_end(&devnet_rename_seq);
1222
1223        netdev_adjacent_rename_links(dev, oldname);
1224
1225        write_lock_bh(&dev_base_lock);
1226        hlist_del_rcu(&dev->name_hlist);
1227        write_unlock_bh(&dev_base_lock);
1228
1229        synchronize_rcu();
1230
1231        write_lock_bh(&dev_base_lock);
1232        hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1233        write_unlock_bh(&dev_base_lock);
1234
1235        ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1236        ret = notifier_to_errno(ret);
1237
1238        if (ret) {
1239                /* err >= 0 after dev_alloc_name() or stores the first errno */
1240                if (err >= 0) {
1241                        err = ret;
1242                        write_seqcount_begin(&devnet_rename_seq);
1243                        memcpy(dev->name, oldname, IFNAMSIZ);
1244                        memcpy(oldname, newname, IFNAMSIZ);
1245                        dev->name_assign_type = old_assign_type;
1246                        old_assign_type = NET_NAME_RENAMED;
1247                        goto rollback;
1248                } else {
1249                        pr_err("%s: name change rollback failed: %d\n",
1250                               dev->name, ret);
1251                }
1252        }
1253
1254        return err;
1255}
1256
1257/**
1258 *      dev_set_alias - change ifalias of a device
1259 *      @dev: device
1260 *      @alias: name up to IFALIASZ
1261 *      @len: limit of bytes to copy from info
1262 *
1263 *      Set ifalias for a device,
1264 */
1265int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1266{
1267        char *new_ifalias;
1268
1269        ASSERT_RTNL();
1270
1271        if (len >= IFALIASZ)
1272                return -EINVAL;
1273
1274        if (!len) {
1275                kfree(dev->ifalias);
1276                dev->ifalias = NULL;
1277                return 0;
1278        }
1279
1280        new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1281        if (!new_ifalias)
1282                return -ENOMEM;
1283        dev->ifalias = new_ifalias;
1284        memcpy(dev->ifalias, alias, len);
1285        dev->ifalias[len] = 0;
1286
1287        return len;
1288}
1289
1290
1291/**
1292 *      netdev_features_change - device changes features
1293 *      @dev: device to cause notification
1294 *
1295 *      Called to indicate a device has changed features.
1296 */
1297void netdev_features_change(struct net_device *dev)
1298{
1299        call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1300}
1301EXPORT_SYMBOL(netdev_features_change);
1302
1303/**
1304 *      netdev_state_change - device changes state
1305 *      @dev: device to cause notification
1306 *
1307 *      Called to indicate a device has changed state. This function calls
1308 *      the notifier chains for netdev_chain and sends a NEWLINK message
1309 *      to the routing socket.
1310 */
1311void netdev_state_change(struct net_device *dev)
1312{
1313        if (dev->flags & IFF_UP) {
1314                struct netdev_notifier_change_info change_info;
1315
1316                change_info.flags_changed = 0;
1317                call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1318                                              &change_info.info);
1319                rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1320        }
1321}
1322EXPORT_SYMBOL(netdev_state_change);
1323
1324/**
1325 * netdev_notify_peers - notify network peers about existence of @dev
1326 * @dev: network device
1327 *
1328 * Generate traffic such that interested network peers are aware of
1329 * @dev, such as by generating a gratuitous ARP. This may be used when
1330 * a device wants to inform the rest of the network about some sort of
1331 * reconfiguration such as a failover event or virtual machine
1332 * migration.
1333 */
1334void netdev_notify_peers(struct net_device *dev)
1335{
1336        rtnl_lock();
1337        call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1338        call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1339        rtnl_unlock();
1340}
1341EXPORT_SYMBOL(netdev_notify_peers);
1342
1343static int __dev_open(struct net_device *dev)
1344{
1345        const struct net_device_ops *ops = dev->netdev_ops;
1346        int ret;
1347
1348        ASSERT_RTNL();
1349
1350        if (!netif_device_present(dev))
1351                return -ENODEV;
1352
1353        /* Block netpoll from trying to do any rx path servicing.
1354         * If we don't do this there is a chance ndo_poll_controller
1355         * or ndo_poll may be running while we open the device
1356         */
1357        netpoll_poll_disable(dev);
1358
1359        ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1360        ret = notifier_to_errno(ret);
1361        if (ret)
1362                return ret;
1363
1364        set_bit(__LINK_STATE_START, &dev->state);
1365
1366        if (ops->ndo_validate_addr)
1367                ret = ops->ndo_validate_addr(dev);
1368
1369        if (!ret && ops->ndo_open)
1370                ret = ops->ndo_open(dev);
1371
1372        netpoll_poll_enable(dev);
1373
1374        if (ret)
1375                clear_bit(__LINK_STATE_START, &dev->state);
1376        else {
1377                dev->flags |= IFF_UP;
1378                dev_set_rx_mode(dev);
1379                dev_activate(dev);
1380                add_device_randomness(dev->dev_addr, dev->addr_len);
1381        }
1382
1383        return ret;
1384}
1385
1386/**
1387 *      dev_open        - prepare an interface for use.
1388 *      @dev:   device to open
1389 *
1390 *      Takes a device from down to up state. The device's private open
1391 *      function is invoked and then the multicast lists are loaded. Finally
1392 *      the device is moved into the up state and a %NETDEV_UP message is
1393 *      sent to the netdev notifier chain.
1394 *
1395 *      Calling this function on an active interface is a nop. On a failure
1396 *      a negative errno code is returned.
1397 */
1398int dev_open(struct net_device *dev)
1399{
1400        int ret;
1401
1402        if (dev->flags & IFF_UP)
1403                return 0;
1404
1405        ret = __dev_open(dev);
1406        if (ret < 0)
1407                return ret;
1408
1409        rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1410        call_netdevice_notifiers(NETDEV_UP, dev);
1411
1412        return ret;
1413}
1414EXPORT_SYMBOL(dev_open);
1415
1416static int __dev_close_many(struct list_head *head)
1417{
1418        struct net_device *dev;
1419
1420        ASSERT_RTNL();
1421        might_sleep();
1422
1423        list_for_each_entry(dev, head, close_list) {
1424                /* Temporarily disable netpoll until the interface is down */
1425                netpoll_poll_disable(dev);
1426
1427                call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1428
1429                clear_bit(__LINK_STATE_START, &dev->state);
1430
1431                /* Synchronize to scheduled poll. We cannot touch poll list, it
1432                 * can be even on different cpu. So just clear netif_running().
1433                 *
1434                 * dev->stop() will invoke napi_disable() on all of it's
1435                 * napi_struct instances on this device.
1436                 */
1437                smp_mb__after_atomic(); /* Commit netif_running(). */
1438        }
1439
1440        dev_deactivate_many(head);
1441
1442        list_for_each_entry(dev, head, close_list) {
1443                const struct net_device_ops *ops = dev->netdev_ops;
1444
1445                /*
1446                 *      Call the device specific close. This cannot fail.
1447                 *      Only if device is UP
1448                 *
1449                 *      We allow it to be called even after a DETACH hot-plug
1450                 *      event.
1451                 */
1452                if (ops->ndo_stop)
1453                        ops->ndo_stop(dev);
1454
1455                dev->flags &= ~IFF_UP;
1456                netpoll_poll_enable(dev);
1457        }
1458
1459        return 0;
1460}
1461
1462static int __dev_close(struct net_device *dev)
1463{
1464        int retval;
1465        LIST_HEAD(single);
1466
1467        list_add(&dev->close_list, &single);
1468        retval = __dev_close_many(&single);
1469        list_del(&single);
1470
1471        return retval;
1472}
1473
1474int dev_close_many(struct list_head *head, bool unlink)
1475{
1476        struct net_device *dev, *tmp;
1477
1478        /* Remove the devices that don't need to be closed */
1479        list_for_each_entry_safe(dev, tmp, head, close_list)
1480                if (!(dev->flags & IFF_UP))
1481                        list_del_init(&dev->close_list);
1482
1483        __dev_close_many(head);
1484
1485        list_for_each_entry_safe(dev, tmp, head, close_list) {
1486                rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1487                call_netdevice_notifiers(NETDEV_DOWN, dev);
1488                if (unlink)
1489                        list_del_init(&dev->close_list);
1490        }
1491
1492        return 0;
1493}
1494EXPORT_SYMBOL(dev_close_many);
1495
1496/**
1497 *      dev_close - shutdown an interface.
1498 *      @dev: device to shutdown
1499 *
1500 *      This function moves an active device into down state. A
1501 *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1502 *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1503 *      chain.
1504 */
1505int dev_close(struct net_device *dev)
1506{
1507        if (dev->flags & IFF_UP) {
1508                LIST_HEAD(single);
1509
1510                list_add(&dev->close_list, &single);
1511                dev_close_many(&single, true);
1512                list_del(&single);
1513        }
1514        return 0;
1515}
1516EXPORT_SYMBOL(dev_close);
1517
1518
1519/**
1520 *      dev_disable_lro - disable Large Receive Offload on a device
1521 *      @dev: device
1522 *
1523 *      Disable Large Receive Offload (LRO) on a net device.  Must be
1524 *      called under RTNL.  This is needed if received packets may be
1525 *      forwarded to another interface.
1526 */
1527void dev_disable_lro(struct net_device *dev)
1528{
1529        struct net_device *lower_dev;
1530        struct list_head *iter;
1531
1532        dev->wanted_features &= ~NETIF_F_LRO;
1533        netdev_update_features(dev);
1534
1535        if (unlikely(dev->features & NETIF_F_LRO))
1536                netdev_WARN(dev, "failed to disable LRO!\n");
1537
1538        netdev_for_each_lower_dev(dev, lower_dev, iter)
1539                dev_disable_lro(lower_dev);
1540}
1541EXPORT_SYMBOL(dev_disable_lro);
1542
1543static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1544                                   struct net_device *dev)
1545{
1546        struct netdev_notifier_info info;
1547
1548        netdev_notifier_info_init(&info, dev);
1549        return nb->notifier_call(nb, val, &info);
1550}
1551
1552static int dev_boot_phase = 1;
1553
1554/**
1555 * register_netdevice_notifier - register a network notifier block
1556 * @nb: notifier
1557 *
1558 * Register a notifier to be called when network device events occur.
1559 * The notifier passed is linked into the kernel structures and must
1560 * not be reused until it has been unregistered. A negative errno code
1561 * is returned on a failure.
1562 *
1563 * When registered all registration and up events are replayed
1564 * to the new notifier to allow device to have a race free
1565 * view of the network device list.
1566 */
1567
1568int register_netdevice_notifier(struct notifier_block *nb)
1569{
1570        struct net_device *dev;
1571        struct net_device *last;
1572        struct net *net;
1573        int err;
1574
1575        rtnl_lock();
1576        err = raw_notifier_chain_register(&netdev_chain, nb);
1577        if (err)
1578                goto unlock;
1579        if (dev_boot_phase)
1580                goto unlock;
1581        for_each_net(net) {
1582                for_each_netdev(net, dev) {
1583                        err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1584                        err = notifier_to_errno(err);
1585                        if (err)
1586                                goto rollback;
1587
1588                        if (!(dev->flags & IFF_UP))
1589                                continue;
1590
1591                        call_netdevice_notifier(nb, NETDEV_UP, dev);
1592                }
1593        }
1594
1595unlock:
1596        rtnl_unlock();
1597        return err;
1598
1599rollback:
1600        last = dev;
1601        for_each_net(net) {
1602                for_each_netdev(net, dev) {
1603                        if (dev == last)
1604                                goto outroll;
1605
1606                        if (dev->flags & IFF_UP) {
1607                                call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1608                                                        dev);
1609                                call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1610                        }
1611                        call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1612                }
1613        }
1614
1615outroll:
1616        raw_notifier_chain_unregister(&netdev_chain, nb);
1617        goto unlock;
1618}
1619EXPORT_SYMBOL(register_netdevice_notifier);
1620
1621/**
1622 * unregister_netdevice_notifier - unregister a network notifier block
1623 * @nb: notifier
1624 *
1625 * Unregister a notifier previously registered by
1626 * register_netdevice_notifier(). The notifier is unlinked into the
1627 * kernel structures and may then be reused. A negative errno code
1628 * is returned on a failure.
1629 *
1630 * After unregistering unregister and down device events are synthesized
1631 * for all devices on the device list to the removed notifier to remove
1632 * the need for special case cleanup code.
1633 */
1634
1635int unregister_netdevice_notifier(struct notifier_block *nb)
1636{
1637        struct net_device *dev;
1638        struct net *net;
1639        int err;
1640
1641        rtnl_lock();
1642        err = raw_notifier_chain_unregister(&netdev_chain, nb);
1643        if (err)
1644                goto unlock;
1645
1646        for_each_net(net) {
1647                for_each_netdev(net, dev) {
1648                        if (dev->flags & IFF_UP) {
1649                                call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1650                                                        dev);
1651                                call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1652                        }
1653                        call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1654                }
1655        }
1656unlock:
1657        rtnl_unlock();
1658        return err;
1659}
1660EXPORT_SYMBOL(unregister_netdevice_notifier);
1661
1662/**
1663 *      call_netdevice_notifiers_info - call all network notifier blocks
1664 *      @val: value passed unmodified to notifier function
1665 *      @dev: net_device pointer passed unmodified to notifier function
1666 *      @info: notifier information data
1667 *
1668 *      Call all network notifier blocks.  Parameters and return value
1669 *      are as for raw_notifier_call_chain().
1670 */
1671
1672static int call_netdevice_notifiers_info(unsigned long val,
1673                                         struct net_device *dev,
1674                                         struct netdev_notifier_info *info)
1675{
1676        ASSERT_RTNL();
1677        netdev_notifier_info_init(info, dev);
1678        return raw_notifier_call_chain(&netdev_chain, val, info);
1679}
1680
1681/**
1682 *      call_netdevice_notifiers - call all network notifier blocks
1683 *      @val: value passed unmodified to notifier function
1684 *      @dev: net_device pointer passed unmodified to notifier function
1685 *
1686 *      Call all network notifier blocks.  Parameters and return value
1687 *      are as for raw_notifier_call_chain().
1688 */
1689
1690int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1691{
1692        struct netdev_notifier_info info;
1693
1694        return call_netdevice_notifiers_info(val, dev, &info);
1695}
1696EXPORT_SYMBOL(call_netdevice_notifiers);
1697
1698#ifdef CONFIG_NET_INGRESS
1699static struct static_key ingress_needed __read_mostly;
1700
1701void net_inc_ingress_queue(void)
1702{
1703        static_key_slow_inc(&ingress_needed);
1704}
1705EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1706
1707void net_dec_ingress_queue(void)
1708{
1709        static_key_slow_dec(&ingress_needed);
1710}
1711EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1712#endif
1713
1714#ifdef CONFIG_NET_EGRESS
1715static struct static_key egress_needed __read_mostly;
1716
1717void net_inc_egress_queue(void)
1718{
1719        static_key_slow_inc(&egress_needed);
1720}
1721EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1722
1723void net_dec_egress_queue(void)
1724{
1725        static_key_slow_dec(&egress_needed);
1726}
1727EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1728#endif
1729
1730static struct static_key netstamp_needed __read_mostly;
1731#ifdef HAVE_JUMP_LABEL
1732static atomic_t netstamp_needed_deferred;
1733static atomic_t netstamp_wanted;
1734static void netstamp_clear(struct work_struct *work)
1735{
1736        int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1737        int wanted;
1738
1739        wanted = atomic_add_return(deferred, &netstamp_wanted);
1740        if (wanted > 0)
1741                static_key_enable(&netstamp_needed);
1742        else
1743                static_key_disable(&netstamp_needed);
1744}
1745static DECLARE_WORK(netstamp_work, netstamp_clear);
1746#endif
1747
1748void net_enable_timestamp(void)
1749{
1750#ifdef HAVE_JUMP_LABEL
1751        int wanted;
1752
1753        while (1) {
1754                wanted = atomic_read(&netstamp_wanted);
1755                if (wanted <= 0)
1756                        break;
1757                if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1758                        return;
1759        }
1760        atomic_inc(&netstamp_needed_deferred);
1761        schedule_work(&netstamp_work);
1762#else
1763        static_key_slow_inc(&netstamp_needed);
1764#endif
1765}
1766EXPORT_SYMBOL(net_enable_timestamp);
1767
1768void net_disable_timestamp(void)
1769{
1770#ifdef HAVE_JUMP_LABEL
1771        int wanted;
1772
1773        while (1) {
1774                wanted = atomic_read(&netstamp_wanted);
1775                if (wanted <= 1)
1776                        break;
1777                if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1778                        return;
1779        }
1780        atomic_dec(&netstamp_needed_deferred);
1781        schedule_work(&netstamp_work);
1782#else
1783        static_key_slow_dec(&netstamp_needed);
1784#endif
1785}
1786EXPORT_SYMBOL(net_disable_timestamp);
1787
1788static inline void net_timestamp_set(struct sk_buff *skb)
1789{
1790        skb->tstamp = 0;
1791        if (static_key_false(&netstamp_needed))
1792                __net_timestamp(skb);
1793}
1794
1795#define net_timestamp_check(COND, SKB)                  \
1796        if (static_key_false(&netstamp_needed)) {               \
1797                if ((COND) && !(SKB)->tstamp)   \
1798                        __net_timestamp(SKB);           \
1799        }                                               \
1800
1801bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1802{
1803        unsigned int len;
1804
1805        if (!(dev->flags & IFF_UP))
1806                return false;
1807
1808        len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1809        if (skb->len <= len)
1810                return true;
1811
1812        /* if TSO is enabled, we don't care about the length as the packet
1813         * could be forwarded without being segmented before
1814         */
1815        if (skb_is_gso(skb))
1816                return true;
1817
1818        return false;
1819}
1820EXPORT_SYMBOL_GPL(is_skb_forwardable);
1821
1822int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1823{
1824        int ret = ____dev_forward_skb(dev, skb);
1825
1826        if (likely(!ret)) {
1827                skb->protocol = eth_type_trans(skb, dev);
1828                skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1829        }
1830
1831        return ret;
1832}
1833EXPORT_SYMBOL_GPL(__dev_forward_skb);
1834
1835/**
1836 * dev_forward_skb - loopback an skb to another netif
1837 *
1838 * @dev: destination network device
1839 * @skb: buffer to forward
1840 *
1841 * return values:
1842 *      NET_RX_SUCCESS  (no congestion)
1843 *      NET_RX_DROP     (packet was dropped, but freed)
1844 *
1845 * dev_forward_skb can be used for injecting an skb from the
1846 * start_xmit function of one device into the receive queue
1847 * of another device.
1848 *
1849 * The receiving device may be in another namespace, so
1850 * we have to clear all information in the skb that could
1851 * impact namespace isolation.
1852 */
1853int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1854{
1855        return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1856}
1857EXPORT_SYMBOL_GPL(dev_forward_skb);
1858
1859static inline int deliver_skb(struct sk_buff *skb,
1860                              struct packet_type *pt_prev,
1861                              struct net_device *orig_dev)
1862{
1863        if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1864                return -ENOMEM;
1865        refcount_inc(&skb->users);
1866        return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1867}
1868
1869static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1870                                          struct packet_type **pt,
1871                                          struct net_device *orig_dev,
1872                                          __be16 type,
1873                                          struct list_head *ptype_list)
1874{
1875        struct packet_type *ptype, *pt_prev = *pt;
1876
1877        list_for_each_entry_rcu(ptype, ptype_list, list) {
1878                if (ptype->type != type)
1879                        continue;
1880                if (pt_prev)
1881                        deliver_skb(skb, pt_prev, orig_dev);
1882                pt_prev = ptype;
1883        }
1884        *pt = pt_prev;
1885}
1886
1887static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1888{
1889        if (!ptype->af_packet_priv || !skb->sk)
1890                return false;
1891
1892        if (ptype->id_match)
1893                return ptype->id_match(ptype, skb->sk);
1894        else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1895                return true;
1896
1897        return false;
1898}
1899
1900/*
1901 *      Support routine. Sends outgoing frames to any network
1902 *      taps currently in use.
1903 */
1904
1905void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1906{
1907        struct packet_type *ptype;
1908        struct sk_buff *skb2 = NULL;
1909        struct packet_type *pt_prev = NULL;
1910        struct list_head *ptype_list = &ptype_all;
1911
1912        rcu_read_lock();
1913again:
1914        list_for_each_entry_rcu(ptype, ptype_list, list) {
1915                /* Never send packets back to the socket
1916                 * they originated from - MvS (miquels@drinkel.ow.org)
1917                 */
1918                if (skb_loop_sk(ptype, skb))
1919                        continue;
1920
1921                if (pt_prev) {
1922                        deliver_skb(skb2, pt_prev, skb->dev);
1923                        pt_prev = ptype;
1924                        continue;
1925                }
1926
1927                /* need to clone skb, done only once */
1928                skb2 = skb_clone(skb, GFP_ATOMIC);
1929                if (!skb2)
1930                        goto out_unlock;
1931
1932                net_timestamp_set(skb2);
1933
1934                /* skb->nh should be correctly
1935                 * set by sender, so that the second statement is
1936                 * just protection against buggy protocols.
1937                 */
1938                skb_reset_mac_header(skb2);
1939
1940                if (skb_network_header(skb2) < skb2->data ||
1941                    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1942                        net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1943                                             ntohs(skb2->protocol),
1944                                             dev->name);
1945                        skb_reset_network_header(skb2);
1946                }
1947
1948                skb2->transport_header = skb2->network_header;
1949                skb2->pkt_type = PACKET_OUTGOING;
1950                pt_prev = ptype;
1951        }
1952
1953        if (ptype_list == &ptype_all) {
1954                ptype_list = &dev->ptype_all;
1955                goto again;
1956        }
1957out_unlock:
1958        if (pt_prev)
1959                pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1960        rcu_read_unlock();
1961}
1962EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1963
1964/**
1965 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1966 * @dev: Network device
1967 * @txq: number of queues available
1968 *
1969 * If real_num_tx_queues is changed the tc mappings may no longer be
1970 * valid. To resolve this verify the tc mapping remains valid and if
1971 * not NULL the mapping. With no priorities mapping to this
1972 * offset/count pair it will no longer be used. In the worst case TC0
1973 * is invalid nothing can be done so disable priority mappings. If is
1974 * expected that drivers will fix this mapping if they can before
1975 * calling netif_set_real_num_tx_queues.
1976 */
1977static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1978{
1979        int i;
1980        struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1981
1982        /* If TC0 is invalidated disable TC mapping */
1983        if (tc->offset + tc->count > txq) {
1984                pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1985                dev->num_tc = 0;
1986                return;
1987        }
1988
1989        /* Invalidated prio to tc mappings set to TC0 */
1990        for (i = 1; i < TC_BITMASK + 1; i++) {
1991                int q = netdev_get_prio_tc_map(dev, i);
1992
1993                tc = &dev->tc_to_txq[q];
1994                if (tc->offset + tc->count > txq) {
1995                        pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1996                                i, q);
1997                        netdev_set_prio_tc_map(dev, i, 0);
1998                }
1999        }
2000}
2001
2002int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2003{
2004        if (dev->num_tc) {
2005                struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2006                int i;
2007
2008                for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2009                        if ((txq - tc->offset) < tc->count)
2010                                return i;
2011                }
2012
2013                return -1;
2014        }
2015
2016        return 0;
2017}
2018
2019#ifdef CONFIG_XPS
2020static DEFINE_MUTEX(xps_map_mutex);
2021#define xmap_dereference(P)             \
2022        rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2023
2024static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2025                             int tci, u16 index)
2026{
2027        struct xps_map *map = NULL;
2028        int pos;
2029
2030        if (dev_maps)
2031                map = xmap_dereference(dev_maps->cpu_map[tci]);
2032        if (!map)
2033                return false;
2034
2035        for (pos = map->len; pos--;) {
2036                if (map->queues[pos] != index)
2037                        continue;
2038
2039                if (map->len > 1) {
2040                        map->queues[pos] = map->queues[--map->len];
2041                        break;
2042                }
2043
2044                RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2045                kfree_rcu(map, rcu);
2046                return false;
2047        }
2048
2049        return true;
2050}
2051
2052static bool remove_xps_queue_cpu(struct net_device *dev,
2053                                 struct xps_dev_maps *dev_maps,
2054                                 int cpu, u16 offset, u16 count)
2055{
2056        int num_tc = dev->num_tc ? : 1;
2057        bool active = false;
2058        int tci;
2059
2060        for (tci = cpu * num_tc; num_tc--; tci++) {
2061                int i, j;
2062
2063                for (i = count, j = offset; i--; j++) {
2064                        if (!remove_xps_queue(dev_maps, cpu, j))
2065                                break;
2066                }
2067
2068                active |= i < 0;
2069        }
2070
2071        return active;
2072}
2073
2074static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2075                                   u16 count)
2076{
2077        struct xps_dev_maps *dev_maps;
2078        int cpu, i;
2079        bool active = false;
2080
2081        mutex_lock(&xps_map_mutex);
2082        dev_maps = xmap_dereference(dev->xps_maps);
2083
2084        if (!dev_maps)
2085                goto out_no_maps;
2086
2087        for_each_possible_cpu(cpu)
2088                active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2089                                               offset, count);
2090
2091        if (!active) {
2092                RCU_INIT_POINTER(dev->xps_maps, NULL);
2093                kfree_rcu(dev_maps, rcu);
2094        }
2095
2096        for (i = offset + (count - 1); count--; i--)
2097                netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2098                                             NUMA_NO_NODE);
2099
2100out_no_maps:
2101        mutex_unlock(&xps_map_mutex);
2102}
2103
2104static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2105{
2106        netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2107}
2108
2109static struct xps_map *expand_xps_map(struct xps_map *map,
2110                                      int cpu, u16 index)
2111{
2112        struct xps_map *new_map;
2113        int alloc_len = XPS_MIN_MAP_ALLOC;
2114        int i, pos;
2115
2116        for (pos = 0; map && pos < map->len; pos++) {
2117                if (map->queues[pos] != index)
2118                        continue;
2119                return map;
2120        }
2121
2122        /* Need to add queue to this CPU's existing map */
2123        if (map) {
2124                if (pos < map->alloc_len)
2125                        return map;
2126
2127                alloc_len = map->alloc_len * 2;
2128        }
2129
2130        /* Need to allocate new map to store queue on this CPU's map */
2131        new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2132                               cpu_to_node(cpu));
2133        if (!new_map)
2134                return NULL;
2135
2136        for (i = 0; i < pos; i++)
2137                new_map->queues[i] = map->queues[i];
2138        new_map->alloc_len = alloc_len;
2139        new_map->len = pos;
2140
2141        return new_map;
2142}
2143
2144int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2145                        u16 index)
2146{
2147        struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2148        int i, cpu, tci, numa_node_id = -2;
2149        int maps_sz, num_tc = 1, tc = 0;
2150        struct xps_map *map, *new_map;
2151        bool active = false;
2152
2153        if (dev->num_tc) {
2154                num_tc = dev->num_tc;
2155                tc = netdev_txq_to_tc(dev, index);
2156                if (tc < 0)
2157                        return -EINVAL;
2158        }
2159
2160        maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2161        if (maps_sz < L1_CACHE_BYTES)
2162                maps_sz = L1_CACHE_BYTES;
2163
2164        mutex_lock(&xps_map_mutex);
2165
2166        dev_maps = xmap_dereference(dev->xps_maps);
2167
2168        /* allocate memory for queue storage */
2169        for_each_cpu_and(cpu, cpu_online_mask, mask) {
2170                if (!new_dev_maps)
2171                        new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2172                if (!new_dev_maps) {
2173                        mutex_unlock(&xps_map_mutex);
2174                        return -ENOMEM;
2175                }
2176
2177                tci = cpu * num_tc + tc;
2178                map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2179                                 NULL;
2180
2181                map = expand_xps_map(map, cpu, index);
2182                if (!map)
2183                        goto error;
2184
2185                RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2186        }
2187
2188        if (!new_dev_maps)
2189                goto out_no_new_maps;
2190
2191        for_each_possible_cpu(cpu) {
2192                /* copy maps belonging to foreign traffic classes */
2193                for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2194                        /* fill in the new device map from the old device map */
2195                        map = xmap_dereference(dev_maps->cpu_map[tci]);
2196                        RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2197                }
2198
2199                /* We need to explicitly update tci as prevous loop
2200                 * could break out early if dev_maps is NULL.
2201                 */
2202                tci = cpu * num_tc + tc;
2203
2204                if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2205                        /* add queue to CPU maps */
2206                        int pos = 0;
2207
2208                        map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2209                        while ((pos < map->len) && (map->queues[pos] != index))
2210                                pos++;
2211
2212                        if (pos == map->len)
2213                                map->queues[map->len++] = index;
2214#ifdef CONFIG_NUMA
2215                        if (numa_node_id == -2)
2216                                numa_node_id = cpu_to_node(cpu);
2217                        else if (numa_node_id != cpu_to_node(cpu))
2218                                numa_node_id = -1;
2219#endif
2220                } else if (dev_maps) {
2221                        /* fill in the new device map from the old device map */
2222                        map = xmap_dereference(dev_maps->cpu_map[tci]);
2223                        RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2224                }
2225
2226                /* copy maps belonging to foreign traffic classes */
2227                for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2228                        /* fill in the new device map from the old device map */
2229                        map = xmap_dereference(dev_maps->cpu_map[tci]);
2230                        RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2231                }
2232        }
2233
2234        rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2235
2236        /* Cleanup old maps */
2237        if (!dev_maps)
2238                goto out_no_old_maps;
2239
2240        for_each_possible_cpu(cpu) {
2241                for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2242                        new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2243                        map = xmap_dereference(dev_maps->cpu_map[tci]);
2244                        if (map && map != new_map)
2245                                kfree_rcu(map, rcu);
2246                }
2247        }
2248
2249        kfree_rcu(dev_maps, rcu);
2250
2251out_no_old_maps:
2252        dev_maps = new_dev_maps;
2253        active = true;
2254
2255out_no_new_maps:
2256        /* update Tx queue numa node */
2257        netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2258                                     (numa_node_id >= 0) ? numa_node_id :
2259                                     NUMA_NO_NODE);
2260
2261        if (!dev_maps)
2262                goto out_no_maps;
2263
2264        /* removes queue from unused CPUs */
2265        for_each_possible_cpu(cpu) {
2266                for (i = tc, tci = cpu * num_tc; i--; tci++)
2267                        active |= remove_xps_queue(dev_maps, tci, index);
2268                if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2269                        active |= remove_xps_queue(dev_maps, tci, index);
2270                for (i = num_tc - tc, tci++; --i; tci++)
2271                        active |= remove_xps_queue(dev_maps, tci, index);
2272        }
2273
2274        /* free map if not active */
2275        if (!active) {
2276                RCU_INIT_POINTER(dev->xps_maps, NULL);
2277                kfree_rcu(dev_maps, rcu);
2278        }
2279
2280out_no_maps:
2281        mutex_unlock(&xps_map_mutex);
2282
2283        return 0;
2284error:
2285        /* remove any maps that we added */
2286        for_each_possible_cpu(cpu) {
2287                for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2288                        new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2289                        map = dev_maps ?
2290                              xmap_dereference(dev_maps->cpu_map[tci]) :
2291                              NULL;
2292                        if (new_map && new_map != map)
2293                                kfree(new_map);
2294                }
2295        }
2296
2297        mutex_unlock(&xps_map_mutex);
2298
2299        kfree(new_dev_maps);
2300        return -ENOMEM;
2301}
2302EXPORT_SYMBOL(netif_set_xps_queue);
2303
2304#endif
2305void netdev_reset_tc(struct net_device *dev)
2306{
2307#ifdef CONFIG_XPS
2308        netif_reset_xps_queues_gt(dev, 0);
2309#endif
2310        dev->num_tc = 0;
2311        memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2312        memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2313}
2314EXPORT_SYMBOL(netdev_reset_tc);
2315
2316int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2317{
2318        if (tc >= dev->num_tc)
2319                return -EINVAL;
2320
2321#ifdef CONFIG_XPS
2322        netif_reset_xps_queues(dev, offset, count);
2323#endif
2324        dev->tc_to_txq[tc].count = count;
2325        dev->tc_to_txq[tc].offset = offset;
2326        return 0;
2327}
2328EXPORT_SYMBOL(netdev_set_tc_queue);
2329
2330int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2331{
2332        if (num_tc > TC_MAX_QUEUE)
2333                return -EINVAL;
2334
2335#ifdef CONFIG_XPS
2336        netif_reset_xps_queues_gt(dev, 0);
2337#endif
2338        dev->num_tc = num_tc;
2339        return 0;
2340}
2341EXPORT_SYMBOL(netdev_set_num_tc);
2342
2343/*
2344 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2345 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2346 */
2347int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2348{
2349        int rc;
2350
2351        if (txq < 1 || txq > dev->num_tx_queues)
2352                return -EINVAL;
2353
2354        if (dev->reg_state == NETREG_REGISTERED ||
2355            dev->reg_state == NETREG_UNREGISTERING) {
2356                ASSERT_RTNL();
2357
2358                rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2359                                                  txq);
2360                if (rc)
2361                        return rc;
2362
2363                if (dev->num_tc)
2364                        netif_setup_tc(dev, txq);
2365
2366                if (txq < dev->real_num_tx_queues) {
2367                        qdisc_reset_all_tx_gt(dev, txq);
2368#ifdef CONFIG_XPS
2369                        netif_reset_xps_queues_gt(dev, txq);
2370#endif
2371                }
2372        }
2373
2374        dev->real_num_tx_queues = txq;
2375        return 0;
2376}
2377EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2378
2379#ifdef CONFIG_SYSFS
2380/**
2381 *      netif_set_real_num_rx_queues - set actual number of RX queues used
2382 *      @dev: Network device
2383 *      @rxq: Actual number of RX queues
2384 *
2385 *      This must be called either with the rtnl_lock held or before
2386 *      registration of the net device.  Returns 0 on success, or a
2387 *      negative error code.  If called before registration, it always
2388 *      succeeds.
2389 */
2390int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2391{
2392        int rc;
2393
2394        if (rxq < 1 || rxq > dev->num_rx_queues)
2395                return -EINVAL;
2396
2397        if (dev->reg_state == NETREG_REGISTERED) {
2398                ASSERT_RTNL();
2399
2400                rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2401                                                  rxq);
2402                if (rc)
2403                        return rc;
2404        }
2405
2406        dev->real_num_rx_queues = rxq;
2407        return 0;
2408}
2409EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2410#endif
2411
2412/**
2413 * netif_get_num_default_rss_queues - default number of RSS queues
2414 *
2415 * This routine should set an upper limit on the number of RSS queues
2416 * used by default by multiqueue devices.
2417 */
2418int netif_get_num_default_rss_queues(void)
2419{
2420        return is_kdump_kernel() ?
2421                1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2422}
2423EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2424
2425static void __netif_reschedule(struct Qdisc *q)
2426{
2427        struct softnet_data *sd;
2428        unsigned long flags;
2429
2430        local_irq_save(flags);
2431        sd = this_cpu_ptr(&softnet_data);
2432        q->next_sched = NULL;
2433        *sd->output_queue_tailp = q;
2434        sd->output_queue_tailp = &q->next_sched;
2435        raise_softirq_irqoff(NET_TX_SOFTIRQ);
2436        local_irq_restore(flags);
2437}
2438
2439void __netif_schedule(struct Qdisc *q)
2440{
2441        if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2442                __netif_reschedule(q);
2443}
2444EXPORT_SYMBOL(__netif_schedule);
2445
2446struct dev_kfree_skb_cb {
2447        enum skb_free_reason reason;
2448};
2449
2450static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2451{
2452        return (struct dev_kfree_skb_cb *)skb->cb;
2453}
2454
2455void netif_schedule_queue(struct netdev_queue *txq)
2456{
2457        rcu_read_lock();
2458        if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2459                struct Qdisc *q = rcu_dereference(txq->qdisc);
2460
2461                __netif_schedule(q);
2462        }
2463        rcu_read_unlock();
2464}
2465EXPORT_SYMBOL(netif_schedule_queue);
2466
2467void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2468{
2469        if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2470                struct Qdisc *q;
2471
2472                rcu_read_lock();
2473                q = rcu_dereference(dev_queue->qdisc);
2474                __netif_schedule(q);
2475                rcu_read_unlock();
2476        }
2477}
2478EXPORT_SYMBOL(netif_tx_wake_queue);
2479
2480void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2481{
2482        unsigned long flags;
2483
2484        if (unlikely(!skb))
2485                return;
2486
2487        if (likely(refcount_read(&skb->users) == 1)) {
2488                smp_rmb();
2489                refcount_set(&skb->users, 0);
2490        } else if (likely(!refcount_dec_and_test(&skb->users))) {
2491                return;
2492        }
2493        get_kfree_skb_cb(skb)->reason = reason;
2494        local_irq_save(flags);
2495        skb->next = __this_cpu_read(softnet_data.completion_queue);
2496        __this_cpu_write(softnet_data.completion_queue, skb);
2497        raise_softirq_irqoff(NET_TX_SOFTIRQ);
2498        local_irq_restore(flags);
2499}
2500EXPORT_SYMBOL(__dev_kfree_skb_irq);
2501
2502void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2503{
2504        if (in_irq() || irqs_disabled())
2505                __dev_kfree_skb_irq(skb, reason);
2506        else
2507                dev_kfree_skb(skb);
2508}
2509EXPORT_SYMBOL(__dev_kfree_skb_any);
2510
2511
2512/**
2513 * netif_device_detach - mark device as removed
2514 * @dev: network device
2515 *
2516 * Mark device as removed from system and therefore no longer available.
2517 */
2518void netif_device_detach(struct net_device *dev)
2519{
2520        if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2521            netif_running(dev)) {
2522                netif_tx_stop_all_queues(dev);
2523        }
2524}
2525EXPORT_SYMBOL(netif_device_detach);
2526
2527/**
2528 * netif_device_attach - mark device as attached
2529 * @dev: network device
2530 *
2531 * Mark device as attached from system and restart if needed.
2532 */
2533void netif_device_attach(struct net_device *dev)
2534{
2535        if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2536            netif_running(dev)) {
2537                netif_tx_wake_all_queues(dev);
2538                __netdev_watchdog_up(dev);
2539        }
2540}
2541EXPORT_SYMBOL(netif_device_attach);
2542
2543/*
2544 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2545 * to be used as a distribution range.
2546 */
2547u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2548                  unsigned int num_tx_queues)
2549{
2550        u32 hash;
2551        u16 qoffset = 0;
2552        u16 qcount = num_tx_queues;
2553
2554        if (skb_rx_queue_recorded(skb)) {
2555                hash = skb_get_rx_queue(skb);
2556                while (unlikely(hash >= num_tx_queues))
2557                        hash -= num_tx_queues;
2558                return hash;
2559        }
2560
2561        if (dev->num_tc) {
2562                u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2563
2564                qoffset = dev->tc_to_txq[tc].offset;
2565                qcount = dev->tc_to_txq[tc].count;
2566        }
2567
2568        return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2569}
2570EXPORT_SYMBOL(__skb_tx_hash);
2571
2572static void skb_warn_bad_offload(const struct sk_buff *skb)
2573{
2574        static const netdev_features_t null_features;
2575        struct net_device *dev = skb->dev;
2576        const char *name = "";
2577
2578        if (!net_ratelimit())
2579                return;
2580
2581        if (dev) {
2582                if (dev->dev.parent)
2583                        name = dev_driver_string(dev->dev.parent);
2584                else
2585                        name = netdev_name(dev);
2586        }
2587        WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2588             "gso_type=%d ip_summed=%d\n",
2589             name, dev ? &dev->features : &null_features,
2590             skb->sk ? &skb->sk->sk_route_caps : &null_features,
2591             skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2592             skb_shinfo(skb)->gso_type, skb->ip_summed);
2593}
2594
2595/*
2596 * Invalidate hardware checksum when packet is to be mangled, and
2597 * complete checksum manually on outgoing path.
2598 */
2599int skb_checksum_help(struct sk_buff *skb)
2600{
2601        __wsum csum;
2602        int ret = 0, offset;
2603
2604        if (skb->ip_summed == CHECKSUM_COMPLETE)
2605                goto out_set_summed;
2606
2607        if (unlikely(skb_shinfo(skb)->gso_size)) {
2608                skb_warn_bad_offload(skb);
2609                return -EINVAL;
2610        }
2611
2612        /* Before computing a checksum, we should make sure no frag could
2613         * be modified by an external entity : checksum could be wrong.
2614         */
2615        if (skb_has_shared_frag(skb)) {
2616                ret = __skb_linearize(skb);
2617                if (ret)
2618                        goto out;
2619        }
2620
2621        offset = skb_checksum_start_offset(skb);
2622        BUG_ON(offset >= skb_headlen(skb));
2623        csum = skb_checksum(skb, offset, skb->len - offset, 0);
2624
2625        offset += skb->csum_offset;
2626        BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2627
2628        if (skb_cloned(skb) &&
2629            !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2630                ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2631                if (ret)
2632                        goto out;
2633        }
2634
2635        *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2636out_set_summed:
2637        skb->ip_summed = CHECKSUM_NONE;
2638out:
2639        return ret;
2640}
2641EXPORT_SYMBOL(skb_checksum_help);
2642
2643int skb_crc32c_csum_help(struct sk_buff *skb)
2644{
2645        __le32 crc32c_csum;
2646        int ret = 0, offset, start;
2647
2648        if (skb->ip_summed != CHECKSUM_PARTIAL)
2649                goto out;
2650
2651        if (unlikely(skb_is_gso(skb)))
2652                goto out;
2653
2654        /* Before computing a checksum, we should make sure no frag could
2655         * be modified by an external entity : checksum could be wrong.
2656         */
2657        if (unlikely(skb_has_shared_frag(skb))) {
2658                ret = __skb_linearize(skb);
2659                if (ret)
2660                        goto out;
2661        }
2662        start = skb_checksum_start_offset(skb);
2663        offset = start + offsetof(struct sctphdr, checksum);
2664        if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2665                ret = -EINVAL;
2666                goto out;
2667        }
2668        if (skb_cloned(skb) &&
2669            !skb_clone_writable(skb, offset + sizeof(__le32))) {
2670                ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2671                if (ret)
2672                        goto out;
2673        }
2674        crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2675                                                  skb->len - start, ~(__u32)0,
2676                                                  crc32c_csum_stub));
2677        *(__le32 *)(skb->data + offset) = crc32c_csum;
2678        skb->ip_summed = CHECKSUM_NONE;
2679        skb->csum_not_inet = 0;
2680out:
2681        return ret;
2682}
2683
2684__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2685{
2686        __be16 type = skb->protocol;
2687
2688        /* Tunnel gso handlers can set protocol to ethernet. */
2689        if (type == htons(ETH_P_TEB)) {
2690                struct ethhdr *eth;
2691
2692                if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2693                        return 0;
2694
2695                eth = (struct ethhdr *)skb_mac_header(skb);
2696                type = eth->h_proto;
2697        }
2698
2699        return __vlan_get_protocol(skb, type, depth);
2700}
2701
2702/**
2703 *      skb_mac_gso_segment - mac layer segmentation handler.
2704 *      @skb: buffer to segment
2705 *      @features: features for the output path (see dev->features)
2706 */
2707struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2708                                    netdev_features_t features)
2709{
2710        struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2711        struct packet_offload *ptype;
2712        int vlan_depth = skb->mac_len;
2713        __be16 type = skb_network_protocol(skb, &vlan_depth);
2714
2715        if (unlikely(!type))
2716                return ERR_PTR(-EINVAL);
2717
2718        __skb_pull(skb, vlan_depth);
2719
2720        rcu_read_lock();
2721        list_for_each_entry_rcu(ptype, &offload_base, list) {
2722                if (ptype->type == type && ptype->callbacks.gso_segment) {
2723                        segs = ptype->callbacks.gso_segment(skb, features);
2724                        break;
2725                }
2726        }
2727        rcu_read_unlock();
2728
2729        __skb_push(skb, skb->data - skb_mac_header(skb));
2730
2731        return segs;
2732}
2733EXPORT_SYMBOL(skb_mac_gso_segment);
2734
2735
2736/* openvswitch calls this on rx path, so we need a different check.
2737 */
2738static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2739{
2740        if (tx_path)
2741                return skb->ip_summed != CHECKSUM_PARTIAL &&
2742                       skb->ip_summed != CHECKSUM_UNNECESSARY;
2743
2744        return skb->ip_summed == CHECKSUM_NONE;
2745}
2746
2747/**
2748 *      __skb_gso_segment - Perform segmentation on skb.
2749 *      @skb: buffer to segment
2750 *      @features: features for the output path (see dev->features)
2751 *      @tx_path: whether it is called in TX path
2752 *
2753 *      This function segments the given skb and returns a list of segments.
2754 *
2755 *      It may return NULL if the skb requires no segmentation.  This is
2756 *      only possible when GSO is used for verifying header integrity.
2757 *
2758 *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2759 */
2760struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2761                                  netdev_features_t features, bool tx_path)
2762{
2763        struct sk_buff *segs;
2764
2765        if (unlikely(skb_needs_check(skb, tx_path))) {
2766                int err;
2767
2768                /* We're going to init ->check field in TCP or UDP header */
2769                err = skb_cow_head(skb, 0);
2770                if (err < 0)
2771                        return ERR_PTR(err);
2772        }
2773
2774        /* Only report GSO partial support if it will enable us to
2775         * support segmentation on this frame without needing additional
2776         * work.
2777         */
2778        if (features & NETIF_F_GSO_PARTIAL) {
2779                netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2780                struct net_device *dev = skb->dev;
2781
2782                partial_features |= dev->features & dev->gso_partial_features;
2783                if (!skb_gso_ok(skb, features | partial_features))
2784                        features &= ~NETIF_F_GSO_PARTIAL;
2785        }
2786
2787        BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2788                     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2789
2790        SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2791        SKB_GSO_CB(skb)->encap_level = 0;
2792
2793        skb_reset_mac_header(skb);
2794        skb_reset_mac_len(skb);
2795
2796        segs = skb_mac_gso_segment(skb, features);
2797
2798        if (unlikely(skb_needs_check(skb, tx_path)))
2799                skb_warn_bad_offload(skb);
2800
2801        return segs;
2802}
2803EXPORT_SYMBOL(__skb_gso_segment);
2804
2805/* Take action when hardware reception checksum errors are detected. */
2806#ifdef CONFIG_BUG
2807void netdev_rx_csum_fault(struct net_device *dev)
2808{
2809        if (net_ratelimit()) {
2810                pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2811                dump_stack();
2812        }
2813}
2814EXPORT_SYMBOL(netdev_rx_csum_fault);
2815#endif
2816
2817/* Actually, we should eliminate this check as soon as we know, that:
2818 * 1. IOMMU is present and allows to map all the memory.
2819 * 2. No high memory really exists on this machine.
2820 */
2821
2822static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2823{
2824#ifdef CONFIG_HIGHMEM
2825        int i;
2826
2827        if (!(dev->features & NETIF_F_HIGHDMA)) {
2828                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2829                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2830
2831                        if (PageHighMem(skb_frag_page(frag)))
2832                                return 1;
2833                }
2834        }
2835
2836        if (PCI_DMA_BUS_IS_PHYS) {
2837                struct device *pdev = dev->dev.parent;
2838
2839                if (!pdev)
2840                        return 0;
2841                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2842                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2843                        dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2844
2845                        if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2846                                return 1;
2847                }
2848        }
2849#endif
2850        return 0;
2851}
2852
2853/* If MPLS offload request, verify we are testing hardware MPLS features
2854 * instead of standard features for the netdev.
2855 */
2856#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2857static netdev_features_t net_mpls_features(struct sk_buff *skb,
2858                                           netdev_features_t features,
2859                                           __be16 type)
2860{
2861        if (eth_p_mpls(type))
2862                features &= skb->dev->mpls_features;
2863
2864        return features;
2865}
2866#else
2867static netdev_features_t net_mpls_features(struct sk_buff *skb,
2868                                           netdev_features_t features,
2869                                           __be16 type)
2870{
2871        return features;
2872}
2873#endif
2874
2875static netdev_features_t harmonize_features(struct sk_buff *skb,
2876        netdev_features_t features)
2877{
2878        int tmp;
2879        __be16 type;
2880
2881        type = skb_network_protocol(skb, &tmp);
2882        features = net_mpls_features(skb, features, type);
2883
2884        if (skb->ip_summed != CHECKSUM_NONE &&
2885            !can_checksum_protocol(features, type)) {
2886                features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2887        }
2888        if (illegal_highdma(skb->dev, skb))
2889                features &= ~NETIF_F_SG;
2890
2891        return features;
2892}
2893
2894netdev_features_t passthru_features_check(struct sk_buff *skb,
2895                                          struct net_device *dev,
2896                                          netdev_features_t features)
2897{
2898        return features;
2899}
2900EXPORT_SYMBOL(passthru_features_check);
2901
2902static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2903                                             struct net_device *dev,
2904                                             netdev_features_t features)
2905{
2906        return vlan_features_check(skb, features);
2907}
2908
2909static netdev_features_t gso_features_check(const struct sk_buff *skb,
2910                                            struct net_device *dev,
2911                                            netdev_features_t features)
2912{
2913        u16 gso_segs = skb_shinfo(skb)->gso_segs;
2914
2915        if (gso_segs > dev->gso_max_segs)
2916                return features & ~NETIF_F_GSO_MASK;
2917
2918        /* Support for GSO partial features requires software
2919         * intervention before we can actually process the packets
2920         * so we need to strip support for any partial features now
2921         * and we can pull them back in after we have partially
2922         * segmented the frame.
2923         */
2924        if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2925                features &= ~dev->gso_partial_features;
2926
2927        /* Make sure to clear the IPv4 ID mangling feature if the
2928         * IPv4 header has the potential to be fragmented.
2929         */
2930        if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2931                struct iphdr *iph = skb->encapsulation ?
2932                                    inner_ip_hdr(skb) : ip_hdr(skb);
2933
2934                if (!(iph->frag_off & htons(IP_DF)))
2935                        features &= ~NETIF_F_TSO_MANGLEID;
2936        }
2937
2938        return features;
2939}
2940
2941netdev_features_t netif_skb_features(struct sk_buff *skb)
2942{
2943        struct net_device *dev = skb->dev;
2944        netdev_features_t features = dev->features;
2945
2946        if (skb_is_gso(skb))
2947                features = gso_features_check(skb, dev, features);
2948
2949        /* If encapsulation offload request, verify we are testing
2950         * hardware encapsulation features instead of standard
2951         * features for the netdev
2952         */
2953        if (skb->encapsulation)
2954                features &= dev->hw_enc_features;
2955
2956        if (skb_vlan_tagged(skb))
2957                features = netdev_intersect_features(features,
2958                                                     dev->vlan_features |
2959                                                     NETIF_F_HW_VLAN_CTAG_TX |
2960                                                     NETIF_F_HW_VLAN_STAG_TX);
2961
2962        if (dev->netdev_ops->ndo_features_check)
2963                features &= dev->netdev_ops->ndo_features_check(skb, dev,
2964                                                                features);
2965        else
2966                features &= dflt_features_check(skb, dev, features);
2967
2968        return harmonize_features(skb, features);
2969}
2970EXPORT_SYMBOL(netif_skb_features);
2971
2972static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2973                    struct netdev_queue *txq, bool more)
2974{
2975        unsigned int len;
2976        int rc;
2977
2978        if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2979                dev_queue_xmit_nit(skb, dev);
2980
2981        len = skb->len;
2982        trace_net_dev_start_xmit(skb, dev);
2983        rc = netdev_start_xmit(skb, dev, txq, more);
2984        trace_net_dev_xmit(skb, rc, dev, len);
2985
2986        return rc;
2987}
2988
2989struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2990                                    struct netdev_queue *txq, int *ret)
2991{
2992        struct sk_buff *skb = first;
2993        int rc = NETDEV_TX_OK;
2994
2995        while (skb) {
2996                struct sk_buff *next = skb->next;
2997
2998                skb->next = NULL;
2999                rc = xmit_one(skb, dev, txq, next != NULL);
3000                if (unlikely(!dev_xmit_complete(rc))) {
3001                        skb->next = next;
3002                        goto out;
3003                }
3004
3005                skb = next;
3006                if (netif_xmit_stopped(txq) && skb) {
3007                        rc = NETDEV_TX_BUSY;
3008                        break;
3009                }
3010        }
3011
3012out:
3013        *ret = rc;
3014        return skb;
3015}
3016
3017static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3018                                          netdev_features_t features)
3019{
3020        if (skb_vlan_tag_present(skb) &&
3021            !vlan_hw_offload_capable(features, skb->vlan_proto))
3022                skb = __vlan_hwaccel_push_inside(skb);
3023        return skb;
3024}
3025
3026int skb_csum_hwoffload_help(struct sk_buff *skb,
3027                            const netdev_features_t features)
3028{
3029        if (unlikely(skb->csum_not_inet))
3030                return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3031                        skb_crc32c_csum_help(skb);
3032
3033        return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3034}
3035EXPORT_SYMBOL(skb_csum_hwoffload_help);
3036
3037static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3038{
3039        netdev_features_t features;
3040
3041        features = netif_skb_features(skb);
3042        skb = validate_xmit_vlan(skb, features);
3043        if (unlikely(!skb))
3044                goto out_null;
3045
3046        if (netif_needs_gso(skb, features)) {
3047                struct sk_buff *segs;
3048
3049                segs = skb_gso_segment(skb, features);
3050                if (IS_ERR(segs)) {
3051                        goto out_kfree_skb;
3052                } else if (segs) {
3053                        consume_skb(skb);
3054                        skb = segs;
3055                }
3056        } else {
3057                if (skb_needs_linearize(skb, features) &&
3058                    __skb_linearize(skb))
3059                        goto out_kfree_skb;
3060
3061                if (validate_xmit_xfrm(skb, features))
3062                        goto out_kfree_skb;
3063
3064                /* If packet is not checksummed and device does not
3065                 * support checksumming for this protocol, complete
3066                 * checksumming here.
3067                 */
3068                if (skb->ip_summed == CHECKSUM_PARTIAL) {
3069                        if (skb->encapsulation)
3070                                skb_set_inner_transport_header(skb,
3071                                                               skb_checksum_start_offset(skb));
3072                        else
3073                                skb_set_transport_header(skb,
3074                                                         skb_checksum_start_offset(skb));
3075                        if (skb_csum_hwoffload_help(skb, features))
3076                                goto out_kfree_skb;
3077                }
3078        }
3079
3080        return skb;
3081
3082out_kfree_skb:
3083        kfree_skb(skb);
3084out_null:
3085        atomic_long_inc(&dev->tx_dropped);
3086        return NULL;
3087}
3088
3089struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3090{
3091        struct sk_buff *next, *head = NULL, *tail;
3092
3093        for (; skb != NULL; skb = next) {
3094                next = skb->next;
3095                skb->next = NULL;
3096
3097                /* in case skb wont be segmented, point to itself */
3098                skb->prev = skb;
3099
3100                skb = validate_xmit_skb(skb, dev);
3101                if (!skb)
3102                        continue;
3103
3104                if (!head)
3105                        head = skb;
3106                else
3107                        tail->next = skb;
3108                /* If skb was segmented, skb->prev points to
3109                 * the last segment. If not, it still contains skb.
3110                 */
3111                tail = skb->prev;
3112        }
3113        return head;
3114}
3115EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3116
3117static void qdisc_pkt_len_init(struct sk_buff *skb)
3118{
3119        const struct skb_shared_info *shinfo = skb_shinfo(skb);
3120
3121        qdisc_skb_cb(skb)->pkt_len = skb->len;
3122
3123        /* To get more precise estimation of bytes sent on wire,
3124         * we add to pkt_len the headers size of all segments
3125         */
3126        if (shinfo->gso_size)  {
3127                unsigned int hdr_len;
3128                u16 gso_segs = shinfo->gso_segs;
3129
3130                /* mac layer + network layer */
3131                hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3132
3133                /* + transport layer */
3134                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3135                        hdr_len += tcp_hdrlen(skb);
3136                else
3137                        hdr_len += sizeof(struct udphdr);
3138
3139                if (shinfo->gso_type & SKB_GSO_DODGY)
3140                        gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3141                                                shinfo->gso_size);
3142
3143                qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3144        }
3145}
3146
3147static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3148                                 struct net_device *dev,
3149                                 struct netdev_queue *txq)
3150{
3151        spinlock_t *root_lock = qdisc_lock(q);
3152        struct sk_buff *to_free = NULL;
3153        bool contended;
3154        int rc;
3155
3156        qdisc_calculate_pkt_len(skb, q);
3157        /*
3158         * Heuristic to force contended enqueues to serialize on a
3159         * separate lock before trying to get qdisc main lock.
3160         * This permits qdisc->running owner to get the lock more
3161         * often and dequeue packets faster.
3162         */
3163        contended = qdisc_is_running(q);
3164        if (unlikely(contended))
3165                spin_lock(&q->busylock);
3166
3167        spin_lock(root_lock);
3168        if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3169                __qdisc_drop(skb, &to_free);
3170                rc = NET_XMIT_DROP;
3171        } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3172                   qdisc_run_begin(q)) {
3173                /*
3174                 * This is a work-conserving queue; there are no old skbs
3175                 * waiting to be sent out; and the qdisc is not running -
3176                 * xmit the skb directly.
3177                 */
3178
3179                qdisc_bstats_update(q, skb);
3180
3181                if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3182                        if (unlikely(contended)) {
3183                                spin_unlock(&q->busylock);
3184                                contended = false;
3185                        }
3186                        __qdisc_run(q);
3187                } else
3188                        qdisc_run_end(q);
3189
3190                rc = NET_XMIT_SUCCESS;
3191        } else {
3192                rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3193                if (qdisc_run_begin(q)) {
3194                        if (unlikely(contended)) {
3195                                spin_unlock(&q->busylock);
3196                                contended = false;
3197                        }
3198                        __qdisc_run(q);
3199                }
3200        }
3201        spin_unlock(root_lock);
3202        if (unlikely(to_free))
3203                kfree_skb_list(to_free);
3204        if (unlikely(contended))
3205                spin_unlock(&q->busylock);
3206        return rc;
3207}
3208
3209#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3210static void skb_update_prio(struct sk_buff *skb)
3211{
3212        struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3213
3214        if (!skb->priority && skb->sk && map) {
3215                unsigned int prioidx =
3216                        sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3217
3218                if (prioidx < map->priomap_len)
3219                        skb->priority = map->priomap[prioidx];
3220        }
3221}
3222#else
3223#define skb_update_prio(skb)
3224#endif
3225
3226DEFINE_PER_CPU(int, xmit_recursion);
3227EXPORT_SYMBOL(xmit_recursion);
3228
3229/**
3230 *      dev_loopback_xmit - loop back @skb
3231 *      @net: network namespace this loopback is happening in
3232 *      @sk:  sk needed to be a netfilter okfn
3233 *      @skb: buffer to transmit
3234 */
3235int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3236{
3237        skb_reset_mac_header(skb);
3238        __skb_pull(skb, skb_network_offset(skb));
3239        skb->pkt_type = PACKET_LOOPBACK;
3240        skb->ip_summed = CHECKSUM_UNNECESSARY;
3241        WARN_ON(!skb_dst(skb));
3242        skb_dst_force(skb);
3243        netif_rx_ni(skb);
3244        return 0;
3245}
3246EXPORT_SYMBOL(dev_loopback_xmit);
3247
3248#ifdef CONFIG_NET_EGRESS
3249static struct sk_buff *
3250sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3251{
3252        struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3253        struct tcf_result cl_res;
3254
3255        if (!cl)
3256                return skb;
3257
3258        /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3259        qdisc_bstats_cpu_update(cl->q, skb);
3260
3261        switch (tcf_classify(skb, cl, &cl_res, false)) {
3262        case TC_ACT_OK:
3263        case TC_ACT_RECLASSIFY:
3264                skb->tc_index = TC_H_MIN(cl_res.classid);
3265                break;
3266        case TC_ACT_SHOT:
3267                qdisc_qstats_cpu_drop(cl->q);
3268                *ret = NET_XMIT_DROP;
3269                kfree_skb(skb);
3270                return NULL;
3271        case TC_ACT_STOLEN:
3272        case TC_ACT_QUEUED:
3273        case TC_ACT_TRAP:
3274                *ret = NET_XMIT_SUCCESS;
3275                consume_skb(skb);
3276                return NULL;
3277        case TC_ACT_REDIRECT:
3278                /* No need to push/pop skb's mac_header here on egress! */
3279                skb_do_redirect(skb);
3280                *ret = NET_XMIT_SUCCESS;
3281                return NULL;
3282        default:
3283                break;
3284        }
3285
3286        return skb;
3287}
3288#endif /* CONFIG_NET_EGRESS */
3289
3290static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3291{
3292#ifdef CONFIG_XPS
3293        struct xps_dev_maps *dev_maps;
3294        struct xps_map *map;
3295        int queue_index = -1;
3296
3297        rcu_read_lock();
3298        dev_maps = rcu_dereference(dev->xps_maps);
3299        if (dev_maps) {
3300                unsigned int tci = skb->sender_cpu - 1;
3301
3302                if (dev->num_tc) {
3303                        tci *= dev->num_tc;
3304                        tci += netdev_get_prio_tc_map(dev, skb->priority);
3305                }
3306
3307                map = rcu_dereference(dev_maps->cpu_map[tci]);
3308                if (map) {
3309                        if (map->len == 1)
3310                                queue_index = map->queues[0];
3311                        else
3312                                queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3313                                                                           map->len)];
3314                        if (unlikely(queue_index >= dev->real_num_tx_queues))
3315                                queue_index = -1;
3316                }
3317        }
3318        rcu_read_unlock();
3319
3320        return queue_index;
3321#else
3322        return -1;
3323#endif
3324}
3325
3326static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3327{
3328        struct sock *sk = skb->sk;
3329        int queue_index = sk_tx_queue_get(sk);
3330
3331        if (queue_index < 0 || skb->ooo_okay ||
3332            queue_index >= dev->real_num_tx_queues) {
3333                int new_index = get_xps_queue(dev, skb);
3334
3335                if (new_index < 0)
3336                        new_index = skb_tx_hash(dev, skb);
3337
3338                if (queue_index != new_index && sk &&
3339                    sk_fullsock(sk) &&
3340                    rcu_access_pointer(sk->sk_dst_cache))
3341                        sk_tx_queue_set(sk, new_index);
3342
3343                queue_index = new_index;
3344        }
3345
3346        return queue_index;
3347}
3348
3349struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3350                                    struct sk_buff *skb,
3351                                    void *accel_priv)
3352{
3353        int queue_index = 0;
3354
3355#ifdef CONFIG_XPS
3356        u32 sender_cpu = skb->sender_cpu - 1;
3357
3358        if (sender_cpu >= (u32)NR_CPUS)
3359                skb->sender_cpu = raw_smp_processor_id() + 1;
3360#endif
3361
3362        if (dev->real_num_tx_queues != 1) {
3363                const struct net_device_ops *ops = dev->netdev_ops;
3364
3365                if (ops->ndo_select_queue)
3366                        queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3367                                                            __netdev_pick_tx);
3368                else
3369                        queue_index = __netdev_pick_tx(dev, skb);
3370
3371                if (!accel_priv)
3372                        queue_index = netdev_cap_txqueue(dev, queue_index);
3373        }
3374
3375        skb_set_queue_mapping(skb, queue_index);
3376        return netdev_get_tx_queue(dev, queue_index);
3377}
3378
3379/**
3380 *      __dev_queue_xmit - transmit a buffer
3381 *      @skb: buffer to transmit
3382 *      @accel_priv: private data used for L2 forwarding offload
3383 *
3384 *      Queue a buffer for transmission to a network device. The caller must
3385 *      have set the device and priority and built the buffer before calling
3386 *      this function. The function can be called from an interrupt.
3387 *
3388 *      A negative errno code is returned on a failure. A success does not
3389 *      guarantee the frame will be transmitted as it may be dropped due
3390 *      to congestion or traffic shaping.
3391 *
3392 * -----------------------------------------------------------------------------------
3393 *      I notice this method can also return errors from the queue disciplines,
3394 *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3395 *      be positive.
3396 *
3397 *      Regardless of the return value, the skb is consumed, so it is currently
3398 *      difficult to retry a send to this method.  (You can bump the ref count
3399 *      before sending to hold a reference for retry if you are careful.)
3400 *
3401 *      When calling this method, interrupts MUST be enabled.  This is because
3402 *      the BH enable code must have IRQs enabled so that it will not deadlock.
3403 *          --BLG
3404 */
3405static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3406{
3407        struct net_device *dev = skb->dev;
3408        struct netdev_queue *txq;
3409        struct Qdisc *q;
3410        int rc = -ENOMEM;
3411
3412        skb_reset_mac_header(skb);
3413
3414        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3415                __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3416
3417        /* Disable soft irqs for various locks below. Also
3418         * stops preemption for RCU.
3419         */
3420        rcu_read_lock_bh();
3421
3422        skb_update_prio(skb);
3423
3424        qdisc_pkt_len_init(skb);
3425#ifdef CONFIG_NET_CLS_ACT
3426        skb->tc_at_ingress = 0;
3427# ifdef CONFIG_NET_EGRESS
3428        if (static_key_false(&egress_needed)) {
3429                skb = sch_handle_egress(skb, &rc, dev);
3430                if (!skb)
3431                        goto out;
3432        }
3433# endif
3434#endif
3435        /* If device/qdisc don't need skb->dst, release it right now while
3436         * its hot in this cpu cache.
3437         */
3438        if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3439                skb_dst_drop(skb);
3440        else
3441                skb_dst_force(skb);
3442
3443        txq = netdev_pick_tx(dev, skb, accel_priv);
3444        q = rcu_dereference_bh(txq->qdisc);
3445
3446        trace_net_dev_queue(skb);
3447        if (q->enqueue) {
3448                rc = __dev_xmit_skb(skb, q, dev, txq);
3449                goto out;
3450        }
3451
3452        /* The device has no queue. Common case for software devices:
3453         * loopback, all the sorts of tunnels...
3454
3455         * Really, it is unlikely that netif_tx_lock protection is necessary
3456         * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3457         * counters.)
3458         * However, it is possible, that they rely on protection
3459         * made by us here.
3460
3461         * Check this and shot the lock. It is not prone from deadlocks.
3462         *Either shot noqueue qdisc, it is even simpler 8)
3463         */
3464        if (dev->flags & IFF_UP) {
3465                int cpu = smp_processor_id(); /* ok because BHs are off */
3466
3467                if (txq->xmit_lock_owner != cpu) {
3468                        if (unlikely(__this_cpu_read(xmit_recursion) >
3469                                     XMIT_RECURSION_LIMIT))
3470                                goto recursion_alert;
3471
3472                        skb = validate_xmit_skb(skb, dev);
3473                        if (!skb)
3474                                goto out;
3475
3476                        HARD_TX_LOCK(dev, txq, cpu);
3477
3478                        if (!netif_xmit_stopped(txq)) {
3479                                __this_cpu_inc(xmit_recursion);
3480                                skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3481                                __this_cpu_dec(xmit_recursion);
3482                                if (dev_xmit_complete(rc)) {
3483                                        HARD_TX_UNLOCK(dev, txq);
3484                                        goto out;
3485                                }
3486                        }
3487                        HARD_TX_UNLOCK(dev, txq);
3488                        net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3489                                             dev->name);
3490                } else {
3491                        /* Recursion is detected! It is possible,
3492                         * unfortunately
3493                         */
3494recursion_alert:
3495                        net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3496                                             dev->name);
3497                }
3498        }
3499
3500        rc = -ENETDOWN;
3501        rcu_read_unlock_bh();
3502
3503        atomic_long_inc(&dev->tx_dropped);
3504        kfree_skb_list(skb);
3505        return rc;
3506out:
3507        rcu_read_unlock_bh();
3508        return rc;
3509}
3510
3511int dev_queue_xmit(struct sk_buff *skb)
3512{
3513        return __dev_queue_xmit(skb, NULL);
3514}
3515EXPORT_SYMBOL(dev_queue_xmit);
3516
3517int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3518{
3519        return __dev_queue_xmit(skb, accel_priv);
3520}
3521EXPORT_SYMBOL(dev_queue_xmit_accel);
3522
3523
3524/*************************************************************************
3525 *                      Receiver routines
3526 *************************************************************************/
3527
3528int netdev_max_backlog __read_mostly = 1000;
3529EXPORT_SYMBOL(netdev_max_backlog);
3530
3531int netdev_tstamp_prequeue __read_mostly = 1;
3532int netdev_budget __read_mostly = 300;
3533unsigned int __read_mostly netdev_budget_usecs = 2000;
3534int weight_p __read_mostly = 64;           /* old backlog weight */
3535int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3536int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3537int dev_rx_weight __read_mostly = 64;
3538int dev_tx_weight __read_mostly = 64;
3539
3540/* Called with irq disabled */
3541static inline void ____napi_schedule(struct softnet_data *sd,
3542                                     struct napi_struct *napi)
3543{
3544        list_add_tail(&napi->poll_list, &sd->poll_list);
3545        __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3546}
3547
3548#ifdef CONFIG_RPS
3549
3550/* One global table that all flow-based protocols share. */
3551struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3552EXPORT_SYMBOL(rps_sock_flow_table);
3553u32 rps_cpu_mask __read_mostly;
3554EXPORT_SYMBOL(rps_cpu_mask);
3555
3556struct static_key rps_needed __read_mostly;
3557EXPORT_SYMBOL(rps_needed);
3558struct static_key rfs_needed __read_mostly;
3559EXPORT_SYMBOL(rfs_needed);
3560
3561static struct rps_dev_flow *
3562set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3563            struct rps_dev_flow *rflow, u16 next_cpu)
3564{
3565        if (next_cpu < nr_cpu_ids) {
3566#ifdef CONFIG_RFS_ACCEL
3567                struct netdev_rx_queue *rxqueue;
3568                struct rps_dev_flow_table *flow_table;
3569                struct rps_dev_flow *old_rflow;
3570                u32 flow_id;
3571                u16 rxq_index;
3572                int rc;
3573
3574                /* Should we steer this flow to a different hardware queue? */
3575                if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3576                    !(dev->features & NETIF_F_NTUPLE))
3577                        goto out;
3578                rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3579                if (rxq_index == skb_get_rx_queue(skb))
3580                        goto out;
3581
3582                rxqueue = dev->_rx + rxq_index;
3583                flow_table = rcu_dereference(rxqueue->rps_flow_table);
3584                if (!flow_table)
3585                        goto out;
3586                flow_id = skb_get_hash(skb) & flow_table->mask;
3587                rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3588                                                        rxq_index, flow_id);
3589                if (rc < 0)
3590                        goto out;
3591                old_rflow = rflow;
3592                rflow = &flow_table->flows[flow_id];
3593                rflow->filter = rc;
3594                if (old_rflow->filter == rflow->filter)
3595                        old_rflow->filter = RPS_NO_FILTER;
3596        out:
3597#endif
3598                rflow->last_qtail =
3599                        per_cpu(softnet_data, next_cpu).input_queue_head;
3600        }
3601
3602        rflow->cpu = next_cpu;
3603        return rflow;
3604}
3605
3606/*
3607 * get_rps_cpu is called from netif_receive_skb and returns the target
3608 * CPU from the RPS map of the receiving queue for a given skb.
3609 * rcu_read_lock must be held on entry.
3610 */
3611static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3612                       struct rps_dev_flow **rflowp)
3613{
3614        const struct rps_sock_flow_table *sock_flow_table;
3615        struct netdev_rx_queue *rxqueue = dev->_rx;
3616        struct rps_dev_flow_table *flow_table;
3617        struct rps_map *map;
3618        int cpu = -1;
3619        u32 tcpu;
3620        u32 hash;
3621
3622        if (skb_rx_queue_recorded(skb)) {
3623                u16 index = skb_get_rx_queue(skb);
3624
3625                if (unlikely(index >= dev->real_num_rx_queues)) {
3626                        WARN_ONCE(dev->real_num_rx_queues > 1,
3627                                  "%s received packet on queue %u, but number "
3628                                  "of RX queues is %u\n",
3629                                  dev->name, index, dev->real_num_rx_queues);
3630                        goto done;
3631                }
3632                rxqueue += index;
3633        }
3634
3635        /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3636
3637        flow_table = rcu_dereference(rxqueue->rps_flow_table);
3638        map = rcu_dereference(rxqueue->rps_map);
3639        if (!flow_table && !map)
3640                goto done;
3641
3642        skb_reset_network_header(skb);
3643        hash = skb_get_hash(skb);
3644        if (!hash)
3645                goto done;
3646
3647        sock_flow_table = rcu_dereference(rps_sock_flow_table);
3648        if (flow_table && sock_flow_table) {
3649                struct rps_dev_flow *rflow;
3650                u32 next_cpu;
3651                u32 ident;
3652
3653                /* First check into global flow table if there is a match */
3654                ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3655                if ((ident ^ hash) & ~rps_cpu_mask)
3656                        goto try_rps;
3657
3658                next_cpu = ident & rps_cpu_mask;
3659
3660                /* OK, now we know there is a match,
3661                 * we can look at the local (per receive queue) flow table
3662                 */
3663                rflow = &flow_table->flows[hash & flow_table->mask];
3664                tcpu = rflow->cpu;
3665
3666                /*
3667                 * If the desired CPU (where last recvmsg was done) is
3668                 * different from current CPU (one in the rx-queue flow
3669                 * table entry), switch if one of the following holds:
3670                 *   - Current CPU is unset (>= nr_cpu_ids).
3671                 *   - Current CPU is offline.
3672                 *   - The current CPU's queue tail has advanced beyond the
3673                 *     last packet that was enqueued using this table entry.
3674                 *     This guarantees that all previous packets for the flow
3675                 *     have been dequeued, thus preserving in order delivery.
3676                 */
3677                if (unlikely(tcpu != next_cpu) &&
3678                    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3679                     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3680                      rflow->last_qtail)) >= 0)) {
3681                        tcpu = next_cpu;
3682                        rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3683                }
3684
3685                if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3686                        *rflowp = rflow;
3687                        cpu = tcpu;
3688                        goto done;
3689                }
3690        }
3691
3692try_rps:
3693
3694        if (map) {
3695                tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3696                if (cpu_online(tcpu)) {
3697                        cpu = tcpu;
3698                        goto done;
3699                }
3700        }
3701
3702done:
3703        return cpu;
3704}
3705
3706#ifdef CONFIG_RFS_ACCEL
3707
3708/**
3709 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3710 * @dev: Device on which the filter was set
3711 * @rxq_index: RX queue index
3712 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3713 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3714 *
3715 * Drivers that implement ndo_rx_flow_steer() should periodically call
3716 * this function for each installed filter and remove the filters for
3717 * which it returns %true.
3718 */
3719bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3720                         u32 flow_id, u16 filter_id)
3721{
3722        struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3723        struct rps_dev_flow_table *flow_table;
3724        struct rps_dev_flow *rflow;
3725        bool expire = true;
3726        unsigned int cpu;
3727
3728        rcu_read_lock();
3729        flow_table = rcu_dereference(rxqueue->rps_flow_table);
3730        if (flow_table && flow_id <= flow_table->mask) {
3731                rflow = &flow_table->flows[flow_id];
3732                cpu = ACCESS_ONCE(rflow->cpu);
3733                if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3734                    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3735                           rflow->last_qtail) <
3736                     (int)(10 * flow_table->mask)))
3737                        expire = false;
3738        }
3739        rcu_read_unlock();
3740        return expire;
3741}
3742EXPORT_SYMBOL(rps_may_expire_flow);
3743
3744#endif /* CONFIG_RFS_ACCEL */
3745
3746/* Called from hardirq (IPI) context */
3747static void rps_trigger_softirq(void *data)
3748{
3749        struct softnet_data *sd = data;
3750
3751        ____napi_schedule(sd, &sd->backlog);
3752        sd->received_rps++;
3753}
3754
3755#endif /* CONFIG_RPS */
3756
3757/*
3758 * Check if this softnet_data structure is another cpu one
3759 * If yes, queue it to our IPI list and return 1
3760 * If no, return 0
3761 */
3762static int rps_ipi_queued(struct softnet_data *sd)
3763{
3764#ifdef CONFIG_RPS
3765        struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3766
3767        if (sd != mysd) {
3768                sd->rps_ipi_next = mysd->rps_ipi_list;
3769                mysd->rps_ipi_list = sd;
3770
3771                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3772                return 1;
3773        }
3774#endif /* CONFIG_RPS */
3775        return 0;
3776}
3777
3778#ifdef CONFIG_NET_FLOW_LIMIT
3779int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3780#endif
3781
3782static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3783{
3784#ifdef CONFIG_NET_FLOW_LIMIT
3785        struct sd_flow_limit *fl;
3786        struct softnet_data *sd;
3787        unsigned int old_flow, new_flow;
3788
3789        if (qlen < (netdev_max_backlog >> 1))
3790                return false;
3791
3792        sd = this_cpu_ptr(&softnet_data);
3793
3794        rcu_read_lock();
3795        fl = rcu_dereference(sd->flow_limit);
3796        if (fl) {
3797                new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3798                old_flow = fl->history[fl->history_head];
3799                fl->history[fl->history_head] = new_flow;
3800
3801                fl->history_head++;
3802                fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3803
3804                if (likely(fl->buckets[old_flow]))
3805                        fl->buckets[old_flow]--;
3806
3807                if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3808                        fl->count++;
3809                        rcu_read_unlock();
3810                        return true;
3811                }
3812        }
3813        rcu_read_unlock();
3814#endif
3815        return false;
3816}
3817
3818/*
3819 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3820 * queue (may be a remote CPU queue).
3821 */
3822static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3823                              unsigned int *qtail)
3824{
3825        struct softnet_data *sd;
3826        unsigned long flags;
3827        unsigned int qlen;
3828
3829        sd = &per_cpu(softnet_data, cpu);
3830
3831        local_irq_save(flags);
3832
3833        rps_lock(sd);
3834        if (!netif_running(skb->dev))
3835                goto drop;
3836        qlen = skb_queue_len(&sd->input_pkt_queue);
3837        if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3838                if (qlen) {
3839enqueue:
3840                        __skb_queue_tail(&sd->input_pkt_queue, skb);
3841                        input_queue_tail_incr_save(sd, qtail);
3842                        rps_unlock(sd);
3843                        local_irq_restore(flags);
3844                        return NET_RX_SUCCESS;
3845                }
3846
3847                /* Schedule NAPI for backlog device
3848                 * We can use non atomic operation since we own the queue lock
3849                 */
3850                if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3851                        if (!rps_ipi_queued(sd))
3852                                ____napi_schedule(sd, &sd->backlog);
3853                }
3854                goto enqueue;
3855        }
3856
3857drop:
3858        sd->dropped++;
3859        rps_unlock(sd);
3860
3861        local_irq_restore(flags);
3862
3863        atomic_long_inc(&skb->dev->rx_dropped);
3864        kfree_skb(skb);
3865        return NET_RX_DROP;
3866}
3867
3868static int netif_rx_internal(struct sk_buff *skb)
3869{
3870        int ret;
3871
3872        net_timestamp_check(netdev_tstamp_prequeue, skb);
3873
3874        trace_netif_rx(skb);
3875#ifdef CONFIG_RPS
3876        if (static_key_false(&rps_needed)) {
3877                struct rps_dev_flow voidflow, *rflow = &voidflow;
3878                int cpu;
3879
3880                preempt_disable();
3881                rcu_read_lock();
3882
3883                cpu = get_rps_cpu(skb->dev, skb, &rflow);
3884                if (cpu < 0)
3885                        cpu = smp_processor_id();
3886
3887                ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3888
3889                rcu_read_unlock();
3890                preempt_enable();
3891        } else
3892#endif
3893        {
3894                unsigned int qtail;
3895
3896                ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3897                put_cpu();
3898        }
3899        return ret;
3900}
3901
3902/**
3903 *      netif_rx        -       post buffer to the network code
3904 *      @skb: buffer to post
3905 *
3906 *      This function receives a packet from a device driver and queues it for
3907 *      the upper (protocol) levels to process.  It always succeeds. The buffer
3908 *      may be dropped during processing for congestion control or by the
3909 *      protocol layers.
3910 *
3911 *      return values:
3912 *      NET_RX_SUCCESS  (no congestion)
3913 *      NET_RX_DROP     (packet was dropped)
3914 *
3915 */
3916
3917int netif_rx(struct sk_buff *skb)
3918{
3919        trace_netif_rx_entry(skb);
3920
3921        return netif_rx_internal(skb);
3922}
3923EXPORT_SYMBOL(netif_rx);
3924
3925int netif_rx_ni(struct sk_buff *skb)
3926{
3927        int err;
3928
3929        trace_netif_rx_ni_entry(skb);
3930
3931        preempt_disable();
3932        err = netif_rx_internal(skb);
3933        if (local_softirq_pending())
3934                do_softirq();
3935        preempt_enable();
3936
3937        return err;
3938}
3939EXPORT_SYMBOL(netif_rx_ni);
3940
3941static __latent_entropy void net_tx_action(struct softirq_action *h)
3942{
3943        struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3944
3945        if (sd->completion_queue) {
3946                struct sk_buff *clist;
3947
3948                local_irq_disable();
3949                clist = sd->completion_queue;
3950                sd->completion_queue = NULL;
3951                local_irq_enable();
3952
3953                while (clist) {
3954                        struct sk_buff *skb = clist;
3955
3956                        clist = clist->next;
3957
3958                        WARN_ON(refcount_read(&skb->users));
3959                        if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3960                                trace_consume_skb(skb);
3961                        else
3962                                trace_kfree_skb(skb, net_tx_action);
3963
3964                        if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3965                                __kfree_skb(skb);
3966                        else
3967                                __kfree_skb_defer(skb);
3968                }
3969
3970                __kfree_skb_flush();
3971        }
3972
3973        if (sd->output_queue) {
3974                struct Qdisc *head;
3975
3976                local_irq_disable();
3977                head = sd->output_queue;
3978                sd->output_queue = NULL;
3979                sd->output_queue_tailp = &sd->output_queue;
3980                local_irq_enable();
3981
3982                while (head) {
3983                        struct Qdisc *q = head;
3984                        spinlock_t *root_lock;
3985
3986                        head = head->next_sched;
3987
3988                        root_lock = qdisc_lock(q);
3989                        spin_lock(root_lock);
3990                        /* We need to make sure head->next_sched is read
3991                         * before clearing __QDISC_STATE_SCHED
3992                         */
3993                        smp_mb__before_atomic();
3994                        clear_bit(__QDISC_STATE_SCHED, &q->state);
3995                        qdisc_run(q);
3996                        spin_unlock(root_lock);
3997                }
3998        }
3999}
4000
4001#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4002/* This hook is defined here for ATM LANE */
4003int (*br_fdb_test_addr_hook)(struct net_device *dev,
4004                             unsigned char *addr) __read_mostly;
4005EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4006#endif
4007
4008static inline struct sk_buff *
4009sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4010                   struct net_device *orig_dev)
4011{
4012#ifdef CONFIG_NET_CLS_ACT
4013        struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4014        struct tcf_result cl_res;
4015
4016        /* If there's at least one ingress present somewhere (so
4017         * we get here via enabled static key), remaining devices
4018         * that are not configured with an ingress qdisc will bail
4019         * out here.
4020         */
4021        if (!cl)
4022                return skb;
4023        if (*pt_prev) {
4024                *ret = deliver_skb(skb, *pt_prev, orig_dev);
4025                *pt_prev = NULL;
4026        }
4027
4028        qdisc_skb_cb(skb)->pkt_len = skb->len;
4029        skb->tc_at_ingress = 1;
4030        qdisc_bstats_cpu_update(cl->q, skb);
4031
4032        switch (tcf_classify(skb, cl, &cl_res, false)) {
4033        case TC_ACT_OK:
4034        case TC_ACT_RECLASSIFY:
4035                skb->tc_index = TC_H_MIN(cl_res.classid);
4036                break;
4037        case TC_ACT_SHOT:
4038                qdisc_qstats_cpu_drop(cl->q);
4039                kfree_skb(skb);
4040                return NULL;
4041        case TC_ACT_STOLEN:
4042        case TC_ACT_QUEUED:
4043        case TC_ACT_TRAP:
4044                consume_skb(skb);
4045                return NULL;
4046        case TC_ACT_REDIRECT:
4047                /* skb_mac_header check was done by cls/act_bpf, so
4048                 * we can safely push the L2 header back before
4049                 * redirecting to another netdev
4050                 */
4051                __skb_push(skb, skb->mac_len);
4052                skb_do_redirect(skb);
4053                return NULL;
4054        default:
4055                break;
4056        }
4057#endif /* CONFIG_NET_CLS_ACT */
4058        return skb;
4059}
4060
4061/**
4062 *      netdev_is_rx_handler_busy - check if receive handler is registered
4063 *      @dev: device to check
4064 *
4065 *      Check if a receive handler is already registered for a given device.
4066 *      Return true if there one.
4067 *
4068 *      The caller must hold the rtnl_mutex.
4069 */
4070bool netdev_is_rx_handler_busy(struct net_device *dev)
4071{
4072        ASSERT_RTNL();
4073        return dev && rtnl_dereference(dev->rx_handler);
4074}
4075EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4076
4077/**
4078 *      netdev_rx_handler_register - register receive handler
4079 *      @dev: device to register a handler for
4080 *      @rx_handler: receive handler to register
4081 *      @rx_handler_data: data pointer that is used by rx handler
4082 *
4083 *      Register a receive handler for a device. This handler will then be
4084 *      called from __netif_receive_skb. A negative errno code is returned
4085 *      on a failure.
4086 *
4087 *      The caller must hold the rtnl_mutex.
4088 *
4089 *      For a general description of rx_handler, see enum rx_handler_result.
4090 */
4091int netdev_rx_handler_register(struct net_device *dev,
4092                               rx_handler_func_t *rx_handler,
4093                               void *rx_handler_data)
4094{
4095        if (netdev_is_rx_handler_busy(dev))
4096                return -EBUSY;
4097
4098        /* Note: rx_handler_data must be set before rx_handler */
4099        rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4100        rcu_assign_pointer(dev->rx_handler, rx_handler);
4101
4102        return 0;
4103}
4104EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4105
4106/**
4107 *      netdev_rx_handler_unregister - unregister receive handler
4108 *      @dev: device to unregister a handler from
4109 *
4110 *      Unregister a receive handler from a device.
4111 *
4112 *      The caller must hold the rtnl_mutex.
4113 */
4114void netdev_rx_handler_unregister(struct net_device *dev)
4115{
4116
4117        ASSERT_RTNL();
4118        RCU_INIT_POINTER(dev->rx_handler, NULL);
4119        /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4120         * section has a guarantee to see a non NULL rx_handler_data
4121         * as well.
4122         */
4123        synchronize_net();
4124        RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4125}
4126EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4127
4128/*
4129 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4130 * the special handling of PFMEMALLOC skbs.
4131 */
4132static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4133{
4134        switch (skb->protocol) {
4135        case htons(ETH_P_ARP):
4136        case htons(ETH_P_IP):
4137        case htons(ETH_P_IPV6):
4138        case htons(ETH_P_8021Q):
4139        case htons(ETH_P_8021AD):
4140                return true;
4141        default:
4142                return false;
4143        }
4144}
4145
4146static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4147                             int *ret, struct net_device *orig_dev)
4148{
4149#ifdef CONFIG_NETFILTER_INGRESS
4150        if (nf_hook_ingress_active(skb)) {
4151                int ingress_retval;
4152
4153                if (*pt_prev) {
4154                        *ret = deliver_skb(skb, *pt_prev, orig_dev);
4155                        *pt_prev = NULL;
4156                }
4157
4158                rcu_read_lock();
4159                ingress_retval = nf_hook_ingress(skb);
4160                rcu_read_unlock();
4161                return ingress_retval;
4162        }
4163#endif /* CONFIG_NETFILTER_INGRESS */
4164        return 0;
4165}
4166
4167static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4168{
4169        struct packet_type *ptype, *pt_prev;
4170        rx_handler_func_t *rx_handler;
4171        struct net_device *orig_dev;
4172        bool deliver_exact = false;
4173        int ret = NET_RX_DROP;
4174        __be16 type;
4175
4176        net_timestamp_check(!netdev_tstamp_prequeue, skb);
4177
4178        trace_netif_receive_skb(skb);
4179
4180        orig_dev = skb->dev;
4181
4182        skb_reset_network_header(skb);
4183        if (!skb_transport_header_was_set(skb))
4184                skb_reset_transport_header(skb);
4185        skb_reset_mac_len(skb);
4186
4187        pt_prev = NULL;
4188
4189another_round:
4190        skb->skb_iif = skb->dev->ifindex;
4191
4192        __this_cpu_inc(softnet_data.processed);
4193
4194        if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4195            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4196                skb = skb_vlan_untag(skb);
4197                if (unlikely(!skb))
4198                        goto out;
4199        }
4200
4201        if (skb_skip_tc_classify(skb))
4202                goto skip_classify;
4203
4204        if (pfmemalloc)
4205                goto skip_taps;
4206
4207        list_for_each_entry_rcu(ptype, &ptype_all, list) {
4208                if (pt_prev)
4209                        ret = deliver_skb(skb, pt_prev, orig_dev);
4210                pt_prev = ptype;
4211        }
4212
4213        list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4214                if (pt_prev)
4215                        ret = deliver_skb(skb, pt_prev, orig_dev);
4216                pt_prev = ptype;
4217        }
4218
4219skip_taps:
4220#ifdef CONFIG_NET_INGRESS
4221        if (static_key_false(&ingress_needed)) {
4222                skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4223                if (!skb)
4224                        goto out;
4225
4226                if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4227                        goto out;
4228        }
4229#endif
4230        skb_reset_tc(skb);
4231skip_classify:
4232        if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4233                goto drop;
4234
4235        if (skb_vlan_tag_present(skb)) {
4236                if (pt_prev) {
4237                        ret = deliver_skb(skb, pt_prev, orig_dev);
4238                        pt_prev = NULL;
4239                }
4240                if (vlan_do_receive(&skb))
4241                        goto another_round;
4242                else if (unlikely(!skb))
4243                        goto out;
4244        }
4245
4246        rx_handler = rcu_dereference(skb->dev->rx_handler);
4247        if (rx_handler) {
4248                if (pt_prev) {
4249                        ret = deliver_skb(skb, pt_prev, orig_dev);
4250                        pt_prev = NULL;
4251                }
4252                switch (rx_handler(&skb)) {
4253                case RX_HANDLER_CONSUMED:
4254                        ret = NET_RX_SUCCESS;
4255                        goto out;
4256                case RX_HANDLER_ANOTHER:
4257                        goto another_round;
4258                case RX_HANDLER_EXACT:
4259                        deliver_exact = true;
4260                case RX_HANDLER_PASS:
4261                        break;
4262                default:
4263                        BUG();
4264                }
4265        }
4266
4267        if (unlikely(skb_vlan_tag_present(skb))) {
4268                if (skb_vlan_tag_get_id(skb))
4269                        skb->pkt_type = PACKET_OTHERHOST;
4270                /* Note: we might in the future use prio bits
4271                 * and set skb->priority like in vlan_do_receive()
4272                 * For the time being, just ignore Priority Code Point
4273                 */
4274                skb->vlan_tci = 0;
4275        }
4276
4277        type = skb->protocol;
4278
4279        /* deliver only exact match when indicated */
4280        if (likely(!deliver_exact)) {
4281                deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4282                                       &ptype_base[ntohs(type) &
4283                                                   PTYPE_HASH_MASK]);
4284        }
4285
4286        deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4287                               &orig_dev->ptype_specific);
4288
4289        if (unlikely(skb->dev != orig_dev)) {
4290                deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4291                                       &skb->dev->ptype_specific);
4292        }
4293
4294        if (pt_prev) {
4295                if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4296                        goto drop;
4297                else
4298                        ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4299        } else {
4300drop:
4301                if (!deliver_exact)
4302                        atomic_long_inc(&skb->dev->rx_dropped);
4303                else
4304                        atomic_long_inc(&skb->dev->rx_nohandler);
4305                kfree_skb(skb);
4306                /* Jamal, now you will not able to escape explaining
4307                 * me how you were going to use this. :-)
4308                 */
4309                ret = NET_RX_DROP;
4310        }
4311
4312out:
4313        return ret;
4314}
4315
4316static int __netif_receive_skb(struct sk_buff *skb)
4317{
4318        int ret;
4319
4320        if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4321                unsigned int noreclaim_flag;
4322
4323                /*
4324                 * PFMEMALLOC skbs are special, they should
4325                 * - be delivered to SOCK_MEMALLOC sockets only
4326                 * - stay away from userspace
4327                 * - have bounded memory usage
4328                 *
4329                 * Use PF_MEMALLOC as this saves us from propagating the allocation
4330                 * context down to all allocation sites.
4331                 */
4332                noreclaim_flag = memalloc_noreclaim_save();
4333                ret = __netif_receive_skb_core(skb, true);
4334                memalloc_noreclaim_restore(noreclaim_flag);
4335        } else
4336                ret = __netif_receive_skb_core(skb, false);
4337
4338        return ret;
4339}
4340
4341static struct static_key generic_xdp_needed __read_mostly;
4342
4343static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4344{
4345        struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4346        struct bpf_prog *new = xdp->prog;
4347        int ret = 0;
4348
4349        switch (xdp->command) {
4350        case XDP_SETUP_PROG:
4351                rcu_assign_pointer(dev->xdp_prog, new);
4352                if (old)
4353                        bpf_prog_put(old);
4354
4355                if (old && !new) {
4356                        static_key_slow_dec(&generic_xdp_needed);
4357                } else if (new && !old) {
4358                        static_key_slow_inc(&generic_xdp_needed);
4359                        dev_disable_lro(dev);
4360                }
4361                break;
4362
4363        case XDP_QUERY_PROG:
4364                xdp->prog_attached = !!old;
4365                xdp->prog_id = old ? old->aux->id : 0;
4366                break;
4367
4368        default:
4369                ret = -EINVAL;
4370                break;
4371        }
4372
4373        return ret;
4374}
4375
4376static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4377                                     struct bpf_prog *xdp_prog)
4378{
4379        struct xdp_buff xdp;
4380        u32 act = XDP_DROP;
4381        void *orig_data;
4382        int hlen, off;
4383        u32 mac_len;
4384
4385        /* Reinjected packets coming from act_mirred or similar should
4386         * not get XDP generic processing.
4387         */
4388        if (skb_cloned(skb))
4389                return XDP_PASS;
4390
4391        if (skb_linearize(skb))
4392                goto do_drop;
4393
4394        /* The XDP program wants to see the packet starting at the MAC
4395         * header.
4396         */
4397        mac_len = skb->data - skb_mac_header(skb);
4398        hlen = skb_headlen(skb) + mac_len;
4399        xdp.data = skb->data - mac_len;
4400        xdp.data_end = xdp.data + hlen;
4401        xdp.data_hard_start = skb->data - skb_headroom(skb);
4402        orig_data = xdp.data;
4403
4404        act = bpf_prog_run_xdp(xdp_prog, &xdp);
4405
4406        off = xdp.data - orig_data;
4407        if (off > 0)
4408                __skb_pull(skb, off);
4409        else if (off < 0)
4410                __skb_push(skb, -off);
4411
4412        switch (act) {
4413        case XDP_TX:
4414                __skb_push(skb, mac_len);
4415                /* fall through */
4416        case XDP_PASS:
4417                break;
4418
4419        default:
4420                bpf_warn_invalid_xdp_action(act);
4421                /* fall through */
4422        case XDP_ABORTED:
4423                trace_xdp_exception(skb->dev, xdp_prog, act);
4424                /* fall through */
4425        case XDP_DROP:
4426        do_drop:
4427                kfree_skb(skb);
4428                break;
4429        }
4430
4431        return act;
4432}
4433
4434/* When doing generic XDP we have to bypass the qdisc layer and the
4435 * network taps in order to match in-driver-XDP behavior.
4436 */
4437static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4438{
4439        struct net_device *dev = skb->dev;
4440        struct netdev_queue *txq;
4441        bool free_skb = true;
4442        int cpu, rc;
4443
4444        txq = netdev_pick_tx(dev, skb, NULL);
4445        cpu = smp_processor_id();
4446        HARD_TX_LOCK(dev, txq, cpu);
4447        if (!netif_xmit_stopped(txq)) {
4448                rc = netdev_start_xmit(skb, dev, txq, 0);
4449                if (dev_xmit_complete(rc))
4450                        free_skb = false;
4451        }
4452        HARD_TX_UNLOCK(dev, txq);
4453        if (free_skb) {
4454                trace_xdp_exception(dev, xdp_prog, XDP_TX);
4455                kfree_skb(skb);
4456        }
4457}
4458
4459static int netif_receive_skb_internal(struct sk_buff *skb)
4460{
4461        int ret;
4462
4463        net_timestamp_check(netdev_tstamp_prequeue, skb);
4464
4465        if (skb_defer_rx_timestamp(skb))
4466                return NET_RX_SUCCESS;
4467
4468        rcu_read_lock();
4469
4470        if (static_key_false(&generic_xdp_needed)) {
4471                struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
4472
4473                if (xdp_prog) {
4474                        u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4475
4476                        if (act != XDP_PASS) {
4477                                rcu_read_unlock();
4478                                if (act == XDP_TX)
4479                                        generic_xdp_tx(skb, xdp_prog);
4480                                return NET_RX_DROP;
4481                        }
4482                }
4483        }
4484
4485#ifdef CONFIG_RPS
4486        if (static_key_false(&rps_needed)) {
4487                struct rps_dev_flow voidflow, *rflow = &voidflow;
4488                int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4489
4490                if (cpu >= 0) {
4491                        ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4492                        rcu_read_unlock();
4493                        return ret;
4494                }
4495        }
4496#endif
4497        ret = __netif_receive_skb(skb);
4498        rcu_read_unlock();
4499        return ret;
4500}
4501
4502/**
4503 *      netif_receive_skb - process receive buffer from network
4504 *      @skb: buffer to process
4505 *
4506 *      netif_receive_skb() is the main receive data processing function.
4507 *      It always succeeds. The buffer may be dropped during processing
4508 *      for congestion control or by the protocol layers.
4509 *
4510 *      This function may only be called from softirq context and interrupts
4511 *      should be enabled.
4512 *
4513 *      Return values (usually ignored):
4514 *      NET_RX_SUCCESS: no congestion
4515 *      NET_RX_DROP: packet was dropped
4516 */
4517int netif_receive_skb(struct sk_buff *skb)
4518{
4519        trace_netif_receive_skb_entry(skb);
4520
4521        return netif_receive_skb_internal(skb);
4522}
4523EXPORT_SYMBOL(netif_receive_skb);
4524
4525DEFINE_PER_CPU(struct work_struct, flush_works);
4526
4527/* Network device is going away, flush any packets still pending */
4528static void flush_backlog(struct work_struct *work)
4529{
4530        struct sk_buff *skb, *tmp;
4531        struct softnet_data *sd;
4532
4533        local_bh_disable();
4534        sd = this_cpu_ptr(&softnet_data);
4535
4536        local_irq_disable();
4537        rps_lock(sd);
4538        skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4539                if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4540                        __skb_unlink(skb, &sd->input_pkt_queue);
4541                        kfree_skb(skb);
4542                        input_queue_head_incr(sd);
4543                }
4544        }
4545        rps_unlock(sd);
4546        local_irq_enable();
4547
4548        skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4549                if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4550                        __skb_unlink(skb, &sd->process_queue);
4551                        kfree_skb(skb);
4552                        input_queue_head_incr(sd);
4553                }
4554        }
4555        local_bh_enable();
4556}
4557
4558static void flush_all_backlogs(void)
4559{
4560        unsigned int cpu;
4561
4562        get_online_cpus();
4563
4564        for_each_online_cpu(cpu)
4565                queue_work_on(cpu, system_highpri_wq,
4566                              per_cpu_ptr(&flush_works, cpu));
4567
4568        for_each_online_cpu(cpu)
4569                flush_work(per_cpu_ptr(&flush_works, cpu));
4570
4571        put_online_cpus();
4572}
4573
4574static int napi_gro_complete(struct sk_buff *skb)
4575{
4576        struct packet_offload *ptype;
4577        __be16 type = skb->protocol;
4578        struct list_head *head = &offload_base;
4579        int err = -ENOENT;
4580
4581        BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4582
4583        if (NAPI_GRO_CB(skb)->count == 1) {
4584                skb_shinfo(skb)->gso_size = 0;
4585                goto out;
4586        }
4587
4588        rcu_read_lock();
4589        list_for_each_entry_rcu(ptype, head, list) {
4590                if (ptype->type != type || !ptype->callbacks.gro_complete)
4591                        continue;
4592
4593                err = ptype->callbacks.gro_complete(skb, 0);
4594                break;
4595        }
4596        rcu_read_unlock();
4597
4598        if (err) {
4599                WARN_ON(&ptype->list == head);
4600                kfree_skb(skb);
4601                return NET_RX_SUCCESS;
4602        }
4603
4604out:
4605        return netif_receive_skb_internal(skb);
4606}
4607
4608/* napi->gro_list contains packets ordered by age.
4609 * youngest packets at the head of it.
4610 * Complete skbs in reverse order to reduce latencies.
4611 */
4612void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4613{
4614        struct sk_buff *skb, *prev = NULL;
4615
4616        /* scan list and build reverse chain */
4617        for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4618                skb->prev = prev;
4619                prev = skb;
4620        }
4621
4622        for (skb = prev; skb; skb = prev) {
4623                skb->next = NULL;
4624
4625                if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4626                        return;
4627
4628                prev = skb->prev;
4629                napi_gro_complete(skb);
4630                napi->gro_count--;
4631        }
4632
4633        napi->gro_list = NULL;
4634}
4635EXPORT_SYMBOL(napi_gro_flush);
4636
4637static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4638{
4639        struct sk_buff *p;
4640        unsigned int maclen = skb->dev->hard_header_len;
4641        u32 hash = skb_get_hash_raw(skb);
4642
4643        for (p = napi->gro_list; p; p = p->next) {
4644                unsigned long diffs;
4645
4646                NAPI_GRO_CB(p)->flush = 0;
4647
4648                if (hash != skb_get_hash_raw(p)) {
4649                        NAPI_GRO_CB(p)->same_flow = 0;
4650                        continue;
4651                }
4652
4653                diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4654                diffs |= p->vlan_tci ^ skb->vlan_tci;
4655                diffs |= skb_metadata_dst_cmp(p, skb);
4656                if (maclen == ETH_HLEN)
4657                        diffs |= compare_ether_header(skb_mac_header(p),
4658                                                      skb_mac_header(skb));
4659                else if (!diffs)
4660                        diffs = memcmp(skb_mac_header(p),
4661                                       skb_mac_header(skb),
4662                                       maclen);
4663                NAPI_GRO_CB(p)->same_flow = !diffs;
4664        }
4665}
4666
4667static void skb_gro_reset_offset(struct sk_buff *skb)
4668{
4669        const struct skb_shared_info *pinfo = skb_shinfo(skb);
4670        const skb_frag_t *frag0 = &pinfo->frags[0];
4671
4672        NAPI_GRO_CB(skb)->data_offset = 0;
4673        NAPI_GRO_CB(skb)->frag0 = NULL;
4674        NAPI_GRO_CB(skb)->frag0_len = 0;
4675
4676        if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4677            pinfo->nr_frags &&
4678            !PageHighMem(skb_frag_page(frag0))) {
4679                NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4680                NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4681                                                    skb_frag_size(frag0),
4682                                                    skb->end - skb->tail);
4683        }
4684}
4685
4686static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4687{
4688        struct skb_shared_info *pinfo = skb_shinfo(skb);
4689
4690        BUG_ON(skb->end - skb->tail < grow);
4691
4692        memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4693
4694        skb->data_len -= grow;
4695        skb->tail += grow;
4696
4697        pinfo->frags[0].page_offset += grow;
4698        skb_frag_size_sub(&pinfo->frags[0], grow);
4699
4700        if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4701                skb_frag_unref(skb, 0);
4702                memmove(pinfo->frags, pinfo->frags + 1,
4703                        --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4704        }
4705}
4706
4707static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4708{
4709        struct sk_buff **pp = NULL;
4710        struct packet_offload *ptype;
4711        __be16 type = skb->protocol;
4712        struct list_head *head = &offload_base;
4713        int same_flow;
4714        enum gro_result ret;
4715        int grow;
4716
4717        if (netif_elide_gro(skb->dev))
4718                goto normal;
4719
4720        gro_list_prepare(napi, skb);
4721
4722        rcu_read_lock();
4723        list_for_each_entry_rcu(ptype, head, list) {
4724                if (ptype->type != type || !ptype->callbacks.gro_receive)
4725                        continue;
4726
4727                skb_set_network_header(skb, skb_gro_offset(skb));
4728                skb_reset_mac_len(skb);
4729                NAPI_GRO_CB(skb)->same_flow = 0;
4730                NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4731                NAPI_GRO_CB(skb)->free = 0;
4732                NAPI_GRO_CB(skb)->encap_mark = 0;
4733                NAPI_GRO_CB(skb)->recursion_counter = 0;
4734                NAPI_GRO_CB(skb)->is_fou = 0;
4735                NAPI_GRO_CB(skb)->is_atomic = 1;
4736                NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4737
4738                /* Setup for GRO checksum validation */
4739                switch (skb->ip_summed) {
4740                case CHECKSUM_COMPLETE:
4741                        NAPI_GRO_CB(skb)->csum = skb->csum;
4742                        NAPI_GRO_CB(skb)->csum_valid = 1;
4743                        NAPI_GRO_CB(skb)->csum_cnt = 0;
4744                        break;
4745                case CHECKSUM_UNNECESSARY:
4746                        NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4747                        NAPI_GRO_CB(skb)->csum_valid = 0;
4748                        break;
4749                default:
4750                        NAPI_GRO_CB(skb)->csum_cnt = 0;
4751                        NAPI_GRO_CB(skb)->csum_valid = 0;
4752                }
4753
4754                pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4755                break;
4756        }
4757        rcu_read_unlock();
4758
4759        if (&ptype->list == head)
4760                goto normal;
4761
4762        if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4763                ret = GRO_CONSUMED;
4764                goto ok;
4765        }
4766
4767        same_flow = NAPI_GRO_CB(skb)->same_flow;
4768        ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4769
4770        if (pp) {
4771                struct sk_buff *nskb = *pp;
4772
4773                *pp = nskb->next;
4774                nskb->next = NULL;
4775                napi_gro_complete(nskb);
4776                napi->gro_count--;
4777        }
4778
4779        if (same_flow)
4780                goto ok;
4781
4782        if (NAPI_GRO_CB(skb)->flush)
4783                goto normal;
4784
4785        if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4786                struct sk_buff *nskb = napi->gro_list;
4787
4788                /* locate the end of the list to select the 'oldest' flow */
4789                while (nskb->next) {
4790                        pp = &nskb->next;
4791                        nskb = *pp;
4792                }
4793                *pp = NULL;
4794                nskb->next = NULL;
4795                napi_gro_complete(nskb);
4796        } else {
4797                napi->gro_count++;
4798        }
4799        NAPI_GRO_CB(skb)->count = 1;
4800        NAPI_GRO_CB(skb)->age = jiffies;
4801        NAPI_GRO_CB(skb)->last = skb;
4802        skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4803        skb->next = napi->gro_list;
4804        napi->gro_list = skb;
4805        ret = GRO_HELD;
4806
4807pull:
4808        grow = skb_gro_offset(skb) - skb_headlen(skb);
4809        if (grow > 0)
4810                gro_pull_from_frag0(skb, grow);
4811ok:
4812        return ret;
4813
4814normal:
4815        ret = GRO_NORMAL;
4816        goto pull;
4817}
4818
4819struct packet_offload *gro_find_receive_by_type(__be16 type)
4820{
4821        struct list_head *offload_head = &offload_base;
4822        struct packet_offload *ptype;
4823
4824        list_for_each_entry_rcu(ptype, offload_head, list) {
4825                if (ptype->type != type || !ptype->callbacks.gro_receive)
4826                        continue;
4827                return ptype;
4828        }
4829        return NULL;
4830}
4831EXPORT_SYMBOL(gro_find_receive_by_type);
4832
4833struct packet_offload *gro_find_complete_by_type(__be16 type)
4834{
4835        struct list_head *offload_head = &offload_base;
4836        struct packet_offload *ptype;
4837
4838        list_for_each_entry_rcu(ptype, offload_head, list) {
4839                if (ptype->type != type || !ptype->callbacks.gro_complete)
4840                        continue;
4841                return ptype;
4842        }
4843        return NULL;
4844}
4845EXPORT_SYMBOL(gro_find_complete_by_type);
4846
4847static void napi_skb_free_stolen_head(struct sk_buff *skb)
4848{
4849        skb_dst_drop(skb);
4850        secpath_reset(skb);
4851        kmem_cache_free(skbuff_head_cache, skb);
4852}
4853
4854static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4855{
4856        switch (ret) {
4857        case GRO_NORMAL:
4858                if (netif_receive_skb_internal(skb))
4859                        ret = GRO_DROP;
4860                break;
4861
4862        case GRO_DROP:
4863                kfree_skb(skb);
4864                break;
4865
4866        case GRO_MERGED_FREE:
4867                if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4868                        napi_skb_free_stolen_head(skb);
4869                else
4870                        __kfree_skb(skb);
4871                break;
4872
4873        case GRO_HELD:
4874        case GRO_MERGED:
4875        case GRO_CONSUMED:
4876                break;
4877        }
4878
4879        return ret;
4880}
4881
4882gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4883{
4884        skb_mark_napi_id(skb, napi);
4885        trace_napi_gro_receive_entry(skb);
4886
4887        skb_gro_reset_offset(skb);
4888
4889        return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4890}
4891EXPORT_SYMBOL(napi_gro_receive);
4892
4893static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4894{
4895        if (unlikely(skb->pfmemalloc)) {
4896                consume_skb(skb);
4897                return;
4898        }
4899        __skb_pull(skb, skb_headlen(skb));
4900        /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4901        skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4902        skb->vlan_tci = 0;
4903        skb->dev = napi->dev;
4904        skb->skb_iif = 0;
4905        skb->encapsulation = 0;
4906        skb_shinfo(skb)->gso_type = 0;
4907        skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4908        secpath_reset(skb);
4909
4910        napi->skb = skb;
4911}
4912
4913struct sk_buff *napi_get_frags(struct napi_struct *napi)
4914{
4915        struct sk_buff *skb = napi->skb;
4916
4917        if (!skb) {
4918                skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4919                if (skb) {
4920                        napi->skb = skb;
4921                        skb_mark_napi_id(skb, napi);
4922                }
4923        }
4924        return skb;
4925}
4926EXPORT_SYMBOL(napi_get_frags);
4927
4928static gro_result_t napi_frags_finish(struct napi_struct *napi,
4929                                      struct sk_buff *skb,
4930                                      gro_result_t ret)
4931{
4932        switch (ret) {
4933        case GRO_NORMAL:
4934        case GRO_HELD:
4935                __skb_push(skb, ETH_HLEN);
4936                skb->protocol = eth_type_trans(skb, skb->dev);
4937                if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4938                        ret = GRO_DROP;
4939                break;
4940
4941        case GRO_DROP:
4942                napi_reuse_skb(napi, skb);
4943                break;
4944
4945        case GRO_MERGED_FREE:
4946                if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4947                        napi_skb_free_stolen_head(skb);
4948                else
4949                        napi_reuse_skb(napi, skb);
4950                break;
4951
4952        case GRO_MERGED:
4953        case GRO_CONSUMED:
4954                break;
4955        }
4956
4957        return ret;
4958}
4959
4960/* Upper GRO stack assumes network header starts at gro_offset=0
4961 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4962 * We copy ethernet header into skb->data to have a common layout.
4963 */
4964static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4965{
4966        struct sk_buff *skb = napi->skb;
4967        const struct ethhdr *eth;
4968        unsigned int hlen = sizeof(*eth);
4969
4970        napi->skb = NULL;
4971
4972        skb_reset_mac_header(skb);
4973        skb_gro_reset_offset(skb);
4974
4975        eth = skb_gro_header_fast(skb, 0);
4976        if (unlikely(skb_gro_header_hard(skb, hlen))) {
4977                eth = skb_gro_header_slow(skb, hlen, 0);
4978                if (unlikely(!eth)) {
4979                        net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4980                                             __func__, napi->dev->name);
4981                        napi_reuse_skb(napi, skb);
4982                        return NULL;
4983                }
4984        } else {
4985                gro_pull_from_frag0(skb, hlen);
4986                NAPI_GRO_CB(skb)->frag0 += hlen;
4987                NAPI_GRO_CB(skb)->frag0_len -= hlen;
4988        }
4989        __skb_pull(skb, hlen);
4990
4991        /*
4992         * This works because the only protocols we care about don't require
4993         * special handling.
4994         * We'll fix it up properly in napi_frags_finish()
4995         */
4996        skb->protocol = eth->h_proto;
4997
4998        return skb;
4999}
5000
5001gro_result_t napi_gro_frags(struct napi_struct *napi)
5002{
5003        struct sk_buff *skb = napi_frags_skb(napi);
5004
5005        if (!skb)
5006                return GRO_DROP;
5007
5008        trace_napi_gro_frags_entry(skb);
5009
5010        return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5011}
5012EXPORT_SYMBOL(napi_gro_frags);
5013
5014/* Compute the checksum from gro_offset and return the folded value
5015 * after adding in any pseudo checksum.
5016 */
5017__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5018{
5019        __wsum wsum;
5020        __sum16 sum;
5021
5022        wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5023
5024        /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5025        sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5026        if (likely(!sum)) {
5027                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5028                    !skb->csum_complete_sw)
5029                        netdev_rx_csum_fault(skb->dev);
5030        }
5031
5032        NAPI_GRO_CB(skb)->csum = wsum;
5033        NAPI_GRO_CB(skb)->csum_valid = 1;
5034
5035        return sum;
5036}
5037EXPORT_SYMBOL(__skb_gro_checksum_complete);
5038
5039static void net_rps_send_ipi(struct softnet_data *remsd)
5040{
5041#ifdef CONFIG_RPS
5042        while (remsd) {
5043                struct softnet_data *next = remsd->rps_ipi_next;
5044
5045                if (cpu_online(remsd->cpu))
5046                        smp_call_function_single_async(remsd->cpu, &remsd->csd);
5047                remsd = next;
5048        }
5049#endif
5050}
5051
5052/*
5053 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5054 * Note: called with local irq disabled, but exits with local irq enabled.
5055 */
5056static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5057{
5058#ifdef CONFIG_RPS
5059        struct softnet_data *remsd = sd->rps_ipi_list;
5060
5061        if (remsd) {
5062                sd->rps_ipi_list = NULL;
5063
5064                local_irq_enable();
5065
5066                /* Send pending IPI's to kick RPS processing on remote cpus. */
5067                net_rps_send_ipi(remsd);
5068        } else
5069#endif
5070                local_irq_enable();
5071}
5072
5073static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5074{
5075#ifdef CONFIG_RPS
5076        return sd->rps_ipi_list != NULL;
5077#else
5078        return false;
5079#endif
5080}
5081
5082static int process_backlog(struct napi_struct *napi, int quota)
5083{
5084        struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5085        bool again = true;
5086        int work = 0;
5087
5088        /* Check if we have pending ipi, its better to send them now,
5089         * not waiting net_rx_action() end.
5090         */
5091        if (sd_has_rps_ipi_waiting(sd)) {
5092                local_irq_disable();
5093                net_rps_action_and_irq_enable(sd);
5094        }
5095
5096        napi->weight = dev_rx_weight;
5097        while (again) {
5098                struct sk_buff *skb;
5099
5100                while ((skb = __skb_dequeue(&sd->process_queue))) {
5101                        rcu_read_lock();
5102                        __netif_receive_skb(skb);
5103                        rcu_read_unlock();
5104                        input_queue_head_incr(sd);
5105                        if (++work >= quota)
5106                                return work;
5107
5108                }
5109
5110                local_irq_disable();
5111                rps_lock(sd);
5112                if (skb_queue_empty(&sd->input_pkt_queue)) {
5113                        /*
5114                         * Inline a custom version of __napi_complete().
5115                         * only current cpu owns and manipulates this napi,
5116                         * and NAPI_STATE_SCHED is the only possible flag set
5117                         * on backlog.
5118                         * We can use a plain write instead of clear_bit(),
5119                         * and we dont need an smp_mb() memory barrier.
5120                         */
5121                        napi->state = 0;
5122                        again = false;
5123                } else {
5124                        skb_queue_splice_tail_init(&sd->input_pkt_queue,
5125                                                   &sd->process_queue);
5126                }
5127                rps_unlock(sd);
5128                local_irq_enable();
5129        }
5130
5131        return work;
5132}
5133
5134/**
5135 * __napi_schedule - schedule for receive
5136 * @n: entry to schedule
5137 *
5138 * The entry's receive function will be scheduled to run.
5139 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5140 */
5141void __napi_schedule(struct napi_struct *n)
5142{
5143        unsigned long flags;
5144
5145        local_irq_save(flags);
5146        ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5147        local_irq_restore(flags);
5148}
5149EXPORT_SYMBOL(__napi_schedule);
5150
5151/**
5152 *      napi_schedule_prep - check if napi can be scheduled
5153 *      @n: napi context
5154 *
5155 * Test if NAPI routine is already running, and if not mark
5156 * it as running.  This is used as a condition variable
5157 * insure only one NAPI poll instance runs.  We also make
5158 * sure there is no pending NAPI disable.
5159 */
5160bool napi_schedule_prep(struct napi_struct *n)
5161{
5162        unsigned long val, new;
5163
5164        do {
5165                val = READ_ONCE(n->state);
5166                if (unlikely(val & NAPIF_STATE_DISABLE))
5167                        return false;
5168                new = val | NAPIF_STATE_SCHED;
5169
5170                /* Sets STATE_MISSED bit if STATE_SCHED was already set
5171                 * This was suggested by Alexander Duyck, as compiler
5172                 * emits better code than :
5173                 * if (val & NAPIF_STATE_SCHED)
5174                 *     new |= NAPIF_STATE_MISSED;
5175                 */
5176                new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5177                                                   NAPIF_STATE_MISSED;
5178        } while (cmpxchg(&n->state, val, new) != val);
5179
5180        return !(val & NAPIF_STATE_SCHED);
5181}
5182EXPORT_SYMBOL(napi_schedule_prep);
5183
5184/**
5185 * __napi_schedule_irqoff - schedule for receive
5186 * @n: entry to schedule
5187 *
5188 * Variant of __napi_schedule() assuming hard irqs are masked
5189 */
5190void __napi_schedule_irqoff(struct napi_struct *n)
5191{
5192        ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5193}
5194EXPORT_SYMBOL(__napi_schedule_irqoff);
5195
5196bool napi_complete_done(struct napi_struct *n, int work_done)
5197{
5198        unsigned long flags, val, new;
5199
5200        /*
5201         * 1) Don't let napi dequeue from the cpu poll list
5202         *    just in case its running on a different cpu.
5203         * 2) If we are busy polling, do nothing here, we have
5204         *    the guarantee we will be called later.
5205         */
5206        if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5207                                 NAPIF_STATE_IN_BUSY_POLL)))
5208                return false;
5209
5210        if (n->gro_list) {
5211                unsigned long timeout = 0;
5212
5213                if (work_done)
5214                        timeout = n->dev->gro_flush_timeout;
5215
5216                if (timeout)
5217                        hrtimer_start(&n->timer, ns_to_ktime(timeout),
5218                                      HRTIMER_MODE_REL_PINNED);
5219                else
5220                        napi_gro_flush(n, false);
5221        }
5222        if (unlikely(!list_empty(&n->poll_list))) {
5223                /* If n->poll_list is not empty, we need to mask irqs */
5224                local_irq_save(flags);
5225                list_del_init(&n->poll_list);
5226                local_irq_restore(flags);
5227        }
5228
5229        do {
5230                val = READ_ONCE(n->state);
5231
5232                WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5233
5234                new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5235
5236                /* If STATE_MISSED was set, leave STATE_SCHED set,
5237                 * because we will call napi->poll() one more time.
5238                 * This C code was suggested by Alexander Duyck to help gcc.
5239                 */
5240                new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5241                                                    NAPIF_STATE_SCHED;
5242        } while (cmpxchg(&n->state, val, new) != val);
5243
5244        if (unlikely(val & NAPIF_STATE_MISSED)) {
5245                __napi_schedule(n);
5246                return false;
5247        }
5248
5249        return true;
5250}
5251EXPORT_SYMBOL(napi_complete_done);
5252
5253/* must be called under rcu_read_lock(), as we dont take a reference */
5254static struct napi_struct *napi_by_id(unsigned int napi_id)
5255{
5256        unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5257        struct napi_struct *napi;
5258
5259        hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5260                if (napi->napi_id == napi_id)
5261                        return napi;
5262
5263        return NULL;
5264}
5265
5266#if defined(CONFIG_NET_RX_BUSY_POLL)
5267
5268#define BUSY_POLL_BUDGET 8
5269
5270static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5271{
5272        int rc;
5273
5274        /* Busy polling means there is a high chance device driver hard irq
5275         * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5276         * set in napi_schedule_prep().
5277         * Since we are about to call napi->poll() once more, we can safely
5278         * clear NAPI_STATE_MISSED.
5279         *
5280         * Note: x86 could use a single "lock and ..." instruction
5281         * to perform these two clear_bit()
5282         */
5283        clear_bit(NAPI_STATE_MISSED, &napi->state);
5284        clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5285
5286        local_bh_disable();
5287
5288        /* All we really want here is to re-enable device interrupts.
5289         * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5290         */
5291        rc = napi->poll(napi, BUSY_POLL_BUDGET);
5292        trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5293        netpoll_poll_unlock(have_poll_lock);
5294        if (rc == BUSY_POLL_BUDGET)
5295                __napi_schedule(napi);
5296        local_bh_enable();
5297}
5298
5299void napi_busy_loop(unsigned int napi_id,
5300                    bool (*loop_end)(void *, unsigned long),
5301                    void *loop_end_arg)
5302{
5303        unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5304        int (*napi_poll)(struct napi_struct *napi, int budget);
5305        void *have_poll_lock = NULL;
5306        struct napi_struct *napi;
5307
5308restart:
5309        napi_poll = NULL;
5310
5311        rcu_read_lock();
5312
5313        napi = napi_by_id(napi_id);
5314        if (!napi)
5315                goto out;
5316
5317        preempt_disable();
5318        for (;;) {
5319                int work = 0;
5320
5321                local_bh_disable();
5322                if (!napi_poll) {
5323                        unsigned long val = READ_ONCE(napi->state);
5324
5325                        /* If multiple threads are competing for this napi,
5326                         * we avoid dirtying napi->state as much as we can.
5327                         */
5328                        if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5329                                   NAPIF_STATE_IN_BUSY_POLL))
5330                                goto count;
5331                        if (cmpxchg(&napi->state, val,
5332                                    val | NAPIF_STATE_IN_BUSY_POLL |
5333                                          NAPIF_STATE_SCHED) != val)
5334                                goto count;
5335                        have_poll_lock = netpoll_poll_lock(napi);
5336                        napi_poll = napi->poll;
5337                }
5338                work = napi_poll(napi, BUSY_POLL_BUDGET);
5339                trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5340count:
5341                if (work > 0)
5342                        __NET_ADD_STATS(dev_net(napi->dev),
5343                                        LINUX_MIB_BUSYPOLLRXPACKETS, work);
5344                local_bh_enable();
5345
5346                if (!loop_end || loop_end(loop_end_arg, start_time))
5347                        break;
5348
5349                if (unlikely(need_resched())) {
5350                        if (napi_poll)
5351                                busy_poll_stop(napi, have_poll_lock);
5352                        preempt_enable();
5353                        rcu_read_unlock();
5354                        cond_resched();
5355                        if (loop_end(loop_end_arg, start_time))
5356                                return;
5357                        goto restart;
5358                }
5359                cpu_relax();
5360        }
5361        if (napi_poll)
5362                busy_poll_stop(napi, have_poll_lock);
5363        preempt_enable();
5364out:
5365        rcu_read_unlock();
5366}
5367EXPORT_SYMBOL(napi_busy_loop);
5368
5369#endif /* CONFIG_NET_RX_BUSY_POLL */
5370
5371static void napi_hash_add(struct napi_struct *napi)
5372{
5373        if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5374            test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5375                return;
5376
5377        spin_lock(&napi_hash_lock);
5378
5379        /* 0..NR_CPUS range is reserved for sender_cpu use */
5380        do {
5381                if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5382                        napi_gen_id = MIN_NAPI_ID;
5383        } while (napi_by_id(napi_gen_id));
5384        napi->napi_id = napi_gen_id;
5385
5386        hlist_add_head_rcu(&napi->napi_hash_node,
5387                           &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5388
5389        spin_unlock(&napi_hash_lock);
5390}
5391
5392/* Warning : caller is responsible to make sure rcu grace period
5393 * is respected before freeing memory containing @napi
5394 */
5395bool napi_hash_del(struct napi_struct *napi)
5396{
5397        bool rcu_sync_needed = false;
5398
5399        spin_lock(&napi_hash_lock);
5400
5401        if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5402                rcu_sync_needed = true;
5403                hlist_del_rcu(&napi->napi_hash_node);
5404        }
5405        spin_unlock(&napi_hash_lock);
5406        return rcu_sync_needed;
5407}
5408EXPORT_SYMBOL_GPL(napi_hash_del);
5409
5410static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5411{
5412        struct napi_struct *napi;
5413
5414        napi = container_of(timer, struct napi_struct, timer);
5415
5416        /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5417         * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5418         */
5419        if (napi->gro_list && !napi_disable_pending(napi) &&
5420            !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5421                __napi_schedule_irqoff(napi);
5422
5423        return HRTIMER_NORESTART;
5424}
5425
5426void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5427                    int (*poll)(struct napi_struct *, int), int weight)
5428{
5429        INIT_LIST_HEAD(&napi->poll_list);
5430        hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5431        napi->timer.function = napi_watchdog;
5432        napi->gro_count = 0;
5433        napi->gro_list = NULL;
5434        napi->skb = NULL;
5435        napi->poll = poll;
5436        if (weight > NAPI_POLL_WEIGHT)
5437                pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5438                            weight, dev->name);
5439        napi->weight = weight;
5440        list_add(&napi->dev_list, &dev->napi_list);
5441        napi->dev = dev;
5442#ifdef CONFIG_NETPOLL
5443        napi->poll_owner = -1;
5444#endif
5445        set_bit(NAPI_STATE_SCHED, &napi->state);
5446        napi_hash_add(napi);
5447}
5448EXPORT_SYMBOL(netif_napi_add);
5449
5450void napi_disable(struct napi_struct *n)
5451{
5452        might_sleep();
5453        set_bit(NAPI_STATE_DISABLE, &n->state);
5454
5455        while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5456                msleep(1);
5457        while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5458                msleep(1);
5459
5460        hrtimer_cancel(&n->timer);
5461
5462        clear_bit(NAPI_STATE_DISABLE, &n->state);
5463}
5464EXPORT_SYMBOL(napi_disable);
5465
5466/* Must be called in process context */
5467void netif_napi_del(struct napi_struct *napi)
5468{
5469        might_sleep();
5470        if (napi_hash_del(napi))
5471                synchronize_net();
5472        list_del_init(&napi->dev_list);
5473        napi_free_frags(napi);
5474
5475        kfree_skb_list(napi->gro_list);
5476        napi->gro_list = NULL;
5477        napi->gro_count = 0;
5478}
5479EXPORT_SYMBOL(netif_napi_del);
5480
5481static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5482{
5483        void *have;
5484        int work, weight;
5485
5486        list_del_init(&n->poll_list);
5487
5488        have = netpoll_poll_lock(n);
5489
5490        weight = n->weight;
5491
5492        /* This NAPI_STATE_SCHED test is for avoiding a race
5493         * with netpoll's poll_napi().  Only the entity which
5494         * obtains the lock and sees NAPI_STATE_SCHED set will
5495         * actually make the ->poll() call.  Therefore we avoid
5496         * accidentally calling ->poll() when NAPI is not scheduled.
5497         */
5498        work = 0;
5499        if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5500                work = n->poll(n, weight);
5501                trace_napi_poll(n, work, weight);
5502        }
5503
5504        WARN_ON_ONCE(work > weight);
5505
5506        if (likely(work < weight))
5507                goto out_unlock;
5508
5509        /* Drivers must not modify the NAPI state if they
5510         * consume the entire weight.  In such cases this code
5511         * still "owns" the NAPI instance and therefore can
5512         * move the instance around on the list at-will.
5513         */
5514        if (unlikely(napi_disable_pending(n))) {
5515                napi_complete(n);
5516                goto out_unlock;
5517        }
5518
5519        if (n->gro_list) {
5520                /* flush too old packets
5521                 * If HZ < 1000, flush all packets.
5522                 */
5523                napi_gro_flush(n, HZ >= 1000);
5524        }
5525
5526        /* Some drivers may have called napi_schedule
5527         * prior to exhausting their budget.
5528         */
5529        if (unlikely(!list_empty(&n->poll_list))) {
5530                pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5531                             n->dev ? n->dev->name : "backlog");
5532                goto out_unlock;
5533        }
5534
5535        list_add_tail(&n->poll_list, repoll);
5536
5537out_unlock:
5538        netpoll_poll_unlock(have);
5539
5540        return work;
5541}
5542
5543static __latent_entropy void net_rx_action(struct softirq_action *h)
5544{
5545        struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5546        unsigned long time_limit = jiffies +
5547                usecs_to_jiffies(netdev_budget_usecs);
5548        int budget = netdev_budget;
5549        LIST_HEAD(list);
5550        LIST_HEAD(repoll);
5551
5552        local_irq_disable();
5553        list_splice_init(&sd->poll_list, &list);
5554        local_irq_enable();
5555
5556        for (;;) {
5557                struct napi_struct *n;
5558
5559                if (list_empty(&list)) {
5560                        if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5561                                goto out;
5562                        break;
5563                }
5564
5565                n = list_first_entry(&list, struct napi_struct, poll_list);
5566                budget -= napi_poll(n, &repoll);
5567
5568                /* If softirq window is exhausted then punt.
5569                 * Allow this to run for 2 jiffies since which will allow
5570                 * an average latency of 1.5/HZ.
5571                 */
5572                if (unlikely(budget <= 0 ||
5573                             time_after_eq(jiffies, time_limit))) {
5574                        sd->time_squeeze++;
5575                        break;
5576                }
5577        }
5578
5579        local_irq_disable();
5580
5581        list_splice_tail_init(&sd->poll_list, &list);
5582        list_splice_tail(&repoll, &list);
5583        list_splice(&list, &sd->poll_list);
5584        if (!list_empty(&sd->poll_list))
5585                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5586
5587        net_rps_action_and_irq_enable(sd);
5588out:
5589        __kfree_skb_flush();
5590}
5591
5592struct netdev_adjacent {
5593        struct net_device *dev;
5594
5595        /* upper master flag, there can only be one master device per list */
5596        bool master;
5597
5598        /* counter for the number of times this device was added to us */
5599        u16 ref_nr;
5600
5601        /* private field for the users */
5602        void *private;
5603
5604        struct list_head list;
5605        struct rcu_head rcu;
5606};
5607
5608static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5609                                                 struct list_head *adj_list)
5610{
5611        struct netdev_adjacent *adj;
5612
5613        list_for_each_entry(adj, adj_list, list) {
5614                if (adj->dev == adj_dev)
5615                        return adj;
5616        }
5617        return NULL;
5618}
5619
5620static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5621{
5622        struct net_device *dev = data;
5623
5624        return upper_dev == dev;
5625}
5626
5627/**
5628 * netdev_has_upper_dev - Check if device is linked to an upper device
5629 * @dev: device
5630 * @upper_dev: upper device to check
5631 *
5632 * Find out if a device is linked to specified upper device and return true
5633 * in case it is. Note that this checks only immediate upper device,
5634 * not through a complete stack of devices. The caller must hold the RTNL lock.
5635 */
5636bool netdev_has_upper_dev(struct net_device *dev,
5637                          struct net_device *upper_dev)
5638{
5639        ASSERT_RTNL();
5640
5641        return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5642                                             upper_dev);
5643}
5644EXPORT_SYMBOL(netdev_has_upper_dev);
5645
5646/**
5647 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5648 * @dev: device
5649 * @upper_dev: upper device to check
5650 *
5651 * Find out if a device is linked to specified upper device and return true
5652 * in case it is. Note that this checks the entire upper device chain.
5653 * The caller must hold rcu lock.
5654 */
5655
5656bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5657                                  struct net_device *upper_dev)
5658{
5659        return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5660                                               upper_dev);
5661}
5662EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5663
5664/**
5665 * netdev_has_any_upper_dev - Check if device is linked to some device
5666 * @dev: device
5667 *
5668 * Find out if a device is linked to an upper device and return true in case
5669 * it is. The caller must hold the RTNL lock.
5670 */
5671bool netdev_has_any_upper_dev(struct net_device *dev)
5672{
5673        ASSERT_RTNL();
5674
5675        return !list_empty(&dev->adj_list.upper);
5676}
5677EXPORT_SYMBOL(netdev_has_any_upper_dev);
5678
5679/**
5680 * netdev_master_upper_dev_get - Get master upper device
5681 * @dev: device
5682 *
5683 * Find a master upper device and return pointer to it or NULL in case
5684 * it's not there. The caller must hold the RTNL lock.
5685 */
5686struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5687{
5688        struct netdev_adjacent *upper;
5689
5690        ASSERT_RTNL();
5691
5692        if (list_empty(&dev->adj_list.upper))
5693                return NULL;
5694
5695        upper = list_first_entry(&dev->adj_list.upper,
5696                                 struct netdev_adjacent, list);
5697        if (likely(upper->master))
5698                return upper->dev;
5699        return NULL;
5700}
5701EXPORT_SYMBOL(netdev_master_upper_dev_get);
5702
5703/**
5704 * netdev_has_any_lower_dev - Check if device is linked to some device
5705 * @dev: device
5706 *
5707 * Find out if a device is linked to a lower device and return true in case
5708 * it is. The caller must hold the RTNL lock.
5709 */
5710static bool netdev_has_any_lower_dev(struct net_device *dev)
5711{
5712        ASSERT_RTNL();
5713
5714        return !list_empty(&dev->adj_list.lower);
5715}
5716
5717void *netdev_adjacent_get_private(struct list_head *adj_list)
5718{
5719        struct netdev_adjacent *adj;
5720
5721        adj = list_entry(adj_list, struct netdev_adjacent, list);
5722
5723        return adj->private;
5724}
5725EXPORT_SYMBOL(netdev_adjacent_get_private);
5726
5727/**
5728 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5729 * @dev: device
5730 * @iter: list_head ** of the current position
5731 *
5732 * Gets the next device from the dev's upper list, starting from iter
5733 * position. The caller must hold RCU read lock.
5734 */
5735struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5736                                                 struct list_head **iter)
5737{
5738        struct netdev_adjacent *upper;
5739
5740        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5741
5742        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5743
5744        if (&upper->list == &dev->adj_list.upper)
5745                return NULL;
5746
5747        *iter = &upper->list;
5748
5749        return upper->dev;
5750}
5751EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5752
5753static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5754                                                    struct list_head **iter)
5755{
5756        struct netdev_adjacent *upper;
5757
5758        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5759
5760        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5761
5762        if (&upper->list == &dev->adj_list.upper)
5763                return NULL;
5764
5765        *iter = &upper->list;
5766
5767        return upper->dev;
5768}
5769
5770int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5771                                  int (*fn)(struct net_device *dev,
5772                                            void *data),
5773                                  void *data)
5774{
5775        struct net_device *udev;
5776        struct list_head *iter;
5777        int ret;
5778
5779        for (iter = &dev->adj_list.upper,
5780             udev = netdev_next_upper_dev_rcu(dev, &iter);
5781             udev;
5782             udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5783                /* first is the upper device itself */
5784                ret = fn(udev, data);
5785                if (ret)
5786                        return ret;
5787
5788                /* then look at all of its upper devices */
5789                ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5790                if (ret)
5791                        return ret;
5792        }
5793
5794        return 0;
5795}
5796EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5797
5798/**
5799 * netdev_lower_get_next_private - Get the next ->private from the
5800 *                                 lower neighbour list
5801 * @dev: device
5802 * @iter: list_head ** of the current position
5803 *
5804 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5805 * list, starting from iter position. The caller must hold either hold the
5806 * RTNL lock or its own locking that guarantees that the neighbour lower
5807 * list will remain unchanged.
5808 */
5809void *netdev_lower_get_next_private(struct net_device *dev,
5810                                    struct list_head **iter)
5811{
5812        struct netdev_adjacent *lower;
5813
5814        lower = list_entry(*iter, struct netdev_adjacent, list);
5815
5816        if (&lower->list == &dev->adj_list.lower)
5817                return NULL;
5818
5819        *iter = lower->list.next;
5820
5821        return lower->private;
5822}
5823EXPORT_SYMBOL(netdev_lower_get_next_private);
5824
5825/**
5826 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5827 *                                     lower neighbour list, RCU
5828 *                                     variant
5829 * @dev: device
5830 * @iter: list_head ** of the current position
5831 *
5832 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5833 * list, starting from iter position. The caller must hold RCU read lock.
5834 */
5835void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5836                                        struct list_head **iter)
5837{
5838        struct netdev_adjacent *lower;
5839
5840        WARN_ON_ONCE(!rcu_read_lock_held());
5841
5842        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5843
5844        if (&lower->list == &dev->adj_list.lower)
5845                return NULL;
5846
5847        *iter = &lower->list;
5848
5849        return lower->private;
5850}
5851EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5852
5853/**
5854 * netdev_lower_get_next - Get the next device from the lower neighbour
5855 *                         list
5856 * @dev: device
5857 * @iter: list_head ** of the current position
5858 *
5859 * Gets the next netdev_adjacent from the dev's lower neighbour
5860 * list, starting from iter position. The caller must hold RTNL lock or
5861 * its own locking that guarantees that the neighbour lower
5862 * list will remain unchanged.
5863 */
5864void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5865{
5866        struct netdev_adjacent *lower;
5867
5868        lower = list_entry(*iter, struct netdev_adjacent, list);
5869
5870        if (&lower->list == &dev->adj_list.lower)
5871                return NULL;
5872
5873        *iter = lower->list.next;
5874
5875        return lower->dev;
5876}
5877EXPORT_SYMBOL(netdev_lower_get_next);
5878
5879static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5880                                                struct list_head **iter)
5881{
5882        struct netdev_adjacent *lower;
5883
5884        lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5885
5886        if (&lower->list == &dev->adj_list.lower)
5887                return NULL;
5888
5889        *iter = &lower->list;
5890
5891        return lower->dev;
5892}
5893
5894int netdev_walk_all_lower_dev(struct net_device *dev,
5895                              int (*fn)(struct net_device *dev,
5896                                        void *data),
5897                              void *data)
5898{
5899        struct net_device *ldev;
5900        struct list_head *iter;
5901        int ret;
5902
5903        for (iter = &dev->adj_list.lower,
5904             ldev = netdev_next_lower_dev(dev, &iter);
5905             ldev;
5906             ldev = netdev_next_lower_dev(dev, &iter)) {
5907                /* first is the lower device itself */
5908                ret = fn(ldev, data);
5909                if (ret)
5910                        return ret;
5911
5912                /* then look at all of its lower devices */
5913                ret = netdev_walk_all_lower_dev(ldev, fn, data);
5914                if (ret)
5915                        return ret;
5916        }
5917
5918        return 0;
5919}
5920EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5921
5922static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5923                                                    struct list_head **iter)
5924{
5925        struct netdev_adjacent *lower;
5926
5927        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5928        if (&lower->list == &dev->adj_list.lower)
5929                return NULL;
5930
5931        *iter = &lower->list;
5932
5933        return lower->dev;
5934}
5935
5936int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5937                                  int (*fn)(struct net_device *dev,
5938                                            void *data),
5939                                  void *data)
5940{
5941        struct net_device *ldev;
5942        struct list_head *iter;
5943        int ret;
5944
5945        for (iter = &dev->adj_list.lower,
5946             ldev = netdev_next_lower_dev_rcu(dev, &iter);
5947             ldev;
5948             ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5949                /* first is the lower device itself */
5950                ret = fn(ldev, data);
5951                if (ret)
5952                        return ret;
5953
5954                /* then look at all of its lower devices */
5955                ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5956                if (ret)
5957                        return ret;
5958        }
5959
5960        return 0;
5961}
5962EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5963
5964/**
5965 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5966 *                                     lower neighbour list, RCU
5967 *                                     variant
5968 * @dev: device
5969 *
5970 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5971 * list. The caller must hold RCU read lock.
5972 */
5973void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5974{
5975        struct netdev_adjacent *lower;
5976
5977        lower = list_first_or_null_rcu(&dev->adj_list.lower,
5978                        struct netdev_adjacent, list);
5979        if (lower)
5980                return lower->private;
5981        return NULL;
5982}
5983EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5984
5985/**
5986 * netdev_master_upper_dev_get_rcu - Get master upper device
5987 * @dev: device
5988 *
5989 * Find a master upper device and return pointer to it or NULL in case
5990 * it's not there. The caller must hold the RCU read lock.
5991 */
5992struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5993{
5994        struct netdev_adjacent *upper;
5995
5996        upper = list_first_or_null_rcu(&dev->adj_list.upper,
5997                                       struct netdev_adjacent, list);
5998        if (upper && likely(upper->master))
5999                return upper->dev;
6000        return NULL;
6001}
6002EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6003
6004static int netdev_adjacent_sysfs_add(struct net_device *dev,
6005                              struct net_device *adj_dev,
6006                              struct list_head *dev_list)
6007{
6008        char linkname[IFNAMSIZ+7];
6009
6010        sprintf(linkname, dev_list == &dev->adj_list.upper ?
6011                "upper_%s" : "lower_%s", adj_dev->name);
6012        return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6013                                 linkname);
6014}
6015static void netdev_adjacent_sysfs_del(struct net_device *dev,
6016                               char *name,
6017                               struct list_head *dev_list)
6018{
6019        char linkname[IFNAMSIZ+7];
6020
6021        sprintf(linkname, dev_list == &dev->adj_list.upper ?
6022                "upper_%s" : "lower_%s", name);
6023        sysfs_remove_link(&(dev->dev.kobj), linkname);
6024}
6025
6026static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6027                                                 struct net_device *adj_dev,
6028                                                 struct list_head *dev_list)
6029{
6030        return (dev_list == &dev->adj_list.upper ||
6031                dev_list == &dev->adj_list.lower) &&
6032                net_eq(dev_net(dev), dev_net(adj_dev));
6033}
6034
6035static int __netdev_adjacent_dev_insert(struct net_device *dev,
6036                                        struct net_device *adj_dev,
6037                                        struct list_head *dev_list,
6038                                        void *private, bool master)
6039{
6040        struct netdev_adjacent *adj;
6041        int ret;
6042
6043        adj = __netdev_find_adj(adj_dev, dev_list);
6044
6045        if (adj) {
6046                adj->ref_nr += 1;
6047                pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6048                         dev->name, adj_dev->name, adj->ref_nr);
6049
6050                return 0;
6051        }
6052
6053        adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6054        if (!adj)
6055                return -ENOMEM;
6056
6057        adj->dev = adj_dev;
6058        adj->master = master;
6059        adj->ref_nr = 1;
6060        adj->private = private;
6061        dev_hold(adj_dev);
6062
6063        pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6064                 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6065
6066        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6067                ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6068                if (ret)
6069                        goto free_adj;
6070        }
6071
6072        /* Ensure that master link is always the first item in list. */
6073        if (master) {
6074                ret = sysfs_create_link(&(dev->dev.kobj),
6075                                        &(adj_dev->dev.kobj), "master");
6076                if (ret)
6077                        goto remove_symlinks;
6078
6079                list_add_rcu(&adj->list, dev_list);
6080        } else {
6081                list_add_tail_rcu(&adj->list, dev_list);
6082        }
6083
6084        return 0;
6085
6086remove_symlinks:
6087        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6088                netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6089free_adj:
6090        kfree(adj);
6091        dev_put(adj_dev);
6092
6093        return ret;
6094}
6095
6096static void __netdev_adjacent_dev_remove(struct net_device *dev,
6097                                         struct net_device *adj_dev,
6098                                         u16 ref_nr,
6099                                         struct list_head *dev_list)
6100{
6101        struct netdev_adjacent *adj;
6102
6103        pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6104                 dev->name, adj_dev->name, ref_nr);
6105
6106        adj = __netdev_find_adj(adj_dev, dev_list);
6107
6108        if (!adj) {
6109                pr_err("Adjacency does not exist for device %s from %s\n",
6110                       dev->name, adj_dev->name);
6111                WARN_ON(1);
6112                return;
6113        }
6114
6115        if (adj->ref_nr > ref_nr) {
6116                pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6117                         dev->name, adj_dev->name, ref_nr,
6118                         adj->ref_nr - ref_nr);
6119                adj->ref_nr -= ref_nr;
6120                return;
6121        }
6122
6123        if (adj->master)
6124                sysfs_remove_link(&(dev->dev.kobj), "master");
6125
6126        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6127                netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6128
6129        list_del_rcu(&adj->list);
6130        pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6131                 adj_dev->name, dev->name, adj_dev->name);
6132        dev_put(adj_dev);
6133        kfree_rcu(adj, rcu);
6134}
6135
6136static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6137                                            struct net_device *upper_dev,
6138                                            struct list_head *up_list,
6139                                            struct list_head *down_list,
6140                                            void *private, bool master)
6141{
6142        int ret;
6143
6144        ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6145                                           private, master);
6146        if (ret)
6147                return ret;
6148
6149        ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6150                                           private, false);
6151        if (ret) {
6152                __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6153                return ret;
6154        }
6155
6156        return 0;
6157}
6158
6159static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6160                                               struct net_device *upper_dev,
6161                                               u16 ref_nr,
6162                                               struct list_head *up_list,
6163                                               struct list_head *down_list)
6164{
6165        __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6166        __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6167}
6168
6169static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6170                                                struct net_device *upper_dev,
6171                                                void *private, bool master)
6172{
6173        return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6174                                                &dev->adj_list.upper,
6175                                                &upper_dev->adj_list.lower,
6176                                                private, master);
6177}
6178
6179static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6180                                                   struct net_device *upper_dev)
6181{
6182        __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6183                                           &dev->adj_list.upper,
6184                                           &upper_dev->adj_list.lower);
6185}
6186
6187static int __netdev_upper_dev_link(struct net_device *dev,
6188                                   struct net_device *upper_dev, bool master,
6189                                   void *upper_priv, void *upper_info)
6190{
6191        struct netdev_notifier_changeupper_info changeupper_info;
6192        int ret = 0;
6193
6194        ASSERT_RTNL();
6195
6196        if (dev == upper_dev)
6197                return -EBUSY;
6198
6199        /* To prevent loops, check if dev is not upper device to upper_dev. */
6200        if (netdev_has_upper_dev(upper_dev, dev))
6201                return -EBUSY;
6202
6203        if (netdev_has_upper_dev(dev, upper_dev))
6204                return -EEXIST;
6205
6206        if (master && netdev_master_upper_dev_get(dev))
6207                return -EBUSY;
6208
6209        changeupper_info.upper_dev = upper_dev;
6210        changeupper_info.master = master;
6211        changeupper_info.linking = true;
6212        changeupper_info.upper_info = upper_info;
6213
6214        ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6215                                            &changeupper_info.info);
6216        ret = notifier_to_errno(ret);
6217        if (ret)
6218                return ret;
6219
6220        ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6221                                                   master);
6222        if (ret)
6223                return ret;
6224
6225        ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6226                                            &changeupper_info.info);
6227        ret = notifier_to_errno(ret);
6228        if (ret)
6229                goto rollback;
6230
6231        return 0;
6232
6233rollback:
6234        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6235
6236        return ret;
6237}
6238
6239/**
6240 * netdev_upper_dev_link - Add a link to the upper device
6241 * @dev: device
6242 * @upper_dev: new upper device
6243 *
6244 * Adds a link to device which is upper to this one. The caller must hold
6245 * the RTNL lock. On a failure a negative errno code is returned.
6246 * On success the reference counts are adjusted and the function
6247 * returns zero.
6248 */
6249int netdev_upper_dev_link(struct net_device *dev,
6250                          struct net_device *upper_dev)
6251{
6252        return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6253}
6254EXPORT_SYMBOL(netdev_upper_dev_link);
6255
6256/**
6257 * netdev_master_upper_dev_link - Add a master link to the upper device
6258 * @dev: device
6259 * @upper_dev: new upper device
6260 * @upper_priv: upper device private
6261 * @upper_info: upper info to be passed down via notifier
6262 *
6263 * Adds a link to device which is upper to this one. In this case, only
6264 * one master upper device can be linked, although other non-master devices
6265 * might be linked as well. The caller must hold the RTNL lock.
6266 * On a failure a negative errno code is returned. On success the reference
6267 * counts are adjusted and the function returns zero.
6268 */
6269int netdev_master_upper_dev_link(struct net_device *dev,
6270                                 struct net_device *upper_dev,
6271                                 void *upper_priv, void *upper_info)
6272{
6273        return __netdev_upper_dev_link(dev, upper_dev, true,
6274                                       upper_priv, upper_info);
6275}
6276EXPORT_SYMBOL(netdev_master_upper_dev_link);
6277
6278/**
6279 * netdev_upper_dev_unlink - Removes a link to upper device
6280 * @dev: device
6281 * @upper_dev: new upper device
6282 *
6283 * Removes a link to device which is upper to this one. The caller must hold
6284 * the RTNL lock.
6285 */
6286void netdev_upper_dev_unlink(struct net_device *dev,
6287                             struct net_device *upper_dev)
6288{
6289        struct netdev_notifier_changeupper_info changeupper_info;
6290
6291        ASSERT_RTNL();
6292
6293        changeupper_info.upper_dev = upper_dev;
6294        changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6295        changeupper_info.linking = false;
6296
6297        call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6298                                      &changeupper_info.info);
6299
6300        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6301
6302        call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6303                                      &changeupper_info.info);
6304}
6305EXPORT_SYMBOL(netdev_upper_dev_unlink);
6306
6307/**
6308 * netdev_bonding_info_change - Dispatch event about slave change
6309 * @dev: device
6310 * @bonding_info: info to dispatch
6311 *
6312 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6313 * The caller must hold the RTNL lock.
6314 */
6315void netdev_bonding_info_change(struct net_device *dev,
6316                                struct netdev_bonding_info *bonding_info)
6317{
6318        struct netdev_notifier_bonding_info     info;
6319
6320        memcpy(&info.bonding_info, bonding_info,
6321               sizeof(struct netdev_bonding_info));
6322        call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6323                                      &info.info);
6324}
6325EXPORT_SYMBOL(netdev_bonding_info_change);
6326
6327static void netdev_adjacent_add_links(struct net_device *dev)
6328{
6329        struct netdev_adjacent *iter;
6330
6331        struct net *net = dev_net(dev);
6332
6333        list_for_each_entry(iter, &dev->adj_list.upper, list) {
6334                if (!net_eq(net, dev_net(iter->dev)))
6335                        continue;
6336                netdev_adjacent_sysfs_add(iter->dev, dev,
6337                                          &iter->dev->adj_list.lower);
6338                netdev_adjacent_sysfs_add(dev, iter->dev,
6339                                          &dev->adj_list.upper);
6340        }
6341
6342        list_for_each_entry(iter, &dev->adj_list.lower, list) {
6343                if (!net_eq(net, dev_net(iter->dev)))
6344                        continue;
6345                netdev_adjacent_sysfs_add(iter->dev, dev,
6346                                          &iter->dev->adj_list.upper);
6347                netdev_adjacent_sysfs_add(dev, iter->dev,
6348                                          &dev->adj_list.lower);
6349        }
6350}
6351
6352static void netdev_adjacent_del_links(struct net_device *dev)
6353{
6354        struct netdev_adjacent *iter;
6355
6356        struct net *net = dev_net(dev);
6357
6358        list_for_each_entry(iter, &dev->adj_list.upper, list) {
6359                if (!net_eq(net, dev_net(iter->dev)))
6360                        continue;
6361                netdev_adjacent_sysfs_del(iter->dev, dev->name,
6362                                          &iter->dev->adj_list.lower);
6363                netdev_adjacent_sysfs_del(dev, iter->dev->name,
6364                                          &dev->adj_list.upper);
6365        }
6366
6367        list_for_each_entry(iter, &dev->adj_list.lower, list) {
6368                if (!net_eq(net, dev_net(iter->dev)))
6369                        continue;
6370                netdev_adjacent_sysfs_del(iter->dev, dev->name,
6371                                          &iter->dev->adj_list.upper);
6372                netdev_adjacent_sysfs_del(dev, iter->dev->name,
6373                                          &dev->adj_list.lower);
6374        }
6375}
6376
6377void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6378{
6379        struct netdev_adjacent *iter;
6380
6381        struct net *net = dev_net(dev);
6382
6383        list_for_each_entry(iter, &dev->adj_list.upper, list) {
6384                if (!net_eq(net, dev_net(iter->dev)))
6385                        continue;
6386                netdev_adjacent_sysfs_del(iter->dev, oldname,
6387                                          &iter->dev->adj_list.lower);
6388                netdev_adjacent_sysfs_add(iter->dev, dev,
6389                                          &iter->dev->adj_list.lower);
6390        }
6391
6392        list_for_each_entry(iter, &dev->adj_list.lower, list) {
6393                if (!net_eq(net, dev_net(iter->dev)))
6394                        continue;
6395                netdev_adjacent_sysfs_del(iter->dev, oldname,
6396                                          &iter->dev->adj_list.upper);
6397                netdev_adjacent_sysfs_add(iter->dev, dev,
6398                                          &iter->dev->adj_list.upper);
6399        }
6400}
6401
6402void *netdev_lower_dev_get_private(struct net_device *dev,
6403                                   struct net_device *lower_dev)
6404{
6405        struct netdev_adjacent *lower;
6406
6407        if (!lower_dev)
6408                return NULL;
6409        lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6410        if (!lower)
6411                return NULL;
6412
6413        return lower->private;
6414}
6415EXPORT_SYMBOL(netdev_lower_dev_get_private);
6416
6417
6418int dev_get_nest_level(struct net_device *dev)
6419{
6420        struct net_device *lower = NULL;
6421        struct list_head *iter;
6422        int max_nest = -1;
6423        int nest;
6424
6425        ASSERT_RTNL();
6426
6427        netdev_for_each_lower_dev(dev, lower, iter) {
6428                nest = dev_get_nest_level(lower);
6429                if (max_nest < nest)
6430                        max_nest = nest;
6431        }
6432
6433        return max_nest + 1;
6434}
6435EXPORT_SYMBOL(dev_get_nest_level);
6436
6437/**
6438 * netdev_lower_change - Dispatch event about lower device state change
6439 * @lower_dev: device
6440 * @lower_state_info: state to dispatch
6441 *
6442 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6443 * The caller must hold the RTNL lock.
6444 */
6445void netdev_lower_state_changed(struct net_device *lower_dev,
6446                                void *lower_state_info)
6447{
6448        struct netdev_notifier_changelowerstate_info changelowerstate_info;
6449
6450        ASSERT_RTNL();
6451        changelowerstate_info.lower_state_info = lower_state_info;
6452        call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6453                                      &changelowerstate_info.info);
6454}
6455EXPORT_SYMBOL(netdev_lower_state_changed);
6456
6457static void dev_change_rx_flags(struct net_device *dev, int flags)
6458{
6459        const struct net_device_ops *ops = dev->netdev_ops;
6460
6461        if (ops->ndo_change_rx_flags)
6462                ops->ndo_change_rx_flags(dev, flags);
6463}
6464
6465static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6466{
6467        unsigned int old_flags = dev->flags;
6468        kuid_t uid;
6469        kgid_t gid;
6470
6471        ASSERT_RTNL();
6472
6473        dev->flags |= IFF_PROMISC;
6474        dev->promiscuity += inc;
6475        if (dev->promiscuity == 0) {
6476                /*
6477                 * Avoid overflow.
6478                 * If inc causes overflow, untouch promisc and return error.
6479                 */
6480                if (inc < 0)
6481                        dev->flags &= ~IFF_PROMISC;
6482                else {
6483                        dev->promiscuity -= inc;
6484                        pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6485                                dev->name);
6486                        return -EOVERFLOW;
6487                }
6488        }
6489        if (dev->flags != old_flags) {
6490                pr_info("device %s %s promiscuous mode\n",
6491                        dev->name,
6492                        dev->flags & IFF_PROMISC ? "entered" : "left");
6493                if (audit_enabled) {
6494                        current_uid_gid(&uid, &gid);
6495                        audit_log(current->audit_context, GFP_ATOMIC,
6496                                AUDIT_ANOM_PROMISCUOUS,
6497                                "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6498                                dev->name, (dev->flags & IFF_PROMISC),
6499                                (old_flags & IFF_PROMISC),
6500                                from_kuid(&init_user_ns, audit_get_loginuid(current)),
6501                                from_kuid(&init_user_ns, uid),
6502                                from_kgid(&init_user_ns, gid),
6503                                audit_get_sessionid(current));
6504                }
6505
6506                dev_change_rx_flags(dev, IFF_PROMISC);
6507        }
6508        if (notify)
6509                __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6510        return 0;
6511}
6512
6513/**
6514 *      dev_set_promiscuity     - update promiscuity count on a device
6515 *      @dev: device
6516 *      @inc: modifier
6517 *
6518 *      Add or remove promiscuity from a device. While the count in the device
6519 *      remains above zero the interface remains promiscuous. Once it hits zero
6520 *      the device reverts back to normal filtering operation. A negative inc
6521 *      value is used to drop promiscuity on the device.
6522 *      Return 0 if successful or a negative errno code on error.
6523 */
6524int dev_set_promiscuity(struct net_device *dev, int inc)
6525{
6526        unsigned int old_flags = dev->flags;
6527        int err;
6528
6529        err = __dev_set_promiscuity(dev, inc, true);
6530        if (err < 0)
6531                return err;
6532        if (dev->flags != old_flags)
6533                dev_set_rx_mode(dev);
6534        return err;
6535}
6536EXPORT_SYMBOL(dev_set_promiscuity);
6537
6538static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6539{
6540        unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6541
6542        ASSERT_RTNL();
6543
6544        dev->flags |= IFF_ALLMULTI;
6545        dev->allmulti += inc;
6546        if (dev->allmulti == 0) {
6547                /*
6548                 * Avoid overflow.
6549                 * If inc causes overflow, untouch allmulti and return error.
6550                 */
6551                if (inc < 0)
6552                        dev->flags &= ~IFF_ALLMULTI;
6553                else {
6554                        dev->allmulti -= inc;
6555                        pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6556                                dev->name);
6557                        return -EOVERFLOW;
6558                }
6559        }
6560        if (dev->flags ^ old_flags) {
6561                dev_change_rx_flags(dev, IFF_ALLMULTI);
6562                dev_set_rx_mode(dev);
6563                if (notify)
6564                        __dev_notify_flags(dev, old_flags,
6565                                           dev->gflags ^ old_gflags);
6566        }
6567        return 0;
6568}
6569
6570/**
6571 *      dev_set_allmulti        - update allmulti count on a device
6572 *      @dev: device
6573 *      @inc: modifier
6574 *
6575 *      Add or remove reception of all multicast frames to a device. While the
6576 *      count in the device remains above zero the interface remains listening
6577 *      to all interfaces. Once it hits zero the device reverts back to normal
6578 *      filtering operation. A negative @inc value is used to drop the counter
6579 *      when releasing a resource needing all multicasts.
6580 *      Return 0 if successful or a negative errno code on error.
6581 */
6582
6583int dev_set_allmulti(struct net_device *dev, int inc)
6584{
6585        return __dev_set_allmulti(dev, inc, true);
6586}
6587EXPORT_SYMBOL(dev_set_allmulti);
6588
6589/*
6590 *      Upload unicast and multicast address lists to device and
6591 *      configure RX filtering. When the device doesn't support unicast
6592 *      filtering it is put in promiscuous mode while unicast addresses
6593 *      are present.
6594 */
6595void __dev_set_rx_mode(struct net_device *dev)
6596{
6597        const struct net_device_ops *ops = dev->netdev_ops;
6598
6599        /* dev_open will call this function so the list will stay sane. */
6600        if (!(dev->flags&IFF_UP))
6601                return;
6602
6603        if (!netif_device_present(dev))
6604                return;
6605
6606        if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6607                /* Unicast addresses changes may only happen under the rtnl,
6608                 * therefore calling __dev_set_promiscuity here is safe.
6609                 */
6610                if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6611                        __dev_set_promiscuity(dev, 1, false);
6612                        dev->uc_promisc = true;
6613                } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6614                        __dev_set_promiscuity(dev, -1, false);
6615                        dev->uc_promisc = false;
6616                }
6617        }
6618
6619        if (ops->ndo_set_rx_mode)
6620                ops->ndo_set_rx_mode(dev);
6621}
6622
6623void dev_set_rx_mode(struct net_device *dev)
6624{
6625        netif_addr_lock_bh(dev);
6626        __dev_set_rx_mode(dev);
6627        netif_addr_unlock_bh(dev);
6628}
6629
6630/**
6631 *      dev_get_flags - get flags reported to userspace
6632 *      @dev: device
6633 *
6634 *      Get the combination of flag bits exported through APIs to userspace.
6635 */
6636unsigned int dev_get_flags(const struct net_device *dev)
6637{
6638        unsigned int flags;
6639
6640        flags = (dev->flags & ~(IFF_PROMISC |
6641                                IFF_ALLMULTI |
6642                                IFF_RUNNING |
6643                                IFF_LOWER_UP |
6644                                IFF_DORMANT)) |
6645                (dev->gflags & (IFF_PROMISC |
6646                                IFF_ALLMULTI));
6647
6648        if (netif_running(dev)) {
6649                if (netif_oper_up(dev))
6650                        flags |= IFF_RUNNING;
6651                if (netif_carrier_ok(dev))
6652                        flags |= IFF_LOWER_UP;
6653                if (netif_dormant(dev))
6654                        flags |= IFF_DORMANT;
6655        }
6656
6657        return flags;
6658}
6659EXPORT_SYMBOL(dev_get_flags);
6660
6661int __dev_change_flags(struct net_device *dev, unsigned int flags)
6662{
6663        unsigned int old_flags = dev->flags;
6664        int ret;
6665
6666        ASSERT_RTNL();
6667
6668        /*
6669         *      Set the flags on our device.
6670         */
6671
6672        dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6673                               IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6674                               IFF_AUTOMEDIA)) |
6675                     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6676                                    IFF_ALLMULTI));
6677
6678        /*
6679         *      Load in the correct multicast list now the flags have changed.
6680         */
6681
6682        if ((old_flags ^ flags) & IFF_MULTICAST)
6683                dev_change_rx_flags(dev, IFF_MULTICAST);
6684
6685        dev_set_rx_mode(dev);
6686
6687        /*
6688         *      Have we downed the interface. We handle IFF_UP ourselves
6689         *      according to user attempts to set it, rather than blindly
6690         *      setting it.
6691         */
6692
6693        ret = 0;
6694        if ((old_flags ^ flags) & IFF_UP)
6695                ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6696
6697        if ((flags ^ dev->gflags) & IFF_PROMISC) {
6698                int inc = (flags & IFF_PROMISC) ? 1 : -1;
6699                unsigned int old_flags = dev->flags;
6700
6701                dev->gflags ^= IFF_PROMISC;
6702
6703                if (__dev_set_promiscuity(dev, inc, false) >= 0)
6704                        if (dev->flags != old_flags)
6705                                dev_set_rx_mode(dev);
6706        }
6707
6708        /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6709         * is important. Some (broken) drivers set IFF_PROMISC, when
6710         * IFF_ALLMULTI is requested not asking us and not reporting.
6711         */
6712        if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6713                int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6714
6715                dev->gflags ^= IFF_ALLMULTI;
6716                __dev_set_allmulti(dev, inc, false);
6717        }
6718
6719        return ret;
6720}
6721
6722void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6723                        unsigned int gchanges)
6724{
6725        unsigned int changes = dev->flags ^ old_flags;
6726
6727        if (gchanges)
6728                rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6729
6730        if (changes & IFF_UP) {
6731                if (dev->flags & IFF_UP)
6732                        call_netdevice_notifiers(NETDEV_UP, dev);
6733                else
6734                        call_netdevice_notifiers(NETDEV_DOWN, dev);
6735        }
6736
6737        if (dev->flags & IFF_UP &&
6738            (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6739                struct netdev_notifier_change_info change_info;
6740
6741                change_info.flags_changed = changes;
6742                call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6743                                              &change_info.info);
6744        }
6745}
6746
6747/**
6748 *      dev_change_flags - change device settings
6749 *      @dev: device
6750 *      @flags: device state flags
6751 *
6752 *      Change settings on device based state flags. The flags are
6753 *      in the userspace exported format.
6754 */
6755int dev_change_flags(struct net_device *dev, unsigned int flags)
6756{
6757        int ret;
6758        unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6759
6760        ret = __dev_change_flags(dev, flags);
6761        if (ret < 0)
6762                return ret;
6763
6764        changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6765        __dev_notify_flags(dev, old_flags, changes);
6766        return ret;
6767}
6768EXPORT_SYMBOL(dev_change_flags);
6769
6770int __dev_set_mtu(struct net_device *dev, int new_mtu)
6771{
6772        const struct net_device_ops *ops = dev->netdev_ops;
6773
6774        if (ops->ndo_change_mtu)
6775                return ops->ndo_change_mtu(dev, new_mtu);
6776
6777        dev->mtu = new_mtu;
6778        return 0;
6779}
6780EXPORT_SYMBOL(__dev_set_mtu);
6781
6782/**
6783 *      dev_set_mtu - Change maximum transfer unit
6784 *      @dev: device
6785 *      @new_mtu: new transfer unit
6786 *
6787 *      Change the maximum transfer size of the network device.
6788 */
6789int dev_set_mtu(struct net_device *dev, int new_mtu)
6790{
6791        int err, orig_mtu;
6792
6793        if (new_mtu == dev->mtu)
6794                return 0;
6795
6796        /* MTU must be positive, and in range */
6797        if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6798                net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6799                                    dev->name, new_mtu, dev->min_mtu);
6800                return -EINVAL;
6801        }
6802
6803        if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6804                net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6805                                    dev->name, new_mtu, dev->max_mtu);
6806                return -EINVAL;
6807        }
6808
6809        if (!netif_device_present(dev))
6810                return -ENODEV;
6811
6812        err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6813        err = notifier_to_errno(err);
6814        if (err)
6815                return err;
6816
6817        orig_mtu = dev->mtu;
6818        err = __dev_set_mtu(dev, new_mtu);
6819
6820        if (!err) {
6821                err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6822                err = notifier_to_errno(err);
6823                if (err) {
6824                        /* setting mtu back and notifying everyone again,
6825                         * so that they have a chance to revert changes.
6826                         */
6827                        __dev_set_mtu(dev, orig_mtu);
6828                        call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6829                }
6830        }
6831        return err;
6832}
6833EXPORT_SYMBOL(dev_set_mtu);
6834
6835/**
6836 *      dev_set_group - Change group this device belongs to
6837 *      @dev: device
6838 *      @new_group: group this device should belong to
6839 */
6840void dev_set_group(struct net_device *dev, int new_group)
6841{
6842        dev->group = new_group;
6843}
6844EXPORT_SYMBOL(dev_set_group);
6845
6846/**
6847 *      dev_set_mac_address - Change Media Access Control Address
6848 *      @dev: device
6849 *      @sa: new address
6850 *
6851 *      Change the hardware (MAC) address of the device
6852 */
6853int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6854{
6855        const struct net_device_ops *ops = dev->netdev_ops;
6856        int err;
6857
6858        if (!ops->ndo_set_mac_address)
6859                return -EOPNOTSUPP;
6860        if (sa->sa_family != dev->type)
6861                return -EINVAL;
6862        if (!netif_device_present(dev))
6863                return -ENODEV;
6864        err = ops->ndo_set_mac_address(dev, sa);
6865        if (err)
6866                return err;
6867        dev->addr_assign_type = NET_ADDR_SET;
6868        call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6869        add_device_randomness(dev->dev_addr, dev->addr_len);
6870        return 0;
6871}
6872EXPORT_SYMBOL(dev_set_mac_address);
6873
6874/**
6875 *      dev_change_carrier - Change device carrier
6876 *      @dev: device
6877 *      @new_carrier: new value
6878 *
6879 *      Change device carrier
6880 */
6881int dev_change_carrier(struct net_device *dev, bool new_carrier)
6882{
6883        const struct net_device_ops *ops = dev->netdev_ops;
6884
6885        if (!ops->ndo_change_carrier)
6886                return -EOPNOTSUPP;
6887        if (!netif_device_present(dev))
6888                return -ENODEV;
6889        return ops->ndo_change_carrier(dev, new_carrier);
6890}
6891EXPORT_SYMBOL(dev_change_carrier);
6892
6893/**
6894 *      dev_get_phys_port_id - Get device physical port ID
6895 *      @dev: device
6896 *      @ppid: port ID
6897 *
6898 *      Get device physical port ID
6899 */
6900int dev_get_phys_port_id(struct net_device *dev,
6901                         struct netdev_phys_item_id *ppid)
6902{
6903        const struct net_device_ops *ops = dev->netdev_ops;
6904
6905        if (!ops->ndo_get_phys_port_id)
6906                return -EOPNOTSUPP;
6907        return ops->ndo_get_phys_port_id(dev, ppid);
6908}
6909EXPORT_SYMBOL(dev_get_phys_port_id);
6910
6911/**
6912 *      dev_get_phys_port_name - Get device physical port name
6913 *      @dev: device
6914 *      @name: port name
6915 *      @len: limit of bytes to copy to name
6916 *
6917 *      Get device physical port name
6918 */
6919int dev_get_phys_port_name(struct net_device *dev,
6920                           char *name, size_t len)
6921{
6922        const struct net_device_ops *ops = dev->netdev_ops;
6923
6924        if (!ops->ndo_get_phys_port_name)
6925                return -EOPNOTSUPP;
6926        return ops->ndo_get_phys_port_name(dev, name, len);
6927}
6928EXPORT_SYMBOL(dev_get_phys_port_name);
6929
6930/**
6931 *      dev_change_proto_down - update protocol port state information
6932 *      @dev: device
6933 *      @proto_down: new value
6934 *
6935 *      This info can be used by switch drivers to set the phys state of the
6936 *      port.
6937 */
6938int dev_change_proto_down(struct net_device *dev, bool proto_down)
6939{
6940        const struct net_device_ops *ops = dev->netdev_ops;
6941
6942        if (!ops->ndo_change_proto_down)
6943                return -EOPNOTSUPP;
6944        if (!netif_device_present(dev))
6945                return -ENODEV;
6946        return ops->ndo_change_proto_down(dev, proto_down);
6947}
6948EXPORT_SYMBOL(dev_change_proto_down);
6949
6950u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
6951{
6952        struct netdev_xdp xdp;
6953
6954        memset(&xdp, 0, sizeof(xdp));
6955        xdp.command = XDP_QUERY_PROG;
6956
6957        /* Query must always succeed. */
6958        WARN_ON(xdp_op(dev, &xdp) < 0);
6959        if (prog_id)
6960                *prog_id = xdp.prog_id;
6961
6962        return xdp.prog_attached;
6963}
6964
6965static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
6966                           struct netlink_ext_ack *extack, u32 flags,
6967                           struct bpf_prog *prog)
6968{
6969        struct netdev_xdp xdp;
6970
6971        memset(&xdp, 0, sizeof(xdp));
6972        if (flags & XDP_FLAGS_HW_MODE)
6973                xdp.command = XDP_SETUP_PROG_HW;
6974        else
6975                xdp.command = XDP_SETUP_PROG;
6976        xdp.extack = extack;
6977        xdp.flags = flags;
6978        xdp.prog = prog;
6979
6980        return xdp_op(dev, &xdp);
6981}
6982
6983/**
6984 *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6985 *      @dev: device
6986 *      @extack: netlink extended ack
6987 *      @fd: new program fd or negative value to clear
6988 *      @flags: xdp-related flags
6989 *
6990 *      Set or clear a bpf program for a device
6991 */
6992int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
6993                      int fd, u32 flags)
6994{
6995        const struct net_device_ops *ops = dev->netdev_ops;
6996        struct bpf_prog *prog = NULL;
6997        xdp_op_t xdp_op, xdp_chk;
6998        int err;
6999
7000        ASSERT_RTNL();
7001
7002        xdp_op = xdp_chk = ops->ndo_xdp;
7003        if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7004                return -EOPNOTSUPP;
7005        if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7006                xdp_op = generic_xdp_install;
7007        if (xdp_op == xdp_chk)
7008                xdp_chk = generic_xdp_install;
7009
7010        if (fd >= 0) {
7011                if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
7012                        return -EEXIST;
7013                if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7014                    __dev_xdp_attached(dev, xdp_op, NULL))
7015                        return -EBUSY;
7016
7017                prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7018                if (IS_ERR(prog))
7019                        return PTR_ERR(prog);
7020        }
7021
7022        err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
7023        if (err < 0 && prog)
7024                bpf_prog_put(prog);
7025
7026        return err;
7027}
7028
7029/**
7030 *      dev_new_index   -       allocate an ifindex
7031 *      @net: the applicable net namespace
7032 *
7033 *      Returns a suitable unique value for a new device interface
7034 *      number.  The caller must hold the rtnl semaphore or the
7035 *      dev_base_lock to be sure it remains unique.
7036 */
7037static int dev_new_index(struct net *net)
7038{
7039        int ifindex = net->ifindex;
7040
7041        for (;;) {
7042                if (++ifindex <= 0)
7043                        ifindex = 1;
7044                if (!__dev_get_by_index(net, ifindex))
7045                        return net->ifindex = ifindex;
7046        }
7047}
7048
7049/* Delayed registration/unregisteration */
7050static LIST_HEAD(net_todo_list);
7051DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7052
7053static void net_set_todo(struct net_device *dev)
7054{
7055        list_add_tail(&dev->todo_list, &net_todo_list);
7056        dev_net(dev)->dev_unreg_count++;
7057}
7058
7059static void rollback_registered_many(struct list_head *head)
7060{
7061        struct net_device *dev, *tmp;
7062        LIST_HEAD(close_head);
7063
7064        BUG_ON(dev_boot_phase);
7065        ASSERT_RTNL();
7066
7067        list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7068                /* Some devices call without registering
7069                 * for initialization unwind. Remove those
7070                 * devices and proceed with the remaining.
7071                 */
7072                if (dev->reg_state == NETREG_UNINITIALIZED) {
7073                        pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7074                                 dev->name, dev);
7075
7076                        WARN_ON(1);
7077                        list_del(&dev->unreg_list);
7078                        continue;
7079                }
7080                dev->dismantle = true;
7081                BUG_ON(dev->reg_state != NETREG_REGISTERED);
7082        }
7083
7084        /* If device is running, close it first. */
7085        list_for_each_entry(dev, head, unreg_list)
7086                list_add_tail(&dev->close_list, &close_head);
7087        dev_close_many(&close_head, true);
7088
7089        list_for_each_entry(dev, head, unreg_list) {
7090                /* And unlink it from device chain. */
7091                unlist_netdevice(dev);
7092
7093                dev->reg_state = NETREG_UNREGISTERING;
7094        }
7095        flush_all_backlogs();
7096
7097        synchronize_net();
7098
7099        list_for_each_entry(dev, head, unreg_list) {
7100                struct sk_buff *skb = NULL;
7101
7102                /* Shutdown queueing discipline. */
7103                dev_shutdown(dev);
7104
7105
7106                /* Notify protocols, that we are about to destroy
7107                 * this device. They should clean all the things.
7108                 */
7109                call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7110
7111                if (!dev->rtnl_link_ops ||
7112                    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7113                        skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7114                                                     GFP_KERNEL);
7115
7116                /*
7117                 *      Flush the unicast and multicast chains
7118                 */
7119                dev_uc_flush(dev);
7120                dev_mc_flush(dev);
7121
7122                if (dev->netdev_ops->ndo_uninit)
7123                        dev->netdev_ops->ndo_uninit(dev);
7124
7125                if (skb)
7126                        rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7127
7128                /* Notifier chain MUST detach us all upper devices. */
7129                WARN_ON(netdev_has_any_upper_dev(dev));
7130                WARN_ON(netdev_has_any_lower_dev(dev));
7131
7132                /* Remove entries from kobject tree */
7133                netdev_unregister_kobject(dev);
7134#ifdef CONFIG_XPS
7135                /* Remove XPS queueing entries */
7136                netif_reset_xps_queues_gt(dev, 0);
7137#endif
7138        }
7139
7140        synchronize_net();
7141
7142        list_for_each_entry(dev, head, unreg_list)
7143                dev_put(dev);
7144}
7145
7146static void rollback_registered(struct net_device *dev)
7147{
7148        LIST_HEAD(single);
7149
7150        list_add(&dev->unreg_list, &single);
7151        rollback_registered_many(&single);
7152        list_del(&single);
7153}
7154
7155static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7156        struct net_device *upper, netdev_features_t features)
7157{
7158        netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7159        netdev_features_t feature;
7160        int feature_bit;
7161
7162        for_each_netdev_feature(&upper_disables, feature_bit) {
7163                feature = __NETIF_F_BIT(feature_bit);
7164                if (!(upper->wanted_features & feature)
7165                    && (features & feature)) {
7166                        netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7167                                   &feature, upper->name);
7168                        features &= ~feature;
7169                }
7170        }
7171
7172        return features;
7173}
7174
7175static void netdev_sync_lower_features(struct net_device *upper,
7176        struct net_device *lower, netdev_features_t features)
7177{
7178        netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7179        netdev_features_t feature;
7180        int feature_bit;
7181
7182        for_each_netdev_feature(&upper_disables, feature_bit) {
7183                feature = __NETIF_F_BIT(feature_bit);
7184                if (!(features & feature) && (lower->features & feature)) {
7185                        netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7186                                   &feature, lower->name);
7187                        lower->wanted_features &= ~feature;
7188                        netdev_update_features(lower);
7189
7190                        if (unlikely(lower->features & feature))
7191                                netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7192                                            &feature, lower->name);
7193                }
7194        }
7195}
7196
7197static netdev_features_t netdev_fix_features(struct net_device *dev,
7198        netdev_features_t features)
7199{
7200        /* Fix illegal checksum combinations */
7201        if ((features & NETIF_F_HW_CSUM) &&
7202            (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7203                netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7204                features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7205        }
7206
7207        /* TSO requires that SG is present as well. */
7208        if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7209                netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7210                features &= ~NETIF_F_ALL_TSO;
7211        }
7212
7213        if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7214                                        !(features & NETIF_F_IP_CSUM)) {
7215                netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7216                features &= ~NETIF_F_TSO;
7217                features &= ~NETIF_F_TSO_ECN;
7218        }
7219
7220        if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7221                                         !(features & NETIF_F_IPV6_CSUM)) {
7222                netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7223                features &= ~NETIF_F_TSO6;
7224        }
7225
7226        /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7227        if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7228                features &= ~NETIF_F_TSO_MANGLEID;
7229
7230        /* TSO ECN requires that TSO is present as well. */
7231        if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7232                features &= ~NETIF_F_TSO_ECN;
7233
7234        /* Software GSO depends on SG. */
7235        if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7236                netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7237                features &= ~NETIF_F_GSO;
7238        }
7239
7240        /* UFO needs SG and checksumming */
7241        if (features & NETIF_F_UFO) {
7242                /* maybe split UFO into V4 and V6? */
7243                if (!(features & NETIF_F_HW_CSUM) &&
7244                    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
7245                     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
7246                        netdev_dbg(dev,
7247                                "Dropping NETIF_F_UFO since no checksum offload features.\n");
7248                        features &= ~NETIF_F_UFO;
7249                }
7250
7251                if (!(features & NETIF_F_SG)) {
7252                        netdev_dbg(dev,
7253                                "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
7254                        features &= ~NETIF_F_UFO;
7255                }
7256        }
7257
7258        /* GSO partial features require GSO partial be set */
7259        if ((features & dev->gso_partial_features) &&
7260            !(features & NETIF_F_GSO_PARTIAL)) {
7261                netdev_dbg(dev,
7262                           "Dropping partially supported GSO features since no GSO partial.\n");
7263                features &= ~dev->gso_partial_features;
7264        }
7265
7266        return features;
7267}
7268
7269int __netdev_update_features(struct net_device *dev)
7270{
7271        struct net_device *upper, *lower;
7272        netdev_features_t features;
7273        struct list_head *iter;
7274        int err = -1;
7275
7276        ASSERT_RTNL();
7277
7278        features = netdev_get_wanted_features(dev);
7279
7280        if (dev->netdev_ops->ndo_fix_features)
7281                features = dev->netdev_ops->ndo_fix_features(dev, features);
7282
7283        /* driver might be less strict about feature dependencies */
7284        features = netdev_fix_features(dev, features);
7285
7286        /* some features can't be enabled if they're off an an upper device */
7287        netdev_for_each_upper_dev_rcu(dev, upper, iter)
7288                features = netdev_sync_upper_features(dev, upper, features);
7289
7290        if (dev->features == features)
7291                goto sync_lower;
7292
7293        netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7294                &dev->features, &features);
7295
7296        if (dev->netdev_ops->ndo_set_features)
7297                err = dev->netdev_ops->ndo_set_features(dev, features);
7298        else
7299                err = 0;
7300
7301        if (unlikely(err < 0)) {
7302                netdev_err(dev,
7303                        "set_features() failed (%d); wanted %pNF, left %pNF\n",
7304                        err, &features, &dev->features);
7305                /* return non-0 since some features might have changed and
7306                 * it's better to fire a spurious notification than miss it
7307                 */
7308                return -1;
7309        }
7310
7311sync_lower:
7312        /* some features must be disabled on lower devices when disabled
7313         * on an upper device (think: bonding master or bridge)
7314         */
7315        netdev_for_each_lower_dev(dev, lower, iter)
7316                netdev_sync_lower_features(dev, lower, features);
7317
7318        if (!err)
7319                dev->features = features;
7320
7321        return err < 0 ? 0 : 1;
7322}
7323
7324/**
7325 *      netdev_update_features - recalculate device features
7326 *      @dev: the device to check
7327 *
7328 *      Recalculate dev->features set and send notifications if it
7329 *      has changed. Should be called after driver or hardware dependent
7330 *      conditions might have changed that influence the features.
7331 */
7332void netdev_update_features(struct net_device *dev)
7333{
7334        if (__netdev_update_features(dev))
7335                netdev_features_change(dev);
7336}
7337EXPORT_SYMBOL(netdev_update_features);
7338
7339/**
7340 *      netdev_change_features - recalculate device features
7341 *      @dev: the device to check
7342 *
7343 *      Recalculate dev->features set and send notifications even
7344 *      if they have not changed. Should be called instead of
7345 *      netdev_update_features() if also dev->vlan_features might
7346 *      have changed to allow the changes to be propagated to stacked
7347 *      VLAN devices.
7348 */
7349void netdev_change_features(struct net_device *dev)
7350{
7351        __netdev_update_features(dev);
7352        netdev_features_change(dev);
7353}
7354EXPORT_SYMBOL(netdev_change_features);
7355
7356/**
7357 *      netif_stacked_transfer_operstate -      transfer operstate
7358 *      @rootdev: the root or lower level device to transfer state from
7359 *      @dev: the device to transfer operstate to
7360 *
7361 *      Transfer operational state from root to device. This is normally
7362 *      called when a stacking relationship exists between the root
7363 *      device and the device(a leaf device).
7364 */
7365void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7366                                        struct net_device *dev)
7367{
7368        if (rootdev->operstate == IF_OPER_DORMANT)
7369                netif_dormant_on(dev);
7370        else
7371                netif_dormant_off(dev);
7372
7373        if (netif_carrier_ok(rootdev))
7374                netif_carrier_on(dev);
7375        else
7376                netif_carrier_off(dev);
7377}
7378EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7379
7380#ifdef CONFIG_SYSFS
7381static int netif_alloc_rx_queues(struct net_device *dev)
7382{
7383        unsigned int i, count = dev->num_rx_queues;
7384        struct netdev_rx_queue *rx;
7385        size_t sz = count * sizeof(*rx);
7386
7387        BUG_ON(count < 1);
7388
7389        rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7390        if (!rx)
7391                return -ENOMEM;
7392
7393        dev->_rx = rx;
7394
7395        for (i = 0; i < count; i++)
7396                rx[i].dev = dev;
7397        return 0;
7398}
7399#endif
7400
7401static void netdev_init_one_queue(struct net_device *dev,
7402                                  struct netdev_queue *queue, void *_unused)
7403{
7404        /* Initialize queue lock */
7405        spin_lock_init(&queue->_xmit_lock);
7406        netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7407        queue->xmit_lock_owner = -1;
7408        netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7409        queue->dev = dev;
7410#ifdef CONFIG_BQL
7411        dql_init(&queue->dql, HZ);
7412#endif
7413}
7414
7415static void netif_free_tx_queues(struct net_device *dev)
7416{
7417        kvfree(dev->_tx);
7418}
7419
7420static int netif_alloc_netdev_queues(struct net_device *dev)
7421{
7422        unsigned int count = dev->num_tx_queues;
7423        struct netdev_queue *tx;
7424        size_t sz = count * sizeof(*tx);
7425
7426        if (count < 1 || count > 0xffff)
7427                return -EINVAL;
7428
7429        tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7430        if (!tx)
7431                return -ENOMEM;
7432
7433        dev->_tx = tx;
7434
7435        netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7436        spin_lock_init(&dev->tx_global_lock);
7437
7438        return 0;
7439}
7440
7441void netif_tx_stop_all_queues(struct net_device *dev)
7442{
7443        unsigned int i;
7444
7445        for (i = 0; i < dev->num_tx_queues; i++) {
7446                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7447
7448                netif_tx_stop_queue(txq);
7449        }
7450}
7451EXPORT_SYMBOL(netif_tx_stop_all_queues);
7452
7453/**
7454 *      register_netdevice      - register a network device
7455 *      @dev: device to register
7456 *
7457 *      Take a completed network device structure and add it to the kernel
7458 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7459 *      chain. 0 is returned on success. A negative errno code is returned
7460 *      on a failure to set up the device, or if the name is a duplicate.
7461 *
7462 *      Callers must hold the rtnl semaphore. You may want
7463 *      register_netdev() instead of this.
7464 *
7465 *      BUGS:
7466 *      The locking appears insufficient to guarantee two parallel registers
7467 *      will not get the same name.
7468 */
7469
7470int register_netdevice(struct net_device *dev)
7471{
7472        int ret;
7473        struct net *net = dev_net(dev);
7474
7475        BUG_ON(dev_boot_phase);
7476        ASSERT_RTNL();
7477
7478        might_sleep();
7479
7480        /* When net_device's are persistent, this will be fatal. */
7481        BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7482        BUG_ON(!net);
7483
7484        spin_lock_init(&dev->addr_list_lock);
7485        netdev_set_addr_lockdep_class(dev);
7486
7487        ret = dev_get_valid_name(net, dev, dev->name);
7488        if (ret < 0)
7489                goto out;
7490
7491        /* Init, if this function is available */
7492        if (dev->netdev_ops->ndo_init) {
7493                ret = dev->netdev_ops->ndo_init(dev);
7494                if (ret) {
7495                        if (ret > 0)
7496                                ret = -EIO;
7497                        goto out;
7498                }
7499        }
7500
7501        if (((dev->hw_features | dev->features) &
7502             NETIF_F_HW_VLAN_CTAG_FILTER) &&
7503            (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7504             !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7505                netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7506                ret = -EINVAL;
7507                goto err_uninit;
7508        }
7509
7510        ret = -EBUSY;
7511        if (!dev->ifindex)
7512                dev->ifindex = dev_new_index(net);
7513        else if (__dev_get_by_index(net, dev->ifindex))
7514                goto err_uninit;
7515
7516        /* Transfer changeable features to wanted_features and enable
7517         * software offloads (GSO and GRO).
7518         */
7519        dev->hw_features |= NETIF_F_SOFT_FEATURES;
7520        dev->features |= NETIF_F_SOFT_FEATURES;
7521        dev->wanted_features = dev->features & dev->hw_features;
7522
7523        if (!(dev->flags & IFF_LOOPBACK))
7524                dev->hw_features |= NETIF_F_NOCACHE_COPY;
7525
7526        /* If IPv4 TCP segmentation offload is supported we should also
7527         * allow the device to enable segmenting the frame with the option
7528         * of ignoring a static IP ID value.  This doesn't enable the
7529         * feature itself but allows the user to enable it later.
7530         */
7531        if (dev->hw_features & NETIF_F_TSO)
7532                dev->hw_features |= NETIF_F_TSO_MANGLEID;
7533        if (dev->vlan_features & NETIF_F_TSO)
7534                dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7535        if (dev->mpls_features & NETIF_F_TSO)
7536                dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7537        if (dev->hw_enc_features & NETIF_F_TSO)
7538                dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7539
7540        /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7541         */
7542        dev->vlan_features |= NETIF_F_HIGHDMA;
7543
7544        /* Make NETIF_F_SG inheritable to tunnel devices.
7545         */
7546        dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7547
7548        /* Make NETIF_F_SG inheritable to MPLS.
7549         */
7550        dev->mpls_features |= NETIF_F_SG;
7551
7552        ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7553        ret = notifier_to_errno(ret);
7554        if (ret)
7555                goto err_uninit;
7556
7557        ret = netdev_register_kobject(dev);
7558        if (ret)
7559                goto err_uninit;
7560        dev->reg_state = NETREG_REGISTERED;
7561
7562        __netdev_update_features(dev);
7563
7564        /*
7565         *      Default initial state at registry is that the
7566         *      device is present.
7567         */
7568
7569        set_bit(__LINK_STATE_PRESENT, &dev->state);
7570
7571        linkwatch_init_dev(dev);
7572
7573        dev_init_scheduler(dev);
7574        dev_hold(dev);
7575        list_netdevice(dev);
7576        add_device_randomness(dev->dev_addr, dev->addr_len);
7577
7578        /* If the device has permanent device address, driver should
7579         * set dev_addr and also addr_assign_type should be set to
7580         * NET_ADDR_PERM (default value).
7581         */
7582        if (dev->addr_assign_type == NET_ADDR_PERM)
7583                memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7584
7585        /* Notify protocols, that a new device appeared. */
7586        ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7587        ret = notifier_to_errno(ret);
7588        if (ret) {
7589                rollback_registered(dev);
7590                dev->reg_state = NETREG_UNREGISTERED;
7591        }
7592        /*
7593         *      Prevent userspace races by waiting until the network
7594         *      device is fully setup before sending notifications.
7595         */
7596        if (!dev->rtnl_link_ops ||
7597            dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7598                rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7599
7600out:
7601        return ret;
7602
7603err_uninit:
7604        if (dev->netdev_ops->ndo_uninit)
7605                dev->netdev_ops->ndo_uninit(dev);
7606        if (dev->priv_destructor)
7607                dev->priv_destructor(dev);
7608        goto out;
7609}
7610EXPORT_SYMBOL(register_netdevice);
7611
7612/**
7613 *      init_dummy_netdev       - init a dummy network device for NAPI
7614 *      @dev: device to init
7615 *
7616 *      This takes a network device structure and initialize the minimum
7617 *      amount of fields so it can be used to schedule NAPI polls without
7618 *      registering a full blown interface. This is to be used by drivers
7619 *      that need to tie several hardware interfaces to a single NAPI
7620 *      poll scheduler due to HW limitations.
7621 */
7622int init_dummy_netdev(struct net_device *dev)
7623{
7624        /* Clear everything. Note we don't initialize spinlocks
7625         * are they aren't supposed to be taken by any of the
7626         * NAPI code and this dummy netdev is supposed to be
7627         * only ever used for NAPI polls
7628         */
7629        memset(dev, 0, sizeof(struct net_device));
7630
7631        /* make sure we BUG if trying to hit standard
7632         * register/unregister code path
7633         */
7634        dev->reg_state = NETREG_DUMMY;
7635
7636        /* NAPI wants this */
7637        INIT_LIST_HEAD(&dev->napi_list);
7638
7639        /* a dummy interface is started by default */
7640        set_bit(__LINK_STATE_PRESENT, &dev->state);
7641        set_bit(__LINK_STATE_START, &dev->state);
7642
7643        /* Note : We dont allocate pcpu_refcnt for dummy devices,
7644         * because users of this 'device' dont need to change
7645         * its refcount.
7646         */
7647
7648        return 0;
7649}
7650EXPORT_SYMBOL_GPL(init_dummy_netdev);
7651
7652
7653/**
7654 *      register_netdev - register a network device
7655 *      @dev: device to register
7656 *
7657 *      Take a completed network device structure and add it to the kernel
7658 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7659 *      chain. 0 is returned on success. A negative errno code is returned
7660 *      on a failure to set up the device, or if the name is a duplicate.
7661 *
7662 *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7663 *      and expands the device name if you passed a format string to
7664 *      alloc_netdev.
7665 */
7666int register_netdev(struct net_device *dev)
7667{
7668        int err;
7669
7670        rtnl_lock();
7671        err = register_netdevice(dev);
7672        rtnl_unlock();
7673        return err;
7674}
7675EXPORT_SYMBOL(register_netdev);
7676
7677int netdev_refcnt_read(const struct net_device *dev)
7678{
7679        int i, refcnt = 0;
7680
7681        for_each_possible_cpu(i)
7682                refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7683        return refcnt;
7684}
7685EXPORT_SYMBOL(netdev_refcnt_read);
7686
7687/**
7688 * netdev_wait_allrefs - wait until all references are gone.
7689 * @dev: target net_device
7690 *
7691 * This is called when unregistering network devices.
7692 *
7693 * Any protocol or device that holds a reference should register
7694 * for netdevice notification, and cleanup and put back the
7695 * reference if they receive an UNREGISTER event.
7696 * We can get stuck here if buggy protocols don't correctly
7697 * call dev_put.
7698 */
7699static void netdev_wait_allrefs(struct net_device *dev)
7700{
7701        unsigned long rebroadcast_time, warning_time;
7702        int refcnt;
7703
7704        linkwatch_forget_dev(dev);
7705
7706        rebroadcast_time = warning_time = jiffies;
7707        refcnt = netdev_refcnt_read(dev);
7708
7709        while (refcnt != 0) {
7710                if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7711                        rtnl_lock();
7712
7713                        /* Rebroadcast unregister notification */
7714                        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7715
7716                        __rtnl_unlock();
7717                        rcu_barrier();
7718                        rtnl_lock();
7719
7720                        call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7721                        if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7722                                     &dev->state)) {
7723                                /* We must not have linkwatch events
7724                                 * pending on unregister. If this
7725                                 * happens, we simply run the queue
7726                                 * unscheduled, resulting in a noop
7727                                 * for this device.
7728                                 */
7729                                linkwatch_run_queue();
7730                        }
7731
7732                        __rtnl_unlock();
7733
7734                        rebroadcast_time = jiffies;
7735                }
7736
7737                msleep(250);
7738
7739                refcnt = netdev_refcnt_read(dev);
7740
7741                if (time_after(jiffies, warning_time + 10 * HZ)) {
7742                        pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7743                                 dev->name, refcnt);
7744                        warning_time = jiffies;
7745                }
7746        }
7747}
7748
7749/* The sequence is:
7750 *
7751 *      rtnl_lock();
7752 *      ...
7753 *      register_netdevice(x1);
7754 *      register_netdevice(x2);
7755 *      ...
7756 *      unregister_netdevice(y1);
7757 *      unregister_netdevice(y2);
7758 *      ...
7759 *      rtnl_unlock();
7760 *      free_netdev(y1);
7761 *      free_netdev(y2);
7762 *
7763 * We are invoked by rtnl_unlock().
7764 * This allows us to deal with problems:
7765 * 1) We can delete sysfs objects which invoke hotplug
7766 *    without deadlocking with linkwatch via keventd.
7767 * 2) Since we run with the RTNL semaphore not held, we can sleep
7768 *    safely in order to wait for the netdev refcnt to drop to zero.
7769 *
7770 * We must not return until all unregister events added during
7771 * the interval the lock was held have been completed.
7772 */
7773void netdev_run_todo(void)
7774{
7775        struct list_head list;
7776
7777        /* Snapshot list, allow later requests */
7778        list_replace_init(&net_todo_list, &list);
7779
7780        __rtnl_unlock();
7781
7782
7783        /* Wait for rcu callbacks to finish before next phase */
7784        if (!list_empty(&list))
7785                rcu_barrier();
7786
7787        while (!list_empty(&list)) {
7788                struct net_device *dev
7789                        = list_first_entry(&list, struct net_device, todo_list);
7790                list_del(&dev->todo_list);
7791
7792                rtnl_lock();
7793                call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7794                __rtnl_unlock();
7795
7796                if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7797                        pr_err("network todo '%s' but state %d\n",
7798                               dev->name, dev->reg_state);
7799                        dump_stack();
7800                        continue;
7801                }
7802
7803                dev->reg_state = NETREG_UNREGISTERED;
7804
7805                netdev_wait_allrefs(dev);
7806
7807                /* paranoia */
7808                BUG_ON(netdev_refcnt_read(dev));
7809                BUG_ON(!list_empty(&dev->ptype_all));
7810                BUG_ON(!list_empty(&dev->ptype_specific));
7811                WARN_ON(rcu_access_pointer(dev->ip_ptr));
7812                WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7813                WARN_ON(dev->dn_ptr);
7814
7815                if (dev->priv_destructor)
7816                        dev->priv_destructor(dev);
7817                if (dev->needs_free_netdev)
7818                        free_netdev(dev);
7819
7820                /* Report a network device has been unregistered */
7821                rtnl_lock();
7822                dev_net(dev)->dev_unreg_count--;
7823                __rtnl_unlock();
7824                wake_up(&netdev_unregistering_wq);
7825
7826                /* Free network device */
7827                kobject_put(&dev->dev.kobj);
7828        }
7829}
7830
7831/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7832 * all the same fields in the same order as net_device_stats, with only
7833 * the type differing, but rtnl_link_stats64 may have additional fields
7834 * at the end for newer counters.
7835 */
7836void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7837                             const struct net_device_stats *netdev_stats)
7838{
7839#if BITS_PER_LONG == 64
7840        BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7841        memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7842        /* zero out counters that only exist in rtnl_link_stats64 */
7843        memset((char *)stats64 + sizeof(*netdev_stats), 0,
7844               sizeof(*stats64) - sizeof(*netdev_stats));
7845#else
7846        size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7847        const unsigned long *src = (const unsigned long *)netdev_stats;
7848        u64 *dst = (u64 *)stats64;
7849
7850        BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7851        for (i = 0; i < n; i++)
7852                dst[i] = src[i];
7853        /* zero out counters that only exist in rtnl_link_stats64 */
7854        memset((char *)stats64 + n * sizeof(u64), 0,
7855               sizeof(*stats64) - n * sizeof(u64));
7856#endif
7857}
7858EXPORT_SYMBOL(netdev_stats_to_stats64);
7859
7860/**
7861 *      dev_get_stats   - get network device statistics
7862 *      @dev: device to get statistics from
7863 *      @storage: place to store stats
7864 *
7865 *      Get network statistics from device. Return @storage.
7866 *      The device driver may provide its own method by setting
7867 *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7868 *      otherwise the internal statistics structure is used.
7869 */
7870struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7871                                        struct rtnl_link_stats64 *storage)
7872{
7873        const struct net_device_ops *ops = dev->netdev_ops;
7874
7875        if (ops->ndo_get_stats64) {
7876                memset(storage, 0, sizeof(*storage));
7877                ops->ndo_get_stats64(dev, storage);
7878        } else if (ops->ndo_get_stats) {
7879                netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7880        } else {
7881                netdev_stats_to_stats64(storage, &dev->stats);
7882        }
7883        storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
7884        storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
7885        storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
7886        return storage;
7887}
7888EXPORT_SYMBOL(dev_get_stats);
7889
7890struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7891{
7892        struct netdev_queue *queue = dev_ingress_queue(dev);
7893
7894#ifdef CONFIG_NET_CLS_ACT
7895        if (queue)
7896                return queue;
7897        queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7898        if (!queue)
7899                return NULL;
7900        netdev_init_one_queue(dev, queue, NULL);
7901        RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7902        queue->qdisc_sleeping = &noop_qdisc;
7903        rcu_assign_pointer(dev->ingress_queue, queue);
7904#endif
7905        return queue;
7906}
7907
7908static const struct ethtool_ops default_ethtool_ops;
7909
7910void netdev_set_default_ethtool_ops(struct net_device *dev,
7911                                    const struct ethtool_ops *ops)
7912{
7913        if (dev->ethtool_ops == &default_ethtool_ops)
7914                dev->ethtool_ops = ops;
7915}
7916EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7917
7918void netdev_freemem(struct net_device *dev)
7919{
7920        char *addr = (char *)dev - dev->padded;
7921
7922        kvfree(addr);
7923}
7924
7925/**
7926 * alloc_netdev_mqs - allocate network device
7927 * @sizeof_priv: size of private data to allocate space for
7928 * @name: device name format string
7929 * @name_assign_type: origin of device name
7930 * @setup: callback to initialize device
7931 * @txqs: the number of TX subqueues to allocate
7932 * @rxqs: the number of RX subqueues to allocate
7933 *
7934 * Allocates a struct net_device with private data area for driver use
7935 * and performs basic initialization.  Also allocates subqueue structs
7936 * for each queue on the device.
7937 */
7938struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7939                unsigned char name_assign_type,
7940                void (*setup)(struct net_device *),
7941                unsigned int txqs, unsigned int rxqs)
7942{
7943        struct net_device *dev;
7944        size_t alloc_size;
7945        struct net_device *p;
7946
7947        BUG_ON(strlen(name) >= sizeof(dev->name));
7948
7949        if (txqs < 1) {
7950                pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7951                return NULL;
7952        }
7953
7954#ifdef CONFIG_SYSFS
7955        if (rxqs < 1) {
7956                pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7957                return NULL;
7958        }
7959#endif
7960
7961        alloc_size = sizeof(struct net_device);
7962        if (sizeof_priv) {
7963                /* ensure 32-byte alignment of private area */
7964                alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7965                alloc_size += sizeof_priv;
7966        }
7967        /* ensure 32-byte alignment of whole construct */
7968        alloc_size += NETDEV_ALIGN - 1;
7969
7970        p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7971        if (!p)
7972                return NULL;
7973
7974        dev = PTR_ALIGN(p, NETDEV_ALIGN);
7975        dev->padded = (char *)dev - (char *)p;
7976
7977        dev->pcpu_refcnt = alloc_percpu(int);
7978        if (!dev->pcpu_refcnt)
7979                goto free_dev;
7980
7981        if (dev_addr_init(dev))
7982                goto free_pcpu;
7983
7984        dev_mc_init(dev);
7985        dev_uc_init(dev);
7986
7987        dev_net_set(dev, &init_net);
7988
7989        dev->gso_max_size = GSO_MAX_SIZE;
7990        dev->gso_max_segs = GSO_MAX_SEGS;
7991
7992        INIT_LIST_HEAD(&dev->napi_list);
7993        INIT_LIST_HEAD(&dev->unreg_list);
7994        INIT_LIST_HEAD(&dev->close_list);
7995        INIT_LIST_HEAD(&dev->link_watch_list);
7996        INIT_LIST_HEAD(&dev->adj_list.upper);
7997        INIT_LIST_HEAD(&dev->adj_list.lower);
7998        INIT_LIST_HEAD(&dev->ptype_all);
7999        INIT_LIST_HEAD(&dev->ptype_specific);
8000#ifdef CONFIG_NET_SCHED
8001        hash_init(dev->qdisc_hash);
8002#endif
8003        dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8004        setup(dev);
8005
8006        if (!dev->tx_queue_len) {
8007                dev->priv_flags |= IFF_NO_QUEUE;
8008                dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8009        }
8010
8011        dev->num_tx_queues = txqs;
8012        dev->real_num_tx_queues = txqs;
8013        if (netif_alloc_netdev_queues(dev))
8014                goto free_all;
8015
8016#ifdef CONFIG_SYSFS
8017        dev->num_rx_queues = rxqs;
8018        dev->real_num_rx_queues = rxqs;
8019        if (netif_alloc_rx_queues(dev))
8020                goto free_all;
8021#endif
8022
8023        strcpy(dev->name, name);
8024        dev->name_assign_type = name_assign_type;
8025        dev->group = INIT_NETDEV_GROUP;
8026        if (!dev->ethtool_ops)
8027                dev->ethtool_ops = &default_ethtool_ops;
8028
8029        nf_hook_ingress_init(dev);
8030
8031        return dev;
8032
8033free_all:
8034        free_netdev(dev);
8035        return NULL;
8036
8037free_pcpu:
8038        free_percpu(dev->pcpu_refcnt);
8039free_dev:
8040        netdev_freemem(dev);
8041        return NULL;
8042}
8043EXPORT_SYMBOL(alloc_netdev_mqs);
8044
8045/**
8046 * free_netdev - free network device
8047 * @dev: device
8048 *
8049 * This function does the last stage of destroying an allocated device
8050 * interface. The reference to the device object is released. If this
8051 * is the last reference then it will be freed.Must be called in process
8052 * context.
8053 */
8054void free_netdev(struct net_device *dev)
8055{
8056        struct napi_struct *p, *n;
8057        struct bpf_prog *prog;
8058
8059        might_sleep();
8060        netif_free_tx_queues(dev);
8061#ifdef CONFIG_SYSFS
8062        kvfree(dev->_rx);
8063#endif
8064
8065        kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8066
8067        /* Flush device addresses */
8068        dev_addr_flush(dev);
8069
8070        list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8071                netif_napi_del(p);
8072
8073        free_percpu(dev->pcpu_refcnt);
8074        dev->pcpu_refcnt = NULL;
8075
8076        prog = rcu_dereference_protected(dev->xdp_prog, 1);
8077        if (prog) {
8078                bpf_prog_put(prog);
8079                static_key_slow_dec(&generic_xdp_needed);
8080        }
8081
8082        /*  Compatibility with error handling in drivers */
8083        if (dev->reg_state == NETREG_UNINITIALIZED) {
8084                netdev_freemem(dev);
8085                return;
8086        }
8087
8088        BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8089        dev->reg_state = NETREG_RELEASED;
8090
8091        /* will free via device release */
8092        put_device(&dev->dev);
8093}
8094EXPORT_SYMBOL(free_netdev);
8095
8096/**
8097 *      synchronize_net -  Synchronize with packet receive processing
8098 *
8099 *      Wait for packets currently being received to be done.
8100 *      Does not block later packets from starting.
8101 */
8102void synchronize_net(void)
8103{
8104        might_sleep();
8105        if (rtnl_is_locked())
8106                synchronize_rcu_expedited();
8107        else
8108                synchronize_rcu();
8109}
8110EXPORT_SYMBOL(synchronize_net);
8111
8112/**
8113 *      unregister_netdevice_queue - remove device from the kernel
8114 *      @dev: device
8115 *      @head: list
8116 *
8117 *      This function shuts down a device interface and removes it
8118 *      from the kernel tables.
8119 *      If head not NULL, device is queued to be unregistered later.
8120 *
8121 *      Callers must hold the rtnl semaphore.  You may want
8122 *      unregister_netdev() instead of this.
8123 */
8124
8125void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8126{
8127        ASSERT_RTNL();
8128
8129        if (head) {
8130                list_move_tail(&dev->unreg_list, head);
8131        } else {
8132                rollback_registered(dev);
8133                /* Finish processing unregister after unlock */
8134                net_set_todo(dev);
8135        }
8136}
8137EXPORT_SYMBOL(unregister_netdevice_queue);
8138
8139/**
8140 *      unregister_netdevice_many - unregister many devices
8141 *      @head: list of devices
8142 *
8143 *  Note: As most callers use a stack allocated list_head,
8144 *  we force a list_del() to make sure stack wont be corrupted later.
8145 */
8146void unregister_netdevice_many(struct list_head *head)
8147{
8148        struct net_device *dev;
8149
8150        if (!list_empty(head)) {
8151                rollback_registered_many(head);
8152                list_for_each_entry(dev, head, unreg_list)
8153                        net_set_todo(dev);
8154                list_del(head);
8155        }
8156}
8157EXPORT_SYMBOL(unregister_netdevice_many);
8158
8159/**
8160 *      unregister_netdev - remove device from the kernel
8161 *      @dev: device
8162 *
8163 *      This function shuts down a device interface and removes it
8164 *      from the kernel tables.
8165 *
8166 *      This is just a wrapper for unregister_netdevice that takes
8167 *      the rtnl semaphore.  In general you want to use this and not
8168 *      unregister_netdevice.
8169 */
8170void unregister_netdev(struct net_device *dev)
8171{
8172        rtnl_lock();
8173        unregister_netdevice(dev);
8174        rtnl_unlock();
8175}
8176EXPORT_SYMBOL(unregister_netdev);
8177
8178/**
8179 *      dev_change_net_namespace - move device to different nethost namespace
8180 *      @dev: device
8181 *      @net: network namespace
8182 *      @pat: If not NULL name pattern to try if the current device name
8183 *            is already taken in the destination network namespace.
8184 *
8185 *      This function shuts down a device interface and moves it
8186 *      to a new network namespace. On success 0 is returned, on
8187 *      a failure a netagive errno code is returned.
8188 *
8189 *      Callers must hold the rtnl semaphore.
8190 */
8191
8192int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8193{
8194        int err;
8195
8196        ASSERT_RTNL();
8197
8198        /* Don't allow namespace local devices to be moved. */
8199        err = -EINVAL;
8200        if (dev->features & NETIF_F_NETNS_LOCAL)
8201                goto out;
8202
8203        /* Ensure the device has been registrered */
8204        if (dev->reg_state != NETREG_REGISTERED)
8205                goto out;
8206
8207        /* Get out if there is nothing todo */
8208        err = 0;
8209        if (net_eq(dev_net(dev), net))
8210                goto out;
8211
8212        /* Pick the destination device name, and ensure
8213         * we can use it in the destination network namespace.
8214         */
8215        err = -EEXIST;
8216        if (__dev_get_by_name(net, dev->name)) {
8217                /* We get here if we can't use the current device name */
8218                if (!pat)
8219                        goto out;
8220                if (dev_get_valid_name(net, dev, pat) < 0)
8221                        goto out;
8222        }
8223
8224        /*
8225         * And now a mini version of register_netdevice unregister_netdevice.
8226         */
8227
8228        /* If device is running close it first. */
8229        dev_close(dev);
8230
8231        /* And unlink it from device chain */
8232        err = -ENODEV;
8233        unlist_netdevice(dev);
8234
8235        synchronize_net();
8236
8237        /* Shutdown queueing discipline. */
8238        dev_shutdown(dev);
8239
8240        /* Notify protocols, that we are about to destroy
8241         * this device. They should clean all the things.
8242         *
8243         * Note that dev->reg_state stays at NETREG_REGISTERED.
8244         * This is wanted because this way 8021q and macvlan know
8245         * the device is just moving and can keep their slaves up.
8246         */
8247        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8248        rcu_barrier();
8249        call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8250        rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8251
8252        /*
8253         *      Flush the unicast and multicast chains
8254         */
8255        dev_uc_flush(dev);
8256        dev_mc_flush(dev);
8257
8258        /* Send a netdev-removed uevent to the old namespace */
8259        kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8260        netdev_adjacent_del_links(dev);
8261
8262        /* Actually switch the network namespace */
8263        dev_net_set(dev, net);
8264
8265        /* If there is an ifindex conflict assign a new one */
8266        if (__dev_get_by_index(net, dev->ifindex))
8267                dev->ifindex = dev_new_index(net);
8268
8269        /* Send a netdev-add uevent to the new namespace */
8270        kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8271        netdev_adjacent_add_links(dev);
8272
8273        /* Fixup kobjects */
8274        err = device_rename(&dev->dev, dev->name);
8275        WARN_ON(err);
8276
8277        /* Add the device back in the hashes */
8278        list_netdevice(dev);
8279
8280        /* Notify protocols, that a new device appeared. */
8281        call_netdevice_notifiers(NETDEV_REGISTER, dev);
8282
8283        /*
8284         *      Prevent userspace races by waiting until the network
8285         *      device is fully setup before sending notifications.
8286         */
8287        rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8288
8289        synchronize_net();
8290        err = 0;
8291out:
8292        return err;
8293}
8294EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8295
8296static int dev_cpu_dead(unsigned int oldcpu)
8297{
8298        struct sk_buff **list_skb;
8299        struct sk_buff *skb;
8300        unsigned int cpu;
8301        struct softnet_data *sd, *oldsd, *remsd = NULL;
8302
8303        local_irq_disable();
8304        cpu = smp_processor_id();
8305        sd = &per_cpu(softnet_data, cpu);
8306        oldsd = &per_cpu(softnet_data, oldcpu);
8307
8308        /* Find end of our completion_queue. */
8309        list_skb = &sd->completion_queue;
8310        while (*list_skb)
8311                list_skb = &(*list_skb)->next;
8312        /* Append completion queue from offline CPU. */
8313        *list_skb = oldsd->completion_queue;
8314        oldsd->completion_queue = NULL;
8315
8316        /* Append output queue from offline CPU. */
8317        if (oldsd->output_queue) {
8318                *sd->output_queue_tailp = oldsd->output_queue;
8319                sd->output_queue_tailp = oldsd->output_queue_tailp;
8320                oldsd->output_queue = NULL;
8321                oldsd->output_queue_tailp = &oldsd->output_queue;
8322        }
8323        /* Append NAPI poll list from offline CPU, with one exception :
8324         * process_backlog() must be called by cpu owning percpu backlog.
8325         * We properly handle process_queue & input_pkt_queue later.
8326         */
8327        while (!list_empty(&oldsd->poll_list)) {
8328                struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8329                                                            struct napi_struct,
8330                                                            poll_list);
8331
8332                list_del_init(&napi->poll_list);
8333                if (napi->poll == process_backlog)
8334                        napi->state = 0;
8335                else
8336                        ____napi_schedule(sd, napi);
8337        }
8338
8339        raise_softirq_irqoff(NET_TX_SOFTIRQ);
8340        local_irq_enable();
8341
8342#ifdef CONFIG_RPS
8343        remsd = oldsd->rps_ipi_list;
8344        oldsd->rps_ipi_list = NULL;
8345#endif
8346        /* send out pending IPI's on offline CPU */
8347        net_rps_send_ipi(remsd);
8348
8349        /* Process offline CPU's input_pkt_queue */
8350        while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8351                netif_rx_ni(skb);
8352                input_queue_head_incr(oldsd);
8353        }
8354        while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8355                netif_rx_ni(skb);
8356                input_queue_head_incr(oldsd);
8357        }
8358
8359        return 0;
8360}
8361
8362/**
8363 *      netdev_increment_features - increment feature set by one
8364 *      @all: current feature set
8365 *      @one: new feature set
8366 *      @mask: mask feature set
8367 *
8368 *      Computes a new feature set after adding a device with feature set
8369 *      @one to the master device with current feature set @all.  Will not
8370 *      enable anything that is off in @mask. Returns the new feature set.
8371 */
8372netdev_features_t netdev_increment_features(netdev_features_t all,
8373        netdev_features_t one, netdev_features_t mask)
8374{
8375        if (mask & NETIF_F_HW_CSUM)
8376                mask |= NETIF_F_CSUM_MASK;
8377        mask |= NETIF_F_VLAN_CHALLENGED;
8378
8379        all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8380        all &= one | ~NETIF_F_ALL_FOR_ALL;
8381
8382        /* If one device supports hw checksumming, set for all. */
8383        if (all & NETIF_F_HW_CSUM)
8384                all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8385
8386        return all;
8387}
8388EXPORT_SYMBOL(netdev_increment_features);
8389
8390static struct hlist_head * __net_init netdev_create_hash(void)
8391{
8392        int i;
8393        struct hlist_head *hash;
8394
8395        hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8396        if (hash != NULL)
8397                for (i = 0; i < NETDEV_HASHENTRIES; i++)
8398                        INIT_HLIST_HEAD(&hash[i]);
8399
8400        return hash;
8401}
8402
8403/* Initialize per network namespace state */
8404static int __net_init netdev_init(struct net *net)
8405{
8406        if (net != &init_net)
8407                INIT_LIST_HEAD(&net->dev_base_head);
8408
8409        net->dev_name_head = netdev_create_hash();
8410        if (net->dev_name_head == NULL)
8411                goto err_name;
8412
8413        net->dev_index_head = netdev_create_hash();
8414        if (net->dev_index_head == NULL)
8415                goto err_idx;
8416
8417        return 0;
8418
8419err_idx:
8420        kfree(net->dev_name_head);
8421err_name:
8422        return -ENOMEM;
8423}
8424
8425/**
8426 *      netdev_drivername - network driver for the device
8427 *      @dev: network device
8428 *
8429 *      Determine network driver for device.
8430 */
8431const char *netdev_drivername(const struct net_device *dev)
8432{
8433        const struct device_driver *driver;
8434        const struct device *parent;
8435        const char *empty = "";
8436
8437        parent = dev->dev.parent;
8438        if (!parent)
8439                return empty;
8440
8441        driver = parent->driver;
8442        if (driver && driver->name)
8443                return driver->name;
8444        return empty;
8445}
8446
8447static void __netdev_printk(const char *level, const struct net_device *dev,
8448                            struct va_format *vaf)
8449{
8450        if (dev && dev->dev.parent) {
8451                dev_printk_emit(level[1] - '0',
8452                                dev->dev.parent,
8453                                "%s %s %s%s: %pV",
8454                                dev_driver_string(dev->dev.parent),
8455                                dev_name(dev->dev.parent),
8456                                netdev_name(dev), netdev_reg_state(dev),
8457                                vaf);
8458        } else if (dev) {
8459                printk("%s%s%s: %pV",
8460                       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8461        } else {
8462                printk("%s(NULL net_device): %pV", level, vaf);
8463        }
8464}
8465
8466void netdev_printk(const char *level, const struct net_device *dev,
8467                   const char *format, ...)
8468{
8469        struct va_format vaf;
8470        va_list args;
8471
8472        va_start(args, format);
8473
8474        vaf.fmt = format;
8475        vaf.va = &args;
8476
8477        __netdev_printk(level, dev, &vaf);
8478
8479        va_end(args);
8480}
8481EXPORT_SYMBOL(netdev_printk);
8482
8483#define define_netdev_printk_level(func, level)                 \
8484void func(const struct net_device *dev, const char *fmt, ...)   \
8485{                                                               \
8486        struct va_format vaf;                                   \
8487        va_list args;                                           \
8488                                                                \
8489        va_start(args, fmt);                                    \
8490                                                                \
8491        vaf.fmt = fmt;                                          \
8492        vaf.va = &args;                                         \
8493                                                                \
8494        __netdev_printk(level, dev, &vaf);                      \
8495                                                                \
8496        va_end(args);                                           \
8497}                                                               \
8498EXPORT_SYMBOL(func);
8499
8500define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8501define_netdev_printk_level(netdev_alert, KERN_ALERT);
8502define_netdev_printk_level(netdev_crit, KERN_CRIT);
8503define_netdev_printk_level(netdev_err, KERN_ERR);
8504define_netdev_printk_level(netdev_warn, KERN_WARNING);
8505define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8506define_netdev_printk_level(netdev_info, KERN_INFO);
8507
8508static void __net_exit netdev_exit(struct net *net)
8509{
8510        kfree(net->dev_name_head);
8511        kfree(net->dev_index_head);
8512}
8513
8514static struct pernet_operations __net_initdata netdev_net_ops = {
8515        .init = netdev_init,
8516        .exit = netdev_exit,
8517};
8518
8519static void __net_exit default_device_exit(struct net *net)
8520{
8521        struct net_device *dev, *aux;
8522        /*
8523         * Push all migratable network devices back to the
8524         * initial network namespace
8525         */
8526        rtnl_lock();
8527        for_each_netdev_safe(net, dev, aux) {
8528                int err;
8529                char fb_name[IFNAMSIZ];
8530
8531                /* Ignore unmoveable devices (i.e. loopback) */
8532                if (dev->features & NETIF_F_NETNS_LOCAL)
8533                        continue;
8534
8535                /* Leave virtual devices for the generic cleanup */
8536                if (dev->rtnl_link_ops)
8537                        continue;
8538
8539                /* Push remaining network devices to init_net */
8540                snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8541                err = dev_change_net_namespace(dev, &init_net, fb_name);
8542                if (err) {
8543                        pr_emerg("%s: failed to move %s to init_net: %d\n",
8544                                 __func__, dev->name, err);
8545                        BUG();
8546                }
8547        }
8548        rtnl_unlock();
8549}
8550
8551static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8552{
8553        /* Return with the rtnl_lock held when there are no network
8554         * devices unregistering in any network namespace in net_list.
8555         */
8556        struct net *net;
8557        bool unregistering;
8558        DEFINE_WAIT_FUNC(wait, woken_wake_function);
8559
8560        add_wait_queue(&netdev_unregistering_wq, &wait);
8561        for (;;) {
8562                unregistering = false;
8563                rtnl_lock();
8564                list_for_each_entry(net, net_list, exit_list) {
8565                        if (net->dev_unreg_count > 0) {
8566                                unregistering = true;
8567                                break;
8568                        }
8569                }
8570                if (!unregistering)
8571                        break;
8572                __rtnl_unlock();
8573
8574                wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8575        }
8576        remove_wait_queue(&netdev_unregistering_wq, &wait);
8577}
8578
8579static void __net_exit default_device_exit_batch(struct list_head *net_list)
8580{
8581        /* At exit all network devices most be removed from a network
8582         * namespace.  Do this in the reverse order of registration.
8583         * Do this across as many network namespaces as possible to
8584         * improve batching efficiency.
8585         */
8586        struct net_device *dev;
8587        struct net *net;
8588        LIST_HEAD(dev_kill_list);
8589
8590        /* To prevent network device cleanup code from dereferencing
8591         * loopback devices or network devices that have been freed
8592         * wait here for all pending unregistrations to complete,
8593         * before unregistring the loopback device and allowing the
8594         * network namespace be freed.
8595         *
8596         * The netdev todo list containing all network devices
8597         * unregistrations that happen in default_device_exit_batch
8598         * will run in the rtnl_unlock() at the end of
8599         * default_device_exit_batch.
8600         */
8601        rtnl_lock_unregistering(net_list);
8602        list_for_each_entry(net, net_list, exit_list) {
8603                for_each_netdev_reverse(net, dev) {
8604                        if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8605                                dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8606                        else
8607                                unregister_netdevice_queue(dev, &dev_kill_list);
8608                }
8609        }
8610        unregister_netdevice_many(&dev_kill_list);
8611        rtnl_unlock();
8612}
8613
8614static struct pernet_operations __net_initdata default_device_ops = {
8615        .exit = default_device_exit,
8616        .exit_batch = default_device_exit_batch,
8617};
8618
8619/*
8620 *      Initialize the DEV module. At boot time this walks the device list and
8621 *      unhooks any devices that fail to initialise (normally hardware not
8622 *      present) and leaves us with a valid list of present and active devices.
8623 *
8624 */
8625
8626/*
8627 *       This is called single threaded during boot, so no need
8628 *       to take the rtnl semaphore.
8629 */
8630static int __init net_dev_init(void)
8631{
8632        int i, rc = -ENOMEM;
8633
8634        BUG_ON(!dev_boot_phase);
8635
8636        if (dev_proc_init())
8637                goto out;
8638
8639        if (netdev_kobject_init())
8640                goto out;
8641
8642        INIT_LIST_HEAD(&ptype_all);
8643        for (i = 0; i < PTYPE_HASH_SIZE; i++)
8644                INIT_LIST_HEAD(&ptype_base[i]);
8645
8646        INIT_LIST_HEAD(&offload_base);
8647
8648        if (register_pernet_subsys(&netdev_net_ops))
8649                goto out;
8650
8651        /*
8652         *      Initialise the packet receive queues.
8653         */
8654
8655        for_each_possible_cpu(i) {
8656                struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8657                struct softnet_data *sd = &per_cpu(softnet_data, i);
8658
8659                INIT_WORK(flush, flush_backlog);
8660
8661                skb_queue_head_init(&sd->input_pkt_queue);
8662                skb_queue_head_init(&sd->process_queue);
8663                INIT_LIST_HEAD(&sd->poll_list);
8664                sd->output_queue_tailp = &sd->output_queue;
8665#ifdef CONFIG_RPS
8666                sd->csd.func = rps_trigger_softirq;
8667                sd->csd.info = sd;
8668                sd->cpu = i;
8669#endif
8670
8671                sd->backlog.poll = process_backlog;
8672                sd->backlog.weight = weight_p;
8673        }
8674
8675        dev_boot_phase = 0;
8676
8677        /* The loopback device is special if any other network devices
8678         * is present in a network namespace the loopback device must
8679         * be present. Since we now dynamically allocate and free the
8680         * loopback device ensure this invariant is maintained by
8681         * keeping the loopback device as the first device on the
8682         * list of network devices.  Ensuring the loopback devices
8683         * is the first device that appears and the last network device
8684         * that disappears.
8685         */
8686        if (register_pernet_device(&loopback_net_ops))
8687                goto out;
8688
8689        if (register_pernet_device(&default_device_ops))
8690                goto out;
8691
8692        open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8693        open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8694
8695        rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8696                                       NULL, dev_cpu_dead);
8697        WARN_ON(rc < 0);
8698        rc = 0;
8699out:
8700        return rc;
8701}
8702
8703subsys_initcall(net_dev_init);
8704