linux/net/core/skbuff.c
<<
>>
Prefs
   1/*
   2 *      Routines having to do with the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:        Alan Cox <alan@lxorguk.ukuu.org.uk>
   5 *                      Florian La Roche <rzsfl@rz.uni-sb.de>
   6 *
   7 *      Fixes:
   8 *              Alan Cox        :       Fixed the worst of the load
   9 *                                      balancer bugs.
  10 *              Dave Platt      :       Interrupt stacking fix.
  11 *      Richard Kooijman        :       Timestamp fixes.
  12 *              Alan Cox        :       Changed buffer format.
  13 *              Alan Cox        :       destructor hook for AF_UNIX etc.
  14 *              Linus Torvalds  :       Better skb_clone.
  15 *              Alan Cox        :       Added skb_copy.
  16 *              Alan Cox        :       Added all the changed routines Linus
  17 *                                      only put in the headers
  18 *              Ray VanTassle   :       Fixed --skb->lock in free
  19 *              Alan Cox        :       skb_copy copy arp field
  20 *              Andi Kleen      :       slabified it.
  21 *              Robert Olsson   :       Removed skb_head_pool
  22 *
  23 *      NOTE:
  24 *              The __skb_ routines should be called with interrupts
  25 *      disabled, or you better be *real* sure that the operation is atomic
  26 *      with respect to whatever list is being frobbed (e.g. via lock_sock()
  27 *      or via disabling bottom half handlers, etc).
  28 *
  29 *      This program is free software; you can redistribute it and/or
  30 *      modify it under the terms of the GNU General Public License
  31 *      as published by the Free Software Foundation; either version
  32 *      2 of the License, or (at your option) any later version.
  33 */
  34
  35/*
  36 *      The functions in this file will not compile correctly with gcc 2.4.x
  37 */
  38
  39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  40
  41#include <linux/module.h>
  42#include <linux/types.h>
  43#include <linux/kernel.h>
  44#include <linux/kmemcheck.h>
  45#include <linux/mm.h>
  46#include <linux/interrupt.h>
  47#include <linux/in.h>
  48#include <linux/inet.h>
  49#include <linux/slab.h>
  50#include <linux/tcp.h>
  51#include <linux/udp.h>
  52#include <linux/sctp.h>
  53#include <linux/netdevice.h>
  54#ifdef CONFIG_NET_CLS_ACT
  55#include <net/pkt_sched.h>
  56#endif
  57#include <linux/string.h>
  58#include <linux/skbuff.h>
  59#include <linux/splice.h>
  60#include <linux/cache.h>
  61#include <linux/rtnetlink.h>
  62#include <linux/init.h>
  63#include <linux/scatterlist.h>
  64#include <linux/errqueue.h>
  65#include <linux/prefetch.h>
  66#include <linux/if_vlan.h>
  67
  68#include <net/protocol.h>
  69#include <net/dst.h>
  70#include <net/sock.h>
  71#include <net/checksum.h>
  72#include <net/ip6_checksum.h>
  73#include <net/xfrm.h>
  74
  75#include <linux/uaccess.h>
  76#include <trace/events/skb.h>
  77#include <linux/highmem.h>
  78#include <linux/capability.h>
  79#include <linux/user_namespace.h>
  80
  81struct kmem_cache *skbuff_head_cache __read_mostly;
  82static struct kmem_cache *skbuff_fclone_cache __read_mostly;
  83int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
  84EXPORT_SYMBOL(sysctl_max_skb_frags);
  85
  86/**
  87 *      skb_panic - private function for out-of-line support
  88 *      @skb:   buffer
  89 *      @sz:    size
  90 *      @addr:  address
  91 *      @msg:   skb_over_panic or skb_under_panic
  92 *
  93 *      Out-of-line support for skb_put() and skb_push().
  94 *      Called via the wrapper skb_over_panic() or skb_under_panic().
  95 *      Keep out of line to prevent kernel bloat.
  96 *      __builtin_return_address is not used because it is not always reliable.
  97 */
  98static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
  99                      const char msg[])
 100{
 101        pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
 102                 msg, addr, skb->len, sz, skb->head, skb->data,
 103                 (unsigned long)skb->tail, (unsigned long)skb->end,
 104                 skb->dev ? skb->dev->name : "<NULL>");
 105        BUG();
 106}
 107
 108static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 109{
 110        skb_panic(skb, sz, addr, __func__);
 111}
 112
 113static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 114{
 115        skb_panic(skb, sz, addr, __func__);
 116}
 117
 118/*
 119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 120 * the caller if emergency pfmemalloc reserves are being used. If it is and
 121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 122 * may be used. Otherwise, the packet data may be discarded until enough
 123 * memory is free
 124 */
 125#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
 126         __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
 127
 128static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
 129                               unsigned long ip, bool *pfmemalloc)
 130{
 131        void *obj;
 132        bool ret_pfmemalloc = false;
 133
 134        /*
 135         * Try a regular allocation, when that fails and we're not entitled
 136         * to the reserves, fail.
 137         */
 138        obj = kmalloc_node_track_caller(size,
 139                                        flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 140                                        node);
 141        if (obj || !(gfp_pfmemalloc_allowed(flags)))
 142                goto out;
 143
 144        /* Try again but now we are using pfmemalloc reserves */
 145        ret_pfmemalloc = true;
 146        obj = kmalloc_node_track_caller(size, flags, node);
 147
 148out:
 149        if (pfmemalloc)
 150                *pfmemalloc = ret_pfmemalloc;
 151
 152        return obj;
 153}
 154
 155/*      Allocate a new skbuff. We do this ourselves so we can fill in a few
 156 *      'private' fields and also do memory statistics to find all the
 157 *      [BEEP] leaks.
 158 *
 159 */
 160
 161struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
 162{
 163        struct sk_buff *skb;
 164
 165        /* Get the HEAD */
 166        skb = kmem_cache_alloc_node(skbuff_head_cache,
 167                                    gfp_mask & ~__GFP_DMA, node);
 168        if (!skb)
 169                goto out;
 170
 171        /*
 172         * Only clear those fields we need to clear, not those that we will
 173         * actually initialise below. Hence, don't put any more fields after
 174         * the tail pointer in struct sk_buff!
 175         */
 176        memset(skb, 0, offsetof(struct sk_buff, tail));
 177        skb->head = NULL;
 178        skb->truesize = sizeof(struct sk_buff);
 179        refcount_set(&skb->users, 1);
 180
 181        skb->mac_header = (typeof(skb->mac_header))~0U;
 182out:
 183        return skb;
 184}
 185
 186/**
 187 *      __alloc_skb     -       allocate a network buffer
 188 *      @size: size to allocate
 189 *      @gfp_mask: allocation mask
 190 *      @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 191 *              instead of head cache and allocate a cloned (child) skb.
 192 *              If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 193 *              allocations in case the data is required for writeback
 194 *      @node: numa node to allocate memory on
 195 *
 196 *      Allocate a new &sk_buff. The returned buffer has no headroom and a
 197 *      tail room of at least size bytes. The object has a reference count
 198 *      of one. The return is the buffer. On a failure the return is %NULL.
 199 *
 200 *      Buffers may only be allocated from interrupts using a @gfp_mask of
 201 *      %GFP_ATOMIC.
 202 */
 203struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 204                            int flags, int node)
 205{
 206        struct kmem_cache *cache;
 207        struct skb_shared_info *shinfo;
 208        struct sk_buff *skb;
 209        u8 *data;
 210        bool pfmemalloc;
 211
 212        cache = (flags & SKB_ALLOC_FCLONE)
 213                ? skbuff_fclone_cache : skbuff_head_cache;
 214
 215        if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 216                gfp_mask |= __GFP_MEMALLOC;
 217
 218        /* Get the HEAD */
 219        skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 220        if (!skb)
 221                goto out;
 222        prefetchw(skb);
 223
 224        /* We do our best to align skb_shared_info on a separate cache
 225         * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 226         * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 227         * Both skb->head and skb_shared_info are cache line aligned.
 228         */
 229        size = SKB_DATA_ALIGN(size);
 230        size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 231        data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 232        if (!data)
 233                goto nodata;
 234        /* kmalloc(size) might give us more room than requested.
 235         * Put skb_shared_info exactly at the end of allocated zone,
 236         * to allow max possible filling before reallocation.
 237         */
 238        size = SKB_WITH_OVERHEAD(ksize(data));
 239        prefetchw(data + size);
 240
 241        /*
 242         * Only clear those fields we need to clear, not those that we will
 243         * actually initialise below. Hence, don't put any more fields after
 244         * the tail pointer in struct sk_buff!
 245         */
 246        memset(skb, 0, offsetof(struct sk_buff, tail));
 247        /* Account for allocated memory : skb + skb->head */
 248        skb->truesize = SKB_TRUESIZE(size);
 249        skb->pfmemalloc = pfmemalloc;
 250        refcount_set(&skb->users, 1);
 251        skb->head = data;
 252        skb->data = data;
 253        skb_reset_tail_pointer(skb);
 254        skb->end = skb->tail + size;
 255        skb->mac_header = (typeof(skb->mac_header))~0U;
 256        skb->transport_header = (typeof(skb->transport_header))~0U;
 257
 258        /* make sure we initialize shinfo sequentially */
 259        shinfo = skb_shinfo(skb);
 260        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 261        atomic_set(&shinfo->dataref, 1);
 262        kmemcheck_annotate_variable(shinfo->destructor_arg);
 263
 264        if (flags & SKB_ALLOC_FCLONE) {
 265                struct sk_buff_fclones *fclones;
 266
 267                fclones = container_of(skb, struct sk_buff_fclones, skb1);
 268
 269                kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
 270                skb->fclone = SKB_FCLONE_ORIG;
 271                refcount_set(&fclones->fclone_ref, 1);
 272
 273                fclones->skb2.fclone = SKB_FCLONE_CLONE;
 274        }
 275out:
 276        return skb;
 277nodata:
 278        kmem_cache_free(cache, skb);
 279        skb = NULL;
 280        goto out;
 281}
 282EXPORT_SYMBOL(__alloc_skb);
 283
 284/**
 285 * __build_skb - build a network buffer
 286 * @data: data buffer provided by caller
 287 * @frag_size: size of data, or 0 if head was kmalloced
 288 *
 289 * Allocate a new &sk_buff. Caller provides space holding head and
 290 * skb_shared_info. @data must have been allocated by kmalloc() only if
 291 * @frag_size is 0, otherwise data should come from the page allocator
 292 *  or vmalloc()
 293 * The return is the new skb buffer.
 294 * On a failure the return is %NULL, and @data is not freed.
 295 * Notes :
 296 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 297 *  Driver should add room at head (NET_SKB_PAD) and
 298 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 299 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 300 *  before giving packet to stack.
 301 *  RX rings only contains data buffers, not full skbs.
 302 */
 303struct sk_buff *__build_skb(void *data, unsigned int frag_size)
 304{
 305        struct skb_shared_info *shinfo;
 306        struct sk_buff *skb;
 307        unsigned int size = frag_size ? : ksize(data);
 308
 309        skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 310        if (!skb)
 311                return NULL;
 312
 313        size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 314
 315        memset(skb, 0, offsetof(struct sk_buff, tail));
 316        skb->truesize = SKB_TRUESIZE(size);
 317        refcount_set(&skb->users, 1);
 318        skb->head = data;
 319        skb->data = data;
 320        skb_reset_tail_pointer(skb);
 321        skb->end = skb->tail + size;
 322        skb->mac_header = (typeof(skb->mac_header))~0U;
 323        skb->transport_header = (typeof(skb->transport_header))~0U;
 324
 325        /* make sure we initialize shinfo sequentially */
 326        shinfo = skb_shinfo(skb);
 327        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 328        atomic_set(&shinfo->dataref, 1);
 329        kmemcheck_annotate_variable(shinfo->destructor_arg);
 330
 331        return skb;
 332}
 333
 334/* build_skb() is wrapper over __build_skb(), that specifically
 335 * takes care of skb->head and skb->pfmemalloc
 336 * This means that if @frag_size is not zero, then @data must be backed
 337 * by a page fragment, not kmalloc() or vmalloc()
 338 */
 339struct sk_buff *build_skb(void *data, unsigned int frag_size)
 340{
 341        struct sk_buff *skb = __build_skb(data, frag_size);
 342
 343        if (skb && frag_size) {
 344                skb->head_frag = 1;
 345                if (page_is_pfmemalloc(virt_to_head_page(data)))
 346                        skb->pfmemalloc = 1;
 347        }
 348        return skb;
 349}
 350EXPORT_SYMBOL(build_skb);
 351
 352#define NAPI_SKB_CACHE_SIZE     64
 353
 354struct napi_alloc_cache {
 355        struct page_frag_cache page;
 356        unsigned int skb_count;
 357        void *skb_cache[NAPI_SKB_CACHE_SIZE];
 358};
 359
 360static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
 361static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
 362
 363static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 364{
 365        struct page_frag_cache *nc;
 366        unsigned long flags;
 367        void *data;
 368
 369        local_irq_save(flags);
 370        nc = this_cpu_ptr(&netdev_alloc_cache);
 371        data = page_frag_alloc(nc, fragsz, gfp_mask);
 372        local_irq_restore(flags);
 373        return data;
 374}
 375
 376/**
 377 * netdev_alloc_frag - allocate a page fragment
 378 * @fragsz: fragment size
 379 *
 380 * Allocates a frag from a page for receive buffer.
 381 * Uses GFP_ATOMIC allocations.
 382 */
 383void *netdev_alloc_frag(unsigned int fragsz)
 384{
 385        return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
 386}
 387EXPORT_SYMBOL(netdev_alloc_frag);
 388
 389static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 390{
 391        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 392
 393        return page_frag_alloc(&nc->page, fragsz, gfp_mask);
 394}
 395
 396void *napi_alloc_frag(unsigned int fragsz)
 397{
 398        return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
 399}
 400EXPORT_SYMBOL(napi_alloc_frag);
 401
 402/**
 403 *      __netdev_alloc_skb - allocate an skbuff for rx on a specific device
 404 *      @dev: network device to receive on
 405 *      @len: length to allocate
 406 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
 407 *
 408 *      Allocate a new &sk_buff and assign it a usage count of one. The
 409 *      buffer has NET_SKB_PAD headroom built in. Users should allocate
 410 *      the headroom they think they need without accounting for the
 411 *      built in space. The built in space is used for optimisations.
 412 *
 413 *      %NULL is returned if there is no free memory.
 414 */
 415struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
 416                                   gfp_t gfp_mask)
 417{
 418        struct page_frag_cache *nc;
 419        unsigned long flags;
 420        struct sk_buff *skb;
 421        bool pfmemalloc;
 422        void *data;
 423
 424        len += NET_SKB_PAD;
 425
 426        if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 427            (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 428                skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 429                if (!skb)
 430                        goto skb_fail;
 431                goto skb_success;
 432        }
 433
 434        len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 435        len = SKB_DATA_ALIGN(len);
 436
 437        if (sk_memalloc_socks())
 438                gfp_mask |= __GFP_MEMALLOC;
 439
 440        local_irq_save(flags);
 441
 442        nc = this_cpu_ptr(&netdev_alloc_cache);
 443        data = page_frag_alloc(nc, len, gfp_mask);
 444        pfmemalloc = nc->pfmemalloc;
 445
 446        local_irq_restore(flags);
 447
 448        if (unlikely(!data))
 449                return NULL;
 450
 451        skb = __build_skb(data, len);
 452        if (unlikely(!skb)) {
 453                skb_free_frag(data);
 454                return NULL;
 455        }
 456
 457        /* use OR instead of assignment to avoid clearing of bits in mask */
 458        if (pfmemalloc)
 459                skb->pfmemalloc = 1;
 460        skb->head_frag = 1;
 461
 462skb_success:
 463        skb_reserve(skb, NET_SKB_PAD);
 464        skb->dev = dev;
 465
 466skb_fail:
 467        return skb;
 468}
 469EXPORT_SYMBOL(__netdev_alloc_skb);
 470
 471/**
 472 *      __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
 473 *      @napi: napi instance this buffer was allocated for
 474 *      @len: length to allocate
 475 *      @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
 476 *
 477 *      Allocate a new sk_buff for use in NAPI receive.  This buffer will
 478 *      attempt to allocate the head from a special reserved region used
 479 *      only for NAPI Rx allocation.  By doing this we can save several
 480 *      CPU cycles by avoiding having to disable and re-enable IRQs.
 481 *
 482 *      %NULL is returned if there is no free memory.
 483 */
 484struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
 485                                 gfp_t gfp_mask)
 486{
 487        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 488        struct sk_buff *skb;
 489        void *data;
 490
 491        len += NET_SKB_PAD + NET_IP_ALIGN;
 492
 493        if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 494            (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 495                skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 496                if (!skb)
 497                        goto skb_fail;
 498                goto skb_success;
 499        }
 500
 501        len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 502        len = SKB_DATA_ALIGN(len);
 503
 504        if (sk_memalloc_socks())
 505                gfp_mask |= __GFP_MEMALLOC;
 506
 507        data = page_frag_alloc(&nc->page, len, gfp_mask);
 508        if (unlikely(!data))
 509                return NULL;
 510
 511        skb = __build_skb(data, len);
 512        if (unlikely(!skb)) {
 513                skb_free_frag(data);
 514                return NULL;
 515        }
 516
 517        /* use OR instead of assignment to avoid clearing of bits in mask */
 518        if (nc->page.pfmemalloc)
 519                skb->pfmemalloc = 1;
 520        skb->head_frag = 1;
 521
 522skb_success:
 523        skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
 524        skb->dev = napi->dev;
 525
 526skb_fail:
 527        return skb;
 528}
 529EXPORT_SYMBOL(__napi_alloc_skb);
 530
 531void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 532                     int size, unsigned int truesize)
 533{
 534        skb_fill_page_desc(skb, i, page, off, size);
 535        skb->len += size;
 536        skb->data_len += size;
 537        skb->truesize += truesize;
 538}
 539EXPORT_SYMBOL(skb_add_rx_frag);
 540
 541void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 542                          unsigned int truesize)
 543{
 544        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 545
 546        skb_frag_size_add(frag, size);
 547        skb->len += size;
 548        skb->data_len += size;
 549        skb->truesize += truesize;
 550}
 551EXPORT_SYMBOL(skb_coalesce_rx_frag);
 552
 553static void skb_drop_list(struct sk_buff **listp)
 554{
 555        kfree_skb_list(*listp);
 556        *listp = NULL;
 557}
 558
 559static inline void skb_drop_fraglist(struct sk_buff *skb)
 560{
 561        skb_drop_list(&skb_shinfo(skb)->frag_list);
 562}
 563
 564static void skb_clone_fraglist(struct sk_buff *skb)
 565{
 566        struct sk_buff *list;
 567
 568        skb_walk_frags(skb, list)
 569                skb_get(list);
 570}
 571
 572static void skb_free_head(struct sk_buff *skb)
 573{
 574        unsigned char *head = skb->head;
 575
 576        if (skb->head_frag)
 577                skb_free_frag(head);
 578        else
 579                kfree(head);
 580}
 581
 582static void skb_release_data(struct sk_buff *skb)
 583{
 584        struct skb_shared_info *shinfo = skb_shinfo(skb);
 585        int i;
 586
 587        if (skb->cloned &&
 588            atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 589                              &shinfo->dataref))
 590                return;
 591
 592        for (i = 0; i < shinfo->nr_frags; i++)
 593                __skb_frag_unref(&shinfo->frags[i]);
 594
 595        /*
 596         * If skb buf is from userspace, we need to notify the caller
 597         * the lower device DMA has done;
 598         */
 599        if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
 600                struct ubuf_info *uarg;
 601
 602                uarg = shinfo->destructor_arg;
 603                if (uarg->callback)
 604                        uarg->callback(uarg, true);
 605        }
 606
 607        if (shinfo->frag_list)
 608                kfree_skb_list(shinfo->frag_list);
 609
 610        skb_free_head(skb);
 611}
 612
 613/*
 614 *      Free an skbuff by memory without cleaning the state.
 615 */
 616static void kfree_skbmem(struct sk_buff *skb)
 617{
 618        struct sk_buff_fclones *fclones;
 619
 620        switch (skb->fclone) {
 621        case SKB_FCLONE_UNAVAILABLE:
 622                kmem_cache_free(skbuff_head_cache, skb);
 623                return;
 624
 625        case SKB_FCLONE_ORIG:
 626                fclones = container_of(skb, struct sk_buff_fclones, skb1);
 627
 628                /* We usually free the clone (TX completion) before original skb
 629                 * This test would have no chance to be true for the clone,
 630                 * while here, branch prediction will be good.
 631                 */
 632                if (refcount_read(&fclones->fclone_ref) == 1)
 633                        goto fastpath;
 634                break;
 635
 636        default: /* SKB_FCLONE_CLONE */
 637                fclones = container_of(skb, struct sk_buff_fclones, skb2);
 638                break;
 639        }
 640        if (!refcount_dec_and_test(&fclones->fclone_ref))
 641                return;
 642fastpath:
 643        kmem_cache_free(skbuff_fclone_cache, fclones);
 644}
 645
 646void skb_release_head_state(struct sk_buff *skb)
 647{
 648        skb_dst_drop(skb);
 649        secpath_reset(skb);
 650        if (skb->destructor) {
 651                WARN_ON(in_irq());
 652                skb->destructor(skb);
 653        }
 654#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 655        nf_conntrack_put(skb_nfct(skb));
 656#endif
 657#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 658        nf_bridge_put(skb->nf_bridge);
 659#endif
 660}
 661
 662/* Free everything but the sk_buff shell. */
 663static void skb_release_all(struct sk_buff *skb)
 664{
 665        skb_release_head_state(skb);
 666        if (likely(skb->head))
 667                skb_release_data(skb);
 668}
 669
 670/**
 671 *      __kfree_skb - private function
 672 *      @skb: buffer
 673 *
 674 *      Free an sk_buff. Release anything attached to the buffer.
 675 *      Clean the state. This is an internal helper function. Users should
 676 *      always call kfree_skb
 677 */
 678
 679void __kfree_skb(struct sk_buff *skb)
 680{
 681        skb_release_all(skb);
 682        kfree_skbmem(skb);
 683}
 684EXPORT_SYMBOL(__kfree_skb);
 685
 686/**
 687 *      kfree_skb - free an sk_buff
 688 *      @skb: buffer to free
 689 *
 690 *      Drop a reference to the buffer and free it if the usage count has
 691 *      hit zero.
 692 */
 693void kfree_skb(struct sk_buff *skb)
 694{
 695        if (!skb_unref(skb))
 696                return;
 697
 698        trace_kfree_skb(skb, __builtin_return_address(0));
 699        __kfree_skb(skb);
 700}
 701EXPORT_SYMBOL(kfree_skb);
 702
 703void kfree_skb_list(struct sk_buff *segs)
 704{
 705        while (segs) {
 706                struct sk_buff *next = segs->next;
 707
 708                kfree_skb(segs);
 709                segs = next;
 710        }
 711}
 712EXPORT_SYMBOL(kfree_skb_list);
 713
 714/**
 715 *      skb_tx_error - report an sk_buff xmit error
 716 *      @skb: buffer that triggered an error
 717 *
 718 *      Report xmit error if a device callback is tracking this skb.
 719 *      skb must be freed afterwards.
 720 */
 721void skb_tx_error(struct sk_buff *skb)
 722{
 723        if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 724                struct ubuf_info *uarg;
 725
 726                uarg = skb_shinfo(skb)->destructor_arg;
 727                if (uarg->callback)
 728                        uarg->callback(uarg, false);
 729                skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 730        }
 731}
 732EXPORT_SYMBOL(skb_tx_error);
 733
 734/**
 735 *      consume_skb - free an skbuff
 736 *      @skb: buffer to free
 737 *
 738 *      Drop a ref to the buffer and free it if the usage count has hit zero
 739 *      Functions identically to kfree_skb, but kfree_skb assumes that the frame
 740 *      is being dropped after a failure and notes that
 741 */
 742void consume_skb(struct sk_buff *skb)
 743{
 744        if (!skb_unref(skb))
 745                return;
 746
 747        trace_consume_skb(skb);
 748        __kfree_skb(skb);
 749}
 750EXPORT_SYMBOL(consume_skb);
 751
 752/**
 753 *      consume_stateless_skb - free an skbuff, assuming it is stateless
 754 *      @skb: buffer to free
 755 *
 756 *      Works like consume_skb(), but this variant assumes that all the head
 757 *      states have been already dropped.
 758 */
 759void consume_stateless_skb(struct sk_buff *skb)
 760{
 761        if (!skb_unref(skb))
 762                return;
 763
 764        trace_consume_skb(skb);
 765        if (likely(skb->head))
 766                skb_release_data(skb);
 767        kfree_skbmem(skb);
 768}
 769
 770void __kfree_skb_flush(void)
 771{
 772        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 773
 774        /* flush skb_cache if containing objects */
 775        if (nc->skb_count) {
 776                kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
 777                                     nc->skb_cache);
 778                nc->skb_count = 0;
 779        }
 780}
 781
 782static inline void _kfree_skb_defer(struct sk_buff *skb)
 783{
 784        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 785
 786        /* drop skb->head and call any destructors for packet */
 787        skb_release_all(skb);
 788
 789        /* record skb to CPU local list */
 790        nc->skb_cache[nc->skb_count++] = skb;
 791
 792#ifdef CONFIG_SLUB
 793        /* SLUB writes into objects when freeing */
 794        prefetchw(skb);
 795#endif
 796
 797        /* flush skb_cache if it is filled */
 798        if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
 799                kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
 800                                     nc->skb_cache);
 801                nc->skb_count = 0;
 802        }
 803}
 804void __kfree_skb_defer(struct sk_buff *skb)
 805{
 806        _kfree_skb_defer(skb);
 807}
 808
 809void napi_consume_skb(struct sk_buff *skb, int budget)
 810{
 811        if (unlikely(!skb))
 812                return;
 813
 814        /* Zero budget indicate non-NAPI context called us, like netpoll */
 815        if (unlikely(!budget)) {
 816                dev_consume_skb_any(skb);
 817                return;
 818        }
 819
 820        if (!skb_unref(skb))
 821                return;
 822
 823        /* if reaching here SKB is ready to free */
 824        trace_consume_skb(skb);
 825
 826        /* if SKB is a clone, don't handle this case */
 827        if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
 828                __kfree_skb(skb);
 829                return;
 830        }
 831
 832        _kfree_skb_defer(skb);
 833}
 834EXPORT_SYMBOL(napi_consume_skb);
 835
 836/* Make sure a field is enclosed inside headers_start/headers_end section */
 837#define CHECK_SKB_FIELD(field) \
 838        BUILD_BUG_ON(offsetof(struct sk_buff, field) <          \
 839                     offsetof(struct sk_buff, headers_start));  \
 840        BUILD_BUG_ON(offsetof(struct sk_buff, field) >          \
 841                     offsetof(struct sk_buff, headers_end));    \
 842
 843static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 844{
 845        new->tstamp             = old->tstamp;
 846        /* We do not copy old->sk */
 847        new->dev                = old->dev;
 848        memcpy(new->cb, old->cb, sizeof(old->cb));
 849        skb_dst_copy(new, old);
 850#ifdef CONFIG_XFRM
 851        new->sp                 = secpath_get(old->sp);
 852#endif
 853        __nf_copy(new, old, false);
 854
 855        /* Note : this field could be in headers_start/headers_end section
 856         * It is not yet because we do not want to have a 16 bit hole
 857         */
 858        new->queue_mapping = old->queue_mapping;
 859
 860        memcpy(&new->headers_start, &old->headers_start,
 861               offsetof(struct sk_buff, headers_end) -
 862               offsetof(struct sk_buff, headers_start));
 863        CHECK_SKB_FIELD(protocol);
 864        CHECK_SKB_FIELD(csum);
 865        CHECK_SKB_FIELD(hash);
 866        CHECK_SKB_FIELD(priority);
 867        CHECK_SKB_FIELD(skb_iif);
 868        CHECK_SKB_FIELD(vlan_proto);
 869        CHECK_SKB_FIELD(vlan_tci);
 870        CHECK_SKB_FIELD(transport_header);
 871        CHECK_SKB_FIELD(network_header);
 872        CHECK_SKB_FIELD(mac_header);
 873        CHECK_SKB_FIELD(inner_protocol);
 874        CHECK_SKB_FIELD(inner_transport_header);
 875        CHECK_SKB_FIELD(inner_network_header);
 876        CHECK_SKB_FIELD(inner_mac_header);
 877        CHECK_SKB_FIELD(mark);
 878#ifdef CONFIG_NETWORK_SECMARK
 879        CHECK_SKB_FIELD(secmark);
 880#endif
 881#ifdef CONFIG_NET_RX_BUSY_POLL
 882        CHECK_SKB_FIELD(napi_id);
 883#endif
 884#ifdef CONFIG_XPS
 885        CHECK_SKB_FIELD(sender_cpu);
 886#endif
 887#ifdef CONFIG_NET_SCHED
 888        CHECK_SKB_FIELD(tc_index);
 889#endif
 890
 891}
 892
 893/*
 894 * You should not add any new code to this function.  Add it to
 895 * __copy_skb_header above instead.
 896 */
 897static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 898{
 899#define C(x) n->x = skb->x
 900
 901        n->next = n->prev = NULL;
 902        n->sk = NULL;
 903        __copy_skb_header(n, skb);
 904
 905        C(len);
 906        C(data_len);
 907        C(mac_len);
 908        n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 909        n->cloned = 1;
 910        n->nohdr = 0;
 911        n->destructor = NULL;
 912        C(tail);
 913        C(end);
 914        C(head);
 915        C(head_frag);
 916        C(data);
 917        C(truesize);
 918        refcount_set(&n->users, 1);
 919
 920        atomic_inc(&(skb_shinfo(skb)->dataref));
 921        skb->cloned = 1;
 922
 923        return n;
 924#undef C
 925}
 926
 927/**
 928 *      skb_morph       -       morph one skb into another
 929 *      @dst: the skb to receive the contents
 930 *      @src: the skb to supply the contents
 931 *
 932 *      This is identical to skb_clone except that the target skb is
 933 *      supplied by the user.
 934 *
 935 *      The target skb is returned upon exit.
 936 */
 937struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
 938{
 939        skb_release_all(dst);
 940        return __skb_clone(dst, src);
 941}
 942EXPORT_SYMBOL_GPL(skb_morph);
 943
 944/**
 945 *      skb_copy_ubufs  -       copy userspace skb frags buffers to kernel
 946 *      @skb: the skb to modify
 947 *      @gfp_mask: allocation priority
 948 *
 949 *      This must be called on SKBTX_DEV_ZEROCOPY skb.
 950 *      It will copy all frags into kernel and drop the reference
 951 *      to userspace pages.
 952 *
 953 *      If this function is called from an interrupt gfp_mask() must be
 954 *      %GFP_ATOMIC.
 955 *
 956 *      Returns 0 on success or a negative error code on failure
 957 *      to allocate kernel memory to copy to.
 958 */
 959int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
 960{
 961        int i;
 962        int num_frags = skb_shinfo(skb)->nr_frags;
 963        struct page *page, *head = NULL;
 964        struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
 965
 966        for (i = 0; i < num_frags; i++) {
 967                u8 *vaddr;
 968                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
 969
 970                page = alloc_page(gfp_mask);
 971                if (!page) {
 972                        while (head) {
 973                                struct page *next = (struct page *)page_private(head);
 974                                put_page(head);
 975                                head = next;
 976                        }
 977                        return -ENOMEM;
 978                }
 979                vaddr = kmap_atomic(skb_frag_page(f));
 980                memcpy(page_address(page),
 981                       vaddr + f->page_offset, skb_frag_size(f));
 982                kunmap_atomic(vaddr);
 983                set_page_private(page, (unsigned long)head);
 984                head = page;
 985        }
 986
 987        /* skb frags release userspace buffers */
 988        for (i = 0; i < num_frags; i++)
 989                skb_frag_unref(skb, i);
 990
 991        uarg->callback(uarg, false);
 992
 993        /* skb frags point to kernel buffers */
 994        for (i = num_frags - 1; i >= 0; i--) {
 995                __skb_fill_page_desc(skb, i, head, 0,
 996                                     skb_shinfo(skb)->frags[i].size);
 997                head = (struct page *)page_private(head);
 998        }
 999
1000        skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
1001        return 0;
1002}
1003EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1004
1005/**
1006 *      skb_clone       -       duplicate an sk_buff
1007 *      @skb: buffer to clone
1008 *      @gfp_mask: allocation priority
1009 *
1010 *      Duplicate an &sk_buff. The new one is not owned by a socket. Both
1011 *      copies share the same packet data but not structure. The new
1012 *      buffer has a reference count of 1. If the allocation fails the
1013 *      function returns %NULL otherwise the new buffer is returned.
1014 *
1015 *      If this function is called from an interrupt gfp_mask() must be
1016 *      %GFP_ATOMIC.
1017 */
1018
1019struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1020{
1021        struct sk_buff_fclones *fclones = container_of(skb,
1022                                                       struct sk_buff_fclones,
1023                                                       skb1);
1024        struct sk_buff *n;
1025
1026        if (skb_orphan_frags(skb, gfp_mask))
1027                return NULL;
1028
1029        if (skb->fclone == SKB_FCLONE_ORIG &&
1030            refcount_read(&fclones->fclone_ref) == 1) {
1031                n = &fclones->skb2;
1032                refcount_set(&fclones->fclone_ref, 2);
1033        } else {
1034                if (skb_pfmemalloc(skb))
1035                        gfp_mask |= __GFP_MEMALLOC;
1036
1037                n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1038                if (!n)
1039                        return NULL;
1040
1041                kmemcheck_annotate_bitfield(n, flags1);
1042                n->fclone = SKB_FCLONE_UNAVAILABLE;
1043        }
1044
1045        return __skb_clone(n, skb);
1046}
1047EXPORT_SYMBOL(skb_clone);
1048
1049static void skb_headers_offset_update(struct sk_buff *skb, int off)
1050{
1051        /* Only adjust this if it actually is csum_start rather than csum */
1052        if (skb->ip_summed == CHECKSUM_PARTIAL)
1053                skb->csum_start += off;
1054        /* {transport,network,mac}_header and tail are relative to skb->head */
1055        skb->transport_header += off;
1056        skb->network_header   += off;
1057        if (skb_mac_header_was_set(skb))
1058                skb->mac_header += off;
1059        skb->inner_transport_header += off;
1060        skb->inner_network_header += off;
1061        skb->inner_mac_header += off;
1062}
1063
1064static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1065{
1066        __copy_skb_header(new, old);
1067
1068        skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1069        skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1070        skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1071}
1072
1073static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1074{
1075        if (skb_pfmemalloc(skb))
1076                return SKB_ALLOC_RX;
1077        return 0;
1078}
1079
1080/**
1081 *      skb_copy        -       create private copy of an sk_buff
1082 *      @skb: buffer to copy
1083 *      @gfp_mask: allocation priority
1084 *
1085 *      Make a copy of both an &sk_buff and its data. This is used when the
1086 *      caller wishes to modify the data and needs a private copy of the
1087 *      data to alter. Returns %NULL on failure or the pointer to the buffer
1088 *      on success. The returned buffer has a reference count of 1.
1089 *
1090 *      As by-product this function converts non-linear &sk_buff to linear
1091 *      one, so that &sk_buff becomes completely private and caller is allowed
1092 *      to modify all the data of returned buffer. This means that this
1093 *      function is not recommended for use in circumstances when only
1094 *      header is going to be modified. Use pskb_copy() instead.
1095 */
1096
1097struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1098{
1099        int headerlen = skb_headroom(skb);
1100        unsigned int size = skb_end_offset(skb) + skb->data_len;
1101        struct sk_buff *n = __alloc_skb(size, gfp_mask,
1102                                        skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1103
1104        if (!n)
1105                return NULL;
1106
1107        /* Set the data pointer */
1108        skb_reserve(n, headerlen);
1109        /* Set the tail pointer and length */
1110        skb_put(n, skb->len);
1111
1112        if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1113                BUG();
1114
1115        copy_skb_header(n, skb);
1116        return n;
1117}
1118EXPORT_SYMBOL(skb_copy);
1119
1120/**
1121 *      __pskb_copy_fclone      -  create copy of an sk_buff with private head.
1122 *      @skb: buffer to copy
1123 *      @headroom: headroom of new skb
1124 *      @gfp_mask: allocation priority
1125 *      @fclone: if true allocate the copy of the skb from the fclone
1126 *      cache instead of the head cache; it is recommended to set this
1127 *      to true for the cases where the copy will likely be cloned
1128 *
1129 *      Make a copy of both an &sk_buff and part of its data, located
1130 *      in header. Fragmented data remain shared. This is used when
1131 *      the caller wishes to modify only header of &sk_buff and needs
1132 *      private copy of the header to alter. Returns %NULL on failure
1133 *      or the pointer to the buffer on success.
1134 *      The returned buffer has a reference count of 1.
1135 */
1136
1137struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1138                                   gfp_t gfp_mask, bool fclone)
1139{
1140        unsigned int size = skb_headlen(skb) + headroom;
1141        int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1142        struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1143
1144        if (!n)
1145                goto out;
1146
1147        /* Set the data pointer */
1148        skb_reserve(n, headroom);
1149        /* Set the tail pointer and length */
1150        skb_put(n, skb_headlen(skb));
1151        /* Copy the bytes */
1152        skb_copy_from_linear_data(skb, n->data, n->len);
1153
1154        n->truesize += skb->data_len;
1155        n->data_len  = skb->data_len;
1156        n->len       = skb->len;
1157
1158        if (skb_shinfo(skb)->nr_frags) {
1159                int i;
1160
1161                if (skb_orphan_frags(skb, gfp_mask)) {
1162                        kfree_skb(n);
1163                        n = NULL;
1164                        goto out;
1165                }
1166                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1167                        skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1168                        skb_frag_ref(skb, i);
1169                }
1170                skb_shinfo(n)->nr_frags = i;
1171        }
1172
1173        if (skb_has_frag_list(skb)) {
1174                skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1175                skb_clone_fraglist(n);
1176        }
1177
1178        copy_skb_header(n, skb);
1179out:
1180        return n;
1181}
1182EXPORT_SYMBOL(__pskb_copy_fclone);
1183
1184/**
1185 *      pskb_expand_head - reallocate header of &sk_buff
1186 *      @skb: buffer to reallocate
1187 *      @nhead: room to add at head
1188 *      @ntail: room to add at tail
1189 *      @gfp_mask: allocation priority
1190 *
1191 *      Expands (or creates identical copy, if @nhead and @ntail are zero)
1192 *      header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1193 *      reference count of 1. Returns zero in the case of success or error,
1194 *      if expansion failed. In the last case, &sk_buff is not changed.
1195 *
1196 *      All the pointers pointing into skb header may change and must be
1197 *      reloaded after call to this function.
1198 */
1199
1200int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1201                     gfp_t gfp_mask)
1202{
1203        int i, osize = skb_end_offset(skb);
1204        int size = osize + nhead + ntail;
1205        long off;
1206        u8 *data;
1207
1208        BUG_ON(nhead < 0);
1209
1210        if (skb_shared(skb))
1211                BUG();
1212
1213        size = SKB_DATA_ALIGN(size);
1214
1215        if (skb_pfmemalloc(skb))
1216                gfp_mask |= __GFP_MEMALLOC;
1217        data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1218                               gfp_mask, NUMA_NO_NODE, NULL);
1219        if (!data)
1220                goto nodata;
1221        size = SKB_WITH_OVERHEAD(ksize(data));
1222
1223        /* Copy only real data... and, alas, header. This should be
1224         * optimized for the cases when header is void.
1225         */
1226        memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1227
1228        memcpy((struct skb_shared_info *)(data + size),
1229               skb_shinfo(skb),
1230               offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1231
1232        /*
1233         * if shinfo is shared we must drop the old head gracefully, but if it
1234         * is not we can just drop the old head and let the existing refcount
1235         * be since all we did is relocate the values
1236         */
1237        if (skb_cloned(skb)) {
1238                /* copy this zero copy skb frags */
1239                if (skb_orphan_frags(skb, gfp_mask))
1240                        goto nofrags;
1241                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1242                        skb_frag_ref(skb, i);
1243
1244                if (skb_has_frag_list(skb))
1245                        skb_clone_fraglist(skb);
1246
1247                skb_release_data(skb);
1248        } else {
1249                skb_free_head(skb);
1250        }
1251        off = (data + nhead) - skb->head;
1252
1253        skb->head     = data;
1254        skb->head_frag = 0;
1255        skb->data    += off;
1256#ifdef NET_SKBUFF_DATA_USES_OFFSET
1257        skb->end      = size;
1258        off           = nhead;
1259#else
1260        skb->end      = skb->head + size;
1261#endif
1262        skb->tail             += off;
1263        skb_headers_offset_update(skb, nhead);
1264        skb->cloned   = 0;
1265        skb->hdr_len  = 0;
1266        skb->nohdr    = 0;
1267        atomic_set(&skb_shinfo(skb)->dataref, 1);
1268
1269        /* It is not generally safe to change skb->truesize.
1270         * For the moment, we really care of rx path, or
1271         * when skb is orphaned (not attached to a socket).
1272         */
1273        if (!skb->sk || skb->destructor == sock_edemux)
1274                skb->truesize += size - osize;
1275
1276        return 0;
1277
1278nofrags:
1279        kfree(data);
1280nodata:
1281        return -ENOMEM;
1282}
1283EXPORT_SYMBOL(pskb_expand_head);
1284
1285/* Make private copy of skb with writable head and some headroom */
1286
1287struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1288{
1289        struct sk_buff *skb2;
1290        int delta = headroom - skb_headroom(skb);
1291
1292        if (delta <= 0)
1293                skb2 = pskb_copy(skb, GFP_ATOMIC);
1294        else {
1295                skb2 = skb_clone(skb, GFP_ATOMIC);
1296                if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1297                                             GFP_ATOMIC)) {
1298                        kfree_skb(skb2);
1299                        skb2 = NULL;
1300                }
1301        }
1302        return skb2;
1303}
1304EXPORT_SYMBOL(skb_realloc_headroom);
1305
1306/**
1307 *      skb_copy_expand -       copy and expand sk_buff
1308 *      @skb: buffer to copy
1309 *      @newheadroom: new free bytes at head
1310 *      @newtailroom: new free bytes at tail
1311 *      @gfp_mask: allocation priority
1312 *
1313 *      Make a copy of both an &sk_buff and its data and while doing so
1314 *      allocate additional space.
1315 *
1316 *      This is used when the caller wishes to modify the data and needs a
1317 *      private copy of the data to alter as well as more space for new fields.
1318 *      Returns %NULL on failure or the pointer to the buffer
1319 *      on success. The returned buffer has a reference count of 1.
1320 *
1321 *      You must pass %GFP_ATOMIC as the allocation priority if this function
1322 *      is called from an interrupt.
1323 */
1324struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1325                                int newheadroom, int newtailroom,
1326                                gfp_t gfp_mask)
1327{
1328        /*
1329         *      Allocate the copy buffer
1330         */
1331        struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1332                                        gfp_mask, skb_alloc_rx_flag(skb),
1333                                        NUMA_NO_NODE);
1334        int oldheadroom = skb_headroom(skb);
1335        int head_copy_len, head_copy_off;
1336
1337        if (!n)
1338                return NULL;
1339
1340        skb_reserve(n, newheadroom);
1341
1342        /* Set the tail pointer and length */
1343        skb_put(n, skb->len);
1344
1345        head_copy_len = oldheadroom;
1346        head_copy_off = 0;
1347        if (newheadroom <= head_copy_len)
1348                head_copy_len = newheadroom;
1349        else
1350                head_copy_off = newheadroom - head_copy_len;
1351
1352        /* Copy the linear header and data. */
1353        if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1354                          skb->len + head_copy_len))
1355                BUG();
1356
1357        copy_skb_header(n, skb);
1358
1359        skb_headers_offset_update(n, newheadroom - oldheadroom);
1360
1361        return n;
1362}
1363EXPORT_SYMBOL(skb_copy_expand);
1364
1365/**
1366 *      __skb_pad               -       zero pad the tail of an skb
1367 *      @skb: buffer to pad
1368 *      @pad: space to pad
1369 *      @free_on_error: free buffer on error
1370 *
1371 *      Ensure that a buffer is followed by a padding area that is zero
1372 *      filled. Used by network drivers which may DMA or transfer data
1373 *      beyond the buffer end onto the wire.
1374 *
1375 *      May return error in out of memory cases. The skb is freed on error
1376 *      if @free_on_error is true.
1377 */
1378
1379int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1380{
1381        int err;
1382        int ntail;
1383
1384        /* If the skbuff is non linear tailroom is always zero.. */
1385        if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1386                memset(skb->data+skb->len, 0, pad);
1387                return 0;
1388        }
1389
1390        ntail = skb->data_len + pad - (skb->end - skb->tail);
1391        if (likely(skb_cloned(skb) || ntail > 0)) {
1392                err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1393                if (unlikely(err))
1394                        goto free_skb;
1395        }
1396
1397        /* FIXME: The use of this function with non-linear skb's really needs
1398         * to be audited.
1399         */
1400        err = skb_linearize(skb);
1401        if (unlikely(err))
1402                goto free_skb;
1403
1404        memset(skb->data + skb->len, 0, pad);
1405        return 0;
1406
1407free_skb:
1408        if (free_on_error)
1409                kfree_skb(skb);
1410        return err;
1411}
1412EXPORT_SYMBOL(__skb_pad);
1413
1414/**
1415 *      pskb_put - add data to the tail of a potentially fragmented buffer
1416 *      @skb: start of the buffer to use
1417 *      @tail: tail fragment of the buffer to use
1418 *      @len: amount of data to add
1419 *
1420 *      This function extends the used data area of the potentially
1421 *      fragmented buffer. @tail must be the last fragment of @skb -- or
1422 *      @skb itself. If this would exceed the total buffer size the kernel
1423 *      will panic. A pointer to the first byte of the extra data is
1424 *      returned.
1425 */
1426
1427void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1428{
1429        if (tail != skb) {
1430                skb->data_len += len;
1431                skb->len += len;
1432        }
1433        return skb_put(tail, len);
1434}
1435EXPORT_SYMBOL_GPL(pskb_put);
1436
1437/**
1438 *      skb_put - add data to a buffer
1439 *      @skb: buffer to use
1440 *      @len: amount of data to add
1441 *
1442 *      This function extends the used data area of the buffer. If this would
1443 *      exceed the total buffer size the kernel will panic. A pointer to the
1444 *      first byte of the extra data is returned.
1445 */
1446void *skb_put(struct sk_buff *skb, unsigned int len)
1447{
1448        void *tmp = skb_tail_pointer(skb);
1449        SKB_LINEAR_ASSERT(skb);
1450        skb->tail += len;
1451        skb->len  += len;
1452        if (unlikely(skb->tail > skb->end))
1453                skb_over_panic(skb, len, __builtin_return_address(0));
1454        return tmp;
1455}
1456EXPORT_SYMBOL(skb_put);
1457
1458/**
1459 *      skb_push - add data to the start of a buffer
1460 *      @skb: buffer to use
1461 *      @len: amount of data to add
1462 *
1463 *      This function extends the used data area of the buffer at the buffer
1464 *      start. If this would exceed the total buffer headroom the kernel will
1465 *      panic. A pointer to the first byte of the extra data is returned.
1466 */
1467void *skb_push(struct sk_buff *skb, unsigned int len)
1468{
1469        skb->data -= len;
1470        skb->len  += len;
1471        if (unlikely(skb->data<skb->head))
1472                skb_under_panic(skb, len, __builtin_return_address(0));
1473        return skb->data;
1474}
1475EXPORT_SYMBOL(skb_push);
1476
1477/**
1478 *      skb_pull - remove data from the start of a buffer
1479 *      @skb: buffer to use
1480 *      @len: amount of data to remove
1481 *
1482 *      This function removes data from the start of a buffer, returning
1483 *      the memory to the headroom. A pointer to the next data in the buffer
1484 *      is returned. Once the data has been pulled future pushes will overwrite
1485 *      the old data.
1486 */
1487void *skb_pull(struct sk_buff *skb, unsigned int len)
1488{
1489        return skb_pull_inline(skb, len);
1490}
1491EXPORT_SYMBOL(skb_pull);
1492
1493/**
1494 *      skb_trim - remove end from a buffer
1495 *      @skb: buffer to alter
1496 *      @len: new length
1497 *
1498 *      Cut the length of a buffer down by removing data from the tail. If
1499 *      the buffer is already under the length specified it is not modified.
1500 *      The skb must be linear.
1501 */
1502void skb_trim(struct sk_buff *skb, unsigned int len)
1503{
1504        if (skb->len > len)
1505                __skb_trim(skb, len);
1506}
1507EXPORT_SYMBOL(skb_trim);
1508
1509/* Trims skb to length len. It can change skb pointers.
1510 */
1511
1512int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1513{
1514        struct sk_buff **fragp;
1515        struct sk_buff *frag;
1516        int offset = skb_headlen(skb);
1517        int nfrags = skb_shinfo(skb)->nr_frags;
1518        int i;
1519        int err;
1520
1521        if (skb_cloned(skb) &&
1522            unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1523                return err;
1524
1525        i = 0;
1526        if (offset >= len)
1527                goto drop_pages;
1528
1529        for (; i < nfrags; i++) {
1530                int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1531
1532                if (end < len) {
1533                        offset = end;
1534                        continue;
1535                }
1536
1537                skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1538
1539drop_pages:
1540                skb_shinfo(skb)->nr_frags = i;
1541
1542                for (; i < nfrags; i++)
1543                        skb_frag_unref(skb, i);
1544
1545                if (skb_has_frag_list(skb))
1546                        skb_drop_fraglist(skb);
1547                goto done;
1548        }
1549
1550        for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1551             fragp = &frag->next) {
1552                int end = offset + frag->len;
1553
1554                if (skb_shared(frag)) {
1555                        struct sk_buff *nfrag;
1556
1557                        nfrag = skb_clone(frag, GFP_ATOMIC);
1558                        if (unlikely(!nfrag))
1559                                return -ENOMEM;
1560
1561                        nfrag->next = frag->next;
1562                        consume_skb(frag);
1563                        frag = nfrag;
1564                        *fragp = frag;
1565                }
1566
1567                if (end < len) {
1568                        offset = end;
1569                        continue;
1570                }
1571
1572                if (end > len &&
1573                    unlikely((err = pskb_trim(frag, len - offset))))
1574                        return err;
1575
1576                if (frag->next)
1577                        skb_drop_list(&frag->next);
1578                break;
1579        }
1580
1581done:
1582        if (len > skb_headlen(skb)) {
1583                skb->data_len -= skb->len - len;
1584                skb->len       = len;
1585        } else {
1586                skb->len       = len;
1587                skb->data_len  = 0;
1588                skb_set_tail_pointer(skb, len);
1589        }
1590
1591        if (!skb->sk || skb->destructor == sock_edemux)
1592                skb_condense(skb);
1593        return 0;
1594}
1595EXPORT_SYMBOL(___pskb_trim);
1596
1597/**
1598 *      __pskb_pull_tail - advance tail of skb header
1599 *      @skb: buffer to reallocate
1600 *      @delta: number of bytes to advance tail
1601 *
1602 *      The function makes a sense only on a fragmented &sk_buff,
1603 *      it expands header moving its tail forward and copying necessary
1604 *      data from fragmented part.
1605 *
1606 *      &sk_buff MUST have reference count of 1.
1607 *
1608 *      Returns %NULL (and &sk_buff does not change) if pull failed
1609 *      or value of new tail of skb in the case of success.
1610 *
1611 *      All the pointers pointing into skb header may change and must be
1612 *      reloaded after call to this function.
1613 */
1614
1615/* Moves tail of skb head forward, copying data from fragmented part,
1616 * when it is necessary.
1617 * 1. It may fail due to malloc failure.
1618 * 2. It may change skb pointers.
1619 *
1620 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1621 */
1622void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1623{
1624        /* If skb has not enough free space at tail, get new one
1625         * plus 128 bytes for future expansions. If we have enough
1626         * room at tail, reallocate without expansion only if skb is cloned.
1627         */
1628        int i, k, eat = (skb->tail + delta) - skb->end;
1629
1630        if (eat > 0 || skb_cloned(skb)) {
1631                if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1632                                     GFP_ATOMIC))
1633                        return NULL;
1634        }
1635
1636        if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1637                BUG();
1638
1639        /* Optimization: no fragments, no reasons to preestimate
1640         * size of pulled pages. Superb.
1641         */
1642        if (!skb_has_frag_list(skb))
1643                goto pull_pages;
1644
1645        /* Estimate size of pulled pages. */
1646        eat = delta;
1647        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1648                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1649
1650                if (size >= eat)
1651                        goto pull_pages;
1652                eat -= size;
1653        }
1654
1655        /* If we need update frag list, we are in troubles.
1656         * Certainly, it possible to add an offset to skb data,
1657         * but taking into account that pulling is expected to
1658         * be very rare operation, it is worth to fight against
1659         * further bloating skb head and crucify ourselves here instead.
1660         * Pure masohism, indeed. 8)8)
1661         */
1662        if (eat) {
1663                struct sk_buff *list = skb_shinfo(skb)->frag_list;
1664                struct sk_buff *clone = NULL;
1665                struct sk_buff *insp = NULL;
1666
1667                do {
1668                        BUG_ON(!list);
1669
1670                        if (list->len <= eat) {
1671                                /* Eaten as whole. */
1672                                eat -= list->len;
1673                                list = list->next;
1674                                insp = list;
1675                        } else {
1676                                /* Eaten partially. */
1677
1678                                if (skb_shared(list)) {
1679                                        /* Sucks! We need to fork list. :-( */
1680                                        clone = skb_clone(list, GFP_ATOMIC);
1681                                        if (!clone)
1682                                                return NULL;
1683                                        insp = list->next;
1684                                        list = clone;
1685                                } else {
1686                                        /* This may be pulled without
1687                                         * problems. */
1688                                        insp = list;
1689                                }
1690                                if (!pskb_pull(list, eat)) {
1691                                        kfree_skb(clone);
1692                                        return NULL;
1693                                }
1694                                break;
1695                        }
1696                } while (eat);
1697
1698                /* Free pulled out fragments. */
1699                while ((list = skb_shinfo(skb)->frag_list) != insp) {
1700                        skb_shinfo(skb)->frag_list = list->next;
1701                        kfree_skb(list);
1702                }
1703                /* And insert new clone at head. */
1704                if (clone) {
1705                        clone->next = list;
1706                        skb_shinfo(skb)->frag_list = clone;
1707                }
1708        }
1709        /* Success! Now we may commit changes to skb data. */
1710
1711pull_pages:
1712        eat = delta;
1713        k = 0;
1714        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1715                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1716
1717                if (size <= eat) {
1718                        skb_frag_unref(skb, i);
1719                        eat -= size;
1720                } else {
1721                        skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1722                        if (eat) {
1723                                skb_shinfo(skb)->frags[k].page_offset += eat;
1724                                skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1725                                eat = 0;
1726                        }
1727                        k++;
1728                }
1729        }
1730        skb_shinfo(skb)->nr_frags = k;
1731
1732        skb->tail     += delta;
1733        skb->data_len -= delta;
1734
1735        return skb_tail_pointer(skb);
1736}
1737EXPORT_SYMBOL(__pskb_pull_tail);
1738
1739/**
1740 *      skb_copy_bits - copy bits from skb to kernel buffer
1741 *      @skb: source skb
1742 *      @offset: offset in source
1743 *      @to: destination buffer
1744 *      @len: number of bytes to copy
1745 *
1746 *      Copy the specified number of bytes from the source skb to the
1747 *      destination buffer.
1748 *
1749 *      CAUTION ! :
1750 *              If its prototype is ever changed,
1751 *              check arch/{*}/net/{*}.S files,
1752 *              since it is called from BPF assembly code.
1753 */
1754int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1755{
1756        int start = skb_headlen(skb);
1757        struct sk_buff *frag_iter;
1758        int i, copy;
1759
1760        if (offset > (int)skb->len - len)
1761                goto fault;
1762
1763        /* Copy header. */
1764        if ((copy = start - offset) > 0) {
1765                if (copy > len)
1766                        copy = len;
1767                skb_copy_from_linear_data_offset(skb, offset, to, copy);
1768                if ((len -= copy) == 0)
1769                        return 0;
1770                offset += copy;
1771                to     += copy;
1772        }
1773
1774        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1775                int end;
1776                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1777
1778                WARN_ON(start > offset + len);
1779
1780                end = start + skb_frag_size(f);
1781                if ((copy = end - offset) > 0) {
1782                        u8 *vaddr;
1783
1784                        if (copy > len)
1785                                copy = len;
1786
1787                        vaddr = kmap_atomic(skb_frag_page(f));
1788                        memcpy(to,
1789                               vaddr + f->page_offset + offset - start,
1790                               copy);
1791                        kunmap_atomic(vaddr);
1792
1793                        if ((len -= copy) == 0)
1794                                return 0;
1795                        offset += copy;
1796                        to     += copy;
1797                }
1798                start = end;
1799        }
1800
1801        skb_walk_frags(skb, frag_iter) {
1802                int end;
1803
1804                WARN_ON(start > offset + len);
1805
1806                end = start + frag_iter->len;
1807                if ((copy = end - offset) > 0) {
1808                        if (copy > len)
1809                                copy = len;
1810                        if (skb_copy_bits(frag_iter, offset - start, to, copy))
1811                                goto fault;
1812                        if ((len -= copy) == 0)
1813                                return 0;
1814                        offset += copy;
1815                        to     += copy;
1816                }
1817                start = end;
1818        }
1819
1820        if (!len)
1821                return 0;
1822
1823fault:
1824        return -EFAULT;
1825}
1826EXPORT_SYMBOL(skb_copy_bits);
1827
1828/*
1829 * Callback from splice_to_pipe(), if we need to release some pages
1830 * at the end of the spd in case we error'ed out in filling the pipe.
1831 */
1832static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1833{
1834        put_page(spd->pages[i]);
1835}
1836
1837static struct page *linear_to_page(struct page *page, unsigned int *len,
1838                                   unsigned int *offset,
1839                                   struct sock *sk)
1840{
1841        struct page_frag *pfrag = sk_page_frag(sk);
1842
1843        if (!sk_page_frag_refill(sk, pfrag))
1844                return NULL;
1845
1846        *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1847
1848        memcpy(page_address(pfrag->page) + pfrag->offset,
1849               page_address(page) + *offset, *len);
1850        *offset = pfrag->offset;
1851        pfrag->offset += *len;
1852
1853        return pfrag->page;
1854}
1855
1856static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1857                             struct page *page,
1858                             unsigned int offset)
1859{
1860        return  spd->nr_pages &&
1861                spd->pages[spd->nr_pages - 1] == page &&
1862                (spd->partial[spd->nr_pages - 1].offset +
1863                 spd->partial[spd->nr_pages - 1].len == offset);
1864}
1865
1866/*
1867 * Fill page/offset/length into spd, if it can hold more pages.
1868 */
1869static bool spd_fill_page(struct splice_pipe_desc *spd,
1870                          struct pipe_inode_info *pipe, struct page *page,
1871                          unsigned int *len, unsigned int offset,
1872                          bool linear,
1873                          struct sock *sk)
1874{
1875        if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1876                return true;
1877
1878        if (linear) {
1879                page = linear_to_page(page, len, &offset, sk);
1880                if (!page)
1881                        return true;
1882        }
1883        if (spd_can_coalesce(spd, page, offset)) {
1884                spd->partial[spd->nr_pages - 1].len += *len;
1885                return false;
1886        }
1887        get_page(page);
1888        spd->pages[spd->nr_pages] = page;
1889        spd->partial[spd->nr_pages].len = *len;
1890        spd->partial[spd->nr_pages].offset = offset;
1891        spd->nr_pages++;
1892
1893        return false;
1894}
1895
1896static bool __splice_segment(struct page *page, unsigned int poff,
1897                             unsigned int plen, unsigned int *off,
1898                             unsigned int *len,
1899                             struct splice_pipe_desc *spd, bool linear,
1900                             struct sock *sk,
1901                             struct pipe_inode_info *pipe)
1902{
1903        if (!*len)
1904                return true;
1905
1906        /* skip this segment if already processed */
1907        if (*off >= plen) {
1908                *off -= plen;
1909                return false;
1910        }
1911
1912        /* ignore any bits we already processed */
1913        poff += *off;
1914        plen -= *off;
1915        *off = 0;
1916
1917        do {
1918                unsigned int flen = min(*len, plen);
1919
1920                if (spd_fill_page(spd, pipe, page, &flen, poff,
1921                                  linear, sk))
1922                        return true;
1923                poff += flen;
1924                plen -= flen;
1925                *len -= flen;
1926        } while (*len && plen);
1927
1928        return false;
1929}
1930
1931/*
1932 * Map linear and fragment data from the skb to spd. It reports true if the
1933 * pipe is full or if we already spliced the requested length.
1934 */
1935static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1936                              unsigned int *offset, unsigned int *len,
1937                              struct splice_pipe_desc *spd, struct sock *sk)
1938{
1939        int seg;
1940        struct sk_buff *iter;
1941
1942        /* map the linear part :
1943         * If skb->head_frag is set, this 'linear' part is backed by a
1944         * fragment, and if the head is not shared with any clones then
1945         * we can avoid a copy since we own the head portion of this page.
1946         */
1947        if (__splice_segment(virt_to_page(skb->data),
1948                             (unsigned long) skb->data & (PAGE_SIZE - 1),
1949                             skb_headlen(skb),
1950                             offset, len, spd,
1951                             skb_head_is_locked(skb),
1952                             sk, pipe))
1953                return true;
1954
1955        /*
1956         * then map the fragments
1957         */
1958        for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1959                const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1960
1961                if (__splice_segment(skb_frag_page(f),
1962                                     f->page_offset, skb_frag_size(f),
1963                                     offset, len, spd, false, sk, pipe))
1964                        return true;
1965        }
1966
1967        skb_walk_frags(skb, iter) {
1968                if (*offset >= iter->len) {
1969                        *offset -= iter->len;
1970                        continue;
1971                }
1972                /* __skb_splice_bits() only fails if the output has no room
1973                 * left, so no point in going over the frag_list for the error
1974                 * case.
1975                 */
1976                if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1977                        return true;
1978        }
1979
1980        return false;
1981}
1982
1983/*
1984 * Map data from the skb to a pipe. Should handle both the linear part,
1985 * the fragments, and the frag list.
1986 */
1987int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1988                    struct pipe_inode_info *pipe, unsigned int tlen,
1989                    unsigned int flags)
1990{
1991        struct partial_page partial[MAX_SKB_FRAGS];
1992        struct page *pages[MAX_SKB_FRAGS];
1993        struct splice_pipe_desc spd = {
1994                .pages = pages,
1995                .partial = partial,
1996                .nr_pages_max = MAX_SKB_FRAGS,
1997                .ops = &nosteal_pipe_buf_ops,
1998                .spd_release = sock_spd_release,
1999        };
2000        int ret = 0;
2001
2002        __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2003
2004        if (spd.nr_pages)
2005                ret = splice_to_pipe(pipe, &spd);
2006
2007        return ret;
2008}
2009EXPORT_SYMBOL_GPL(skb_splice_bits);
2010
2011/**
2012 *      skb_store_bits - store bits from kernel buffer to skb
2013 *      @skb: destination buffer
2014 *      @offset: offset in destination
2015 *      @from: source buffer
2016 *      @len: number of bytes to copy
2017 *
2018 *      Copy the specified number of bytes from the source buffer to the
2019 *      destination skb.  This function handles all the messy bits of
2020 *      traversing fragment lists and such.
2021 */
2022
2023int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2024{
2025        int start = skb_headlen(skb);
2026        struct sk_buff *frag_iter;
2027        int i, copy;
2028
2029        if (offset > (int)skb->len - len)
2030                goto fault;
2031
2032        if ((copy = start - offset) > 0) {
2033                if (copy > len)
2034                        copy = len;
2035                skb_copy_to_linear_data_offset(skb, offset, from, copy);
2036                if ((len -= copy) == 0)
2037                        return 0;
2038                offset += copy;
2039                from += copy;
2040        }
2041
2042        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2043                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2044                int end;
2045
2046                WARN_ON(start > offset + len);
2047
2048                end = start + skb_frag_size(frag);
2049                if ((copy = end - offset) > 0) {
2050                        u8 *vaddr;
2051
2052                        if (copy > len)
2053                                copy = len;
2054
2055                        vaddr = kmap_atomic(skb_frag_page(frag));
2056                        memcpy(vaddr + frag->page_offset + offset - start,
2057                               from, copy);
2058                        kunmap_atomic(vaddr);
2059
2060                        if ((len -= copy) == 0)
2061                                return 0;
2062                        offset += copy;
2063                        from += copy;
2064                }
2065                start = end;
2066        }
2067
2068        skb_walk_frags(skb, frag_iter) {
2069                int end;
2070
2071                WARN_ON(start > offset + len);
2072
2073                end = start + frag_iter->len;
2074                if ((copy = end - offset) > 0) {
2075                        if (copy > len)
2076                                copy = len;
2077                        if (skb_store_bits(frag_iter, offset - start,
2078                                           from, copy))
2079                                goto fault;
2080                        if ((len -= copy) == 0)
2081                                return 0;
2082                        offset += copy;
2083                        from += copy;
2084                }
2085                start = end;
2086        }
2087        if (!len)
2088                return 0;
2089
2090fault:
2091        return -EFAULT;
2092}
2093EXPORT_SYMBOL(skb_store_bits);
2094
2095/* Checksum skb data. */
2096__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2097                      __wsum csum, const struct skb_checksum_ops *ops)
2098{
2099        int start = skb_headlen(skb);
2100        int i, copy = start - offset;
2101        struct sk_buff *frag_iter;
2102        int pos = 0;
2103
2104        /* Checksum header. */
2105        if (copy > 0) {
2106                if (copy > len)
2107                        copy = len;
2108                csum = ops->update(skb->data + offset, copy, csum);
2109                if ((len -= copy) == 0)
2110                        return csum;
2111                offset += copy;
2112                pos     = copy;
2113        }
2114
2115        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2116                int end;
2117                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2118
2119                WARN_ON(start > offset + len);
2120
2121                end = start + skb_frag_size(frag);
2122                if ((copy = end - offset) > 0) {
2123                        __wsum csum2;
2124                        u8 *vaddr;
2125
2126                        if (copy > len)
2127                                copy = len;
2128                        vaddr = kmap_atomic(skb_frag_page(frag));
2129                        csum2 = ops->update(vaddr + frag->page_offset +
2130                                            offset - start, copy, 0);
2131                        kunmap_atomic(vaddr);
2132                        csum = ops->combine(csum, csum2, pos, copy);
2133                        if (!(len -= copy))
2134                                return csum;
2135                        offset += copy;
2136                        pos    += copy;
2137                }
2138                start = end;
2139        }
2140
2141        skb_walk_frags(skb, frag_iter) {
2142                int end;
2143
2144                WARN_ON(start > offset + len);
2145
2146                end = start + frag_iter->len;
2147                if ((copy = end - offset) > 0) {
2148                        __wsum csum2;
2149                        if (copy > len)
2150                                copy = len;
2151                        csum2 = __skb_checksum(frag_iter, offset - start,
2152                                               copy, 0, ops);
2153                        csum = ops->combine(csum, csum2, pos, copy);
2154                        if ((len -= copy) == 0)
2155                                return csum;
2156                        offset += copy;
2157                        pos    += copy;
2158                }
2159                start = end;
2160        }
2161        BUG_ON(len);
2162
2163        return csum;
2164}
2165EXPORT_SYMBOL(__skb_checksum);
2166
2167__wsum skb_checksum(const struct sk_buff *skb, int offset,
2168                    int len, __wsum csum)
2169{
2170        const struct skb_checksum_ops ops = {
2171                .update  = csum_partial_ext,
2172                .combine = csum_block_add_ext,
2173        };
2174
2175        return __skb_checksum(skb, offset, len, csum, &ops);
2176}
2177EXPORT_SYMBOL(skb_checksum);
2178
2179/* Both of above in one bottle. */
2180
2181__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2182                                    u8 *to, int len, __wsum csum)
2183{
2184        int start = skb_headlen(skb);
2185        int i, copy = start - offset;
2186        struct sk_buff *frag_iter;
2187        int pos = 0;
2188
2189        /* Copy header. */
2190        if (copy > 0) {
2191                if (copy > len)
2192                        copy = len;
2193                csum = csum_partial_copy_nocheck(skb->data + offset, to,
2194                                                 copy, csum);
2195                if ((len -= copy) == 0)
2196                        return csum;
2197                offset += copy;
2198                to     += copy;
2199                pos     = copy;
2200        }
2201
2202        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2203                int end;
2204
2205                WARN_ON(start > offset + len);
2206
2207                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2208                if ((copy = end - offset) > 0) {
2209                        __wsum csum2;
2210                        u8 *vaddr;
2211                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2212
2213                        if (copy > len)
2214                                copy = len;
2215                        vaddr = kmap_atomic(skb_frag_page(frag));
2216                        csum2 = csum_partial_copy_nocheck(vaddr +
2217                                                          frag->page_offset +
2218                                                          offset - start, to,
2219                                                          copy, 0);
2220                        kunmap_atomic(vaddr);
2221                        csum = csum_block_add(csum, csum2, pos);
2222                        if (!(len -= copy))
2223                                return csum;
2224                        offset += copy;
2225                        to     += copy;
2226                        pos    += copy;
2227                }
2228                start = end;
2229        }
2230
2231        skb_walk_frags(skb, frag_iter) {
2232                __wsum csum2;
2233                int end;
2234
2235                WARN_ON(start > offset + len);
2236
2237                end = start + frag_iter->len;
2238                if ((copy = end - offset) > 0) {
2239                        if (copy > len)
2240                                copy = len;
2241                        csum2 = skb_copy_and_csum_bits(frag_iter,
2242                                                       offset - start,
2243                                                       to, copy, 0);
2244                        csum = csum_block_add(csum, csum2, pos);
2245                        if ((len -= copy) == 0)
2246                                return csum;
2247                        offset += copy;
2248                        to     += copy;
2249                        pos    += copy;
2250                }
2251                start = end;
2252        }
2253        BUG_ON(len);
2254        return csum;
2255}
2256EXPORT_SYMBOL(skb_copy_and_csum_bits);
2257
2258static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2259{
2260        net_warn_ratelimited(
2261                "%s: attempt to compute crc32c without libcrc32c.ko\n",
2262                __func__);
2263        return 0;
2264}
2265
2266static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2267                                       int offset, int len)
2268{
2269        net_warn_ratelimited(
2270                "%s: attempt to compute crc32c without libcrc32c.ko\n",
2271                __func__);
2272        return 0;
2273}
2274
2275static const struct skb_checksum_ops default_crc32c_ops = {
2276        .update  = warn_crc32c_csum_update,
2277        .combine = warn_crc32c_csum_combine,
2278};
2279
2280const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2281        &default_crc32c_ops;
2282EXPORT_SYMBOL(crc32c_csum_stub);
2283
2284 /**
2285 *      skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2286 *      @from: source buffer
2287 *
2288 *      Calculates the amount of linear headroom needed in the 'to' skb passed
2289 *      into skb_zerocopy().
2290 */
2291unsigned int
2292skb_zerocopy_headlen(const struct sk_buff *from)
2293{
2294        unsigned int hlen = 0;
2295
2296        if (!from->head_frag ||
2297            skb_headlen(from) < L1_CACHE_BYTES ||
2298            skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2299                hlen = skb_headlen(from);
2300
2301        if (skb_has_frag_list(from))
2302                hlen = from->len;
2303
2304        return hlen;
2305}
2306EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2307
2308/**
2309 *      skb_zerocopy - Zero copy skb to skb
2310 *      @to: destination buffer
2311 *      @from: source buffer
2312 *      @len: number of bytes to copy from source buffer
2313 *      @hlen: size of linear headroom in destination buffer
2314 *
2315 *      Copies up to `len` bytes from `from` to `to` by creating references
2316 *      to the frags in the source buffer.
2317 *
2318 *      The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2319 *      headroom in the `to` buffer.
2320 *
2321 *      Return value:
2322 *      0: everything is OK
2323 *      -ENOMEM: couldn't orphan frags of @from due to lack of memory
2324 *      -EFAULT: skb_copy_bits() found some problem with skb geometry
2325 */
2326int
2327skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2328{
2329        int i, j = 0;
2330        int plen = 0; /* length of skb->head fragment */
2331        int ret;
2332        struct page *page;
2333        unsigned int offset;
2334
2335        BUG_ON(!from->head_frag && !hlen);
2336
2337        /* dont bother with small payloads */
2338        if (len <= skb_tailroom(to))
2339                return skb_copy_bits(from, 0, skb_put(to, len), len);
2340
2341        if (hlen) {
2342                ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2343                if (unlikely(ret))
2344                        return ret;
2345                len -= hlen;
2346        } else {
2347                plen = min_t(int, skb_headlen(from), len);
2348                if (plen) {
2349                        page = virt_to_head_page(from->head);
2350                        offset = from->data - (unsigned char *)page_address(page);
2351                        __skb_fill_page_desc(to, 0, page, offset, plen);
2352                        get_page(page);
2353                        j = 1;
2354                        len -= plen;
2355                }
2356        }
2357
2358        to->truesize += len + plen;
2359        to->len += len + plen;
2360        to->data_len += len + plen;
2361
2362        if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2363                skb_tx_error(from);
2364                return -ENOMEM;
2365        }
2366
2367        for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2368                if (!len)
2369                        break;
2370                skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2371                skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2372                len -= skb_shinfo(to)->frags[j].size;
2373                skb_frag_ref(to, j);
2374                j++;
2375        }
2376        skb_shinfo(to)->nr_frags = j;
2377
2378        return 0;
2379}
2380EXPORT_SYMBOL_GPL(skb_zerocopy);
2381
2382void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2383{
2384        __wsum csum;
2385        long csstart;
2386
2387        if (skb->ip_summed == CHECKSUM_PARTIAL)
2388                csstart = skb_checksum_start_offset(skb);
2389        else
2390                csstart = skb_headlen(skb);
2391
2392        BUG_ON(csstart > skb_headlen(skb));
2393
2394        skb_copy_from_linear_data(skb, to, csstart);
2395
2396        csum = 0;
2397        if (csstart != skb->len)
2398                csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2399                                              skb->len - csstart, 0);
2400
2401        if (skb->ip_summed == CHECKSUM_PARTIAL) {
2402                long csstuff = csstart + skb->csum_offset;
2403
2404                *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2405        }
2406}
2407EXPORT_SYMBOL(skb_copy_and_csum_dev);
2408
2409/**
2410 *      skb_dequeue - remove from the head of the queue
2411 *      @list: list to dequeue from
2412 *
2413 *      Remove the head of the list. The list lock is taken so the function
2414 *      may be used safely with other locking list functions. The head item is
2415 *      returned or %NULL if the list is empty.
2416 */
2417
2418struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2419{
2420        unsigned long flags;
2421        struct sk_buff *result;
2422
2423        spin_lock_irqsave(&list->lock, flags);
2424        result = __skb_dequeue(list);
2425        spin_unlock_irqrestore(&list->lock, flags);
2426        return result;
2427}
2428EXPORT_SYMBOL(skb_dequeue);
2429
2430/**
2431 *      skb_dequeue_tail - remove from the tail of the queue
2432 *      @list: list to dequeue from
2433 *
2434 *      Remove the tail of the list. The list lock is taken so the function
2435 *      may be used safely with other locking list functions. The tail item is
2436 *      returned or %NULL if the list is empty.
2437 */
2438struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2439{
2440        unsigned long flags;
2441        struct sk_buff *result;
2442
2443        spin_lock_irqsave(&list->lock, flags);
2444        result = __skb_dequeue_tail(list);
2445        spin_unlock_irqrestore(&list->lock, flags);
2446        return result;
2447}
2448EXPORT_SYMBOL(skb_dequeue_tail);
2449
2450/**
2451 *      skb_queue_purge - empty a list
2452 *      @list: list to empty
2453 *
2454 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2455 *      the list and one reference dropped. This function takes the list
2456 *      lock and is atomic with respect to other list locking functions.
2457 */
2458void skb_queue_purge(struct sk_buff_head *list)
2459{
2460        struct sk_buff *skb;
2461        while ((skb = skb_dequeue(list)) != NULL)
2462                kfree_skb(skb);
2463}
2464EXPORT_SYMBOL(skb_queue_purge);
2465
2466/**
2467 *      skb_rbtree_purge - empty a skb rbtree
2468 *      @root: root of the rbtree to empty
2469 *
2470 *      Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2471 *      the list and one reference dropped. This function does not take
2472 *      any lock. Synchronization should be handled by the caller (e.g., TCP
2473 *      out-of-order queue is protected by the socket lock).
2474 */
2475void skb_rbtree_purge(struct rb_root *root)
2476{
2477        struct sk_buff *skb, *next;
2478
2479        rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode)
2480                kfree_skb(skb);
2481
2482        *root = RB_ROOT;
2483}
2484
2485/**
2486 *      skb_queue_head - queue a buffer at the list head
2487 *      @list: list to use
2488 *      @newsk: buffer to queue
2489 *
2490 *      Queue a buffer at the start of the list. This function takes the
2491 *      list lock and can be used safely with other locking &sk_buff functions
2492 *      safely.
2493 *
2494 *      A buffer cannot be placed on two lists at the same time.
2495 */
2496void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2497{
2498        unsigned long flags;
2499
2500        spin_lock_irqsave(&list->lock, flags);
2501        __skb_queue_head(list, newsk);
2502        spin_unlock_irqrestore(&list->lock, flags);
2503}
2504EXPORT_SYMBOL(skb_queue_head);
2505
2506/**
2507 *      skb_queue_tail - queue a buffer at the list tail
2508 *      @list: list to use
2509 *      @newsk: buffer to queue
2510 *
2511 *      Queue a buffer at the tail of the list. This function takes the
2512 *      list lock and can be used safely with other locking &sk_buff functions
2513 *      safely.
2514 *
2515 *      A buffer cannot be placed on two lists at the same time.
2516 */
2517void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2518{
2519        unsigned long flags;
2520
2521        spin_lock_irqsave(&list->lock, flags);
2522        __skb_queue_tail(list, newsk);
2523        spin_unlock_irqrestore(&list->lock, flags);
2524}
2525EXPORT_SYMBOL(skb_queue_tail);
2526
2527/**
2528 *      skb_unlink      -       remove a buffer from a list
2529 *      @skb: buffer to remove
2530 *      @list: list to use
2531 *
2532 *      Remove a packet from a list. The list locks are taken and this
2533 *      function is atomic with respect to other list locked calls
2534 *
2535 *      You must know what list the SKB is on.
2536 */
2537void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2538{
2539        unsigned long flags;
2540
2541        spin_lock_irqsave(&list->lock, flags);
2542        __skb_unlink(skb, list);
2543        spin_unlock_irqrestore(&list->lock, flags);
2544}
2545EXPORT_SYMBOL(skb_unlink);
2546
2547/**
2548 *      skb_append      -       append a buffer
2549 *      @old: buffer to insert after
2550 *      @newsk: buffer to insert
2551 *      @list: list to use
2552 *
2553 *      Place a packet after a given packet in a list. The list locks are taken
2554 *      and this function is atomic with respect to other list locked calls.
2555 *      A buffer cannot be placed on two lists at the same time.
2556 */
2557void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2558{
2559        unsigned long flags;
2560
2561        spin_lock_irqsave(&list->lock, flags);
2562        __skb_queue_after(list, old, newsk);
2563        spin_unlock_irqrestore(&list->lock, flags);
2564}
2565EXPORT_SYMBOL(skb_append);
2566
2567/**
2568 *      skb_insert      -       insert a buffer
2569 *      @old: buffer to insert before
2570 *      @newsk: buffer to insert
2571 *      @list: list to use
2572 *
2573 *      Place a packet before a given packet in a list. The list locks are
2574 *      taken and this function is atomic with respect to other list locked
2575 *      calls.
2576 *
2577 *      A buffer cannot be placed on two lists at the same time.
2578 */
2579void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2580{
2581        unsigned long flags;
2582
2583        spin_lock_irqsave(&list->lock, flags);
2584        __skb_insert(newsk, old->prev, old, list);
2585        spin_unlock_irqrestore(&list->lock, flags);
2586}
2587EXPORT_SYMBOL(skb_insert);
2588
2589static inline void skb_split_inside_header(struct sk_buff *skb,
2590                                           struct sk_buff* skb1,
2591                                           const u32 len, const int pos)
2592{
2593        int i;
2594
2595        skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2596                                         pos - len);
2597        /* And move data appendix as is. */
2598        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2599                skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2600
2601        skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2602        skb_shinfo(skb)->nr_frags  = 0;
2603        skb1->data_len             = skb->data_len;
2604        skb1->len                  += skb1->data_len;
2605        skb->data_len              = 0;
2606        skb->len                   = len;
2607        skb_set_tail_pointer(skb, len);
2608}
2609
2610static inline void skb_split_no_header(struct sk_buff *skb,
2611                                       struct sk_buff* skb1,
2612                                       const u32 len, int pos)
2613{
2614        int i, k = 0;
2615        const int nfrags = skb_shinfo(skb)->nr_frags;
2616
2617        skb_shinfo(skb)->nr_frags = 0;
2618        skb1->len                 = skb1->data_len = skb->len - len;
2619        skb->len                  = len;
2620        skb->data_len             = len - pos;
2621
2622        for (i = 0; i < nfrags; i++) {
2623                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2624
2625                if (pos + size > len) {
2626                        skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2627
2628                        if (pos < len) {
2629                                /* Split frag.
2630                                 * We have two variants in this case:
2631                                 * 1. Move all the frag to the second
2632                                 *    part, if it is possible. F.e.
2633                                 *    this approach is mandatory for TUX,
2634                                 *    where splitting is expensive.
2635                                 * 2. Split is accurately. We make this.
2636                                 */
2637                                skb_frag_ref(skb, i);
2638                                skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2639                                skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2640                                skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2641                                skb_shinfo(skb)->nr_frags++;
2642                        }
2643                        k++;
2644                } else
2645                        skb_shinfo(skb)->nr_frags++;
2646                pos += size;
2647        }
2648        skb_shinfo(skb1)->nr_frags = k;
2649}
2650
2651/**
2652 * skb_split - Split fragmented skb to two parts at length len.
2653 * @skb: the buffer to split
2654 * @skb1: the buffer to receive the second part
2655 * @len: new length for skb
2656 */
2657void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2658{
2659        int pos = skb_headlen(skb);
2660
2661        skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
2662                                      SKBTX_SHARED_FRAG;
2663        if (len < pos)  /* Split line is inside header. */
2664                skb_split_inside_header(skb, skb1, len, pos);
2665        else            /* Second chunk has no header, nothing to copy. */
2666                skb_split_no_header(skb, skb1, len, pos);
2667}
2668EXPORT_SYMBOL(skb_split);
2669
2670/* Shifting from/to a cloned skb is a no-go.
2671 *
2672 * Caller cannot keep skb_shinfo related pointers past calling here!
2673 */
2674static int skb_prepare_for_shift(struct sk_buff *skb)
2675{
2676        return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2677}
2678
2679/**
2680 * skb_shift - Shifts paged data partially from skb to another
2681 * @tgt: buffer into which tail data gets added
2682 * @skb: buffer from which the paged data comes from
2683 * @shiftlen: shift up to this many bytes
2684 *
2685 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2686 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2687 * It's up to caller to free skb if everything was shifted.
2688 *
2689 * If @tgt runs out of frags, the whole operation is aborted.
2690 *
2691 * Skb cannot include anything else but paged data while tgt is allowed
2692 * to have non-paged data as well.
2693 *
2694 * TODO: full sized shift could be optimized but that would need
2695 * specialized skb free'er to handle frags without up-to-date nr_frags.
2696 */
2697int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2698{
2699        int from, to, merge, todo;
2700        struct skb_frag_struct *fragfrom, *fragto;
2701
2702        BUG_ON(shiftlen > skb->len);
2703
2704        if (skb_headlen(skb))
2705                return 0;
2706
2707        todo = shiftlen;
2708        from = 0;
2709        to = skb_shinfo(tgt)->nr_frags;
2710        fragfrom = &skb_shinfo(skb)->frags[from];
2711
2712        /* Actual merge is delayed until the point when we know we can
2713         * commit all, so that we don't have to undo partial changes
2714         */
2715        if (!to ||
2716            !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2717                              fragfrom->page_offset)) {
2718                merge = -1;
2719        } else {
2720                merge = to - 1;
2721
2722                todo -= skb_frag_size(fragfrom);
2723                if (todo < 0) {
2724                        if (skb_prepare_for_shift(skb) ||
2725                            skb_prepare_for_shift(tgt))
2726                                return 0;
2727
2728                        /* All previous frag pointers might be stale! */
2729                        fragfrom = &skb_shinfo(skb)->frags[from];
2730                        fragto = &skb_shinfo(tgt)->frags[merge];
2731
2732                        skb_frag_size_add(fragto, shiftlen);
2733                        skb_frag_size_sub(fragfrom, shiftlen);
2734                        fragfrom->page_offset += shiftlen;
2735
2736                        goto onlymerged;
2737                }
2738
2739                from++;
2740        }
2741
2742        /* Skip full, not-fitting skb to avoid expensive operations */
2743        if ((shiftlen == skb->len) &&
2744            (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2745                return 0;
2746
2747        if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2748                return 0;
2749
2750        while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2751                if (to == MAX_SKB_FRAGS)
2752                        return 0;
2753
2754                fragfrom = &skb_shinfo(skb)->frags[from];
2755                fragto = &skb_shinfo(tgt)->frags[to];
2756
2757                if (todo >= skb_frag_size(fragfrom)) {
2758                        *fragto = *fragfrom;
2759                        todo -= skb_frag_size(fragfrom);
2760                        from++;
2761                        to++;
2762
2763                } else {
2764                        __skb_frag_ref(fragfrom);
2765                        fragto->page = fragfrom->page;
2766                        fragto->page_offset = fragfrom->page_offset;
2767                        skb_frag_size_set(fragto, todo);
2768
2769                        fragfrom->page_offset += todo;
2770                        skb_frag_size_sub(fragfrom, todo);
2771                        todo = 0;
2772
2773                        to++;
2774                        break;
2775                }
2776        }
2777
2778        /* Ready to "commit" this state change to tgt */
2779        skb_shinfo(tgt)->nr_frags = to;
2780
2781        if (merge >= 0) {
2782                fragfrom = &skb_shinfo(skb)->frags[0];
2783                fragto = &skb_shinfo(tgt)->frags[merge];
2784
2785                skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2786                __skb_frag_unref(fragfrom);
2787        }
2788
2789        /* Reposition in the original skb */
2790        to = 0;
2791        while (from < skb_shinfo(skb)->nr_frags)
2792                skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2793        skb_shinfo(skb)->nr_frags = to;
2794
2795        BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2796
2797onlymerged:
2798        /* Most likely the tgt won't ever need its checksum anymore, skb on
2799         * the other hand might need it if it needs to be resent
2800         */
2801        tgt->ip_summed = CHECKSUM_PARTIAL;
2802        skb->ip_summed = CHECKSUM_PARTIAL;
2803
2804        /* Yak, is it really working this way? Some helper please? */
2805        skb->len -= shiftlen;
2806        skb->data_len -= shiftlen;
2807        skb->truesize -= shiftlen;
2808        tgt->len += shiftlen;
2809        tgt->data_len += shiftlen;
2810        tgt->truesize += shiftlen;
2811
2812        return shiftlen;
2813}
2814
2815/**
2816 * skb_prepare_seq_read - Prepare a sequential read of skb data
2817 * @skb: the buffer to read
2818 * @from: lower offset of data to be read
2819 * @to: upper offset of data to be read
2820 * @st: state variable
2821 *
2822 * Initializes the specified state variable. Must be called before
2823 * invoking skb_seq_read() for the first time.
2824 */
2825void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2826                          unsigned int to, struct skb_seq_state *st)
2827{
2828        st->lower_offset = from;
2829        st->upper_offset = to;
2830        st->root_skb = st->cur_skb = skb;
2831        st->frag_idx = st->stepped_offset = 0;
2832        st->frag_data = NULL;
2833}
2834EXPORT_SYMBOL(skb_prepare_seq_read);
2835
2836/**
2837 * skb_seq_read - Sequentially read skb data
2838 * @consumed: number of bytes consumed by the caller so far
2839 * @data: destination pointer for data to be returned
2840 * @st: state variable
2841 *
2842 * Reads a block of skb data at @consumed relative to the
2843 * lower offset specified to skb_prepare_seq_read(). Assigns
2844 * the head of the data block to @data and returns the length
2845 * of the block or 0 if the end of the skb data or the upper
2846 * offset has been reached.
2847 *
2848 * The caller is not required to consume all of the data
2849 * returned, i.e. @consumed is typically set to the number
2850 * of bytes already consumed and the next call to
2851 * skb_seq_read() will return the remaining part of the block.
2852 *
2853 * Note 1: The size of each block of data returned can be arbitrary,
2854 *       this limitation is the cost for zerocopy sequential
2855 *       reads of potentially non linear data.
2856 *
2857 * Note 2: Fragment lists within fragments are not implemented
2858 *       at the moment, state->root_skb could be replaced with
2859 *       a stack for this purpose.
2860 */
2861unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2862                          struct skb_seq_state *st)
2863{
2864        unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2865        skb_frag_t *frag;
2866
2867        if (unlikely(abs_offset >= st->upper_offset)) {
2868                if (st->frag_data) {
2869                        kunmap_atomic(st->frag_data);
2870                        st->frag_data = NULL;
2871                }
2872                return 0;
2873        }
2874
2875next_skb:
2876        block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2877
2878        if (abs_offset < block_limit && !st->frag_data) {
2879                *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2880                return block_limit - abs_offset;
2881        }
2882
2883        if (st->frag_idx == 0 && !st->frag_data)
2884                st->stepped_offset += skb_headlen(st->cur_skb);
2885
2886        while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2887                frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2888                block_limit = skb_frag_size(frag) + st->stepped_offset;
2889
2890                if (abs_offset < block_limit) {
2891                        if (!st->frag_data)
2892                                st->frag_data = kmap_atomic(skb_frag_page(frag));
2893
2894                        *data = (u8 *) st->frag_data + frag->page_offset +
2895                                (abs_offset - st->stepped_offset);
2896
2897                        return block_limit - abs_offset;
2898                }
2899
2900                if (st->frag_data) {
2901                        kunmap_atomic(st->frag_data);
2902                        st->frag_data = NULL;
2903                }
2904
2905                st->frag_idx++;
2906                st->stepped_offset += skb_frag_size(frag);
2907        }
2908
2909        if (st->frag_data) {
2910                kunmap_atomic(st->frag_data);
2911                st->frag_data = NULL;
2912        }
2913
2914        if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2915                st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2916                st->frag_idx = 0;
2917                goto next_skb;
2918        } else if (st->cur_skb->next) {
2919                st->cur_skb = st->cur_skb->next;
2920                st->frag_idx = 0;
2921                goto next_skb;
2922        }
2923
2924        return 0;
2925}
2926EXPORT_SYMBOL(skb_seq_read);
2927
2928/**
2929 * skb_abort_seq_read - Abort a sequential read of skb data
2930 * @st: state variable
2931 *
2932 * Must be called if skb_seq_read() was not called until it
2933 * returned 0.
2934 */
2935void skb_abort_seq_read(struct skb_seq_state *st)
2936{
2937        if (st->frag_data)
2938                kunmap_atomic(st->frag_data);
2939}
2940EXPORT_SYMBOL(skb_abort_seq_read);
2941
2942#define TS_SKB_CB(state)        ((struct skb_seq_state *) &((state)->cb))
2943
2944static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2945                                          struct ts_config *conf,
2946                                          struct ts_state *state)
2947{
2948        return skb_seq_read(offset, text, TS_SKB_CB(state));
2949}
2950
2951static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2952{
2953        skb_abort_seq_read(TS_SKB_CB(state));
2954}
2955
2956/**
2957 * skb_find_text - Find a text pattern in skb data
2958 * @skb: the buffer to look in
2959 * @from: search offset
2960 * @to: search limit
2961 * @config: textsearch configuration
2962 *
2963 * Finds a pattern in the skb data according to the specified
2964 * textsearch configuration. Use textsearch_next() to retrieve
2965 * subsequent occurrences of the pattern. Returns the offset
2966 * to the first occurrence or UINT_MAX if no match was found.
2967 */
2968unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2969                           unsigned int to, struct ts_config *config)
2970{
2971        struct ts_state state;
2972        unsigned int ret;
2973
2974        config->get_next_block = skb_ts_get_next_block;
2975        config->finish = skb_ts_finish;
2976
2977        skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2978
2979        ret = textsearch_find(config, &state);
2980        return (ret <= to - from ? ret : UINT_MAX);
2981}
2982EXPORT_SYMBOL(skb_find_text);
2983
2984/**
2985 * skb_append_datato_frags - append the user data to a skb
2986 * @sk: sock  structure
2987 * @skb: skb structure to be appended with user data.
2988 * @getfrag: call back function to be used for getting the user data
2989 * @from: pointer to user message iov
2990 * @length: length of the iov message
2991 *
2992 * Description: This procedure append the user data in the fragment part
2993 * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2994 */
2995int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2996                        int (*getfrag)(void *from, char *to, int offset,
2997                                        int len, int odd, struct sk_buff *skb),
2998                        void *from, int length)
2999{
3000        int frg_cnt = skb_shinfo(skb)->nr_frags;
3001        int copy;
3002        int offset = 0;
3003        int ret;
3004        struct page_frag *pfrag = &current->task_frag;
3005
3006        do {
3007                /* Return error if we don't have space for new frag */
3008                if (frg_cnt >= MAX_SKB_FRAGS)
3009                        return -EMSGSIZE;
3010
3011                if (!sk_page_frag_refill(sk, pfrag))
3012                        return -ENOMEM;
3013
3014                /* copy the user data to page */
3015                copy = min_t(int, length, pfrag->size - pfrag->offset);
3016
3017                ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3018                              offset, copy, 0, skb);
3019                if (ret < 0)
3020                        return -EFAULT;
3021
3022                /* copy was successful so update the size parameters */
3023                skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3024                                   copy);
3025                frg_cnt++;
3026                pfrag->offset += copy;
3027                get_page(pfrag->page);
3028
3029                skb->truesize += copy;
3030                refcount_add(copy, &sk->sk_wmem_alloc);
3031                skb->len += copy;
3032                skb->data_len += copy;
3033                offset += copy;
3034                length -= copy;
3035
3036        } while (length > 0);
3037
3038        return 0;
3039}
3040EXPORT_SYMBOL(skb_append_datato_frags);
3041
3042int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3043                         int offset, size_t size)
3044{
3045        int i = skb_shinfo(skb)->nr_frags;
3046
3047        if (skb_can_coalesce(skb, i, page, offset)) {
3048                skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3049        } else if (i < MAX_SKB_FRAGS) {
3050                get_page(page);
3051                skb_fill_page_desc(skb, i, page, offset, size);
3052        } else {
3053                return -EMSGSIZE;
3054        }
3055
3056        return 0;
3057}
3058EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3059
3060/**
3061 *      skb_pull_rcsum - pull skb and update receive checksum
3062 *      @skb: buffer to update
3063 *      @len: length of data pulled
3064 *
3065 *      This function performs an skb_pull on the packet and updates
3066 *      the CHECKSUM_COMPLETE checksum.  It should be used on
3067 *      receive path processing instead of skb_pull unless you know
3068 *      that the checksum difference is zero (e.g., a valid IP header)
3069 *      or you are setting ip_summed to CHECKSUM_NONE.
3070 */
3071void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3072{
3073        unsigned char *data = skb->data;
3074
3075        BUG_ON(len > skb->len);
3076        __skb_pull(skb, len);
3077        skb_postpull_rcsum(skb, data, len);
3078        return skb->data;
3079}
3080EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3081
3082/**
3083 *      skb_segment - Perform protocol segmentation on skb.
3084 *      @head_skb: buffer to segment
3085 *      @features: features for the output path (see dev->features)
3086 *
3087 *      This function performs segmentation on the given skb.  It returns
3088 *      a pointer to the first in a list of new skbs for the segments.
3089 *      In case of error it returns ERR_PTR(err).
3090 */
3091struct sk_buff *skb_segment(struct sk_buff *head_skb,
3092                            netdev_features_t features)
3093{
3094        struct sk_buff *segs = NULL;
3095        struct sk_buff *tail = NULL;
3096        struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3097        skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3098        unsigned int mss = skb_shinfo(head_skb)->gso_size;
3099        unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3100        struct sk_buff *frag_skb = head_skb;
3101        unsigned int offset = doffset;
3102        unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3103        unsigned int partial_segs = 0;
3104        unsigned int headroom;
3105        unsigned int len = head_skb->len;
3106        __be16 proto;
3107        bool csum, sg;
3108        int nfrags = skb_shinfo(head_skb)->nr_frags;
3109        int err = -ENOMEM;
3110        int i = 0;
3111        int pos;
3112        int dummy;
3113
3114        __skb_push(head_skb, doffset);
3115        proto = skb_network_protocol(head_skb, &dummy);
3116        if (unlikely(!proto))
3117                return ERR_PTR(-EINVAL);
3118
3119        sg = !!(features & NETIF_F_SG);
3120        csum = !!can_checksum_protocol(features, proto);
3121
3122        if (sg && csum && (mss != GSO_BY_FRAGS))  {
3123                if (!(features & NETIF_F_GSO_PARTIAL)) {
3124                        struct sk_buff *iter;
3125                        unsigned int frag_len;
3126
3127                        if (!list_skb ||
3128                            !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3129                                goto normal;
3130
3131                        /* If we get here then all the required
3132                         * GSO features except frag_list are supported.
3133                         * Try to split the SKB to multiple GSO SKBs
3134                         * with no frag_list.
3135                         * Currently we can do that only when the buffers don't
3136                         * have a linear part and all the buffers except
3137                         * the last are of the same length.
3138                         */
3139                        frag_len = list_skb->len;
3140                        skb_walk_frags(head_skb, iter) {
3141                                if (frag_len != iter->len && iter->next)
3142                                        goto normal;
3143                                if (skb_headlen(iter) && !iter->head_frag)
3144                                        goto normal;
3145
3146                                len -= iter->len;
3147                        }
3148
3149                        if (len != frag_len)
3150                                goto normal;
3151                }
3152
3153                /* GSO partial only requires that we trim off any excess that
3154                 * doesn't fit into an MSS sized block, so take care of that
3155                 * now.
3156                 */
3157                partial_segs = len / mss;
3158                if (partial_segs > 1)
3159                        mss *= partial_segs;
3160                else
3161                        partial_segs = 0;
3162        }
3163
3164normal:
3165        headroom = skb_headroom(head_skb);
3166        pos = skb_headlen(head_skb);
3167
3168        do {
3169                struct sk_buff *nskb;
3170                skb_frag_t *nskb_frag;
3171                int hsize;
3172                int size;
3173
3174                if (unlikely(mss == GSO_BY_FRAGS)) {
3175                        len = list_skb->len;
3176                } else {
3177                        len = head_skb->len - offset;
3178                        if (len > mss)
3179                                len = mss;
3180                }
3181
3182                hsize = skb_headlen(head_skb) - offset;
3183                if (hsize < 0)
3184                        hsize = 0;
3185                if (hsize > len || !sg)
3186                        hsize = len;
3187
3188                if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3189                    (skb_headlen(list_skb) == len || sg)) {
3190                        BUG_ON(skb_headlen(list_skb) > len);
3191
3192                        i = 0;
3193                        nfrags = skb_shinfo(list_skb)->nr_frags;
3194                        frag = skb_shinfo(list_skb)->frags;
3195                        frag_skb = list_skb;
3196                        pos += skb_headlen(list_skb);
3197
3198                        while (pos < offset + len) {
3199                                BUG_ON(i >= nfrags);
3200
3201                                size = skb_frag_size(frag);
3202                                if (pos + size > offset + len)
3203                                        break;
3204
3205                                i++;
3206                                pos += size;
3207                                frag++;
3208                        }
3209
3210                        nskb = skb_clone(list_skb, GFP_ATOMIC);
3211                        list_skb = list_skb->next;
3212
3213                        if (unlikely(!nskb))
3214                                goto err;
3215
3216                        if (unlikely(pskb_trim(nskb, len))) {
3217                                kfree_skb(nskb);
3218                                goto err;
3219                        }
3220
3221                        hsize = skb_end_offset(nskb);
3222                        if (skb_cow_head(nskb, doffset + headroom)) {
3223                                kfree_skb(nskb);
3224                                goto err;
3225                        }
3226
3227                        nskb->truesize += skb_end_offset(nskb) - hsize;
3228                        skb_release_head_state(nskb);
3229                        __skb_push(nskb, doffset);
3230                } else {
3231                        nskb = __alloc_skb(hsize + doffset + headroom,
3232                                           GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3233                                           NUMA_NO_NODE);
3234
3235                        if (unlikely(!nskb))
3236                                goto err;
3237
3238                        skb_reserve(nskb, headroom);
3239                        __skb_put(nskb, doffset);
3240                }
3241
3242                if (segs)
3243                        tail->next = nskb;
3244                else
3245                        segs = nskb;
3246                tail = nskb;
3247
3248                __copy_skb_header(nskb, head_skb);
3249
3250                skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3251                skb_reset_mac_len(nskb);
3252
3253                skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3254                                                 nskb->data - tnl_hlen,
3255                                                 doffset + tnl_hlen);
3256
3257                if (nskb->len == len + doffset)
3258                        goto perform_csum_check;
3259
3260                if (!sg) {
3261                        if (!nskb->remcsum_offload)
3262                                nskb->ip_summed = CHECKSUM_NONE;
3263                        SKB_GSO_CB(nskb)->csum =
3264                                skb_copy_and_csum_bits(head_skb, offset,
3265                                                       skb_put(nskb, len),
3266                                                       len, 0);
3267                        SKB_GSO_CB(nskb)->csum_start =
3268                                skb_headroom(nskb) + doffset;
3269                        continue;
3270                }
3271
3272                nskb_frag = skb_shinfo(nskb)->frags;
3273
3274                skb_copy_from_linear_data_offset(head_skb, offset,
3275                                                 skb_put(nskb, hsize), hsize);
3276
3277                skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3278                                              SKBTX_SHARED_FRAG;
3279
3280                while (pos < offset + len) {
3281                        if (i >= nfrags) {
3282                                BUG_ON(skb_headlen(list_skb));
3283
3284                                i = 0;
3285                                nfrags = skb_shinfo(list_skb)->nr_frags;
3286                                frag = skb_shinfo(list_skb)->frags;
3287                                frag_skb = list_skb;
3288
3289                                BUG_ON(!nfrags);
3290
3291                                list_skb = list_skb->next;
3292                        }
3293
3294                        if (unlikely(skb_shinfo(nskb)->nr_frags >=
3295                                     MAX_SKB_FRAGS)) {
3296                                net_warn_ratelimited(
3297                                        "skb_segment: too many frags: %u %u\n",
3298                                        pos, mss);
3299                                goto err;
3300                        }
3301
3302                        if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3303                                goto err;
3304
3305                        *nskb_frag = *frag;
3306                        __skb_frag_ref(nskb_frag);
3307                        size = skb_frag_size(nskb_frag);
3308
3309                        if (pos < offset) {
3310                                nskb_frag->page_offset += offset - pos;
3311                                skb_frag_size_sub(nskb_frag, offset - pos);
3312                        }
3313
3314                        skb_shinfo(nskb)->nr_frags++;
3315
3316                        if (pos + size <= offset + len) {
3317                                i++;
3318                                frag++;
3319                                pos += size;
3320                        } else {
3321                                skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3322                                goto skip_fraglist;
3323                        }
3324
3325                        nskb_frag++;
3326                }
3327
3328skip_fraglist:
3329                nskb->data_len = len - hsize;
3330                nskb->len += nskb->data_len;
3331                nskb->truesize += nskb->data_len;
3332
3333perform_csum_check:
3334                if (!csum) {
3335                        if (skb_has_shared_frag(nskb)) {
3336                                err = __skb_linearize(nskb);
3337                                if (err)
3338                                        goto err;
3339                        }
3340                        if (!nskb->remcsum_offload)
3341                                nskb->ip_summed = CHECKSUM_NONE;
3342                        SKB_GSO_CB(nskb)->csum =
3343                                skb_checksum(nskb, doffset,
3344                                             nskb->len - doffset, 0);
3345                        SKB_GSO_CB(nskb)->csum_start =
3346                                skb_headroom(nskb) + doffset;
3347                }
3348        } while ((offset += len) < head_skb->len);
3349
3350        /* Some callers want to get the end of the list.
3351         * Put it in segs->prev to avoid walking the list.
3352         * (see validate_xmit_skb_list() for example)
3353         */
3354        segs->prev = tail;
3355
3356        if (partial_segs) {
3357                struct sk_buff *iter;
3358                int type = skb_shinfo(head_skb)->gso_type;
3359                unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3360
3361                /* Update type to add partial and then remove dodgy if set */
3362                type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3363                type &= ~SKB_GSO_DODGY;
3364
3365                /* Update GSO info and prepare to start updating headers on
3366                 * our way back down the stack of protocols.
3367                 */
3368                for (iter = segs; iter; iter = iter->next) {
3369                        skb_shinfo(iter)->gso_size = gso_size;
3370                        skb_shinfo(iter)->gso_segs = partial_segs;
3371                        skb_shinfo(iter)->gso_type = type;
3372                        SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3373                }
3374
3375                if (tail->len - doffset <= gso_size)
3376                        skb_shinfo(tail)->gso_size = 0;
3377                else if (tail != segs)
3378                        skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3379        }
3380
3381        /* Following permits correct backpressure, for protocols
3382         * using skb_set_owner_w().
3383         * Idea is to tranfert ownership from head_skb to last segment.
3384         */
3385        if (head_skb->destructor == sock_wfree) {
3386                swap(tail->truesize, head_skb->truesize);
3387                swap(tail->destructor, head_skb->destructor);
3388                swap(tail->sk, head_skb->sk);
3389        }
3390        return segs;
3391
3392err:
3393        kfree_skb_list(segs);
3394        return ERR_PTR(err);
3395}
3396EXPORT_SYMBOL_GPL(skb_segment);
3397
3398int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3399{
3400        struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3401        unsigned int offset = skb_gro_offset(skb);
3402        unsigned int headlen = skb_headlen(skb);
3403        unsigned int len = skb_gro_len(skb);
3404        struct sk_buff *lp, *p = *head;
3405        unsigned int delta_truesize;
3406
3407        if (unlikely(p->len + len >= 65536))
3408                return -E2BIG;
3409
3410        lp = NAPI_GRO_CB(p)->last;
3411        pinfo = skb_shinfo(lp);
3412
3413        if (headlen <= offset) {
3414                skb_frag_t *frag;
3415                skb_frag_t *frag2;
3416                int i = skbinfo->nr_frags;
3417                int nr_frags = pinfo->nr_frags + i;
3418
3419                if (nr_frags > MAX_SKB_FRAGS)
3420                        goto merge;
3421
3422                offset -= headlen;
3423                pinfo->nr_frags = nr_frags;
3424                skbinfo->nr_frags = 0;
3425
3426                frag = pinfo->frags + nr_frags;
3427                frag2 = skbinfo->frags + i;
3428                do {
3429                        *--frag = *--frag2;
3430                } while (--i);
3431
3432                frag->page_offset += offset;
3433                skb_frag_size_sub(frag, offset);
3434
3435                /* all fragments truesize : remove (head size + sk_buff) */
3436                delta_truesize = skb->truesize -
3437                                 SKB_TRUESIZE(skb_end_offset(skb));
3438
3439                skb->truesize -= skb->data_len;
3440                skb->len -= skb->data_len;
3441                skb->data_len = 0;
3442
3443                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3444                goto done;
3445        } else if (skb->head_frag) {
3446                int nr_frags = pinfo->nr_frags;
3447                skb_frag_t *frag = pinfo->frags + nr_frags;
3448                struct page *page = virt_to_head_page(skb->head);
3449                unsigned int first_size = headlen - offset;
3450                unsigned int first_offset;
3451
3452                if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3453                        goto merge;
3454
3455                first_offset = skb->data -
3456                               (unsigned char *)page_address(page) +
3457                               offset;
3458
3459                pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3460
3461                frag->page.p      = page;
3462                frag->page_offset = first_offset;
3463                skb_frag_size_set(frag, first_size);
3464
3465                memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3466                /* We dont need to clear skbinfo->nr_frags here */
3467
3468                delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3469                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3470                goto done;
3471        }
3472
3473merge:
3474        delta_truesize = skb->truesize;
3475        if (offset > headlen) {
3476                unsigned int eat = offset - headlen;
3477
3478                skbinfo->frags[0].page_offset += eat;
3479                skb_frag_size_sub(&skbinfo->frags[0], eat);
3480                skb->data_len -= eat;
3481                skb->len -= eat;
3482                offset = headlen;
3483        }
3484
3485        __skb_pull(skb, offset);
3486
3487        if (NAPI_GRO_CB(p)->last == p)
3488                skb_shinfo(p)->frag_list = skb;
3489        else
3490                NAPI_GRO_CB(p)->last->next = skb;
3491        NAPI_GRO_CB(p)->last = skb;
3492        __skb_header_release(skb);
3493        lp = p;
3494
3495done:
3496        NAPI_GRO_CB(p)->count++;
3497        p->data_len += len;
3498        p->truesize += delta_truesize;
3499        p->len += len;
3500        if (lp != p) {
3501                lp->data_len += len;
3502                lp->truesize += delta_truesize;
3503                lp->len += len;
3504        }
3505        NAPI_GRO_CB(skb)->same_flow = 1;
3506        return 0;
3507}
3508EXPORT_SYMBOL_GPL(skb_gro_receive);
3509
3510void __init skb_init(void)
3511{
3512        skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3513                                              sizeof(struct sk_buff),
3514                                              0,
3515                                              SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3516                                              NULL);
3517        skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3518                                                sizeof(struct sk_buff_fclones),
3519                                                0,
3520                                                SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3521                                                NULL);
3522}
3523
3524static int
3525__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3526               unsigned int recursion_level)
3527{
3528        int start = skb_headlen(skb);
3529        int i, copy = start - offset;
3530        struct sk_buff *frag_iter;
3531        int elt = 0;
3532
3533        if (unlikely(recursion_level >= 24))
3534                return -EMSGSIZE;
3535
3536        if (copy > 0) {
3537                if (copy > len)
3538                        copy = len;
3539                sg_set_buf(sg, skb->data + offset, copy);
3540                elt++;
3541                if ((len -= copy) == 0)
3542                        return elt;
3543                offset += copy;
3544        }
3545
3546        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3547                int end;
3548
3549                WARN_ON(start > offset + len);
3550
3551                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3552                if ((copy = end - offset) > 0) {
3553                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3554                        if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3555                                return -EMSGSIZE;
3556
3557                        if (copy > len)
3558                                copy = len;
3559                        sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3560                                        frag->page_offset+offset-start);
3561                        elt++;
3562                        if (!(len -= copy))
3563                                return elt;
3564                        offset += copy;
3565                }
3566                start = end;
3567        }
3568
3569        skb_walk_frags(skb, frag_iter) {
3570                int end, ret;
3571
3572                WARN_ON(start > offset + len);
3573
3574                end = start + frag_iter->len;
3575                if ((copy = end - offset) > 0) {
3576                        if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3577                                return -EMSGSIZE;
3578
3579                        if (copy > len)
3580                                copy = len;
3581                        ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3582                                              copy, recursion_level + 1);
3583                        if (unlikely(ret < 0))
3584                                return ret;
3585                        elt += ret;
3586                        if ((len -= copy) == 0)
3587                                return elt;
3588                        offset += copy;
3589                }
3590                start = end;
3591        }
3592        BUG_ON(len);
3593        return elt;
3594}
3595
3596/**
3597 *      skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3598 *      @skb: Socket buffer containing the buffers to be mapped
3599 *      @sg: The scatter-gather list to map into
3600 *      @offset: The offset into the buffer's contents to start mapping
3601 *      @len: Length of buffer space to be mapped
3602 *
3603 *      Fill the specified scatter-gather list with mappings/pointers into a
3604 *      region of the buffer space attached to a socket buffer. Returns either
3605 *      the number of scatterlist items used, or -EMSGSIZE if the contents
3606 *      could not fit.
3607 */
3608int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3609{
3610        int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
3611
3612        if (nsg <= 0)
3613                return nsg;
3614
3615        sg_mark_end(&sg[nsg - 1]);
3616
3617        return nsg;
3618}
3619EXPORT_SYMBOL_GPL(skb_to_sgvec);
3620
3621/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3622 * sglist without mark the sg which contain last skb data as the end.
3623 * So the caller can mannipulate sg list as will when padding new data after
3624 * the first call without calling sg_unmark_end to expend sg list.
3625 *
3626 * Scenario to use skb_to_sgvec_nomark:
3627 * 1. sg_init_table
3628 * 2. skb_to_sgvec_nomark(payload1)
3629 * 3. skb_to_sgvec_nomark(payload2)
3630 *
3631 * This is equivalent to:
3632 * 1. sg_init_table
3633 * 2. skb_to_sgvec(payload1)
3634 * 3. sg_unmark_end
3635 * 4. skb_to_sgvec(payload2)
3636 *
3637 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3638 * is more preferable.
3639 */
3640int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3641                        int offset, int len)
3642{
3643        return __skb_to_sgvec(skb, sg, offset, len, 0);
3644}
3645EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3646
3647
3648
3649/**
3650 *      skb_cow_data - Check that a socket buffer's data buffers are writable
3651 *      @skb: The socket buffer to check.
3652 *      @tailbits: Amount of trailing space to be added
3653 *      @trailer: Returned pointer to the skb where the @tailbits space begins
3654 *
3655 *      Make sure that the data buffers attached to a socket buffer are
3656 *      writable. If they are not, private copies are made of the data buffers
3657 *      and the socket buffer is set to use these instead.
3658 *
3659 *      If @tailbits is given, make sure that there is space to write @tailbits
3660 *      bytes of data beyond current end of socket buffer.  @trailer will be
3661 *      set to point to the skb in which this space begins.
3662 *
3663 *      The number of scatterlist elements required to completely map the
3664 *      COW'd and extended socket buffer will be returned.
3665 */
3666int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3667{
3668        int copyflag;
3669        int elt;
3670        struct sk_buff *skb1, **skb_p;
3671
3672        /* If skb is cloned or its head is paged, reallocate
3673         * head pulling out all the pages (pages are considered not writable
3674         * at the moment even if they are anonymous).
3675         */
3676        if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3677            __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3678                return -ENOMEM;
3679
3680        /* Easy case. Most of packets will go this way. */
3681        if (!skb_has_frag_list(skb)) {
3682                /* A little of trouble, not enough of space for trailer.
3683                 * This should not happen, when stack is tuned to generate
3684                 * good frames. OK, on miss we reallocate and reserve even more
3685                 * space, 128 bytes is fair. */
3686
3687                if (skb_tailroom(skb) < tailbits &&
3688                    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3689                        return -ENOMEM;
3690
3691                /* Voila! */
3692                *trailer = skb;
3693                return 1;
3694        }
3695
3696        /* Misery. We are in troubles, going to mincer fragments... */
3697
3698        elt = 1;
3699        skb_p = &skb_shinfo(skb)->frag_list;
3700        copyflag = 0;
3701
3702        while ((skb1 = *skb_p) != NULL) {
3703                int ntail = 0;
3704
3705                /* The fragment is partially pulled by someone,
3706                 * this can happen on input. Copy it and everything
3707                 * after it. */
3708
3709                if (skb_shared(skb1))
3710                        copyflag = 1;
3711
3712                /* If the skb is the last, worry about trailer. */
3713
3714                if (skb1->next == NULL && tailbits) {
3715                        if (skb_shinfo(skb1)->nr_frags ||
3716                            skb_has_frag_list(skb1) ||
3717                            skb_tailroom(skb1) < tailbits)
3718                                ntail = tailbits + 128;
3719                }
3720
3721                if (copyflag ||
3722                    skb_cloned(skb1) ||
3723                    ntail ||
3724                    skb_shinfo(skb1)->nr_frags ||
3725                    skb_has_frag_list(skb1)) {
3726                        struct sk_buff *skb2;
3727
3728                        /* Fuck, we are miserable poor guys... */
3729                        if (ntail == 0)
3730                                skb2 = skb_copy(skb1, GFP_ATOMIC);
3731                        else
3732                                skb2 = skb_copy_expand(skb1,
3733                                                       skb_headroom(skb1),
3734                                                       ntail,
3735                                                       GFP_ATOMIC);
3736                        if (unlikely(skb2 == NULL))
3737                                return -ENOMEM;
3738
3739                        if (skb1->sk)
3740                                skb_set_owner_w(skb2, skb1->sk);
3741
3742                        /* Looking around. Are we still alive?
3743                         * OK, link new skb, drop old one */
3744
3745                        skb2->next = skb1->next;
3746                        *skb_p = skb2;
3747                        kfree_skb(skb1);
3748                        skb1 = skb2;
3749                }
3750                elt++;
3751                *trailer = skb1;
3752                skb_p = &skb1->next;
3753        }
3754
3755        return elt;
3756}
3757EXPORT_SYMBOL_GPL(skb_cow_data);
3758
3759static void sock_rmem_free(struct sk_buff *skb)
3760{
3761        struct sock *sk = skb->sk;
3762
3763        atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3764}
3765
3766static void skb_set_err_queue(struct sk_buff *skb)
3767{
3768        /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
3769         * So, it is safe to (mis)use it to mark skbs on the error queue.
3770         */
3771        skb->pkt_type = PACKET_OUTGOING;
3772        BUILD_BUG_ON(PACKET_OUTGOING == 0);
3773}
3774
3775/*
3776 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3777 */
3778int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3779{
3780        if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3781            (unsigned int)sk->sk_rcvbuf)
3782                return -ENOMEM;
3783
3784        skb_orphan(skb);
3785        skb->sk = sk;
3786        skb->destructor = sock_rmem_free;
3787        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3788        skb_set_err_queue(skb);
3789
3790        /* before exiting rcu section, make sure dst is refcounted */
3791        skb_dst_force(skb);
3792
3793        skb_queue_tail(&sk->sk_error_queue, skb);
3794        if (!sock_flag(sk, SOCK_DEAD))
3795                sk->sk_data_ready(sk);
3796        return 0;
3797}
3798EXPORT_SYMBOL(sock_queue_err_skb);
3799
3800static bool is_icmp_err_skb(const struct sk_buff *skb)
3801{
3802        return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
3803                       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
3804}
3805
3806struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3807{
3808        struct sk_buff_head *q = &sk->sk_error_queue;
3809        struct sk_buff *skb, *skb_next = NULL;
3810        bool icmp_next = false;
3811        unsigned long flags;
3812
3813        spin_lock_irqsave(&q->lock, flags);
3814        skb = __skb_dequeue(q);
3815        if (skb && (skb_next = skb_peek(q))) {
3816                icmp_next = is_icmp_err_skb(skb_next);
3817                if (icmp_next)
3818                        sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
3819        }
3820        spin_unlock_irqrestore(&q->lock, flags);
3821
3822        if (is_icmp_err_skb(skb) && !icmp_next)
3823                sk->sk_err = 0;
3824
3825        if (skb_next)
3826                sk->sk_error_report(sk);
3827
3828        return skb;
3829}
3830EXPORT_SYMBOL(sock_dequeue_err_skb);
3831
3832/**
3833 * skb_clone_sk - create clone of skb, and take reference to socket
3834 * @skb: the skb to clone
3835 *
3836 * This function creates a clone of a buffer that holds a reference on
3837 * sk_refcnt.  Buffers created via this function are meant to be
3838 * returned using sock_queue_err_skb, or free via kfree_skb.
3839 *
3840 * When passing buffers allocated with this function to sock_queue_err_skb
3841 * it is necessary to wrap the call with sock_hold/sock_put in order to
3842 * prevent the socket from being released prior to being enqueued on
3843 * the sk_error_queue.
3844 */
3845struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3846{
3847        struct sock *sk = skb->sk;
3848        struct sk_buff *clone;
3849
3850        if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
3851                return NULL;
3852
3853        clone = skb_clone(skb, GFP_ATOMIC);
3854        if (!clone) {
3855                sock_put(sk);
3856                return NULL;
3857        }
3858
3859        clone->sk = sk;
3860        clone->destructor = sock_efree;
3861
3862        return clone;
3863}
3864EXPORT_SYMBOL(skb_clone_sk);
3865
3866static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3867                                        struct sock *sk,
3868                                        int tstype,
3869                                        bool opt_stats)
3870{
3871        struct sock_exterr_skb *serr;
3872        int err;
3873
3874        BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
3875
3876        serr = SKB_EXT_ERR(skb);
3877        memset(serr, 0, sizeof(*serr));
3878        serr->ee.ee_errno = ENOMSG;
3879        serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3880        serr->ee.ee_info = tstype;
3881        serr->opt_stats = opt_stats;
3882        serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
3883        if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3884                serr->ee.ee_data = skb_shinfo(skb)->tskey;
3885                if (sk->sk_protocol == IPPROTO_TCP &&
3886                    sk->sk_type == SOCK_STREAM)
3887                        serr->ee.ee_data -= sk->sk_tskey;
3888        }
3889
3890        err = sock_queue_err_skb(sk, skb);
3891
3892        if (err)
3893                kfree_skb(skb);
3894}
3895
3896static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3897{
3898        bool ret;
3899
3900        if (likely(sysctl_tstamp_allow_data || tsonly))
3901                return true;
3902
3903        read_lock_bh(&sk->sk_callback_lock);
3904        ret = sk->sk_socket && sk->sk_socket->file &&
3905              file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3906        read_unlock_bh(&sk->sk_callback_lock);
3907        return ret;
3908}
3909
3910void skb_complete_tx_timestamp(struct sk_buff *skb,
3911                               struct skb_shared_hwtstamps *hwtstamps)
3912{
3913        struct sock *sk = skb->sk;
3914
3915        if (!skb_may_tx_timestamp(sk, false))
3916                return;
3917
3918        /* Take a reference to prevent skb_orphan() from freeing the socket,
3919         * but only if the socket refcount is not zero.
3920         */
3921        if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
3922                *skb_hwtstamps(skb) = *hwtstamps;
3923                __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
3924                sock_put(sk);
3925        }
3926}
3927EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3928
3929void __skb_tstamp_tx(struct sk_buff *orig_skb,
3930                     struct skb_shared_hwtstamps *hwtstamps,
3931                     struct sock *sk, int tstype)
3932{
3933        struct sk_buff *skb;
3934        bool tsonly, opt_stats = false;
3935
3936        if (!sk)
3937                return;
3938
3939        if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
3940            skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
3941                return;
3942
3943        tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3944        if (!skb_may_tx_timestamp(sk, tsonly))
3945                return;
3946
3947        if (tsonly) {
3948#ifdef CONFIG_INET
3949                if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
3950                    sk->sk_protocol == IPPROTO_TCP &&
3951                    sk->sk_type == SOCK_STREAM) {
3952                        skb = tcp_get_timestamping_opt_stats(sk);
3953                        opt_stats = true;
3954                } else
3955#endif
3956                        skb = alloc_skb(0, GFP_ATOMIC);
3957        } else {
3958                skb = skb_clone(orig_skb, GFP_ATOMIC);
3959        }
3960        if (!skb)
3961                return;
3962
3963        if (tsonly) {
3964                skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
3965                                             SKBTX_ANY_TSTAMP;
3966                skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3967        }
3968
3969        if (hwtstamps)
3970                *skb_hwtstamps(skb) = *hwtstamps;
3971        else
3972                skb->tstamp = ktime_get_real();
3973
3974        __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
3975}
3976EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3977
3978void skb_tstamp_tx(struct sk_buff *orig_skb,
3979                   struct skb_shared_hwtstamps *hwtstamps)
3980{
3981        return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3982                               SCM_TSTAMP_SND);
3983}
3984EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3985
3986void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3987{
3988        struct sock *sk = skb->sk;
3989        struct sock_exterr_skb *serr;
3990        int err = 1;
3991
3992        skb->wifi_acked_valid = 1;
3993        skb->wifi_acked = acked;
3994
3995        serr = SKB_EXT_ERR(skb);
3996        memset(serr, 0, sizeof(*serr));
3997        serr->ee.ee_errno = ENOMSG;
3998        serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3999
4000        /* Take a reference to prevent skb_orphan() from freeing the socket,
4001         * but only if the socket refcount is not zero.
4002         */
4003        if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4004                err = sock_queue_err_skb(sk, skb);
4005                sock_put(sk);
4006        }
4007        if (err)
4008                kfree_skb(skb);
4009}
4010EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4011
4012/**
4013 * skb_partial_csum_set - set up and verify partial csum values for packet
4014 * @skb: the skb to set
4015 * @start: the number of bytes after skb->data to start checksumming.
4016 * @off: the offset from start to place the checksum.
4017 *
4018 * For untrusted partially-checksummed packets, we need to make sure the values
4019 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4020 *
4021 * This function checks and sets those values and skb->ip_summed: if this
4022 * returns false you should drop the packet.
4023 */
4024bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4025{
4026        if (unlikely(start > skb_headlen(skb)) ||
4027            unlikely((int)start + off > skb_headlen(skb) - 2)) {
4028                net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4029                                     start, off, skb_headlen(skb));
4030                return false;
4031        }
4032        skb->ip_summed = CHECKSUM_PARTIAL;
4033        skb->csum_start = skb_headroom(skb) + start;
4034        skb->csum_offset = off;
4035        skb_set_transport_header(skb, start);
4036        return true;
4037}
4038EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4039
4040static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4041                               unsigned int max)
4042{
4043        if (skb_headlen(skb) >= len)
4044                return 0;
4045
4046        /* If we need to pullup then pullup to the max, so we
4047         * won't need to do it again.
4048         */
4049        if (max > skb->len)
4050                max = skb->len;
4051
4052        if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4053                return -ENOMEM;
4054
4055        if (skb_headlen(skb) < len)
4056                return -EPROTO;
4057
4058        return 0;
4059}
4060
4061#define MAX_TCP_HDR_LEN (15 * 4)
4062
4063static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4064                                      typeof(IPPROTO_IP) proto,
4065                                      unsigned int off)
4066{
4067        switch (proto) {
4068                int err;
4069
4070        case IPPROTO_TCP:
4071                err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4072                                          off + MAX_TCP_HDR_LEN);
4073                if (!err && !skb_partial_csum_set(skb, off,
4074                                                  offsetof(struct tcphdr,
4075                                                           check)))
4076                        err = -EPROTO;
4077                return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4078
4079        case IPPROTO_UDP:
4080                err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4081                                          off + sizeof(struct udphdr));
4082                if (!err && !skb_partial_csum_set(skb, off,
4083                                                  offsetof(struct udphdr,
4084                                                           check)))
4085                        err = -EPROTO;
4086                return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4087        }
4088
4089        return ERR_PTR(-EPROTO);
4090}
4091
4092/* This value should be large enough to cover a tagged ethernet header plus
4093 * maximally sized IP and TCP or UDP headers.
4094 */
4095#define MAX_IP_HDR_LEN 128
4096
4097static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4098{
4099        unsigned int off;
4100        bool fragment;
4101        __sum16 *csum;
4102        int err;
4103
4104        fragment = false;
4105
4106        err = skb_maybe_pull_tail(skb,
4107                                  sizeof(struct iphdr),
4108                                  MAX_IP_HDR_LEN);
4109        if (err < 0)
4110                goto out;
4111
4112        if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4113                fragment = true;
4114
4115        off = ip_hdrlen(skb);
4116
4117        err = -EPROTO;
4118
4119        if (fragment)
4120                goto out;
4121
4122        csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4123        if (IS_ERR(csum))
4124                return PTR_ERR(csum);
4125
4126        if (recalculate)
4127                *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4128                                           ip_hdr(skb)->daddr,
4129                                           skb->len - off,
4130                                           ip_hdr(skb)->protocol, 0);
4131        err = 0;
4132
4133out:
4134        return err;
4135}
4136
4137/* This value should be large enough to cover a tagged ethernet header plus
4138 * an IPv6 header, all options, and a maximal TCP or UDP header.
4139 */
4140#define MAX_IPV6_HDR_LEN 256
4141
4142#define OPT_HDR(type, skb, off) \
4143        (type *)(skb_network_header(skb) + (off))
4144
4145static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4146{
4147        int err;
4148        u8 nexthdr;
4149        unsigned int off;
4150        unsigned int len;
4151        bool fragment;
4152        bool done;
4153        __sum16 *csum;
4154
4155        fragment = false;
4156        done = false;
4157
4158        off = sizeof(struct ipv6hdr);
4159
4160        err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4161        if (err < 0)
4162                goto out;
4163
4164        nexthdr = ipv6_hdr(skb)->nexthdr;
4165
4166        len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4167        while (off <= len && !done) {
4168                switch (nexthdr) {
4169                case IPPROTO_DSTOPTS:
4170                case IPPROTO_HOPOPTS:
4171                case IPPROTO_ROUTING: {
4172                        struct ipv6_opt_hdr *hp;
4173
4174                        err = skb_maybe_pull_tail(skb,
4175                                                  off +
4176                                                  sizeof(struct ipv6_opt_hdr),
4177                                                  MAX_IPV6_HDR_LEN);
4178                        if (err < 0)
4179                                goto out;
4180
4181                        hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4182                        nexthdr = hp->nexthdr;
4183                        off += ipv6_optlen(hp);
4184                        break;
4185                }
4186                case IPPROTO_AH: {
4187                        struct ip_auth_hdr *hp;
4188
4189                        err = skb_maybe_pull_tail(skb,
4190                                                  off +
4191                                                  sizeof(struct ip_auth_hdr),
4192                                                  MAX_IPV6_HDR_LEN);
4193                        if (err < 0)
4194                                goto out;
4195
4196                        hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4197                        nexthdr = hp->nexthdr;
4198                        off += ipv6_authlen(hp);
4199                        break;
4200                }
4201                case IPPROTO_FRAGMENT: {
4202                        struct frag_hdr *hp;
4203
4204                        err = skb_maybe_pull_tail(skb,
4205                                                  off +
4206                                                  sizeof(struct frag_hdr),
4207                                                  MAX_IPV6_HDR_LEN);
4208                        if (err < 0)
4209                                goto out;
4210
4211                        hp = OPT_HDR(struct frag_hdr, skb, off);
4212
4213                        if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4214                                fragment = true;
4215
4216                        nexthdr = hp->nexthdr;
4217                        off += sizeof(struct frag_hdr);
4218                        break;
4219                }
4220                default:
4221                        done = true;
4222                        break;
4223                }
4224        }
4225
4226        err = -EPROTO;
4227
4228        if (!done || fragment)
4229                goto out;
4230
4231        csum = skb_checksum_setup_ip(skb, nexthdr, off);
4232        if (IS_ERR(csum))
4233                return PTR_ERR(csum);
4234
4235        if (recalculate)
4236                *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4237                                         &ipv6_hdr(skb)->daddr,
4238                                         skb->len - off, nexthdr, 0);
4239        err = 0;
4240
4241out:
4242        return err;
4243}
4244
4245/**
4246 * skb_checksum_setup - set up partial checksum offset
4247 * @skb: the skb to set up
4248 * @recalculate: if true the pseudo-header checksum will be recalculated
4249 */
4250int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4251{
4252        int err;
4253
4254        switch (skb->protocol) {
4255        case htons(ETH_P_IP):
4256                err = skb_checksum_setup_ipv4(skb, recalculate);
4257                break;
4258
4259        case htons(ETH_P_IPV6):
4260                err = skb_checksum_setup_ipv6(skb, recalculate);
4261                break;
4262
4263        default:
4264                err = -EPROTO;
4265                break;
4266        }
4267
4268        return err;
4269}
4270EXPORT_SYMBOL(skb_checksum_setup);
4271
4272/**
4273 * skb_checksum_maybe_trim - maybe trims the given skb
4274 * @skb: the skb to check
4275 * @transport_len: the data length beyond the network header
4276 *
4277 * Checks whether the given skb has data beyond the given transport length.
4278 * If so, returns a cloned skb trimmed to this transport length.
4279 * Otherwise returns the provided skb. Returns NULL in error cases
4280 * (e.g. transport_len exceeds skb length or out-of-memory).
4281 *
4282 * Caller needs to set the skb transport header and free any returned skb if it
4283 * differs from the provided skb.
4284 */
4285static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4286                                               unsigned int transport_len)
4287{
4288        struct sk_buff *skb_chk;
4289        unsigned int len = skb_transport_offset(skb) + transport_len;
4290        int ret;
4291
4292        if (skb->len < len)
4293                return NULL;
4294        else if (skb->len == len)
4295                return skb;
4296
4297        skb_chk = skb_clone(skb, GFP_ATOMIC);
4298        if (!skb_chk)
4299                return NULL;
4300
4301        ret = pskb_trim_rcsum(skb_chk, len);
4302        if (ret) {
4303                kfree_skb(skb_chk);
4304                return NULL;
4305        }
4306
4307        return skb_chk;
4308}
4309
4310/**
4311 * skb_checksum_trimmed - validate checksum of an skb
4312 * @skb: the skb to check
4313 * @transport_len: the data length beyond the network header
4314 * @skb_chkf: checksum function to use
4315 *
4316 * Applies the given checksum function skb_chkf to the provided skb.
4317 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4318 *
4319 * If the skb has data beyond the given transport length, then a
4320 * trimmed & cloned skb is checked and returned.
4321 *
4322 * Caller needs to set the skb transport header and free any returned skb if it
4323 * differs from the provided skb.
4324 */
4325struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4326                                     unsigned int transport_len,
4327                                     __sum16(*skb_chkf)(struct sk_buff *skb))
4328{
4329        struct sk_buff *skb_chk;
4330        unsigned int offset = skb_transport_offset(skb);
4331        __sum16 ret;
4332
4333        skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4334        if (!skb_chk)
4335                goto err;
4336
4337        if (!pskb_may_pull(skb_chk, offset))
4338                goto err;
4339
4340        skb_pull_rcsum(skb_chk, offset);
4341        ret = skb_chkf(skb_chk);
4342        skb_push_rcsum(skb_chk, offset);
4343
4344        if (ret)
4345                goto err;
4346
4347        return skb_chk;
4348
4349err:
4350        if (skb_chk && skb_chk != skb)
4351                kfree_skb(skb_chk);
4352
4353        return NULL;
4354
4355}
4356EXPORT_SYMBOL(skb_checksum_trimmed);
4357
4358void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4359{
4360        net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4361                             skb->dev->name);
4362}
4363EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4364
4365void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4366{
4367        if (head_stolen) {
4368                skb_release_head_state(skb);
4369                kmem_cache_free(skbuff_head_cache, skb);
4370        } else {
4371                __kfree_skb(skb);
4372        }
4373}
4374EXPORT_SYMBOL(kfree_skb_partial);
4375
4376/**
4377 * skb_try_coalesce - try to merge skb to prior one
4378 * @to: prior buffer
4379 * @from: buffer to add
4380 * @fragstolen: pointer to boolean
4381 * @delta_truesize: how much more was allocated than was requested
4382 */
4383bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4384                      bool *fragstolen, int *delta_truesize)
4385{
4386        int i, delta, len = from->len;
4387
4388        *fragstolen = false;
4389
4390        if (skb_cloned(to))
4391                return false;
4392
4393        if (len <= skb_tailroom(to)) {
4394                if (len)
4395                        BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4396                *delta_truesize = 0;
4397                return true;
4398        }
4399
4400        if (skb_has_frag_list(to) || skb_has_frag_list(from))
4401                return false;
4402
4403        if (skb_headlen(from) != 0) {
4404                struct page *page;
4405                unsigned int offset;
4406
4407                if (skb_shinfo(to)->nr_frags +
4408                    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4409                        return false;
4410
4411                if (skb_head_is_locked(from))
4412                        return false;
4413
4414                delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4415
4416                page = virt_to_head_page(from->head);
4417                offset = from->data - (unsigned char *)page_address(page);
4418
4419                skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4420                                   page, offset, skb_headlen(from));
4421                *fragstolen = true;
4422        } else {
4423                if (skb_shinfo(to)->nr_frags +
4424                    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4425                        return false;
4426
4427                delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4428        }
4429
4430        WARN_ON_ONCE(delta < len);
4431
4432        memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4433               skb_shinfo(from)->frags,
4434               skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4435        skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4436
4437        if (!skb_cloned(from))
4438                skb_shinfo(from)->nr_frags = 0;
4439
4440        /* if the skb is not cloned this does nothing
4441         * since we set nr_frags to 0.
4442         */
4443        for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4444                skb_frag_ref(from, i);
4445
4446        to->truesize += delta;
4447        to->len += len;
4448        to->data_len += len;
4449
4450        *delta_truesize = delta;
4451        return true;
4452}
4453EXPORT_SYMBOL(skb_try_coalesce);
4454
4455/**
4456 * skb_scrub_packet - scrub an skb
4457 *
4458 * @skb: buffer to clean
4459 * @xnet: packet is crossing netns
4460 *
4461 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4462 * into/from a tunnel. Some information have to be cleared during these
4463 * operations.
4464 * skb_scrub_packet can also be used to clean a skb before injecting it in
4465 * another namespace (@xnet == true). We have to clear all information in the
4466 * skb that could impact namespace isolation.
4467 */
4468void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4469{
4470        skb->tstamp = 0;
4471        skb->pkt_type = PACKET_HOST;
4472        skb->skb_iif = 0;
4473        skb->ignore_df = 0;
4474        skb_dst_drop(skb);
4475        secpath_reset(skb);
4476        nf_reset(skb);
4477        nf_reset_trace(skb);
4478
4479        if (!xnet)
4480                return;
4481
4482        skb_orphan(skb);
4483        skb->mark = 0;
4484}
4485EXPORT_SYMBOL_GPL(skb_scrub_packet);
4486
4487/**
4488 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4489 *
4490 * @skb: GSO skb
4491 *
4492 * skb_gso_transport_seglen is used to determine the real size of the
4493 * individual segments, including Layer4 headers (TCP/UDP).
4494 *
4495 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4496 */
4497unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4498{
4499        const struct skb_shared_info *shinfo = skb_shinfo(skb);
4500        unsigned int thlen = 0;
4501
4502        if (skb->encapsulation) {
4503                thlen = skb_inner_transport_header(skb) -
4504                        skb_transport_header(skb);
4505
4506                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4507                        thlen += inner_tcp_hdrlen(skb);
4508        } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4509                thlen = tcp_hdrlen(skb);
4510        } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4511                thlen = sizeof(struct sctphdr);
4512        }
4513        /* UFO sets gso_size to the size of the fragmentation
4514         * payload, i.e. the size of the L4 (UDP) header is already
4515         * accounted for.
4516         */
4517        return thlen + shinfo->gso_size;
4518}
4519EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4520
4521/**
4522 * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4523 *
4524 * @skb: GSO skb
4525 * @mtu: MTU to validate against
4526 *
4527 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4528 * once split.
4529 */
4530bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4531{
4532        const struct skb_shared_info *shinfo = skb_shinfo(skb);
4533        const struct sk_buff *iter;
4534        unsigned int hlen;
4535
4536        hlen = skb_gso_network_seglen(skb);
4537
4538        if (shinfo->gso_size != GSO_BY_FRAGS)
4539                return hlen <= mtu;
4540
4541        /* Undo this so we can re-use header sizes */
4542        hlen -= GSO_BY_FRAGS;
4543
4544        skb_walk_frags(skb, iter) {
4545                if (hlen + skb_headlen(iter) > mtu)
4546                        return false;
4547        }
4548
4549        return true;
4550}
4551EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4552
4553static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4554{
4555        if (skb_cow(skb, skb_headroom(skb)) < 0) {
4556                kfree_skb(skb);
4557                return NULL;
4558        }
4559
4560        memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4561                2 * ETH_ALEN);
4562        skb->mac_header += VLAN_HLEN;
4563        return skb;
4564}
4565
4566struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4567{
4568        struct vlan_hdr *vhdr;
4569        u16 vlan_tci;
4570
4571        if (unlikely(skb_vlan_tag_present(skb))) {
4572                /* vlan_tci is already set-up so leave this for another time */
4573                return skb;
4574        }
4575
4576        skb = skb_share_check(skb, GFP_ATOMIC);
4577        if (unlikely(!skb))
4578                goto err_free;
4579
4580        if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4581                goto err_free;
4582
4583        vhdr = (struct vlan_hdr *)skb->data;
4584        vlan_tci = ntohs(vhdr->h_vlan_TCI);
4585        __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4586
4587        skb_pull_rcsum(skb, VLAN_HLEN);
4588        vlan_set_encap_proto(skb, vhdr);
4589
4590        skb = skb_reorder_vlan_header(skb);
4591        if (unlikely(!skb))
4592                goto err_free;
4593
4594        skb_reset_network_header(skb);
4595        skb_reset_transport_header(skb);
4596        skb_reset_mac_len(skb);
4597
4598        return skb;
4599
4600err_free:
4601        kfree_skb(skb);
4602        return NULL;
4603}
4604EXPORT_SYMBOL(skb_vlan_untag);
4605
4606int skb_ensure_writable(struct sk_buff *skb, int write_len)
4607{
4608        if (!pskb_may_pull(skb, write_len))
4609                return -ENOMEM;
4610
4611        if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4612                return 0;
4613
4614        return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4615}
4616EXPORT_SYMBOL(skb_ensure_writable);
4617
4618/* remove VLAN header from packet and update csum accordingly.
4619 * expects a non skb_vlan_tag_present skb with a vlan tag payload
4620 */
4621int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4622{
4623        struct vlan_hdr *vhdr;
4624        int offset = skb->data - skb_mac_header(skb);
4625        int err;
4626
4627        if (WARN_ONCE(offset,
4628                      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
4629                      offset)) {
4630                return -EINVAL;
4631        }
4632
4633        err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4634        if (unlikely(err))
4635                return err;
4636
4637        skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4638
4639        vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4640        *vlan_tci = ntohs(vhdr->h_vlan_TCI);
4641
4642        memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4643        __skb_pull(skb, VLAN_HLEN);
4644
4645        vlan_set_encap_proto(skb, vhdr);
4646        skb->mac_header += VLAN_HLEN;
4647
4648        if (skb_network_offset(skb) < ETH_HLEN)
4649                skb_set_network_header(skb, ETH_HLEN);
4650
4651        skb_reset_mac_len(skb);
4652
4653        return err;
4654}
4655EXPORT_SYMBOL(__skb_vlan_pop);
4656
4657/* Pop a vlan tag either from hwaccel or from payload.
4658 * Expects skb->data at mac header.
4659 */
4660int skb_vlan_pop(struct sk_buff *skb)
4661{
4662        u16 vlan_tci;
4663        __be16 vlan_proto;
4664        int err;
4665
4666        if (likely(skb_vlan_tag_present(skb))) {
4667                skb->vlan_tci = 0;
4668        } else {
4669                if (unlikely(!eth_type_vlan(skb->protocol)))
4670                        return 0;
4671
4672                err = __skb_vlan_pop(skb, &vlan_tci);
4673                if (err)
4674                        return err;
4675        }
4676        /* move next vlan tag to hw accel tag */
4677        if (likely(!eth_type_vlan(skb->protocol)))
4678                return 0;
4679
4680        vlan_proto = skb->protocol;
4681        err = __skb_vlan_pop(skb, &vlan_tci);
4682        if (unlikely(err))
4683                return err;
4684
4685        __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4686        return 0;
4687}
4688EXPORT_SYMBOL(skb_vlan_pop);
4689
4690/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
4691 * Expects skb->data at mac header.
4692 */
4693int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4694{
4695        if (skb_vlan_tag_present(skb)) {
4696                int offset = skb->data - skb_mac_header(skb);
4697                int err;
4698
4699                if (WARN_ONCE(offset,
4700                              "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
4701                              offset)) {
4702                        return -EINVAL;
4703                }
4704
4705                err = __vlan_insert_tag(skb, skb->vlan_proto,
4706                                        skb_vlan_tag_get(skb));
4707                if (err)
4708                        return err;
4709
4710                skb->protocol = skb->vlan_proto;
4711                skb->mac_len += VLAN_HLEN;
4712
4713                skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4714        }
4715        __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4716        return 0;
4717}
4718EXPORT_SYMBOL(skb_vlan_push);
4719
4720/**
4721 * alloc_skb_with_frags - allocate skb with page frags
4722 *
4723 * @header_len: size of linear part
4724 * @data_len: needed length in frags
4725 * @max_page_order: max page order desired.
4726 * @errcode: pointer to error code if any
4727 * @gfp_mask: allocation mask
4728 *
4729 * This can be used to allocate a paged skb, given a maximal order for frags.
4730 */
4731struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4732                                     unsigned long data_len,
4733                                     int max_page_order,
4734                                     int *errcode,
4735                                     gfp_t gfp_mask)
4736{
4737        int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4738        unsigned long chunk;
4739        struct sk_buff *skb;
4740        struct page *page;
4741        gfp_t gfp_head;
4742        int i;
4743
4744        *errcode = -EMSGSIZE;
4745        /* Note this test could be relaxed, if we succeed to allocate
4746         * high order pages...
4747         */
4748        if (npages > MAX_SKB_FRAGS)
4749                return NULL;
4750
4751        gfp_head = gfp_mask;
4752        if (gfp_head & __GFP_DIRECT_RECLAIM)
4753                gfp_head |= __GFP_RETRY_MAYFAIL;
4754
4755        *errcode = -ENOBUFS;
4756        skb = alloc_skb(header_len, gfp_head);
4757        if (!skb)
4758                return NULL;
4759
4760        skb->truesize += npages << PAGE_SHIFT;
4761
4762        for (i = 0; npages > 0; i++) {
4763                int order = max_page_order;
4764
4765                while (order) {
4766                        if (npages >= 1 << order) {
4767                                page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4768                                                   __GFP_COMP |
4769                                                   __GFP_NOWARN |
4770                                                   __GFP_NORETRY,
4771                                                   order);
4772                                if (page)
4773                                        goto fill_page;
4774                                /* Do not retry other high order allocations */
4775                                order = 1;
4776                                max_page_order = 0;
4777                        }
4778                        order--;
4779                }
4780                page = alloc_page(gfp_mask);
4781                if (!page)
4782                        goto failure;
4783fill_page:
4784                chunk = min_t(unsigned long, data_len,
4785                              PAGE_SIZE << order);
4786                skb_fill_page_desc(skb, i, page, 0, chunk);
4787                data_len -= chunk;
4788                npages -= 1 << order;
4789        }
4790        return skb;
4791
4792failure:
4793        kfree_skb(skb);
4794        return NULL;
4795}
4796EXPORT_SYMBOL(alloc_skb_with_frags);
4797
4798/* carve out the first off bytes from skb when off < headlen */
4799static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
4800                                    const int headlen, gfp_t gfp_mask)
4801{
4802        int i;
4803        int size = skb_end_offset(skb);
4804        int new_hlen = headlen - off;
4805        u8 *data;
4806
4807        size = SKB_DATA_ALIGN(size);
4808
4809        if (skb_pfmemalloc(skb))
4810                gfp_mask |= __GFP_MEMALLOC;
4811        data = kmalloc_reserve(size +
4812                               SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4813                               gfp_mask, NUMA_NO_NODE, NULL);
4814        if (!data)
4815                return -ENOMEM;
4816
4817        size = SKB_WITH_OVERHEAD(ksize(data));
4818
4819        /* Copy real data, and all frags */
4820        skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
4821        skb->len -= off;
4822
4823        memcpy((struct skb_shared_info *)(data + size),
4824               skb_shinfo(skb),
4825               offsetof(struct skb_shared_info,
4826                        frags[skb_shinfo(skb)->nr_frags]));
4827        if (skb_cloned(skb)) {
4828                /* drop the old head gracefully */
4829                if (skb_orphan_frags(skb, gfp_mask)) {
4830                        kfree(data);
4831                        return -ENOMEM;
4832                }
4833                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4834                        skb_frag_ref(skb, i);
4835                if (skb_has_frag_list(skb))
4836                        skb_clone_fraglist(skb);
4837                skb_release_data(skb);
4838        } else {
4839                /* we can reuse existing recount- all we did was
4840                 * relocate values
4841                 */
4842                skb_free_head(skb);
4843        }
4844
4845        skb->head = data;
4846        skb->data = data;
4847        skb->head_frag = 0;
4848#ifdef NET_SKBUFF_DATA_USES_OFFSET
4849        skb->end = size;
4850#else
4851        skb->end = skb->head + size;
4852#endif
4853        skb_set_tail_pointer(skb, skb_headlen(skb));
4854        skb_headers_offset_update(skb, 0);
4855        skb->cloned = 0;
4856        skb->hdr_len = 0;
4857        skb->nohdr = 0;
4858        atomic_set(&skb_shinfo(skb)->dataref, 1);
4859
4860        return 0;
4861}
4862
4863static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
4864
4865/* carve out the first eat bytes from skb's frag_list. May recurse into
4866 * pskb_carve()
4867 */
4868static int pskb_carve_frag_list(struct sk_buff *skb,
4869                                struct skb_shared_info *shinfo, int eat,
4870                                gfp_t gfp_mask)
4871{
4872        struct sk_buff *list = shinfo->frag_list;
4873        struct sk_buff *clone = NULL;
4874        struct sk_buff *insp = NULL;
4875
4876        do {
4877                if (!list) {
4878                        pr_err("Not enough bytes to eat. Want %d\n", eat);
4879                        return -EFAULT;
4880                }
4881                if (list->len <= eat) {
4882                        /* Eaten as whole. */
4883                        eat -= list->len;
4884                        list = list->next;
4885                        insp = list;
4886                } else {
4887                        /* Eaten partially. */
4888                        if (skb_shared(list)) {
4889                                clone = skb_clone(list, gfp_mask);
4890                                if (!clone)
4891                                        return -ENOMEM;
4892                                insp = list->next;
4893                                list = clone;
4894                        } else {
4895                                /* This may be pulled without problems. */
4896                                insp = list;
4897                        }
4898                        if (pskb_carve(list, eat, gfp_mask) < 0) {
4899                                kfree_skb(clone);
4900                                return -ENOMEM;
4901                        }
4902                        break;
4903                }
4904        } while (eat);
4905
4906        /* Free pulled out fragments. */
4907        while ((list = shinfo->frag_list) != insp) {
4908                shinfo->frag_list = list->next;
4909                kfree_skb(list);
4910        }
4911        /* And insert new clone at head. */
4912        if (clone) {
4913                clone->next = list;
4914                shinfo->frag_list = clone;
4915        }
4916        return 0;
4917}
4918
4919/* carve off first len bytes from skb. Split line (off) is in the
4920 * non-linear part of skb
4921 */
4922static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
4923                                       int pos, gfp_t gfp_mask)
4924{
4925        int i, k = 0;
4926        int size = skb_end_offset(skb);
4927        u8 *data;
4928        const int nfrags = skb_shinfo(skb)->nr_frags;
4929        struct skb_shared_info *shinfo;
4930
4931        size = SKB_DATA_ALIGN(size);
4932
4933        if (skb_pfmemalloc(skb))
4934                gfp_mask |= __GFP_MEMALLOC;
4935        data = kmalloc_reserve(size +
4936                               SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4937                               gfp_mask, NUMA_NO_NODE, NULL);
4938        if (!data)
4939                return -ENOMEM;
4940
4941        size = SKB_WITH_OVERHEAD(ksize(data));
4942
4943        memcpy((struct skb_shared_info *)(data + size),
4944               skb_shinfo(skb), offsetof(struct skb_shared_info,
4945                                         frags[skb_shinfo(skb)->nr_frags]));
4946        if (skb_orphan_frags(skb, gfp_mask)) {
4947                kfree(data);
4948                return -ENOMEM;
4949        }
4950        shinfo = (struct skb_shared_info *)(data + size);
4951        for (i = 0; i < nfrags; i++) {
4952                int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4953
4954                if (pos + fsize > off) {
4955                        shinfo->frags[k] = skb_shinfo(skb)->frags[i];
4956
4957                        if (pos < off) {
4958                                /* Split frag.
4959                                 * We have two variants in this case:
4960                                 * 1. Move all the frag to the second
4961                                 *    part, if it is possible. F.e.
4962                                 *    this approach is mandatory for TUX,
4963                                 *    where splitting is expensive.
4964                                 * 2. Split is accurately. We make this.
4965                                 */
4966                                shinfo->frags[0].page_offset += off - pos;
4967                                skb_frag_size_sub(&shinfo->frags[0], off - pos);
4968                        }
4969                        skb_frag_ref(skb, i);
4970                        k++;
4971                }
4972                pos += fsize;
4973        }
4974        shinfo->nr_frags = k;
4975        if (skb_has_frag_list(skb))
4976                skb_clone_fraglist(skb);
4977
4978        if (k == 0) {
4979                /* split line is in frag list */
4980                pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
4981        }
4982        skb_release_data(skb);
4983
4984        skb->head = data;
4985        skb->head_frag = 0;
4986        skb->data = data;
4987#ifdef NET_SKBUFF_DATA_USES_OFFSET
4988        skb->end = size;
4989#else
4990        skb->end = skb->head + size;
4991#endif
4992        skb_reset_tail_pointer(skb);
4993        skb_headers_offset_update(skb, 0);
4994        skb->cloned   = 0;
4995        skb->hdr_len  = 0;
4996        skb->nohdr    = 0;
4997        skb->len -= off;
4998        skb->data_len = skb->len;
4999        atomic_set(&skb_shinfo(skb)->dataref, 1);
5000        return 0;
5001}
5002
5003/* remove len bytes from the beginning of the skb */
5004static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5005{
5006        int headlen = skb_headlen(skb);
5007
5008        if (len < headlen)
5009                return pskb_carve_inside_header(skb, len, headlen, gfp);
5010        else
5011                return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5012}
5013
5014/* Extract to_copy bytes starting at off from skb, and return this in
5015 * a new skb
5016 */
5017struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5018                             int to_copy, gfp_t gfp)
5019{
5020        struct sk_buff  *clone = skb_clone(skb, gfp);
5021
5022        if (!clone)
5023                return NULL;
5024
5025        if (pskb_carve(clone, off, gfp) < 0 ||
5026            pskb_trim(clone, to_copy)) {
5027                kfree_skb(clone);
5028                return NULL;
5029        }
5030        return clone;
5031}
5032EXPORT_SYMBOL(pskb_extract);
5033
5034/**
5035 * skb_condense - try to get rid of fragments/frag_list if possible
5036 * @skb: buffer
5037 *
5038 * Can be used to save memory before skb is added to a busy queue.
5039 * If packet has bytes in frags and enough tail room in skb->head,
5040 * pull all of them, so that we can free the frags right now and adjust
5041 * truesize.
5042 * Notes:
5043 *      We do not reallocate skb->head thus can not fail.
5044 *      Caller must re-evaluate skb->truesize if needed.
5045 */
5046void skb_condense(struct sk_buff *skb)
5047{
5048        if (skb->data_len) {
5049                if (skb->data_len > skb->end - skb->tail ||
5050                    skb_cloned(skb))
5051                        return;
5052
5053                /* Nice, we can free page frag(s) right now */
5054                __pskb_pull_tail(skb, skb->data_len);
5055        }
5056        /* At this point, skb->truesize might be over estimated,
5057         * because skb had a fragment, and fragments do not tell
5058         * their truesize.
5059         * When we pulled its content into skb->head, fragment
5060         * was freed, but __pskb_pull_tail() could not possibly
5061         * adjust skb->truesize, not knowing the frag truesize.
5062         */
5063        skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5064}
5065