linux/net/socket.c
<<
>>
Prefs
   1/*
   2 * NET          An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:     @(#)socket.c    1.1.93  18/02/95
   5 *
   6 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   7 *              Ross Biro
   8 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  12 *                                      shutdown()
  13 *              Alan Cox        :       verify_area() fixes
  14 *              Alan Cox        :       Removed DDI
  15 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  16 *              Alan Cox        :       Moved a load of checks to the very
  17 *                                      top level.
  18 *              Alan Cox        :       Move address structures to/from user
  19 *                                      mode above the protocol layers.
  20 *              Rob Janssen     :       Allow 0 length sends.
  21 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  22 *                                      tty drivers).
  23 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  24 *              Jeff Uphoff     :       Made max number of sockets command-line
  25 *                                      configurable.
  26 *              Matti Aarnio    :       Made the number of sockets dynamic,
  27 *                                      to be allocated when needed, and mr.
  28 *                                      Uphoff's max is used as max to be
  29 *                                      allowed to allocate.
  30 *              Linus           :       Argh. removed all the socket allocation
  31 *                                      altogether: it's in the inode now.
  32 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  33 *                                      for NetROM and future kernel nfsd type
  34 *                                      stuff.
  35 *              Alan Cox        :       sendmsg/recvmsg basics.
  36 *              Tom Dyas        :       Export net symbols.
  37 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  38 *              Alan Cox        :       Added thread locking to sys_* calls
  39 *                                      for sockets. May have errors at the
  40 *                                      moment.
  41 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  42 *              Andi Kleen      :       Some small cleanups, optimizations,
  43 *                                      and fixed a copy_from_user() bug.
  44 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  46 *                                      protocol-independent
  47 *
  48 *
  49 *              This program is free software; you can redistribute it and/or
  50 *              modify it under the terms of the GNU General Public License
  51 *              as published by the Free Software Foundation; either version
  52 *              2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *      This module is effectively the top level interface to the BSD socket
  56 *      paradigm.
  57 *
  58 *      Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
  92
  93#include <linux/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108#include <net/busy_poll.h>
 109#include <linux/errqueue.h>
 110
 111#ifdef CONFIG_NET_RX_BUSY_POLL
 112unsigned int sysctl_net_busy_read __read_mostly;
 113unsigned int sysctl_net_busy_poll __read_mostly;
 114#endif
 115
 116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 119
 120static int sock_close(struct inode *inode, struct file *file);
 121static unsigned int sock_poll(struct file *file,
 122                              struct poll_table_struct *wait);
 123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 124#ifdef CONFIG_COMPAT
 125static long compat_sock_ioctl(struct file *file,
 126                              unsigned int cmd, unsigned long arg);
 127#endif
 128static int sock_fasync(int fd, struct file *filp, int on);
 129static ssize_t sock_sendpage(struct file *file, struct page *page,
 130                             int offset, size_t size, loff_t *ppos, int more);
 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 132                                struct pipe_inode_info *pipe, size_t len,
 133                                unsigned int flags);
 134
 135/*
 136 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 137 *      in the operation structures but are done directly via the socketcall() multiplexor.
 138 */
 139
 140static const struct file_operations socket_file_ops = {
 141        .owner =        THIS_MODULE,
 142        .llseek =       no_llseek,
 143        .read_iter =    sock_read_iter,
 144        .write_iter =   sock_write_iter,
 145        .poll =         sock_poll,
 146        .unlocked_ioctl = sock_ioctl,
 147#ifdef CONFIG_COMPAT
 148        .compat_ioctl = compat_sock_ioctl,
 149#endif
 150        .mmap =         sock_mmap,
 151        .release =      sock_close,
 152        .fasync =       sock_fasync,
 153        .sendpage =     sock_sendpage,
 154        .splice_write = generic_splice_sendpage,
 155        .splice_read =  sock_splice_read,
 156};
 157
 158/*
 159 *      The protocol list. Each protocol is registered in here.
 160 */
 161
 162static DEFINE_SPINLOCK(net_family_lock);
 163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 164
 165/*
 166 *      Statistics counters of the socket lists
 167 */
 168
 169static DEFINE_PER_CPU(int, sockets_in_use);
 170
 171/*
 172 * Support routines.
 173 * Move socket addresses back and forth across the kernel/user
 174 * divide and look after the messy bits.
 175 */
 176
 177/**
 178 *      move_addr_to_kernel     -       copy a socket address into kernel space
 179 *      @uaddr: Address in user space
 180 *      @kaddr: Address in kernel space
 181 *      @ulen: Length in user space
 182 *
 183 *      The address is copied into kernel space. If the provided address is
 184 *      too long an error code of -EINVAL is returned. If the copy gives
 185 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 186 */
 187
 188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 189{
 190        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 191                return -EINVAL;
 192        if (ulen == 0)
 193                return 0;
 194        if (copy_from_user(kaddr, uaddr, ulen))
 195                return -EFAULT;
 196        return audit_sockaddr(ulen, kaddr);
 197}
 198
 199/**
 200 *      move_addr_to_user       -       copy an address to user space
 201 *      @kaddr: kernel space address
 202 *      @klen: length of address in kernel
 203 *      @uaddr: user space address
 204 *      @ulen: pointer to user length field
 205 *
 206 *      The value pointed to by ulen on entry is the buffer length available.
 207 *      This is overwritten with the buffer space used. -EINVAL is returned
 208 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 209 *      is returned if either the buffer or the length field are not
 210 *      accessible.
 211 *      After copying the data up to the limit the user specifies, the true
 212 *      length of the data is written over the length limit the user
 213 *      specified. Zero is returned for a success.
 214 */
 215
 216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 217                             void __user *uaddr, int __user *ulen)
 218{
 219        int err;
 220        int len;
 221
 222        BUG_ON(klen > sizeof(struct sockaddr_storage));
 223        err = get_user(len, ulen);
 224        if (err)
 225                return err;
 226        if (len > klen)
 227                len = klen;
 228        if (len < 0)
 229                return -EINVAL;
 230        if (len) {
 231                if (audit_sockaddr(klen, kaddr))
 232                        return -ENOMEM;
 233                if (copy_to_user(uaddr, kaddr, len))
 234                        return -EFAULT;
 235        }
 236        /*
 237         *      "fromlen shall refer to the value before truncation.."
 238         *                      1003.1g
 239         */
 240        return __put_user(klen, ulen);
 241}
 242
 243static struct kmem_cache *sock_inode_cachep __read_mostly;
 244
 245static struct inode *sock_alloc_inode(struct super_block *sb)
 246{
 247        struct socket_alloc *ei;
 248        struct socket_wq *wq;
 249
 250        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 251        if (!ei)
 252                return NULL;
 253        wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 254        if (!wq) {
 255                kmem_cache_free(sock_inode_cachep, ei);
 256                return NULL;
 257        }
 258        init_waitqueue_head(&wq->wait);
 259        wq->fasync_list = NULL;
 260        wq->flags = 0;
 261        RCU_INIT_POINTER(ei->socket.wq, wq);
 262
 263        ei->socket.state = SS_UNCONNECTED;
 264        ei->socket.flags = 0;
 265        ei->socket.ops = NULL;
 266        ei->socket.sk = NULL;
 267        ei->socket.file = NULL;
 268
 269        return &ei->vfs_inode;
 270}
 271
 272static void sock_destroy_inode(struct inode *inode)
 273{
 274        struct socket_alloc *ei;
 275        struct socket_wq *wq;
 276
 277        ei = container_of(inode, struct socket_alloc, vfs_inode);
 278        wq = rcu_dereference_protected(ei->socket.wq, 1);
 279        kfree_rcu(wq, rcu);
 280        kmem_cache_free(sock_inode_cachep, ei);
 281}
 282
 283static void init_once(void *foo)
 284{
 285        struct socket_alloc *ei = (struct socket_alloc *)foo;
 286
 287        inode_init_once(&ei->vfs_inode);
 288}
 289
 290static void init_inodecache(void)
 291{
 292        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 293                                              sizeof(struct socket_alloc),
 294                                              0,
 295                                              (SLAB_HWCACHE_ALIGN |
 296                                               SLAB_RECLAIM_ACCOUNT |
 297                                               SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 298                                              init_once);
 299        BUG_ON(sock_inode_cachep == NULL);
 300}
 301
 302static const struct super_operations sockfs_ops = {
 303        .alloc_inode    = sock_alloc_inode,
 304        .destroy_inode  = sock_destroy_inode,
 305        .statfs         = simple_statfs,
 306};
 307
 308/*
 309 * sockfs_dname() is called from d_path().
 310 */
 311static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 312{
 313        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 314                                d_inode(dentry)->i_ino);
 315}
 316
 317static const struct dentry_operations sockfs_dentry_operations = {
 318        .d_dname  = sockfs_dname,
 319};
 320
 321static int sockfs_xattr_get(const struct xattr_handler *handler,
 322                            struct dentry *dentry, struct inode *inode,
 323                            const char *suffix, void *value, size_t size)
 324{
 325        if (value) {
 326                if (dentry->d_name.len + 1 > size)
 327                        return -ERANGE;
 328                memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 329        }
 330        return dentry->d_name.len + 1;
 331}
 332
 333#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 334#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 335#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 336
 337static const struct xattr_handler sockfs_xattr_handler = {
 338        .name = XATTR_NAME_SOCKPROTONAME,
 339        .get = sockfs_xattr_get,
 340};
 341
 342static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 343                                     struct dentry *dentry, struct inode *inode,
 344                                     const char *suffix, const void *value,
 345                                     size_t size, int flags)
 346{
 347        /* Handled by LSM. */
 348        return -EAGAIN;
 349}
 350
 351static const struct xattr_handler sockfs_security_xattr_handler = {
 352        .prefix = XATTR_SECURITY_PREFIX,
 353        .set = sockfs_security_xattr_set,
 354};
 355
 356static const struct xattr_handler *sockfs_xattr_handlers[] = {
 357        &sockfs_xattr_handler,
 358        &sockfs_security_xattr_handler,
 359        NULL
 360};
 361
 362static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 363                         int flags, const char *dev_name, void *data)
 364{
 365        return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
 366                                  sockfs_xattr_handlers,
 367                                  &sockfs_dentry_operations, SOCKFS_MAGIC);
 368}
 369
 370static struct vfsmount *sock_mnt __read_mostly;
 371
 372static struct file_system_type sock_fs_type = {
 373        .name =         "sockfs",
 374        .mount =        sockfs_mount,
 375        .kill_sb =      kill_anon_super,
 376};
 377
 378/*
 379 *      Obtains the first available file descriptor and sets it up for use.
 380 *
 381 *      These functions create file structures and maps them to fd space
 382 *      of the current process. On success it returns file descriptor
 383 *      and file struct implicitly stored in sock->file.
 384 *      Note that another thread may close file descriptor before we return
 385 *      from this function. We use the fact that now we do not refer
 386 *      to socket after mapping. If one day we will need it, this
 387 *      function will increment ref. count on file by 1.
 388 *
 389 *      In any case returned fd MAY BE not valid!
 390 *      This race condition is unavoidable
 391 *      with shared fd spaces, we cannot solve it inside kernel,
 392 *      but we take care of internal coherence yet.
 393 */
 394
 395struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 396{
 397        struct qstr name = { .name = "" };
 398        struct path path;
 399        struct file *file;
 400
 401        if (dname) {
 402                name.name = dname;
 403                name.len = strlen(name.name);
 404        } else if (sock->sk) {
 405                name.name = sock->sk->sk_prot_creator->name;
 406                name.len = strlen(name.name);
 407        }
 408        path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 409        if (unlikely(!path.dentry))
 410                return ERR_PTR(-ENOMEM);
 411        path.mnt = mntget(sock_mnt);
 412
 413        d_instantiate(path.dentry, SOCK_INODE(sock));
 414
 415        file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 416                  &socket_file_ops);
 417        if (IS_ERR(file)) {
 418                /* drop dentry, keep inode */
 419                ihold(d_inode(path.dentry));
 420                path_put(&path);
 421                return file;
 422        }
 423
 424        sock->file = file;
 425        file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 426        file->private_data = sock;
 427        return file;
 428}
 429EXPORT_SYMBOL(sock_alloc_file);
 430
 431static int sock_map_fd(struct socket *sock, int flags)
 432{
 433        struct file *newfile;
 434        int fd = get_unused_fd_flags(flags);
 435        if (unlikely(fd < 0))
 436                return fd;
 437
 438        newfile = sock_alloc_file(sock, flags, NULL);
 439        if (likely(!IS_ERR(newfile))) {
 440                fd_install(fd, newfile);
 441                return fd;
 442        }
 443
 444        put_unused_fd(fd);
 445        return PTR_ERR(newfile);
 446}
 447
 448struct socket *sock_from_file(struct file *file, int *err)
 449{
 450        if (file->f_op == &socket_file_ops)
 451                return file->private_data;      /* set in sock_map_fd */
 452
 453        *err = -ENOTSOCK;
 454        return NULL;
 455}
 456EXPORT_SYMBOL(sock_from_file);
 457
 458/**
 459 *      sockfd_lookup - Go from a file number to its socket slot
 460 *      @fd: file handle
 461 *      @err: pointer to an error code return
 462 *
 463 *      The file handle passed in is locked and the socket it is bound
 464 *      to is returned. If an error occurs the err pointer is overwritten
 465 *      with a negative errno code and NULL is returned. The function checks
 466 *      for both invalid handles and passing a handle which is not a socket.
 467 *
 468 *      On a success the socket object pointer is returned.
 469 */
 470
 471struct socket *sockfd_lookup(int fd, int *err)
 472{
 473        struct file *file;
 474        struct socket *sock;
 475
 476        file = fget(fd);
 477        if (!file) {
 478                *err = -EBADF;
 479                return NULL;
 480        }
 481
 482        sock = sock_from_file(file, err);
 483        if (!sock)
 484                fput(file);
 485        return sock;
 486}
 487EXPORT_SYMBOL(sockfd_lookup);
 488
 489static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 490{
 491        struct fd f = fdget(fd);
 492        struct socket *sock;
 493
 494        *err = -EBADF;
 495        if (f.file) {
 496                sock = sock_from_file(f.file, err);
 497                if (likely(sock)) {
 498                        *fput_needed = f.flags;
 499                        return sock;
 500                }
 501                fdput(f);
 502        }
 503        return NULL;
 504}
 505
 506static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 507                                size_t size)
 508{
 509        ssize_t len;
 510        ssize_t used = 0;
 511
 512        len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 513        if (len < 0)
 514                return len;
 515        used += len;
 516        if (buffer) {
 517                if (size < used)
 518                        return -ERANGE;
 519                buffer += len;
 520        }
 521
 522        len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 523        used += len;
 524        if (buffer) {
 525                if (size < used)
 526                        return -ERANGE;
 527                memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 528                buffer += len;
 529        }
 530
 531        return used;
 532}
 533
 534static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
 535{
 536        int err = simple_setattr(dentry, iattr);
 537
 538        if (!err && (iattr->ia_valid & ATTR_UID)) {
 539                struct socket *sock = SOCKET_I(d_inode(dentry));
 540
 541                sock->sk->sk_uid = iattr->ia_uid;
 542        }
 543
 544        return err;
 545}
 546
 547static const struct inode_operations sockfs_inode_ops = {
 548        .listxattr = sockfs_listxattr,
 549        .setattr = sockfs_setattr,
 550};
 551
 552/**
 553 *      sock_alloc      -       allocate a socket
 554 *
 555 *      Allocate a new inode and socket object. The two are bound together
 556 *      and initialised. The socket is then returned. If we are out of inodes
 557 *      NULL is returned.
 558 */
 559
 560struct socket *sock_alloc(void)
 561{
 562        struct inode *inode;
 563        struct socket *sock;
 564
 565        inode = new_inode_pseudo(sock_mnt->mnt_sb);
 566        if (!inode)
 567                return NULL;
 568
 569        sock = SOCKET_I(inode);
 570
 571        kmemcheck_annotate_bitfield(sock, type);
 572        inode->i_ino = get_next_ino();
 573        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 574        inode->i_uid = current_fsuid();
 575        inode->i_gid = current_fsgid();
 576        inode->i_op = &sockfs_inode_ops;
 577
 578        this_cpu_add(sockets_in_use, 1);
 579        return sock;
 580}
 581EXPORT_SYMBOL(sock_alloc);
 582
 583/**
 584 *      sock_release    -       close a socket
 585 *      @sock: socket to close
 586 *
 587 *      The socket is released from the protocol stack if it has a release
 588 *      callback, and the inode is then released if the socket is bound to
 589 *      an inode not a file.
 590 */
 591
 592void sock_release(struct socket *sock)
 593{
 594        if (sock->ops) {
 595                struct module *owner = sock->ops->owner;
 596
 597                sock->ops->release(sock);
 598                sock->ops = NULL;
 599                module_put(owner);
 600        }
 601
 602        if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 603                pr_err("%s: fasync list not empty!\n", __func__);
 604
 605        this_cpu_sub(sockets_in_use, 1);
 606        if (!sock->file) {
 607                iput(SOCK_INODE(sock));
 608                return;
 609        }
 610        sock->file = NULL;
 611}
 612EXPORT_SYMBOL(sock_release);
 613
 614void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 615{
 616        u8 flags = *tx_flags;
 617
 618        if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 619                flags |= SKBTX_HW_TSTAMP;
 620
 621        if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 622                flags |= SKBTX_SW_TSTAMP;
 623
 624        if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 625                flags |= SKBTX_SCHED_TSTAMP;
 626
 627        *tx_flags = flags;
 628}
 629EXPORT_SYMBOL(__sock_tx_timestamp);
 630
 631static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 632{
 633        int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
 634        BUG_ON(ret == -EIOCBQUEUED);
 635        return ret;
 636}
 637
 638int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 639{
 640        int err = security_socket_sendmsg(sock, msg,
 641                                          msg_data_left(msg));
 642
 643        return err ?: sock_sendmsg_nosec(sock, msg);
 644}
 645EXPORT_SYMBOL(sock_sendmsg);
 646
 647int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 648                   struct kvec *vec, size_t num, size_t size)
 649{
 650        iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 651        return sock_sendmsg(sock, msg);
 652}
 653EXPORT_SYMBOL(kernel_sendmsg);
 654
 655static bool skb_is_err_queue(const struct sk_buff *skb)
 656{
 657        /* pkt_type of skbs enqueued on the error queue are set to
 658         * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 659         * in recvmsg, since skbs received on a local socket will never
 660         * have a pkt_type of PACKET_OUTGOING.
 661         */
 662        return skb->pkt_type == PACKET_OUTGOING;
 663}
 664
 665/* On transmit, software and hardware timestamps are returned independently.
 666 * As the two skb clones share the hardware timestamp, which may be updated
 667 * before the software timestamp is received, a hardware TX timestamp may be
 668 * returned only if there is no software TX timestamp. Ignore false software
 669 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 670 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
 671 * hardware timestamp.
 672 */
 673static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 674{
 675        return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 676}
 677
 678static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
 679{
 680        struct scm_ts_pktinfo ts_pktinfo;
 681        struct net_device *orig_dev;
 682
 683        if (!skb_mac_header_was_set(skb))
 684                return;
 685
 686        memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 687
 688        rcu_read_lock();
 689        orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 690        if (orig_dev)
 691                ts_pktinfo.if_index = orig_dev->ifindex;
 692        rcu_read_unlock();
 693
 694        ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 695        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 696                 sizeof(ts_pktinfo), &ts_pktinfo);
 697}
 698
 699/*
 700 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 701 */
 702void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 703        struct sk_buff *skb)
 704{
 705        int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 706        struct scm_timestamping tss;
 707        int empty = 1, false_tstamp = 0;
 708        struct skb_shared_hwtstamps *shhwtstamps =
 709                skb_hwtstamps(skb);
 710
 711        /* Race occurred between timestamp enabling and packet
 712           receiving.  Fill in the current time for now. */
 713        if (need_software_tstamp && skb->tstamp == 0) {
 714                __net_timestamp(skb);
 715                false_tstamp = 1;
 716        }
 717
 718        if (need_software_tstamp) {
 719                if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 720                        struct timeval tv;
 721                        skb_get_timestamp(skb, &tv);
 722                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 723                                 sizeof(tv), &tv);
 724                } else {
 725                        struct timespec ts;
 726                        skb_get_timestampns(skb, &ts);
 727                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 728                                 sizeof(ts), &ts);
 729                }
 730        }
 731
 732        memset(&tss, 0, sizeof(tss));
 733        if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 734            ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
 735                empty = 0;
 736        if (shhwtstamps &&
 737            (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 738            !skb_is_swtx_tstamp(skb, false_tstamp) &&
 739            ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
 740                empty = 0;
 741                if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 742                    !skb_is_err_queue(skb))
 743                        put_ts_pktinfo(msg, skb);
 744        }
 745        if (!empty) {
 746                put_cmsg(msg, SOL_SOCKET,
 747                         SCM_TIMESTAMPING, sizeof(tss), &tss);
 748
 749                if (skb_is_err_queue(skb) && skb->len &&
 750                    SKB_EXT_ERR(skb)->opt_stats)
 751                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 752                                 skb->len, skb->data);
 753        }
 754}
 755EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 756
 757void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 758        struct sk_buff *skb)
 759{
 760        int ack;
 761
 762        if (!sock_flag(sk, SOCK_WIFI_STATUS))
 763                return;
 764        if (!skb->wifi_acked_valid)
 765                return;
 766
 767        ack = skb->wifi_acked;
 768
 769        put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 770}
 771EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 772
 773static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 774                                   struct sk_buff *skb)
 775{
 776        if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 777                put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 778                        sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 779}
 780
 781void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 782        struct sk_buff *skb)
 783{
 784        sock_recv_timestamp(msg, sk, skb);
 785        sock_recv_drops(msg, sk, skb);
 786}
 787EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 788
 789static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 790                                     int flags)
 791{
 792        return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
 793}
 794
 795int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 796{
 797        int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 798
 799        return err ?: sock_recvmsg_nosec(sock, msg, flags);
 800}
 801EXPORT_SYMBOL(sock_recvmsg);
 802
 803/**
 804 * kernel_recvmsg - Receive a message from a socket (kernel space)
 805 * @sock:       The socket to receive the message from
 806 * @msg:        Received message
 807 * @vec:        Input s/g array for message data
 808 * @num:        Size of input s/g array
 809 * @size:       Number of bytes to read
 810 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 811 *
 812 * On return the msg structure contains the scatter/gather array passed in the
 813 * vec argument. The array is modified so that it consists of the unfilled
 814 * portion of the original array.
 815 *
 816 * The returned value is the total number of bytes received, or an error.
 817 */
 818int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 819                   struct kvec *vec, size_t num, size_t size, int flags)
 820{
 821        mm_segment_t oldfs = get_fs();
 822        int result;
 823
 824        iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
 825        set_fs(KERNEL_DS);
 826        result = sock_recvmsg(sock, msg, flags);
 827        set_fs(oldfs);
 828        return result;
 829}
 830EXPORT_SYMBOL(kernel_recvmsg);
 831
 832static ssize_t sock_sendpage(struct file *file, struct page *page,
 833                             int offset, size_t size, loff_t *ppos, int more)
 834{
 835        struct socket *sock;
 836        int flags;
 837
 838        sock = file->private_data;
 839
 840        flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 841        /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 842        flags |= more;
 843
 844        return kernel_sendpage(sock, page, offset, size, flags);
 845}
 846
 847static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 848                                struct pipe_inode_info *pipe, size_t len,
 849                                unsigned int flags)
 850{
 851        struct socket *sock = file->private_data;
 852
 853        if (unlikely(!sock->ops->splice_read))
 854                return -EINVAL;
 855
 856        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 857}
 858
 859static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 860{
 861        struct file *file = iocb->ki_filp;
 862        struct socket *sock = file->private_data;
 863        struct msghdr msg = {.msg_iter = *to,
 864                             .msg_iocb = iocb};
 865        ssize_t res;
 866
 867        if (file->f_flags & O_NONBLOCK)
 868                msg.msg_flags = MSG_DONTWAIT;
 869
 870        if (iocb->ki_pos != 0)
 871                return -ESPIPE;
 872
 873        if (!iov_iter_count(to))        /* Match SYS5 behaviour */
 874                return 0;
 875
 876        res = sock_recvmsg(sock, &msg, msg.msg_flags);
 877        *to = msg.msg_iter;
 878        return res;
 879}
 880
 881static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 882{
 883        struct file *file = iocb->ki_filp;
 884        struct socket *sock = file->private_data;
 885        struct msghdr msg = {.msg_iter = *from,
 886                             .msg_iocb = iocb};
 887        ssize_t res;
 888
 889        if (iocb->ki_pos != 0)
 890                return -ESPIPE;
 891
 892        if (file->f_flags & O_NONBLOCK)
 893                msg.msg_flags = MSG_DONTWAIT;
 894
 895        if (sock->type == SOCK_SEQPACKET)
 896                msg.msg_flags |= MSG_EOR;
 897
 898        res = sock_sendmsg(sock, &msg);
 899        *from = msg.msg_iter;
 900        return res;
 901}
 902
 903/*
 904 * Atomic setting of ioctl hooks to avoid race
 905 * with module unload.
 906 */
 907
 908static DEFINE_MUTEX(br_ioctl_mutex);
 909static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 910
 911void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 912{
 913        mutex_lock(&br_ioctl_mutex);
 914        br_ioctl_hook = hook;
 915        mutex_unlock(&br_ioctl_mutex);
 916}
 917EXPORT_SYMBOL(brioctl_set);
 918
 919static DEFINE_MUTEX(vlan_ioctl_mutex);
 920static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 921
 922void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 923{
 924        mutex_lock(&vlan_ioctl_mutex);
 925        vlan_ioctl_hook = hook;
 926        mutex_unlock(&vlan_ioctl_mutex);
 927}
 928EXPORT_SYMBOL(vlan_ioctl_set);
 929
 930static DEFINE_MUTEX(dlci_ioctl_mutex);
 931static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 932
 933void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 934{
 935        mutex_lock(&dlci_ioctl_mutex);
 936        dlci_ioctl_hook = hook;
 937        mutex_unlock(&dlci_ioctl_mutex);
 938}
 939EXPORT_SYMBOL(dlci_ioctl_set);
 940
 941static long sock_do_ioctl(struct net *net, struct socket *sock,
 942                                 unsigned int cmd, unsigned long arg)
 943{
 944        int err;
 945        void __user *argp = (void __user *)arg;
 946
 947        err = sock->ops->ioctl(sock, cmd, arg);
 948
 949        /*
 950         * If this ioctl is unknown try to hand it down
 951         * to the NIC driver.
 952         */
 953        if (err == -ENOIOCTLCMD)
 954                err = dev_ioctl(net, cmd, argp);
 955
 956        return err;
 957}
 958
 959/*
 960 *      With an ioctl, arg may well be a user mode pointer, but we don't know
 961 *      what to do with it - that's up to the protocol still.
 962 */
 963
 964static struct ns_common *get_net_ns(struct ns_common *ns)
 965{
 966        return &get_net(container_of(ns, struct net, ns))->ns;
 967}
 968
 969static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 970{
 971        struct socket *sock;
 972        struct sock *sk;
 973        void __user *argp = (void __user *)arg;
 974        int pid, err;
 975        struct net *net;
 976
 977        sock = file->private_data;
 978        sk = sock->sk;
 979        net = sock_net(sk);
 980        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 981                err = dev_ioctl(net, cmd, argp);
 982        } else
 983#ifdef CONFIG_WEXT_CORE
 984        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 985                err = dev_ioctl(net, cmd, argp);
 986        } else
 987#endif
 988                switch (cmd) {
 989                case FIOSETOWN:
 990                case SIOCSPGRP:
 991                        err = -EFAULT;
 992                        if (get_user(pid, (int __user *)argp))
 993                                break;
 994                        err = f_setown(sock->file, pid, 1);
 995                        break;
 996                case FIOGETOWN:
 997                case SIOCGPGRP:
 998                        err = put_user(f_getown(sock->file),
 999                                       (int __user *)argp);
1000                        break;
1001                case SIOCGIFBR:
1002                case SIOCSIFBR:
1003                case SIOCBRADDBR:
1004                case SIOCBRDELBR:
1005                        err = -ENOPKG;
1006                        if (!br_ioctl_hook)
1007                                request_module("bridge");
1008
1009                        mutex_lock(&br_ioctl_mutex);
1010                        if (br_ioctl_hook)
1011                                err = br_ioctl_hook(net, cmd, argp);
1012                        mutex_unlock(&br_ioctl_mutex);
1013                        break;
1014                case SIOCGIFVLAN:
1015                case SIOCSIFVLAN:
1016                        err = -ENOPKG;
1017                        if (!vlan_ioctl_hook)
1018                                request_module("8021q");
1019
1020                        mutex_lock(&vlan_ioctl_mutex);
1021                        if (vlan_ioctl_hook)
1022                                err = vlan_ioctl_hook(net, argp);
1023                        mutex_unlock(&vlan_ioctl_mutex);
1024                        break;
1025                case SIOCADDDLCI:
1026                case SIOCDELDLCI:
1027                        err = -ENOPKG;
1028                        if (!dlci_ioctl_hook)
1029                                request_module("dlci");
1030
1031                        mutex_lock(&dlci_ioctl_mutex);
1032                        if (dlci_ioctl_hook)
1033                                err = dlci_ioctl_hook(cmd, argp);
1034                        mutex_unlock(&dlci_ioctl_mutex);
1035                        break;
1036                case SIOCGSKNS:
1037                        err = -EPERM;
1038                        if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1039                                break;
1040
1041                        err = open_related_ns(&net->ns, get_net_ns);
1042                        break;
1043                default:
1044                        err = sock_do_ioctl(net, sock, cmd, arg);
1045                        break;
1046                }
1047        return err;
1048}
1049
1050int sock_create_lite(int family, int type, int protocol, struct socket **res)
1051{
1052        int err;
1053        struct socket *sock = NULL;
1054
1055        err = security_socket_create(family, type, protocol, 1);
1056        if (err)
1057                goto out;
1058
1059        sock = sock_alloc();
1060        if (!sock) {
1061                err = -ENOMEM;
1062                goto out;
1063        }
1064
1065        sock->type = type;
1066        err = security_socket_post_create(sock, family, type, protocol, 1);
1067        if (err)
1068                goto out_release;
1069
1070out:
1071        *res = sock;
1072        return err;
1073out_release:
1074        sock_release(sock);
1075        sock = NULL;
1076        goto out;
1077}
1078EXPORT_SYMBOL(sock_create_lite);
1079
1080/* No kernel lock held - perfect */
1081static unsigned int sock_poll(struct file *file, poll_table *wait)
1082{
1083        unsigned int busy_flag = 0;
1084        struct socket *sock;
1085
1086        /*
1087         *      We can't return errors to poll, so it's either yes or no.
1088         */
1089        sock = file->private_data;
1090
1091        if (sk_can_busy_loop(sock->sk)) {
1092                /* this socket can poll_ll so tell the system call */
1093                busy_flag = POLL_BUSY_LOOP;
1094
1095                /* once, only if requested by syscall */
1096                if (wait && (wait->_key & POLL_BUSY_LOOP))
1097                        sk_busy_loop(sock->sk, 1);
1098        }
1099
1100        return busy_flag | sock->ops->poll(file, sock, wait);
1101}
1102
1103static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1104{
1105        struct socket *sock = file->private_data;
1106
1107        return sock->ops->mmap(file, sock, vma);
1108}
1109
1110static int sock_close(struct inode *inode, struct file *filp)
1111{
1112        sock_release(SOCKET_I(inode));
1113        return 0;
1114}
1115
1116/*
1117 *      Update the socket async list
1118 *
1119 *      Fasync_list locking strategy.
1120 *
1121 *      1. fasync_list is modified only under process context socket lock
1122 *         i.e. under semaphore.
1123 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1124 *         or under socket lock
1125 */
1126
1127static int sock_fasync(int fd, struct file *filp, int on)
1128{
1129        struct socket *sock = filp->private_data;
1130        struct sock *sk = sock->sk;
1131        struct socket_wq *wq;
1132
1133        if (sk == NULL)
1134                return -EINVAL;
1135
1136        lock_sock(sk);
1137        wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1138        fasync_helper(fd, filp, on, &wq->fasync_list);
1139
1140        if (!wq->fasync_list)
1141                sock_reset_flag(sk, SOCK_FASYNC);
1142        else
1143                sock_set_flag(sk, SOCK_FASYNC);
1144
1145        release_sock(sk);
1146        return 0;
1147}
1148
1149/* This function may be called only under rcu_lock */
1150
1151int sock_wake_async(struct socket_wq *wq, int how, int band)
1152{
1153        if (!wq || !wq->fasync_list)
1154                return -1;
1155
1156        switch (how) {
1157        case SOCK_WAKE_WAITD:
1158                if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1159                        break;
1160                goto call_kill;
1161        case SOCK_WAKE_SPACE:
1162                if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1163                        break;
1164                /* fall through */
1165        case SOCK_WAKE_IO:
1166call_kill:
1167                kill_fasync(&wq->fasync_list, SIGIO, band);
1168                break;
1169        case SOCK_WAKE_URG:
1170                kill_fasync(&wq->fasync_list, SIGURG, band);
1171        }
1172
1173        return 0;
1174}
1175EXPORT_SYMBOL(sock_wake_async);
1176
1177int __sock_create(struct net *net, int family, int type, int protocol,
1178                         struct socket **res, int kern)
1179{
1180        int err;
1181        struct socket *sock;
1182        const struct net_proto_family *pf;
1183
1184        /*
1185         *      Check protocol is in range
1186         */
1187        if (family < 0 || family >= NPROTO)
1188                return -EAFNOSUPPORT;
1189        if (type < 0 || type >= SOCK_MAX)
1190                return -EINVAL;
1191
1192        /* Compatibility.
1193
1194           This uglymoron is moved from INET layer to here to avoid
1195           deadlock in module load.
1196         */
1197        if (family == PF_INET && type == SOCK_PACKET) {
1198                pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1199                             current->comm);
1200                family = PF_PACKET;
1201        }
1202
1203        err = security_socket_create(family, type, protocol, kern);
1204        if (err)
1205                return err;
1206
1207        /*
1208         *      Allocate the socket and allow the family to set things up. if
1209         *      the protocol is 0, the family is instructed to select an appropriate
1210         *      default.
1211         */
1212        sock = sock_alloc();
1213        if (!sock) {
1214                net_warn_ratelimited("socket: no more sockets\n");
1215                return -ENFILE; /* Not exactly a match, but its the
1216                                   closest posix thing */
1217        }
1218
1219        sock->type = type;
1220
1221#ifdef CONFIG_MODULES
1222        /* Attempt to load a protocol module if the find failed.
1223         *
1224         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1225         * requested real, full-featured networking support upon configuration.
1226         * Otherwise module support will break!
1227         */
1228        if (rcu_access_pointer(net_families[family]) == NULL)
1229                request_module("net-pf-%d", family);
1230#endif
1231
1232        rcu_read_lock();
1233        pf = rcu_dereference(net_families[family]);
1234        err = -EAFNOSUPPORT;
1235        if (!pf)
1236                goto out_release;
1237
1238        /*
1239         * We will call the ->create function, that possibly is in a loadable
1240         * module, so we have to bump that loadable module refcnt first.
1241         */
1242        if (!try_module_get(pf->owner))
1243                goto out_release;
1244
1245        /* Now protected by module ref count */
1246        rcu_read_unlock();
1247
1248        err = pf->create(net, sock, protocol, kern);
1249        if (err < 0)
1250                goto out_module_put;
1251
1252        /*
1253         * Now to bump the refcnt of the [loadable] module that owns this
1254         * socket at sock_release time we decrement its refcnt.
1255         */
1256        if (!try_module_get(sock->ops->owner))
1257                goto out_module_busy;
1258
1259        /*
1260         * Now that we're done with the ->create function, the [loadable]
1261         * module can have its refcnt decremented
1262         */
1263        module_put(pf->owner);
1264        err = security_socket_post_create(sock, family, type, protocol, kern);
1265        if (err)
1266                goto out_sock_release;
1267        *res = sock;
1268
1269        return 0;
1270
1271out_module_busy:
1272        err = -EAFNOSUPPORT;
1273out_module_put:
1274        sock->ops = NULL;
1275        module_put(pf->owner);
1276out_sock_release:
1277        sock_release(sock);
1278        return err;
1279
1280out_release:
1281        rcu_read_unlock();
1282        goto out_sock_release;
1283}
1284EXPORT_SYMBOL(__sock_create);
1285
1286int sock_create(int family, int type, int protocol, struct socket **res)
1287{
1288        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1289}
1290EXPORT_SYMBOL(sock_create);
1291
1292int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1293{
1294        return __sock_create(net, family, type, protocol, res, 1);
1295}
1296EXPORT_SYMBOL(sock_create_kern);
1297
1298SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1299{
1300        int retval;
1301        struct socket *sock;
1302        int flags;
1303
1304        /* Check the SOCK_* constants for consistency.  */
1305        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1306        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1307        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1308        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1309
1310        flags = type & ~SOCK_TYPE_MASK;
1311        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1312                return -EINVAL;
1313        type &= SOCK_TYPE_MASK;
1314
1315        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1316                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1317
1318        retval = sock_create(family, type, protocol, &sock);
1319        if (retval < 0)
1320                goto out;
1321
1322        retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1323        if (retval < 0)
1324                goto out_release;
1325
1326out:
1327        /* It may be already another descriptor 8) Not kernel problem. */
1328        return retval;
1329
1330out_release:
1331        sock_release(sock);
1332        return retval;
1333}
1334
1335/*
1336 *      Create a pair of connected sockets.
1337 */
1338
1339SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1340                int __user *, usockvec)
1341{
1342        struct socket *sock1, *sock2;
1343        int fd1, fd2, err;
1344        struct file *newfile1, *newfile2;
1345        int flags;
1346
1347        flags = type & ~SOCK_TYPE_MASK;
1348        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1349                return -EINVAL;
1350        type &= SOCK_TYPE_MASK;
1351
1352        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1353                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1354
1355        /*
1356         * Obtain the first socket and check if the underlying protocol
1357         * supports the socketpair call.
1358         */
1359
1360        err = sock_create(family, type, protocol, &sock1);
1361        if (err < 0)
1362                goto out;
1363
1364        err = sock_create(family, type, protocol, &sock2);
1365        if (err < 0)
1366                goto out_release_1;
1367
1368        err = sock1->ops->socketpair(sock1, sock2);
1369        if (err < 0)
1370                goto out_release_both;
1371
1372        fd1 = get_unused_fd_flags(flags);
1373        if (unlikely(fd1 < 0)) {
1374                err = fd1;
1375                goto out_release_both;
1376        }
1377
1378        fd2 = get_unused_fd_flags(flags);
1379        if (unlikely(fd2 < 0)) {
1380                err = fd2;
1381                goto out_put_unused_1;
1382        }
1383
1384        newfile1 = sock_alloc_file(sock1, flags, NULL);
1385        if (IS_ERR(newfile1)) {
1386                err = PTR_ERR(newfile1);
1387                goto out_put_unused_both;
1388        }
1389
1390        newfile2 = sock_alloc_file(sock2, flags, NULL);
1391        if (IS_ERR(newfile2)) {
1392                err = PTR_ERR(newfile2);
1393                goto out_fput_1;
1394        }
1395
1396        err = put_user(fd1, &usockvec[0]);
1397        if (err)
1398                goto out_fput_both;
1399
1400        err = put_user(fd2, &usockvec[1]);
1401        if (err)
1402                goto out_fput_both;
1403
1404        audit_fd_pair(fd1, fd2);
1405
1406        fd_install(fd1, newfile1);
1407        fd_install(fd2, newfile2);
1408        /* fd1 and fd2 may be already another descriptors.
1409         * Not kernel problem.
1410         */
1411
1412        return 0;
1413
1414out_fput_both:
1415        fput(newfile2);
1416        fput(newfile1);
1417        put_unused_fd(fd2);
1418        put_unused_fd(fd1);
1419        goto out;
1420
1421out_fput_1:
1422        fput(newfile1);
1423        put_unused_fd(fd2);
1424        put_unused_fd(fd1);
1425        sock_release(sock2);
1426        goto out;
1427
1428out_put_unused_both:
1429        put_unused_fd(fd2);
1430out_put_unused_1:
1431        put_unused_fd(fd1);
1432out_release_both:
1433        sock_release(sock2);
1434out_release_1:
1435        sock_release(sock1);
1436out:
1437        return err;
1438}
1439
1440/*
1441 *      Bind a name to a socket. Nothing much to do here since it's
1442 *      the protocol's responsibility to handle the local address.
1443 *
1444 *      We move the socket address to kernel space before we call
1445 *      the protocol layer (having also checked the address is ok).
1446 */
1447
1448SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1449{
1450        struct socket *sock;
1451        struct sockaddr_storage address;
1452        int err, fput_needed;
1453
1454        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1455        if (sock) {
1456                err = move_addr_to_kernel(umyaddr, addrlen, &address);
1457                if (err >= 0) {
1458                        err = security_socket_bind(sock,
1459                                                   (struct sockaddr *)&address,
1460                                                   addrlen);
1461                        if (!err)
1462                                err = sock->ops->bind(sock,
1463                                                      (struct sockaddr *)
1464                                                      &address, addrlen);
1465                }
1466                fput_light(sock->file, fput_needed);
1467        }
1468        return err;
1469}
1470
1471/*
1472 *      Perform a listen. Basically, we allow the protocol to do anything
1473 *      necessary for a listen, and if that works, we mark the socket as
1474 *      ready for listening.
1475 */
1476
1477SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1478{
1479        struct socket *sock;
1480        int err, fput_needed;
1481        int somaxconn;
1482
1483        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1484        if (sock) {
1485                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1486                if ((unsigned int)backlog > somaxconn)
1487                        backlog = somaxconn;
1488
1489                err = security_socket_listen(sock, backlog);
1490                if (!err)
1491                        err = sock->ops->listen(sock, backlog);
1492
1493                fput_light(sock->file, fput_needed);
1494        }
1495        return err;
1496}
1497
1498/*
1499 *      For accept, we attempt to create a new socket, set up the link
1500 *      with the client, wake up the client, then return the new
1501 *      connected fd. We collect the address of the connector in kernel
1502 *      space and move it to user at the very end. This is unclean because
1503 *      we open the socket then return an error.
1504 *
1505 *      1003.1g adds the ability to recvmsg() to query connection pending
1506 *      status to recvmsg. We need to add that support in a way thats
1507 *      clean when we restucture accept also.
1508 */
1509
1510SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1511                int __user *, upeer_addrlen, int, flags)
1512{
1513        struct socket *sock, *newsock;
1514        struct file *newfile;
1515        int err, len, newfd, fput_needed;
1516        struct sockaddr_storage address;
1517
1518        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1519                return -EINVAL;
1520
1521        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1522                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1523
1524        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1525        if (!sock)
1526                goto out;
1527
1528        err = -ENFILE;
1529        newsock = sock_alloc();
1530        if (!newsock)
1531                goto out_put;
1532
1533        newsock->type = sock->type;
1534        newsock->ops = sock->ops;
1535
1536        /*
1537         * We don't need try_module_get here, as the listening socket (sock)
1538         * has the protocol module (sock->ops->owner) held.
1539         */
1540        __module_get(newsock->ops->owner);
1541
1542        newfd = get_unused_fd_flags(flags);
1543        if (unlikely(newfd < 0)) {
1544                err = newfd;
1545                sock_release(newsock);
1546                goto out_put;
1547        }
1548        newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1549        if (IS_ERR(newfile)) {
1550                err = PTR_ERR(newfile);
1551                put_unused_fd(newfd);
1552                sock_release(newsock);
1553                goto out_put;
1554        }
1555
1556        err = security_socket_accept(sock, newsock);
1557        if (err)
1558                goto out_fd;
1559
1560        err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1561        if (err < 0)
1562                goto out_fd;
1563
1564        if (upeer_sockaddr) {
1565                if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1566                                          &len, 2) < 0) {
1567                        err = -ECONNABORTED;
1568                        goto out_fd;
1569                }
1570                err = move_addr_to_user(&address,
1571                                        len, upeer_sockaddr, upeer_addrlen);
1572                if (err < 0)
1573                        goto out_fd;
1574        }
1575
1576        /* File flags are not inherited via accept() unlike another OSes. */
1577
1578        fd_install(newfd, newfile);
1579        err = newfd;
1580
1581out_put:
1582        fput_light(sock->file, fput_needed);
1583out:
1584        return err;
1585out_fd:
1586        fput(newfile);
1587        put_unused_fd(newfd);
1588        goto out_put;
1589}
1590
1591SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1592                int __user *, upeer_addrlen)
1593{
1594        return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1595}
1596
1597/*
1598 *      Attempt to connect to a socket with the server address.  The address
1599 *      is in user space so we verify it is OK and move it to kernel space.
1600 *
1601 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1602 *      break bindings
1603 *
1604 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1605 *      other SEQPACKET protocols that take time to connect() as it doesn't
1606 *      include the -EINPROGRESS status for such sockets.
1607 */
1608
1609SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1610                int, addrlen)
1611{
1612        struct socket *sock;
1613        struct sockaddr_storage address;
1614        int err, fput_needed;
1615
1616        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1617        if (!sock)
1618                goto out;
1619        err = move_addr_to_kernel(uservaddr, addrlen, &address);
1620        if (err < 0)
1621                goto out_put;
1622
1623        err =
1624            security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1625        if (err)
1626                goto out_put;
1627
1628        err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1629                                 sock->file->f_flags);
1630out_put:
1631        fput_light(sock->file, fput_needed);
1632out:
1633        return err;
1634}
1635
1636/*
1637 *      Get the local address ('name') of a socket object. Move the obtained
1638 *      name to user space.
1639 */
1640
1641SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1642                int __user *, usockaddr_len)
1643{
1644        struct socket *sock;
1645        struct sockaddr_storage address;
1646        int len, err, fput_needed;
1647
1648        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1649        if (!sock)
1650                goto out;
1651
1652        err = security_socket_getsockname(sock);
1653        if (err)
1654                goto out_put;
1655
1656        err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1657        if (err)
1658                goto out_put;
1659        err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1660
1661out_put:
1662        fput_light(sock->file, fput_needed);
1663out:
1664        return err;
1665}
1666
1667/*
1668 *      Get the remote address ('name') of a socket object. Move the obtained
1669 *      name to user space.
1670 */
1671
1672SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1673                int __user *, usockaddr_len)
1674{
1675        struct socket *sock;
1676        struct sockaddr_storage address;
1677        int len, err, fput_needed;
1678
1679        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1680        if (sock != NULL) {
1681                err = security_socket_getpeername(sock);
1682                if (err) {
1683                        fput_light(sock->file, fput_needed);
1684                        return err;
1685                }
1686
1687                err =
1688                    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1689                                       1);
1690                if (!err)
1691                        err = move_addr_to_user(&address, len, usockaddr,
1692                                                usockaddr_len);
1693                fput_light(sock->file, fput_needed);
1694        }
1695        return err;
1696}
1697
1698/*
1699 *      Send a datagram to a given address. We move the address into kernel
1700 *      space and check the user space data area is readable before invoking
1701 *      the protocol.
1702 */
1703
1704SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1705                unsigned int, flags, struct sockaddr __user *, addr,
1706                int, addr_len)
1707{
1708        struct socket *sock;
1709        struct sockaddr_storage address;
1710        int err;
1711        struct msghdr msg;
1712        struct iovec iov;
1713        int fput_needed;
1714
1715        err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1716        if (unlikely(err))
1717                return err;
1718        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1719        if (!sock)
1720                goto out;
1721
1722        msg.msg_name = NULL;
1723        msg.msg_control = NULL;
1724        msg.msg_controllen = 0;
1725        msg.msg_namelen = 0;
1726        if (addr) {
1727                err = move_addr_to_kernel(addr, addr_len, &address);
1728                if (err < 0)
1729                        goto out_put;
1730                msg.msg_name = (struct sockaddr *)&address;
1731                msg.msg_namelen = addr_len;
1732        }
1733        if (sock->file->f_flags & O_NONBLOCK)
1734                flags |= MSG_DONTWAIT;
1735        msg.msg_flags = flags;
1736        err = sock_sendmsg(sock, &msg);
1737
1738out_put:
1739        fput_light(sock->file, fput_needed);
1740out:
1741        return err;
1742}
1743
1744/*
1745 *      Send a datagram down a socket.
1746 */
1747
1748SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1749                unsigned int, flags)
1750{
1751        return sys_sendto(fd, buff, len, flags, NULL, 0);
1752}
1753
1754/*
1755 *      Receive a frame from the socket and optionally record the address of the
1756 *      sender. We verify the buffers are writable and if needed move the
1757 *      sender address from kernel to user space.
1758 */
1759
1760SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1761                unsigned int, flags, struct sockaddr __user *, addr,
1762                int __user *, addr_len)
1763{
1764        struct socket *sock;
1765        struct iovec iov;
1766        struct msghdr msg;
1767        struct sockaddr_storage address;
1768        int err, err2;
1769        int fput_needed;
1770
1771        err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1772        if (unlikely(err))
1773                return err;
1774        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1775        if (!sock)
1776                goto out;
1777
1778        msg.msg_control = NULL;
1779        msg.msg_controllen = 0;
1780        /* Save some cycles and don't copy the address if not needed */
1781        msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1782        /* We assume all kernel code knows the size of sockaddr_storage */
1783        msg.msg_namelen = 0;
1784        msg.msg_iocb = NULL;
1785        msg.msg_flags = 0;
1786        if (sock->file->f_flags & O_NONBLOCK)
1787                flags |= MSG_DONTWAIT;
1788        err = sock_recvmsg(sock, &msg, flags);
1789
1790        if (err >= 0 && addr != NULL) {
1791                err2 = move_addr_to_user(&address,
1792                                         msg.msg_namelen, addr, addr_len);
1793                if (err2 < 0)
1794                        err = err2;
1795        }
1796
1797        fput_light(sock->file, fput_needed);
1798out:
1799        return err;
1800}
1801
1802/*
1803 *      Receive a datagram from a socket.
1804 */
1805
1806SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1807                unsigned int, flags)
1808{
1809        return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1810}
1811
1812/*
1813 *      Set a socket option. Because we don't know the option lengths we have
1814 *      to pass the user mode parameter for the protocols to sort out.
1815 */
1816
1817SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1818                char __user *, optval, int, optlen)
1819{
1820        int err, fput_needed;
1821        struct socket *sock;
1822
1823        if (optlen < 0)
1824                return -EINVAL;
1825
1826        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1827        if (sock != NULL) {
1828                err = security_socket_setsockopt(sock, level, optname);
1829                if (err)
1830                        goto out_put;
1831
1832                if (level == SOL_SOCKET)
1833                        err =
1834                            sock_setsockopt(sock, level, optname, optval,
1835                                            optlen);
1836                else
1837                        err =
1838                            sock->ops->setsockopt(sock, level, optname, optval,
1839                                                  optlen);
1840out_put:
1841                fput_light(sock->file, fput_needed);
1842        }
1843        return err;
1844}
1845
1846/*
1847 *      Get a socket option. Because we don't know the option lengths we have
1848 *      to pass a user mode parameter for the protocols to sort out.
1849 */
1850
1851SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1852                char __user *, optval, int __user *, optlen)
1853{
1854        int err, fput_needed;
1855        struct socket *sock;
1856
1857        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1858        if (sock != NULL) {
1859                err = security_socket_getsockopt(sock, level, optname);
1860                if (err)
1861                        goto out_put;
1862
1863                if (level == SOL_SOCKET)
1864                        err =
1865                            sock_getsockopt(sock, level, optname, optval,
1866                                            optlen);
1867                else
1868                        err =
1869                            sock->ops->getsockopt(sock, level, optname, optval,
1870                                                  optlen);
1871out_put:
1872                fput_light(sock->file, fput_needed);
1873        }
1874        return err;
1875}
1876
1877/*
1878 *      Shutdown a socket.
1879 */
1880
1881SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1882{
1883        int err, fput_needed;
1884        struct socket *sock;
1885
1886        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1887        if (sock != NULL) {
1888                err = security_socket_shutdown(sock, how);
1889                if (!err)
1890                        err = sock->ops->shutdown(sock, how);
1891                fput_light(sock->file, fput_needed);
1892        }
1893        return err;
1894}
1895
1896/* A couple of helpful macros for getting the address of the 32/64 bit
1897 * fields which are the same type (int / unsigned) on our platforms.
1898 */
1899#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1900#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1901#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1902
1903struct used_address {
1904        struct sockaddr_storage name;
1905        unsigned int name_len;
1906};
1907
1908static int copy_msghdr_from_user(struct msghdr *kmsg,
1909                                 struct user_msghdr __user *umsg,
1910                                 struct sockaddr __user **save_addr,
1911                                 struct iovec **iov)
1912{
1913        struct user_msghdr msg;
1914        ssize_t err;
1915
1916        if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1917                return -EFAULT;
1918
1919        kmsg->msg_control = (void __force *)msg.msg_control;
1920        kmsg->msg_controllen = msg.msg_controllen;
1921        kmsg->msg_flags = msg.msg_flags;
1922
1923        kmsg->msg_namelen = msg.msg_namelen;
1924        if (!msg.msg_name)
1925                kmsg->msg_namelen = 0;
1926
1927        if (kmsg->msg_namelen < 0)
1928                return -EINVAL;
1929
1930        if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1931                kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1932
1933        if (save_addr)
1934                *save_addr = msg.msg_name;
1935
1936        if (msg.msg_name && kmsg->msg_namelen) {
1937                if (!save_addr) {
1938                        err = move_addr_to_kernel(msg.msg_name,
1939                                                  kmsg->msg_namelen,
1940                                                  kmsg->msg_name);
1941                        if (err < 0)
1942                                return err;
1943                }
1944        } else {
1945                kmsg->msg_name = NULL;
1946                kmsg->msg_namelen = 0;
1947        }
1948
1949        if (msg.msg_iovlen > UIO_MAXIOV)
1950                return -EMSGSIZE;
1951
1952        kmsg->msg_iocb = NULL;
1953
1954        return import_iovec(save_addr ? READ : WRITE,
1955                            msg.msg_iov, msg.msg_iovlen,
1956                            UIO_FASTIOV, iov, &kmsg->msg_iter);
1957}
1958
1959static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1960                         struct msghdr *msg_sys, unsigned int flags,
1961                         struct used_address *used_address,
1962                         unsigned int allowed_msghdr_flags)
1963{
1964        struct compat_msghdr __user *msg_compat =
1965            (struct compat_msghdr __user *)msg;
1966        struct sockaddr_storage address;
1967        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1968        unsigned char ctl[sizeof(struct cmsghdr) + 20]
1969                                __aligned(sizeof(__kernel_size_t));
1970        /* 20 is size of ipv6_pktinfo */
1971        unsigned char *ctl_buf = ctl;
1972        int ctl_len;
1973        ssize_t err;
1974
1975        msg_sys->msg_name = &address;
1976
1977        if (MSG_CMSG_COMPAT & flags)
1978                err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1979        else
1980                err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1981        if (err < 0)
1982                return err;
1983
1984        err = -ENOBUFS;
1985
1986        if (msg_sys->msg_controllen > INT_MAX)
1987                goto out_freeiov;
1988        flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1989        ctl_len = msg_sys->msg_controllen;
1990        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1991                err =
1992                    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1993                                                     sizeof(ctl));
1994                if (err)
1995                        goto out_freeiov;
1996                ctl_buf = msg_sys->msg_control;
1997                ctl_len = msg_sys->msg_controllen;
1998        } else if (ctl_len) {
1999                BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2000                             CMSG_ALIGN(sizeof(struct cmsghdr)));
2001                if (ctl_len > sizeof(ctl)) {
2002                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2003                        if (ctl_buf == NULL)
2004                                goto out_freeiov;
2005                }
2006                err = -EFAULT;
2007                /*
2008                 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2009                 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2010                 * checking falls down on this.
2011                 */
2012                if (copy_from_user(ctl_buf,
2013                                   (void __user __force *)msg_sys->msg_control,
2014                                   ctl_len))
2015                        goto out_freectl;
2016                msg_sys->msg_control = ctl_buf;
2017        }
2018        msg_sys->msg_flags = flags;
2019
2020        if (sock->file->f_flags & O_NONBLOCK)
2021                msg_sys->msg_flags |= MSG_DONTWAIT;
2022        /*
2023         * If this is sendmmsg() and current destination address is same as
2024         * previously succeeded address, omit asking LSM's decision.
2025         * used_address->name_len is initialized to UINT_MAX so that the first
2026         * destination address never matches.
2027         */
2028        if (used_address && msg_sys->msg_name &&
2029            used_address->name_len == msg_sys->msg_namelen &&
2030            !memcmp(&used_address->name, msg_sys->msg_name,
2031                    used_address->name_len)) {
2032                err = sock_sendmsg_nosec(sock, msg_sys);
2033                goto out_freectl;
2034        }
2035        err = sock_sendmsg(sock, msg_sys);
2036        /*
2037         * If this is sendmmsg() and sending to current destination address was
2038         * successful, remember it.
2039         */
2040        if (used_address && err >= 0) {
2041                used_address->name_len = msg_sys->msg_namelen;
2042                if (msg_sys->msg_name)
2043                        memcpy(&used_address->name, msg_sys->msg_name,
2044                               used_address->name_len);
2045        }
2046
2047out_freectl:
2048        if (ctl_buf != ctl)
2049                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2050out_freeiov:
2051        kfree(iov);
2052        return err;
2053}
2054
2055/*
2056 *      BSD sendmsg interface
2057 */
2058
2059long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2060{
2061        int fput_needed, err;
2062        struct msghdr msg_sys;
2063        struct socket *sock;
2064
2065        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2066        if (!sock)
2067                goto out;
2068
2069        err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2070
2071        fput_light(sock->file, fput_needed);
2072out:
2073        return err;
2074}
2075
2076SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2077{
2078        if (flags & MSG_CMSG_COMPAT)
2079                return -EINVAL;
2080        return __sys_sendmsg(fd, msg, flags);
2081}
2082
2083/*
2084 *      Linux sendmmsg interface
2085 */
2086
2087int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2088                   unsigned int flags)
2089{
2090        int fput_needed, err, datagrams;
2091        struct socket *sock;
2092        struct mmsghdr __user *entry;
2093        struct compat_mmsghdr __user *compat_entry;
2094        struct msghdr msg_sys;
2095        struct used_address used_address;
2096        unsigned int oflags = flags;
2097
2098        if (vlen > UIO_MAXIOV)
2099                vlen = UIO_MAXIOV;
2100
2101        datagrams = 0;
2102
2103        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2104        if (!sock)
2105                return err;
2106
2107        used_address.name_len = UINT_MAX;
2108        entry = mmsg;
2109        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2110        err = 0;
2111        flags |= MSG_BATCH;
2112
2113        while (datagrams < vlen) {
2114                if (datagrams == vlen - 1)
2115                        flags = oflags;
2116
2117                if (MSG_CMSG_COMPAT & flags) {
2118                        err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2119                                             &msg_sys, flags, &used_address, MSG_EOR);
2120                        if (err < 0)
2121                                break;
2122                        err = __put_user(err, &compat_entry->msg_len);
2123                        ++compat_entry;
2124                } else {
2125                        err = ___sys_sendmsg(sock,
2126                                             (struct user_msghdr __user *)entry,
2127                                             &msg_sys, flags, &used_address, MSG_EOR);
2128                        if (err < 0)
2129                                break;
2130                        err = put_user(err, &entry->msg_len);
2131                        ++entry;
2132                }
2133
2134                if (err)
2135                        break;
2136                ++datagrams;
2137                if (msg_data_left(&msg_sys))
2138                        break;
2139                cond_resched();
2140        }
2141
2142        fput_light(sock->file, fput_needed);
2143
2144        /* We only return an error if no datagrams were able to be sent */
2145        if (datagrams != 0)
2146                return datagrams;
2147
2148        return err;
2149}
2150
2151SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2152                unsigned int, vlen, unsigned int, flags)
2153{
2154        if (flags & MSG_CMSG_COMPAT)
2155                return -EINVAL;
2156        return __sys_sendmmsg(fd, mmsg, vlen, flags);
2157}
2158
2159static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2160                         struct msghdr *msg_sys, unsigned int flags, int nosec)
2161{
2162        struct compat_msghdr __user *msg_compat =
2163            (struct compat_msghdr __user *)msg;
2164        struct iovec iovstack[UIO_FASTIOV];
2165        struct iovec *iov = iovstack;
2166        unsigned long cmsg_ptr;
2167        int len;
2168        ssize_t err;
2169
2170        /* kernel mode address */
2171        struct sockaddr_storage addr;
2172
2173        /* user mode address pointers */
2174        struct sockaddr __user *uaddr;
2175        int __user *uaddr_len = COMPAT_NAMELEN(msg);
2176
2177        msg_sys->msg_name = &addr;
2178
2179        if (MSG_CMSG_COMPAT & flags)
2180                err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2181        else
2182                err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2183        if (err < 0)
2184                return err;
2185
2186        cmsg_ptr = (unsigned long)msg_sys->msg_control;
2187        msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2188
2189        /* We assume all kernel code knows the size of sockaddr_storage */
2190        msg_sys->msg_namelen = 0;
2191
2192        if (sock->file->f_flags & O_NONBLOCK)
2193                flags |= MSG_DONTWAIT;
2194        err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2195        if (err < 0)
2196                goto out_freeiov;
2197        len = err;
2198
2199        if (uaddr != NULL) {
2200                err = move_addr_to_user(&addr,
2201                                        msg_sys->msg_namelen, uaddr,
2202                                        uaddr_len);
2203                if (err < 0)
2204                        goto out_freeiov;
2205        }
2206        err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2207                         COMPAT_FLAGS(msg));
2208        if (err)
2209                goto out_freeiov;
2210        if (MSG_CMSG_COMPAT & flags)
2211                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2212                                 &msg_compat->msg_controllen);
2213        else
2214                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2215                                 &msg->msg_controllen);
2216        if (err)
2217                goto out_freeiov;
2218        err = len;
2219
2220out_freeiov:
2221        kfree(iov);
2222        return err;
2223}
2224
2225/*
2226 *      BSD recvmsg interface
2227 */
2228
2229long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2230{
2231        int fput_needed, err;
2232        struct msghdr msg_sys;
2233        struct socket *sock;
2234
2235        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2236        if (!sock)
2237                goto out;
2238
2239        err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2240
2241        fput_light(sock->file, fput_needed);
2242out:
2243        return err;
2244}
2245
2246SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2247                unsigned int, flags)
2248{
2249        if (flags & MSG_CMSG_COMPAT)
2250                return -EINVAL;
2251        return __sys_recvmsg(fd, msg, flags);
2252}
2253
2254/*
2255 *     Linux recvmmsg interface
2256 */
2257
2258int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2259                   unsigned int flags, struct timespec *timeout)
2260{
2261        int fput_needed, err, datagrams;
2262        struct socket *sock;
2263        struct mmsghdr __user *entry;
2264        struct compat_mmsghdr __user *compat_entry;
2265        struct msghdr msg_sys;
2266        struct timespec64 end_time;
2267        struct timespec64 timeout64;
2268
2269        if (timeout &&
2270            poll_select_set_timeout(&end_time, timeout->tv_sec,
2271                                    timeout->tv_nsec))
2272                return -EINVAL;
2273
2274        datagrams = 0;
2275
2276        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2277        if (!sock)
2278                return err;
2279
2280        err = sock_error(sock->sk);
2281        if (err) {
2282                datagrams = err;
2283                goto out_put;
2284        }
2285
2286        entry = mmsg;
2287        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2288
2289        while (datagrams < vlen) {
2290                /*
2291                 * No need to ask LSM for more than the first datagram.
2292                 */
2293                if (MSG_CMSG_COMPAT & flags) {
2294                        err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2295                                             &msg_sys, flags & ~MSG_WAITFORONE,
2296                                             datagrams);
2297                        if (err < 0)
2298                                break;
2299                        err = __put_user(err, &compat_entry->msg_len);
2300                        ++compat_entry;
2301                } else {
2302                        err = ___sys_recvmsg(sock,
2303                                             (struct user_msghdr __user *)entry,
2304                                             &msg_sys, flags & ~MSG_WAITFORONE,
2305                                             datagrams);
2306                        if (err < 0)
2307                                break;
2308                        err = put_user(err, &entry->msg_len);
2309                        ++entry;
2310                }
2311
2312                if (err)
2313                        break;
2314                ++datagrams;
2315
2316                /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2317                if (flags & MSG_WAITFORONE)
2318                        flags |= MSG_DONTWAIT;
2319
2320                if (timeout) {
2321                        ktime_get_ts64(&timeout64);
2322                        *timeout = timespec64_to_timespec(
2323                                        timespec64_sub(end_time, timeout64));
2324                        if (timeout->tv_sec < 0) {
2325                                timeout->tv_sec = timeout->tv_nsec = 0;
2326                                break;
2327                        }
2328
2329                        /* Timeout, return less than vlen datagrams */
2330                        if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2331                                break;
2332                }
2333
2334                /* Out of band data, return right away */
2335                if (msg_sys.msg_flags & MSG_OOB)
2336                        break;
2337                cond_resched();
2338        }
2339
2340        if (err == 0)
2341                goto out_put;
2342
2343        if (datagrams == 0) {
2344                datagrams = err;
2345                goto out_put;
2346        }
2347
2348        /*
2349         * We may return less entries than requested (vlen) if the
2350         * sock is non block and there aren't enough datagrams...
2351         */
2352        if (err != -EAGAIN) {
2353                /*
2354                 * ... or  if recvmsg returns an error after we
2355                 * received some datagrams, where we record the
2356                 * error to return on the next call or if the
2357                 * app asks about it using getsockopt(SO_ERROR).
2358                 */
2359                sock->sk->sk_err = -err;
2360        }
2361out_put:
2362        fput_light(sock->file, fput_needed);
2363
2364        return datagrams;
2365}
2366
2367SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2368                unsigned int, vlen, unsigned int, flags,
2369                struct timespec __user *, timeout)
2370{
2371        int datagrams;
2372        struct timespec timeout_sys;
2373
2374        if (flags & MSG_CMSG_COMPAT)
2375                return -EINVAL;
2376
2377        if (!timeout)
2378                return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2379
2380        if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2381                return -EFAULT;
2382
2383        datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2384
2385        if (datagrams > 0 &&
2386            copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2387                datagrams = -EFAULT;
2388
2389        return datagrams;
2390}
2391
2392#ifdef __ARCH_WANT_SYS_SOCKETCALL
2393/* Argument list sizes for sys_socketcall */
2394#define AL(x) ((x) * sizeof(unsigned long))
2395static const unsigned char nargs[21] = {
2396        AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2397        AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2398        AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2399        AL(4), AL(5), AL(4)
2400};
2401
2402#undef AL
2403
2404/*
2405 *      System call vectors.
2406 *
2407 *      Argument checking cleaned up. Saved 20% in size.
2408 *  This function doesn't need to set the kernel lock because
2409 *  it is set by the callees.
2410 */
2411
2412SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2413{
2414        unsigned long a[AUDITSC_ARGS];
2415        unsigned long a0, a1;
2416        int err;
2417        unsigned int len;
2418
2419        if (call < 1 || call > SYS_SENDMMSG)
2420                return -EINVAL;
2421
2422        len = nargs[call];
2423        if (len > sizeof(a))
2424                return -EINVAL;
2425
2426        /* copy_from_user should be SMP safe. */
2427        if (copy_from_user(a, args, len))
2428                return -EFAULT;
2429
2430        err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2431        if (err)
2432                return err;
2433
2434        a0 = a[0];
2435        a1 = a[1];
2436
2437        switch (call) {
2438        case SYS_SOCKET:
2439                err = sys_socket(a0, a1, a[2]);
2440                break;
2441        case SYS_BIND:
2442                err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2443                break;
2444        case SYS_CONNECT:
2445                err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2446                break;
2447        case SYS_LISTEN:
2448                err = sys_listen(a0, a1);
2449                break;
2450        case SYS_ACCEPT:
2451                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2452                                  (int __user *)a[2], 0);
2453                break;
2454        case SYS_GETSOCKNAME:
2455                err =
2456                    sys_getsockname(a0, (struct sockaddr __user *)a1,
2457                                    (int __user *)a[2]);
2458                break;
2459        case SYS_GETPEERNAME:
2460                err =
2461                    sys_getpeername(a0, (struct sockaddr __user *)a1,
2462                                    (int __user *)a[2]);
2463                break;
2464        case SYS_SOCKETPAIR:
2465                err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2466                break;
2467        case SYS_SEND:
2468                err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2469                break;
2470        case SYS_SENDTO:
2471                err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2472                                 (struct sockaddr __user *)a[4], a[5]);
2473                break;
2474        case SYS_RECV:
2475                err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2476                break;
2477        case SYS_RECVFROM:
2478                err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2479                                   (struct sockaddr __user *)a[4],
2480                                   (int __user *)a[5]);
2481                break;
2482        case SYS_SHUTDOWN:
2483                err = sys_shutdown(a0, a1);
2484                break;
2485        case SYS_SETSOCKOPT:
2486                err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2487                break;
2488        case SYS_GETSOCKOPT:
2489                err =
2490                    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2491                                   (int __user *)a[4]);
2492                break;
2493        case SYS_SENDMSG:
2494                err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2495                break;
2496        case SYS_SENDMMSG:
2497                err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2498                break;
2499        case SYS_RECVMSG:
2500                err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2501                break;
2502        case SYS_RECVMMSG:
2503                err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2504                                   (struct timespec __user *)a[4]);
2505                break;
2506        case SYS_ACCEPT4:
2507                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2508                                  (int __user *)a[2], a[3]);
2509                break;
2510        default:
2511                err = -EINVAL;
2512                break;
2513        }
2514        return err;
2515}
2516
2517#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2518
2519/**
2520 *      sock_register - add a socket protocol handler
2521 *      @ops: description of protocol
2522 *
2523 *      This function is called by a protocol handler that wants to
2524 *      advertise its address family, and have it linked into the
2525 *      socket interface. The value ops->family corresponds to the
2526 *      socket system call protocol family.
2527 */
2528int sock_register(const struct net_proto_family *ops)
2529{
2530        int err;
2531
2532        if (ops->family >= NPROTO) {
2533                pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2534                return -ENOBUFS;
2535        }
2536
2537        spin_lock(&net_family_lock);
2538        if (rcu_dereference_protected(net_families[ops->family],
2539                                      lockdep_is_held(&net_family_lock)))
2540                err = -EEXIST;
2541        else {
2542                rcu_assign_pointer(net_families[ops->family], ops);
2543                err = 0;
2544        }
2545        spin_unlock(&net_family_lock);
2546
2547        pr_info("NET: Registered protocol family %d\n", ops->family);
2548        return err;
2549}
2550EXPORT_SYMBOL(sock_register);
2551
2552/**
2553 *      sock_unregister - remove a protocol handler
2554 *      @family: protocol family to remove
2555 *
2556 *      This function is called by a protocol handler that wants to
2557 *      remove its address family, and have it unlinked from the
2558 *      new socket creation.
2559 *
2560 *      If protocol handler is a module, then it can use module reference
2561 *      counts to protect against new references. If protocol handler is not
2562 *      a module then it needs to provide its own protection in
2563 *      the ops->create routine.
2564 */
2565void sock_unregister(int family)
2566{
2567        BUG_ON(family < 0 || family >= NPROTO);
2568
2569        spin_lock(&net_family_lock);
2570        RCU_INIT_POINTER(net_families[family], NULL);
2571        spin_unlock(&net_family_lock);
2572
2573        synchronize_rcu();
2574
2575        pr_info("NET: Unregistered protocol family %d\n", family);
2576}
2577EXPORT_SYMBOL(sock_unregister);
2578
2579static int __init sock_init(void)
2580{
2581        int err;
2582        /*
2583         *      Initialize the network sysctl infrastructure.
2584         */
2585        err = net_sysctl_init();
2586        if (err)
2587                goto out;
2588
2589        /*
2590         *      Initialize skbuff SLAB cache
2591         */
2592        skb_init();
2593
2594        /*
2595         *      Initialize the protocols module.
2596         */
2597
2598        init_inodecache();
2599
2600        err = register_filesystem(&sock_fs_type);
2601        if (err)
2602                goto out_fs;
2603        sock_mnt = kern_mount(&sock_fs_type);
2604        if (IS_ERR(sock_mnt)) {
2605                err = PTR_ERR(sock_mnt);
2606                goto out_mount;
2607        }
2608
2609        /* The real protocol initialization is performed in later initcalls.
2610         */
2611
2612#ifdef CONFIG_NETFILTER
2613        err = netfilter_init();
2614        if (err)
2615                goto out;
2616#endif
2617
2618        ptp_classifier_init();
2619
2620out:
2621        return err;
2622
2623out_mount:
2624        unregister_filesystem(&sock_fs_type);
2625out_fs:
2626        goto out;
2627}
2628
2629core_initcall(sock_init);       /* early initcall */
2630
2631#ifdef CONFIG_PROC_FS
2632void socket_seq_show(struct seq_file *seq)
2633{
2634        int cpu;
2635        int counter = 0;
2636
2637        for_each_possible_cpu(cpu)
2638            counter += per_cpu(sockets_in_use, cpu);
2639
2640        /* It can be negative, by the way. 8) */
2641        if (counter < 0)
2642                counter = 0;
2643
2644        seq_printf(seq, "sockets: used %d\n", counter);
2645}
2646#endif                          /* CONFIG_PROC_FS */
2647
2648#ifdef CONFIG_COMPAT
2649static int do_siocgstamp(struct net *net, struct socket *sock,
2650                         unsigned int cmd, void __user *up)
2651{
2652        mm_segment_t old_fs = get_fs();
2653        struct timeval ktv;
2654        int err;
2655
2656        set_fs(KERNEL_DS);
2657        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2658        set_fs(old_fs);
2659        if (!err)
2660                err = compat_put_timeval(&ktv, up);
2661
2662        return err;
2663}
2664
2665static int do_siocgstampns(struct net *net, struct socket *sock,
2666                           unsigned int cmd, void __user *up)
2667{
2668        mm_segment_t old_fs = get_fs();
2669        struct timespec kts;
2670        int err;
2671
2672        set_fs(KERNEL_DS);
2673        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2674        set_fs(old_fs);
2675        if (!err)
2676                err = compat_put_timespec(&kts, up);
2677
2678        return err;
2679}
2680
2681static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2682{
2683        struct ifreq __user *uifr;
2684        int err;
2685
2686        uifr = compat_alloc_user_space(sizeof(struct ifreq));
2687        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2688                return -EFAULT;
2689
2690        err = dev_ioctl(net, SIOCGIFNAME, uifr);
2691        if (err)
2692                return err;
2693
2694        if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2695                return -EFAULT;
2696
2697        return 0;
2698}
2699
2700static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2701{
2702        struct compat_ifconf ifc32;
2703        struct ifconf ifc;
2704        struct ifconf __user *uifc;
2705        struct compat_ifreq __user *ifr32;
2706        struct ifreq __user *ifr;
2707        unsigned int i, j;
2708        int err;
2709
2710        if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2711                return -EFAULT;
2712
2713        memset(&ifc, 0, sizeof(ifc));
2714        if (ifc32.ifcbuf == 0) {
2715                ifc32.ifc_len = 0;
2716                ifc.ifc_len = 0;
2717                ifc.ifc_req = NULL;
2718                uifc = compat_alloc_user_space(sizeof(struct ifconf));
2719        } else {
2720                size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2721                        sizeof(struct ifreq);
2722                uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2723                ifc.ifc_len = len;
2724                ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2725                ifr32 = compat_ptr(ifc32.ifcbuf);
2726                for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2727                        if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2728                                return -EFAULT;
2729                        ifr++;
2730                        ifr32++;
2731                }
2732        }
2733        if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2734                return -EFAULT;
2735
2736        err = dev_ioctl(net, SIOCGIFCONF, uifc);
2737        if (err)
2738                return err;
2739
2740        if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2741                return -EFAULT;
2742
2743        ifr = ifc.ifc_req;
2744        ifr32 = compat_ptr(ifc32.ifcbuf);
2745        for (i = 0, j = 0;
2746             i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2747             i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2748                if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2749                        return -EFAULT;
2750                ifr32++;
2751                ifr++;
2752        }
2753
2754        if (ifc32.ifcbuf == 0) {
2755                /* Translate from 64-bit structure multiple to
2756                 * a 32-bit one.
2757                 */
2758                i = ifc.ifc_len;
2759                i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2760                ifc32.ifc_len = i;
2761        } else {
2762                ifc32.ifc_len = i;
2763        }
2764        if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2765                return -EFAULT;
2766
2767        return 0;
2768}
2769
2770static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2771{
2772        struct compat_ethtool_rxnfc __user *compat_rxnfc;
2773        bool convert_in = false, convert_out = false;
2774        size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2775        struct ethtool_rxnfc __user *rxnfc;
2776        struct ifreq __user *ifr;
2777        u32 rule_cnt = 0, actual_rule_cnt;
2778        u32 ethcmd;
2779        u32 data;
2780        int ret;
2781
2782        if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2783                return -EFAULT;
2784
2785        compat_rxnfc = compat_ptr(data);
2786
2787        if (get_user(ethcmd, &compat_rxnfc->cmd))
2788                return -EFAULT;
2789
2790        /* Most ethtool structures are defined without padding.
2791         * Unfortunately struct ethtool_rxnfc is an exception.
2792         */
2793        switch (ethcmd) {
2794        default:
2795                break;
2796        case ETHTOOL_GRXCLSRLALL:
2797                /* Buffer size is variable */
2798                if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2799                        return -EFAULT;
2800                if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2801                        return -ENOMEM;
2802                buf_size += rule_cnt * sizeof(u32);
2803                /* fall through */
2804        case ETHTOOL_GRXRINGS:
2805        case ETHTOOL_GRXCLSRLCNT:
2806        case ETHTOOL_GRXCLSRULE:
2807        case ETHTOOL_SRXCLSRLINS:
2808                convert_out = true;
2809                /* fall through */
2810        case ETHTOOL_SRXCLSRLDEL:
2811                buf_size += sizeof(struct ethtool_rxnfc);
2812                convert_in = true;
2813                break;
2814        }
2815
2816        ifr = compat_alloc_user_space(buf_size);
2817        rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2818
2819        if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2820                return -EFAULT;
2821
2822        if (put_user(convert_in ? rxnfc : compat_ptr(data),
2823                     &ifr->ifr_ifru.ifru_data))
2824                return -EFAULT;
2825
2826        if (convert_in) {
2827                /* We expect there to be holes between fs.m_ext and
2828                 * fs.ring_cookie and at the end of fs, but nowhere else.
2829                 */
2830                BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2831                             sizeof(compat_rxnfc->fs.m_ext) !=
2832                             offsetof(struct ethtool_rxnfc, fs.m_ext) +
2833                             sizeof(rxnfc->fs.m_ext));
2834                BUILD_BUG_ON(
2835                        offsetof(struct compat_ethtool_rxnfc, fs.location) -
2836                        offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2837                        offsetof(struct ethtool_rxnfc, fs.location) -
2838                        offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2839
2840                if (copy_in_user(rxnfc, compat_rxnfc,
2841                                 (void __user *)(&rxnfc->fs.m_ext + 1) -
2842                                 (void __user *)rxnfc) ||
2843                    copy_in_user(&rxnfc->fs.ring_cookie,
2844                                 &compat_rxnfc->fs.ring_cookie,
2845                                 (void __user *)(&rxnfc->fs.location + 1) -
2846                                 (void __user *)&rxnfc->fs.ring_cookie) ||
2847                    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2848                                 sizeof(rxnfc->rule_cnt)))
2849                        return -EFAULT;
2850        }
2851
2852        ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2853        if (ret)
2854                return ret;
2855
2856        if (convert_out) {
2857                if (copy_in_user(compat_rxnfc, rxnfc,
2858                                 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2859                                 (const void __user *)rxnfc) ||
2860                    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2861                                 &rxnfc->fs.ring_cookie,
2862                                 (const void __user *)(&rxnfc->fs.location + 1) -
2863                                 (const void __user *)&rxnfc->fs.ring_cookie) ||
2864                    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2865                                 sizeof(rxnfc->rule_cnt)))
2866                        return -EFAULT;
2867
2868                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2869                        /* As an optimisation, we only copy the actual
2870                         * number of rules that the underlying
2871                         * function returned.  Since Mallory might
2872                         * change the rule count in user memory, we
2873                         * check that it is less than the rule count
2874                         * originally given (as the user buffer size),
2875                         * which has been range-checked.
2876                         */
2877                        if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2878                                return -EFAULT;
2879                        if (actual_rule_cnt < rule_cnt)
2880                                rule_cnt = actual_rule_cnt;
2881                        if (copy_in_user(&compat_rxnfc->rule_locs[0],
2882                                         &rxnfc->rule_locs[0],
2883                                         rule_cnt * sizeof(u32)))
2884                                return -EFAULT;
2885                }
2886        }
2887
2888        return 0;
2889}
2890
2891static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2892{
2893        void __user *uptr;
2894        compat_uptr_t uptr32;
2895        struct ifreq __user *uifr;
2896
2897        uifr = compat_alloc_user_space(sizeof(*uifr));
2898        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2899                return -EFAULT;
2900
2901        if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2902                return -EFAULT;
2903
2904        uptr = compat_ptr(uptr32);
2905
2906        if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2907                return -EFAULT;
2908
2909        return dev_ioctl(net, SIOCWANDEV, uifr);
2910}
2911
2912static int bond_ioctl(struct net *net, unsigned int cmd,
2913                         struct compat_ifreq __user *ifr32)
2914{
2915        struct ifreq kifr;
2916        mm_segment_t old_fs;
2917        int err;
2918
2919        switch (cmd) {
2920        case SIOCBONDENSLAVE:
2921        case SIOCBONDRELEASE:
2922        case SIOCBONDSETHWADDR:
2923        case SIOCBONDCHANGEACTIVE:
2924                if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2925                        return -EFAULT;
2926
2927                old_fs = get_fs();
2928                set_fs(KERNEL_DS);
2929                err = dev_ioctl(net, cmd,
2930                                (struct ifreq __user __force *) &kifr);
2931                set_fs(old_fs);
2932
2933                return err;
2934        default:
2935                return -ENOIOCTLCMD;
2936        }
2937}
2938
2939/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2940static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2941                                 struct compat_ifreq __user *u_ifreq32)
2942{
2943        struct ifreq __user *u_ifreq64;
2944        char tmp_buf[IFNAMSIZ];
2945        void __user *data64;
2946        u32 data32;
2947
2948        if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2949                           IFNAMSIZ))
2950                return -EFAULT;
2951        if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2952                return -EFAULT;
2953        data64 = compat_ptr(data32);
2954
2955        u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2956
2957        if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2958                         IFNAMSIZ))
2959                return -EFAULT;
2960        if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2961                return -EFAULT;
2962
2963        return dev_ioctl(net, cmd, u_ifreq64);
2964}
2965
2966static int dev_ifsioc(struct net *net, struct socket *sock,
2967                         unsigned int cmd, struct compat_ifreq __user *uifr32)
2968{
2969        struct ifreq __user *uifr;
2970        int err;
2971
2972        uifr = compat_alloc_user_space(sizeof(*uifr));
2973        if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2974                return -EFAULT;
2975
2976        err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2977
2978        if (!err) {
2979                switch (cmd) {
2980                case SIOCGIFFLAGS:
2981                case SIOCGIFMETRIC:
2982                case SIOCGIFMTU:
2983                case SIOCGIFMEM:
2984                case SIOCGIFHWADDR:
2985                case SIOCGIFINDEX:
2986                case SIOCGIFADDR:
2987                case SIOCGIFBRDADDR:
2988                case SIOCGIFDSTADDR:
2989                case SIOCGIFNETMASK:
2990                case SIOCGIFPFLAGS:
2991                case SIOCGIFTXQLEN:
2992                case SIOCGMIIPHY:
2993                case SIOCGMIIREG:
2994                        if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2995                                err = -EFAULT;
2996                        break;
2997                }
2998        }
2999        return err;
3000}
3001
3002static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3003                        struct compat_ifreq __user *uifr32)
3004{
3005        struct ifreq ifr;
3006        struct compat_ifmap __user *uifmap32;
3007        mm_segment_t old_fs;
3008        int err;
3009
3010        uifmap32 = &uifr32->ifr_ifru.ifru_map;
3011        err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3012        err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3013        err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3014        err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3015        err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3016        err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3017        err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3018        if (err)
3019                return -EFAULT;
3020
3021        old_fs = get_fs();
3022        set_fs(KERNEL_DS);
3023        err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3024        set_fs(old_fs);
3025
3026        if (cmd == SIOCGIFMAP && !err) {
3027                err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3028                err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3029                err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3030                err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3031                err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3032                err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3033                err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3034                if (err)
3035                        err = -EFAULT;
3036        }
3037        return err;
3038}
3039
3040struct rtentry32 {
3041        u32             rt_pad1;
3042        struct sockaddr rt_dst;         /* target address               */
3043        struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3044        struct sockaddr rt_genmask;     /* target network mask (IP)     */
3045        unsigned short  rt_flags;
3046        short           rt_pad2;
3047        u32             rt_pad3;
3048        unsigned char   rt_tos;
3049        unsigned char   rt_class;
3050        short           rt_pad4;
3051        short           rt_metric;      /* +1 for binary compatibility! */
3052        /* char * */ u32 rt_dev;        /* forcing the device at add    */
3053        u32             rt_mtu;         /* per route MTU/Window         */
3054        u32             rt_window;      /* Window clamping              */
3055        unsigned short  rt_irtt;        /* Initial RTT                  */
3056};
3057
3058struct in6_rtmsg32 {
3059        struct in6_addr         rtmsg_dst;
3060        struct in6_addr         rtmsg_src;
3061        struct in6_addr         rtmsg_gateway;
3062        u32                     rtmsg_type;
3063        u16                     rtmsg_dst_len;
3064        u16                     rtmsg_src_len;
3065        u32                     rtmsg_metric;
3066        u32                     rtmsg_info;
3067        u32                     rtmsg_flags;
3068        s32                     rtmsg_ifindex;
3069};
3070
3071static int routing_ioctl(struct net *net, struct socket *sock,
3072                         unsigned int cmd, void __user *argp)
3073{
3074        int ret;
3075        void *r = NULL;
3076        struct in6_rtmsg r6;
3077        struct rtentry r4;
3078        char devname[16];
3079        u32 rtdev;
3080        mm_segment_t old_fs = get_fs();
3081
3082        if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3083                struct in6_rtmsg32 __user *ur6 = argp;
3084                ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3085                        3 * sizeof(struct in6_addr));
3086                ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3087                ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3088                ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3089                ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3090                ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3091                ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3092                ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3093
3094                r = (void *) &r6;
3095        } else { /* ipv4 */
3096                struct rtentry32 __user *ur4 = argp;
3097                ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3098                                        3 * sizeof(struct sockaddr));
3099                ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3100                ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3101                ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3102                ret |= get_user(r4.rt_window, &(ur4->rt_window));
3103                ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3104                ret |= get_user(rtdev, &(ur4->rt_dev));
3105                if (rtdev) {
3106                        ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3107                        r4.rt_dev = (char __user __force *)devname;
3108                        devname[15] = 0;
3109                } else
3110                        r4.rt_dev = NULL;
3111
3112                r = (void *) &r4;
3113        }
3114
3115        if (ret) {
3116                ret = -EFAULT;
3117                goto out;
3118        }
3119
3120        set_fs(KERNEL_DS);
3121        ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3122        set_fs(old_fs);
3123
3124out:
3125        return ret;
3126}
3127
3128/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3129 * for some operations; this forces use of the newer bridge-utils that
3130 * use compatible ioctls
3131 */
3132static int old_bridge_ioctl(compat_ulong_t __user *argp)
3133{
3134        compat_ulong_t tmp;
3135
3136        if (get_user(tmp, argp))
3137                return -EFAULT;
3138        if (tmp == BRCTL_GET_VERSION)
3139                return BRCTL_VERSION + 1;
3140        return -EINVAL;
3141}
3142
3143static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3144                         unsigned int cmd, unsigned long arg)
3145{
3146        void __user *argp = compat_ptr(arg);
3147        struct sock *sk = sock->sk;
3148        struct net *net = sock_net(sk);
3149
3150        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3151                return compat_ifr_data_ioctl(net, cmd, argp);
3152
3153        switch (cmd) {
3154        case SIOCSIFBR:
3155        case SIOCGIFBR:
3156                return old_bridge_ioctl(argp);
3157        case SIOCGIFNAME:
3158                return dev_ifname32(net, argp);
3159        case SIOCGIFCONF:
3160                return dev_ifconf(net, argp);
3161        case SIOCETHTOOL:
3162                return ethtool_ioctl(net, argp);
3163        case SIOCWANDEV:
3164                return compat_siocwandev(net, argp);
3165        case SIOCGIFMAP:
3166        case SIOCSIFMAP:
3167                return compat_sioc_ifmap(net, cmd, argp);
3168        case SIOCBONDENSLAVE:
3169        case SIOCBONDRELEASE:
3170        case SIOCBONDSETHWADDR:
3171        case SIOCBONDCHANGEACTIVE:
3172                return bond_ioctl(net, cmd, argp);
3173        case SIOCADDRT:
3174        case SIOCDELRT:
3175                return routing_ioctl(net, sock, cmd, argp);
3176        case SIOCGSTAMP:
3177                return do_siocgstamp(net, sock, cmd, argp);
3178        case SIOCGSTAMPNS:
3179                return do_siocgstampns(net, sock, cmd, argp);
3180        case SIOCBONDSLAVEINFOQUERY:
3181        case SIOCBONDINFOQUERY:
3182        case SIOCSHWTSTAMP:
3183        case SIOCGHWTSTAMP:
3184                return compat_ifr_data_ioctl(net, cmd, argp);
3185
3186        case FIOSETOWN:
3187        case SIOCSPGRP:
3188        case FIOGETOWN:
3189        case SIOCGPGRP:
3190        case SIOCBRADDBR:
3191        case SIOCBRDELBR:
3192        case SIOCGIFVLAN:
3193        case SIOCSIFVLAN:
3194        case SIOCADDDLCI:
3195        case SIOCDELDLCI:
3196        case SIOCGSKNS:
3197                return sock_ioctl(file, cmd, arg);
3198
3199        case SIOCGIFFLAGS:
3200        case SIOCSIFFLAGS:
3201        case SIOCGIFMETRIC:
3202        case SIOCSIFMETRIC:
3203        case SIOCGIFMTU:
3204        case SIOCSIFMTU:
3205        case SIOCGIFMEM:
3206        case SIOCSIFMEM:
3207        case SIOCGIFHWADDR:
3208        case SIOCSIFHWADDR:
3209        case SIOCADDMULTI:
3210        case SIOCDELMULTI:
3211        case SIOCGIFINDEX:
3212        case SIOCGIFADDR:
3213        case SIOCSIFADDR:
3214        case SIOCSIFHWBROADCAST:
3215        case SIOCDIFADDR:
3216        case SIOCGIFBRDADDR:
3217        case SIOCSIFBRDADDR:
3218        case SIOCGIFDSTADDR:
3219        case SIOCSIFDSTADDR:
3220        case SIOCGIFNETMASK:
3221        case SIOCSIFNETMASK:
3222        case SIOCSIFPFLAGS:
3223        case SIOCGIFPFLAGS:
3224        case SIOCGIFTXQLEN:
3225        case SIOCSIFTXQLEN:
3226        case SIOCBRADDIF:
3227        case SIOCBRDELIF:
3228        case SIOCSIFNAME:
3229        case SIOCGMIIPHY:
3230        case SIOCGMIIREG:
3231        case SIOCSMIIREG:
3232                return dev_ifsioc(net, sock, cmd, argp);
3233
3234        case SIOCSARP:
3235        case SIOCGARP:
3236        case SIOCDARP:
3237        case SIOCATMARK:
3238                return sock_do_ioctl(net, sock, cmd, arg);
3239        }
3240
3241        return -ENOIOCTLCMD;
3242}
3243
3244static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3245                              unsigned long arg)
3246{
3247        struct socket *sock = file->private_data;
3248        int ret = -ENOIOCTLCMD;
3249        struct sock *sk;
3250        struct net *net;
3251
3252        sk = sock->sk;
3253        net = sock_net(sk);
3254
3255        if (sock->ops->compat_ioctl)
3256                ret = sock->ops->compat_ioctl(sock, cmd, arg);
3257
3258        if (ret == -ENOIOCTLCMD &&
3259            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3260                ret = compat_wext_handle_ioctl(net, cmd, arg);
3261
3262        if (ret == -ENOIOCTLCMD)
3263                ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3264
3265        return ret;
3266}
3267#endif
3268
3269int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3270{
3271        return sock->ops->bind(sock, addr, addrlen);
3272}
3273EXPORT_SYMBOL(kernel_bind);
3274
3275int kernel_listen(struct socket *sock, int backlog)
3276{
3277        return sock->ops->listen(sock, backlog);
3278}
3279EXPORT_SYMBOL(kernel_listen);
3280
3281int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3282{
3283        struct sock *sk = sock->sk;
3284        int err;
3285
3286        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3287                               newsock);
3288        if (err < 0)
3289                goto done;
3290
3291        err = sock->ops->accept(sock, *newsock, flags, true);
3292        if (err < 0) {
3293                sock_release(*newsock);
3294                *newsock = NULL;
3295                goto done;
3296        }
3297
3298        (*newsock)->ops = sock->ops;
3299        __module_get((*newsock)->ops->owner);
3300
3301done:
3302        return err;
3303}
3304EXPORT_SYMBOL(kernel_accept);
3305
3306int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3307                   int flags)
3308{
3309        return sock->ops->connect(sock, addr, addrlen, flags);
3310}
3311EXPORT_SYMBOL(kernel_connect);
3312
3313int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3314                         int *addrlen)
3315{
3316        return sock->ops->getname(sock, addr, addrlen, 0);
3317}
3318EXPORT_SYMBOL(kernel_getsockname);
3319
3320int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3321                         int *addrlen)
3322{
3323        return sock->ops->getname(sock, addr, addrlen, 1);
3324}
3325EXPORT_SYMBOL(kernel_getpeername);
3326
3327int kernel_getsockopt(struct socket *sock, int level, int optname,
3328                        char *optval, int *optlen)
3329{
3330        mm_segment_t oldfs = get_fs();
3331        char __user *uoptval;
3332        int __user *uoptlen;
3333        int err;
3334
3335        uoptval = (char __user __force *) optval;
3336        uoptlen = (int __user __force *) optlen;
3337
3338        set_fs(KERNEL_DS);
3339        if (level == SOL_SOCKET)
3340                err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3341        else
3342                err = sock->ops->getsockopt(sock, level, optname, uoptval,
3343                                            uoptlen);
3344        set_fs(oldfs);
3345        return err;
3346}
3347EXPORT_SYMBOL(kernel_getsockopt);
3348
3349int kernel_setsockopt(struct socket *sock, int level, int optname,
3350                        char *optval, unsigned int optlen)
3351{
3352        mm_segment_t oldfs = get_fs();
3353        char __user *uoptval;
3354        int err;
3355
3356        uoptval = (char __user __force *) optval;
3357
3358        set_fs(KERNEL_DS);
3359        if (level == SOL_SOCKET)
3360                err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3361        else
3362                err = sock->ops->setsockopt(sock, level, optname, uoptval,
3363                                            optlen);
3364        set_fs(oldfs);
3365        return err;
3366}
3367EXPORT_SYMBOL(kernel_setsockopt);
3368
3369int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3370                    size_t size, int flags)
3371{
3372        if (sock->ops->sendpage)
3373                return sock->ops->sendpage(sock, page, offset, size, flags);
3374
3375        return sock_no_sendpage(sock, page, offset, size, flags);
3376}
3377EXPORT_SYMBOL(kernel_sendpage);
3378
3379int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3380{
3381        mm_segment_t oldfs = get_fs();
3382        int err;
3383
3384        set_fs(KERNEL_DS);
3385        err = sock->ops->ioctl(sock, cmd, arg);
3386        set_fs(oldfs);
3387
3388        return err;
3389}
3390EXPORT_SYMBOL(kernel_sock_ioctl);
3391
3392int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3393{
3394        return sock->ops->shutdown(sock, how);
3395}
3396EXPORT_SYMBOL(kernel_sock_shutdown);
3397
3398/* This routine returns the IP overhead imposed by a socket i.e.
3399 * the length of the underlying IP header, depending on whether
3400 * this is an IPv4 or IPv6 socket and the length from IP options turned
3401 * on at the socket. Assumes that the caller has a lock on the socket.
3402 */
3403u32 kernel_sock_ip_overhead(struct sock *sk)
3404{
3405        struct inet_sock *inet;
3406        struct ip_options_rcu *opt;
3407        u32 overhead = 0;
3408        bool owned_by_user;
3409#if IS_ENABLED(CONFIG_IPV6)
3410        struct ipv6_pinfo *np;
3411        struct ipv6_txoptions *optv6 = NULL;
3412#endif /* IS_ENABLED(CONFIG_IPV6) */
3413
3414        if (!sk)
3415                return overhead;
3416
3417        owned_by_user = sock_owned_by_user(sk);
3418        switch (sk->sk_family) {
3419        case AF_INET:
3420                inet = inet_sk(sk);
3421                overhead += sizeof(struct iphdr);
3422                opt = rcu_dereference_protected(inet->inet_opt,
3423                                                owned_by_user);
3424                if (opt)
3425                        overhead += opt->opt.optlen;
3426                return overhead;
3427#if IS_ENABLED(CONFIG_IPV6)
3428        case AF_INET6:
3429                np = inet6_sk(sk);
3430                overhead += sizeof(struct ipv6hdr);
3431                if (np)
3432                        optv6 = rcu_dereference_protected(np->opt,
3433                                                          owned_by_user);
3434                if (optv6)
3435                        overhead += (optv6->opt_flen + optv6->opt_nflen);
3436                return overhead;
3437#endif /* IS_ENABLED(CONFIG_IPV6) */
3438        default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3439                return overhead;
3440        }
3441}
3442EXPORT_SYMBOL(kernel_sock_ip_overhead);
3443