linux/net/sunrpc/svc_xprt.c
<<
>>
Prefs
   1/*
   2 * linux/net/sunrpc/svc_xprt.c
   3 *
   4 * Author: Tom Tucker <tom@opengridcomputing.com>
   5 */
   6
   7#include <linux/sched.h>
   8#include <linux/errno.h>
   9#include <linux/freezer.h>
  10#include <linux/kthread.h>
  11#include <linux/slab.h>
  12#include <net/sock.h>
  13#include <linux/sunrpc/addr.h>
  14#include <linux/sunrpc/stats.h>
  15#include <linux/sunrpc/svc_xprt.h>
  16#include <linux/sunrpc/svcsock.h>
  17#include <linux/sunrpc/xprt.h>
  18#include <linux/module.h>
  19#include <linux/netdevice.h>
  20#include <trace/events/sunrpc.h>
  21
  22#define RPCDBG_FACILITY RPCDBG_SVCXPRT
  23
  24static unsigned int svc_rpc_per_connection_limit __read_mostly;
  25module_param(svc_rpc_per_connection_limit, uint, 0644);
  26
  27
  28static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
  29static int svc_deferred_recv(struct svc_rqst *rqstp);
  30static struct cache_deferred_req *svc_defer(struct cache_req *req);
  31static void svc_age_temp_xprts(unsigned long closure);
  32static void svc_delete_xprt(struct svc_xprt *xprt);
  33
  34/* apparently the "standard" is that clients close
  35 * idle connections after 5 minutes, servers after
  36 * 6 minutes
  37 *   http://www.connectathon.org/talks96/nfstcp.pdf
  38 */
  39static int svc_conn_age_period = 6*60;
  40
  41/* List of registered transport classes */
  42static DEFINE_SPINLOCK(svc_xprt_class_lock);
  43static LIST_HEAD(svc_xprt_class_list);
  44
  45/* SMP locking strategy:
  46 *
  47 *      svc_pool->sp_lock protects most of the fields of that pool.
  48 *      svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
  49 *      when both need to be taken (rare), svc_serv->sv_lock is first.
  50 *      The "service mutex" protects svc_serv->sv_nrthread.
  51 *      svc_sock->sk_lock protects the svc_sock->sk_deferred list
  52 *             and the ->sk_info_authunix cache.
  53 *
  54 *      The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
  55 *      enqueued multiply. During normal transport processing this bit
  56 *      is set by svc_xprt_enqueue and cleared by svc_xprt_received.
  57 *      Providers should not manipulate this bit directly.
  58 *
  59 *      Some flags can be set to certain values at any time
  60 *      providing that certain rules are followed:
  61 *
  62 *      XPT_CONN, XPT_DATA:
  63 *              - Can be set or cleared at any time.
  64 *              - After a set, svc_xprt_enqueue must be called to enqueue
  65 *                the transport for processing.
  66 *              - After a clear, the transport must be read/accepted.
  67 *                If this succeeds, it must be set again.
  68 *      XPT_CLOSE:
  69 *              - Can set at any time. It is never cleared.
  70 *      XPT_DEAD:
  71 *              - Can only be set while XPT_BUSY is held which ensures
  72 *                that no other thread will be using the transport or will
  73 *                try to set XPT_DEAD.
  74 */
  75int svc_reg_xprt_class(struct svc_xprt_class *xcl)
  76{
  77        struct svc_xprt_class *cl;
  78        int res = -EEXIST;
  79
  80        dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
  81
  82        INIT_LIST_HEAD(&xcl->xcl_list);
  83        spin_lock(&svc_xprt_class_lock);
  84        /* Make sure there isn't already a class with the same name */
  85        list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
  86                if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
  87                        goto out;
  88        }
  89        list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
  90        res = 0;
  91out:
  92        spin_unlock(&svc_xprt_class_lock);
  93        return res;
  94}
  95EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
  96
  97void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
  98{
  99        dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
 100        spin_lock(&svc_xprt_class_lock);
 101        list_del_init(&xcl->xcl_list);
 102        spin_unlock(&svc_xprt_class_lock);
 103}
 104EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
 105
 106/*
 107 * Format the transport list for printing
 108 */
 109int svc_print_xprts(char *buf, int maxlen)
 110{
 111        struct svc_xprt_class *xcl;
 112        char tmpstr[80];
 113        int len = 0;
 114        buf[0] = '\0';
 115
 116        spin_lock(&svc_xprt_class_lock);
 117        list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 118                int slen;
 119
 120                sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
 121                slen = strlen(tmpstr);
 122                if (len + slen > maxlen)
 123                        break;
 124                len += slen;
 125                strcat(buf, tmpstr);
 126        }
 127        spin_unlock(&svc_xprt_class_lock);
 128
 129        return len;
 130}
 131
 132static void svc_xprt_free(struct kref *kref)
 133{
 134        struct svc_xprt *xprt =
 135                container_of(kref, struct svc_xprt, xpt_ref);
 136        struct module *owner = xprt->xpt_class->xcl_owner;
 137        if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
 138                svcauth_unix_info_release(xprt);
 139        put_net(xprt->xpt_net);
 140        /* See comment on corresponding get in xs_setup_bc_tcp(): */
 141        if (xprt->xpt_bc_xprt)
 142                xprt_put(xprt->xpt_bc_xprt);
 143        if (xprt->xpt_bc_xps)
 144                xprt_switch_put(xprt->xpt_bc_xps);
 145        xprt->xpt_ops->xpo_free(xprt);
 146        module_put(owner);
 147}
 148
 149void svc_xprt_put(struct svc_xprt *xprt)
 150{
 151        kref_put(&xprt->xpt_ref, svc_xprt_free);
 152}
 153EXPORT_SYMBOL_GPL(svc_xprt_put);
 154
 155/*
 156 * Called by transport drivers to initialize the transport independent
 157 * portion of the transport instance.
 158 */
 159void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
 160                   struct svc_xprt *xprt, struct svc_serv *serv)
 161{
 162        memset(xprt, 0, sizeof(*xprt));
 163        xprt->xpt_class = xcl;
 164        xprt->xpt_ops = xcl->xcl_ops;
 165        kref_init(&xprt->xpt_ref);
 166        xprt->xpt_server = serv;
 167        INIT_LIST_HEAD(&xprt->xpt_list);
 168        INIT_LIST_HEAD(&xprt->xpt_ready);
 169        INIT_LIST_HEAD(&xprt->xpt_deferred);
 170        INIT_LIST_HEAD(&xprt->xpt_users);
 171        mutex_init(&xprt->xpt_mutex);
 172        spin_lock_init(&xprt->xpt_lock);
 173        set_bit(XPT_BUSY, &xprt->xpt_flags);
 174        rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
 175        xprt->xpt_net = get_net(net);
 176}
 177EXPORT_SYMBOL_GPL(svc_xprt_init);
 178
 179static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
 180                                         struct svc_serv *serv,
 181                                         struct net *net,
 182                                         const int family,
 183                                         const unsigned short port,
 184                                         int flags)
 185{
 186        struct sockaddr_in sin = {
 187                .sin_family             = AF_INET,
 188                .sin_addr.s_addr        = htonl(INADDR_ANY),
 189                .sin_port               = htons(port),
 190        };
 191#if IS_ENABLED(CONFIG_IPV6)
 192        struct sockaddr_in6 sin6 = {
 193                .sin6_family            = AF_INET6,
 194                .sin6_addr              = IN6ADDR_ANY_INIT,
 195                .sin6_port              = htons(port),
 196        };
 197#endif
 198        struct sockaddr *sap;
 199        size_t len;
 200
 201        switch (family) {
 202        case PF_INET:
 203                sap = (struct sockaddr *)&sin;
 204                len = sizeof(sin);
 205                break;
 206#if IS_ENABLED(CONFIG_IPV6)
 207        case PF_INET6:
 208                sap = (struct sockaddr *)&sin6;
 209                len = sizeof(sin6);
 210                break;
 211#endif
 212        default:
 213                return ERR_PTR(-EAFNOSUPPORT);
 214        }
 215
 216        return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
 217}
 218
 219/*
 220 * svc_xprt_received conditionally queues the transport for processing
 221 * by another thread. The caller must hold the XPT_BUSY bit and must
 222 * not thereafter touch transport data.
 223 *
 224 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
 225 * insufficient) data.
 226 */
 227static void svc_xprt_received(struct svc_xprt *xprt)
 228{
 229        if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
 230                WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
 231                return;
 232        }
 233
 234        /* As soon as we clear busy, the xprt could be closed and
 235         * 'put', so we need a reference to call svc_enqueue_xprt with:
 236         */
 237        svc_xprt_get(xprt);
 238        smp_mb__before_atomic();
 239        clear_bit(XPT_BUSY, &xprt->xpt_flags);
 240        xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
 241        svc_xprt_put(xprt);
 242}
 243
 244void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
 245{
 246        clear_bit(XPT_TEMP, &new->xpt_flags);
 247        spin_lock_bh(&serv->sv_lock);
 248        list_add(&new->xpt_list, &serv->sv_permsocks);
 249        spin_unlock_bh(&serv->sv_lock);
 250        svc_xprt_received(new);
 251}
 252
 253int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
 254                    struct net *net, const int family,
 255                    const unsigned short port, int flags)
 256{
 257        struct svc_xprt_class *xcl;
 258
 259        spin_lock(&svc_xprt_class_lock);
 260        list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 261                struct svc_xprt *newxprt;
 262                unsigned short newport;
 263
 264                if (strcmp(xprt_name, xcl->xcl_name))
 265                        continue;
 266
 267                if (!try_module_get(xcl->xcl_owner))
 268                        goto err;
 269
 270                spin_unlock(&svc_xprt_class_lock);
 271                newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
 272                if (IS_ERR(newxprt)) {
 273                        module_put(xcl->xcl_owner);
 274                        return PTR_ERR(newxprt);
 275                }
 276                svc_add_new_perm_xprt(serv, newxprt);
 277                newport = svc_xprt_local_port(newxprt);
 278                return newport;
 279        }
 280 err:
 281        spin_unlock(&svc_xprt_class_lock);
 282        /* This errno is exposed to user space.  Provide a reasonable
 283         * perror msg for a bad transport. */
 284        return -EPROTONOSUPPORT;
 285}
 286
 287int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
 288                    struct net *net, const int family,
 289                    const unsigned short port, int flags)
 290{
 291        int err;
 292
 293        dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
 294        err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
 295        if (err == -EPROTONOSUPPORT) {
 296                request_module("svc%s", xprt_name);
 297                err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
 298        }
 299        if (err)
 300                dprintk("svc: transport %s not found, err %d\n",
 301                        xprt_name, err);
 302        return err;
 303}
 304EXPORT_SYMBOL_GPL(svc_create_xprt);
 305
 306/*
 307 * Copy the local and remote xprt addresses to the rqstp structure
 308 */
 309void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 310{
 311        memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
 312        rqstp->rq_addrlen = xprt->xpt_remotelen;
 313
 314        /*
 315         * Destination address in request is needed for binding the
 316         * source address in RPC replies/callbacks later.
 317         */
 318        memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
 319        rqstp->rq_daddrlen = xprt->xpt_locallen;
 320}
 321EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
 322
 323/**
 324 * svc_print_addr - Format rq_addr field for printing
 325 * @rqstp: svc_rqst struct containing address to print
 326 * @buf: target buffer for formatted address
 327 * @len: length of target buffer
 328 *
 329 */
 330char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
 331{
 332        return __svc_print_addr(svc_addr(rqstp), buf, len);
 333}
 334EXPORT_SYMBOL_GPL(svc_print_addr);
 335
 336static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
 337{
 338        unsigned int limit = svc_rpc_per_connection_limit;
 339        int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
 340
 341        return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
 342}
 343
 344static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 345{
 346        if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
 347                if (!svc_xprt_slots_in_range(xprt))
 348                        return false;
 349                atomic_inc(&xprt->xpt_nr_rqsts);
 350                set_bit(RQ_DATA, &rqstp->rq_flags);
 351        }
 352        return true;
 353}
 354
 355static void svc_xprt_release_slot(struct svc_rqst *rqstp)
 356{
 357        struct svc_xprt *xprt = rqstp->rq_xprt;
 358        if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
 359                atomic_dec(&xprt->xpt_nr_rqsts);
 360                svc_xprt_enqueue(xprt);
 361        }
 362}
 363
 364static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
 365{
 366        if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
 367                return true;
 368        if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) {
 369                if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
 370                    svc_xprt_slots_in_range(xprt))
 371                        return true;
 372                trace_svc_xprt_no_write_space(xprt);
 373                return false;
 374        }
 375        return false;
 376}
 377
 378void svc_xprt_do_enqueue(struct svc_xprt *xprt)
 379{
 380        struct svc_pool *pool;
 381        struct svc_rqst *rqstp = NULL;
 382        int cpu;
 383        bool queued = false;
 384
 385        if (!svc_xprt_has_something_to_do(xprt))
 386                goto out;
 387
 388        /* Mark transport as busy. It will remain in this state until
 389         * the provider calls svc_xprt_received. We update XPT_BUSY
 390         * atomically because it also guards against trying to enqueue
 391         * the transport twice.
 392         */
 393        if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
 394                /* Don't enqueue transport while already enqueued */
 395                dprintk("svc: transport %p busy, not enqueued\n", xprt);
 396                goto out;
 397        }
 398
 399        cpu = get_cpu();
 400        pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
 401
 402        atomic_long_inc(&pool->sp_stats.packets);
 403
 404redo_search:
 405        /* find a thread for this xprt */
 406        rcu_read_lock();
 407        list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
 408                /* Do a lockless check first */
 409                if (test_bit(RQ_BUSY, &rqstp->rq_flags))
 410                        continue;
 411
 412                /*
 413                 * Once the xprt has been queued, it can only be dequeued by
 414                 * the task that intends to service it. All we can do at that
 415                 * point is to try to wake this thread back up so that it can
 416                 * do so.
 417                 */
 418                if (!queued) {
 419                        spin_lock_bh(&rqstp->rq_lock);
 420                        if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) {
 421                                /* already busy, move on... */
 422                                spin_unlock_bh(&rqstp->rq_lock);
 423                                continue;
 424                        }
 425
 426                        /* this one will do */
 427                        rqstp->rq_xprt = xprt;
 428                        svc_xprt_get(xprt);
 429                        spin_unlock_bh(&rqstp->rq_lock);
 430                }
 431                rcu_read_unlock();
 432
 433                atomic_long_inc(&pool->sp_stats.threads_woken);
 434                wake_up_process(rqstp->rq_task);
 435                put_cpu();
 436                goto out;
 437        }
 438        rcu_read_unlock();
 439
 440        /*
 441         * We didn't find an idle thread to use, so we need to queue the xprt.
 442         * Do so and then search again. If we find one, we can't hook this one
 443         * up to it directly but we can wake the thread up in the hopes that it
 444         * will pick it up once it searches for a xprt to service.
 445         */
 446        if (!queued) {
 447                queued = true;
 448                dprintk("svc: transport %p put into queue\n", xprt);
 449                spin_lock_bh(&pool->sp_lock);
 450                list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
 451                pool->sp_stats.sockets_queued++;
 452                spin_unlock_bh(&pool->sp_lock);
 453                goto redo_search;
 454        }
 455        rqstp = NULL;
 456        put_cpu();
 457out:
 458        trace_svc_xprt_do_enqueue(xprt, rqstp);
 459}
 460EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
 461
 462/*
 463 * Queue up a transport with data pending. If there are idle nfsd
 464 * processes, wake 'em up.
 465 *
 466 */
 467void svc_xprt_enqueue(struct svc_xprt *xprt)
 468{
 469        if (test_bit(XPT_BUSY, &xprt->xpt_flags))
 470                return;
 471        xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
 472}
 473EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
 474
 475/*
 476 * Dequeue the first transport, if there is one.
 477 */
 478static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
 479{
 480        struct svc_xprt *xprt = NULL;
 481
 482        if (list_empty(&pool->sp_sockets))
 483                goto out;
 484
 485        spin_lock_bh(&pool->sp_lock);
 486        if (likely(!list_empty(&pool->sp_sockets))) {
 487                xprt = list_first_entry(&pool->sp_sockets,
 488                                        struct svc_xprt, xpt_ready);
 489                list_del_init(&xprt->xpt_ready);
 490                svc_xprt_get(xprt);
 491
 492                dprintk("svc: transport %p dequeued, inuse=%d\n",
 493                        xprt, kref_read(&xprt->xpt_ref));
 494        }
 495        spin_unlock_bh(&pool->sp_lock);
 496out:
 497        trace_svc_xprt_dequeue(xprt);
 498        return xprt;
 499}
 500
 501/**
 502 * svc_reserve - change the space reserved for the reply to a request.
 503 * @rqstp:  The request in question
 504 * @space: new max space to reserve
 505 *
 506 * Each request reserves some space on the output queue of the transport
 507 * to make sure the reply fits.  This function reduces that reserved
 508 * space to be the amount of space used already, plus @space.
 509 *
 510 */
 511void svc_reserve(struct svc_rqst *rqstp, int space)
 512{
 513        space += rqstp->rq_res.head[0].iov_len;
 514
 515        if (space < rqstp->rq_reserved) {
 516                struct svc_xprt *xprt = rqstp->rq_xprt;
 517                atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
 518                rqstp->rq_reserved = space;
 519
 520                svc_xprt_enqueue(xprt);
 521        }
 522}
 523EXPORT_SYMBOL_GPL(svc_reserve);
 524
 525static void svc_xprt_release(struct svc_rqst *rqstp)
 526{
 527        struct svc_xprt *xprt = rqstp->rq_xprt;
 528
 529        rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
 530
 531        kfree(rqstp->rq_deferred);
 532        rqstp->rq_deferred = NULL;
 533
 534        svc_free_res_pages(rqstp);
 535        rqstp->rq_res.page_len = 0;
 536        rqstp->rq_res.page_base = 0;
 537
 538        /* Reset response buffer and release
 539         * the reservation.
 540         * But first, check that enough space was reserved
 541         * for the reply, otherwise we have a bug!
 542         */
 543        if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
 544                printk(KERN_ERR "RPC request reserved %d but used %d\n",
 545                       rqstp->rq_reserved,
 546                       rqstp->rq_res.len);
 547
 548        rqstp->rq_res.head[0].iov_len = 0;
 549        svc_reserve(rqstp, 0);
 550        svc_xprt_release_slot(rqstp);
 551        rqstp->rq_xprt = NULL;
 552        svc_xprt_put(xprt);
 553}
 554
 555/*
 556 * Some svc_serv's will have occasional work to do, even when a xprt is not
 557 * waiting to be serviced. This function is there to "kick" a task in one of
 558 * those services so that it can wake up and do that work. Note that we only
 559 * bother with pool 0 as we don't need to wake up more than one thread for
 560 * this purpose.
 561 */
 562void svc_wake_up(struct svc_serv *serv)
 563{
 564        struct svc_rqst *rqstp;
 565        struct svc_pool *pool;
 566
 567        pool = &serv->sv_pools[0];
 568
 569        rcu_read_lock();
 570        list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
 571                /* skip any that aren't queued */
 572                if (test_bit(RQ_BUSY, &rqstp->rq_flags))
 573                        continue;
 574                rcu_read_unlock();
 575                dprintk("svc: daemon %p woken up.\n", rqstp);
 576                wake_up_process(rqstp->rq_task);
 577                trace_svc_wake_up(rqstp->rq_task->pid);
 578                return;
 579        }
 580        rcu_read_unlock();
 581
 582        /* No free entries available */
 583        set_bit(SP_TASK_PENDING, &pool->sp_flags);
 584        smp_wmb();
 585        trace_svc_wake_up(0);
 586}
 587EXPORT_SYMBOL_GPL(svc_wake_up);
 588
 589int svc_port_is_privileged(struct sockaddr *sin)
 590{
 591        switch (sin->sa_family) {
 592        case AF_INET:
 593                return ntohs(((struct sockaddr_in *)sin)->sin_port)
 594                        < PROT_SOCK;
 595        case AF_INET6:
 596                return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
 597                        < PROT_SOCK;
 598        default:
 599                return 0;
 600        }
 601}
 602
 603/*
 604 * Make sure that we don't have too many active connections. If we have,
 605 * something must be dropped. It's not clear what will happen if we allow
 606 * "too many" connections, but when dealing with network-facing software,
 607 * we have to code defensively. Here we do that by imposing hard limits.
 608 *
 609 * There's no point in trying to do random drop here for DoS
 610 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
 611 * attacker can easily beat that.
 612 *
 613 * The only somewhat efficient mechanism would be if drop old
 614 * connections from the same IP first. But right now we don't even
 615 * record the client IP in svc_sock.
 616 *
 617 * single-threaded services that expect a lot of clients will probably
 618 * need to set sv_maxconn to override the default value which is based
 619 * on the number of threads
 620 */
 621static void svc_check_conn_limits(struct svc_serv *serv)
 622{
 623        unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
 624                                (serv->sv_nrthreads+3) * 20;
 625
 626        if (serv->sv_tmpcnt > limit) {
 627                struct svc_xprt *xprt = NULL;
 628                spin_lock_bh(&serv->sv_lock);
 629                if (!list_empty(&serv->sv_tempsocks)) {
 630                        /* Try to help the admin */
 631                        net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
 632                                               serv->sv_name, serv->sv_maxconn ?
 633                                               "max number of connections" :
 634                                               "number of threads");
 635                        /*
 636                         * Always select the oldest connection. It's not fair,
 637                         * but so is life
 638                         */
 639                        xprt = list_entry(serv->sv_tempsocks.prev,
 640                                          struct svc_xprt,
 641                                          xpt_list);
 642                        set_bit(XPT_CLOSE, &xprt->xpt_flags);
 643                        svc_xprt_get(xprt);
 644                }
 645                spin_unlock_bh(&serv->sv_lock);
 646
 647                if (xprt) {
 648                        svc_xprt_enqueue(xprt);
 649                        svc_xprt_put(xprt);
 650                }
 651        }
 652}
 653
 654static int svc_alloc_arg(struct svc_rqst *rqstp)
 655{
 656        struct svc_serv *serv = rqstp->rq_server;
 657        struct xdr_buf *arg;
 658        int pages;
 659        int i;
 660
 661        /* now allocate needed pages.  If we get a failure, sleep briefly */
 662        pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
 663        if (pages > RPCSVC_MAXPAGES) {
 664                pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
 665                             pages, RPCSVC_MAXPAGES);
 666                /* use as many pages as possible */
 667                pages = RPCSVC_MAXPAGES;
 668        }
 669        for (i = 0; i < pages ; i++)
 670                while (rqstp->rq_pages[i] == NULL) {
 671                        struct page *p = alloc_page(GFP_KERNEL);
 672                        if (!p) {
 673                                set_current_state(TASK_INTERRUPTIBLE);
 674                                if (signalled() || kthread_should_stop()) {
 675                                        set_current_state(TASK_RUNNING);
 676                                        return -EINTR;
 677                                }
 678                                schedule_timeout(msecs_to_jiffies(500));
 679                        }
 680                        rqstp->rq_pages[i] = p;
 681                }
 682        rqstp->rq_page_end = &rqstp->rq_pages[i];
 683        rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
 684
 685        /* Make arg->head point to first page and arg->pages point to rest */
 686        arg = &rqstp->rq_arg;
 687        arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
 688        arg->head[0].iov_len = PAGE_SIZE;
 689        arg->pages = rqstp->rq_pages + 1;
 690        arg->page_base = 0;
 691        /* save at least one page for response */
 692        arg->page_len = (pages-2)*PAGE_SIZE;
 693        arg->len = (pages-1)*PAGE_SIZE;
 694        arg->tail[0].iov_len = 0;
 695        return 0;
 696}
 697
 698static bool
 699rqst_should_sleep(struct svc_rqst *rqstp)
 700{
 701        struct svc_pool         *pool = rqstp->rq_pool;
 702
 703        /* did someone call svc_wake_up? */
 704        if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
 705                return false;
 706
 707        /* was a socket queued? */
 708        if (!list_empty(&pool->sp_sockets))
 709                return false;
 710
 711        /* are we shutting down? */
 712        if (signalled() || kthread_should_stop())
 713                return false;
 714
 715        /* are we freezing? */
 716        if (freezing(current))
 717                return false;
 718
 719        return true;
 720}
 721
 722static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
 723{
 724        struct svc_xprt *xprt;
 725        struct svc_pool         *pool = rqstp->rq_pool;
 726        long                    time_left = 0;
 727
 728        /* rq_xprt should be clear on entry */
 729        WARN_ON_ONCE(rqstp->rq_xprt);
 730
 731        /* Normally we will wait up to 5 seconds for any required
 732         * cache information to be provided.
 733         */
 734        rqstp->rq_chandle.thread_wait = 5*HZ;
 735
 736        xprt = svc_xprt_dequeue(pool);
 737        if (xprt) {
 738                rqstp->rq_xprt = xprt;
 739
 740                /* As there is a shortage of threads and this request
 741                 * had to be queued, don't allow the thread to wait so
 742                 * long for cache updates.
 743                 */
 744                rqstp->rq_chandle.thread_wait = 1*HZ;
 745                clear_bit(SP_TASK_PENDING, &pool->sp_flags);
 746                return xprt;
 747        }
 748
 749        /*
 750         * We have to be able to interrupt this wait
 751         * to bring down the daemons ...
 752         */
 753        set_current_state(TASK_INTERRUPTIBLE);
 754        clear_bit(RQ_BUSY, &rqstp->rq_flags);
 755        smp_mb();
 756
 757        if (likely(rqst_should_sleep(rqstp)))
 758                time_left = schedule_timeout(timeout);
 759        else
 760                __set_current_state(TASK_RUNNING);
 761
 762        try_to_freeze();
 763
 764        spin_lock_bh(&rqstp->rq_lock);
 765        set_bit(RQ_BUSY, &rqstp->rq_flags);
 766        spin_unlock_bh(&rqstp->rq_lock);
 767
 768        xprt = rqstp->rq_xprt;
 769        if (xprt != NULL)
 770                return xprt;
 771
 772        if (!time_left)
 773                atomic_long_inc(&pool->sp_stats.threads_timedout);
 774
 775        if (signalled() || kthread_should_stop())
 776                return ERR_PTR(-EINTR);
 777        return ERR_PTR(-EAGAIN);
 778}
 779
 780static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
 781{
 782        spin_lock_bh(&serv->sv_lock);
 783        set_bit(XPT_TEMP, &newxpt->xpt_flags);
 784        list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
 785        serv->sv_tmpcnt++;
 786        if (serv->sv_temptimer.function == NULL) {
 787                /* setup timer to age temp transports */
 788                setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
 789                            (unsigned long)serv);
 790                mod_timer(&serv->sv_temptimer,
 791                          jiffies + svc_conn_age_period * HZ);
 792        }
 793        spin_unlock_bh(&serv->sv_lock);
 794        svc_xprt_received(newxpt);
 795}
 796
 797static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 798{
 799        struct svc_serv *serv = rqstp->rq_server;
 800        int len = 0;
 801
 802        if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
 803                dprintk("svc_recv: found XPT_CLOSE\n");
 804                if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
 805                        xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
 806                svc_delete_xprt(xprt);
 807                /* Leave XPT_BUSY set on the dead xprt: */
 808                goto out;
 809        }
 810        if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
 811                struct svc_xprt *newxpt;
 812                /*
 813                 * We know this module_get will succeed because the
 814                 * listener holds a reference too
 815                 */
 816                __module_get(xprt->xpt_class->xcl_owner);
 817                svc_check_conn_limits(xprt->xpt_server);
 818                newxpt = xprt->xpt_ops->xpo_accept(xprt);
 819                if (newxpt)
 820                        svc_add_new_temp_xprt(serv, newxpt);
 821                else
 822                        module_put(xprt->xpt_class->xcl_owner);
 823        } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
 824                /* XPT_DATA|XPT_DEFERRED case: */
 825                dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
 826                        rqstp, rqstp->rq_pool->sp_id, xprt,
 827                        kref_read(&xprt->xpt_ref));
 828                rqstp->rq_deferred = svc_deferred_dequeue(xprt);
 829                if (rqstp->rq_deferred)
 830                        len = svc_deferred_recv(rqstp);
 831                else
 832                        len = xprt->xpt_ops->xpo_recvfrom(rqstp);
 833                dprintk("svc: got len=%d\n", len);
 834                rqstp->rq_reserved = serv->sv_max_mesg;
 835                atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
 836        }
 837        /* clear XPT_BUSY: */
 838        svc_xprt_received(xprt);
 839out:
 840        trace_svc_handle_xprt(xprt, len);
 841        return len;
 842}
 843
 844/*
 845 * Receive the next request on any transport.  This code is carefully
 846 * organised not to touch any cachelines in the shared svc_serv
 847 * structure, only cachelines in the local svc_pool.
 848 */
 849int svc_recv(struct svc_rqst *rqstp, long timeout)
 850{
 851        struct svc_xprt         *xprt = NULL;
 852        struct svc_serv         *serv = rqstp->rq_server;
 853        int                     len, err;
 854
 855        dprintk("svc: server %p waiting for data (to = %ld)\n",
 856                rqstp, timeout);
 857
 858        if (rqstp->rq_xprt)
 859                printk(KERN_ERR
 860                        "svc_recv: service %p, transport not NULL!\n",
 861                         rqstp);
 862
 863        err = svc_alloc_arg(rqstp);
 864        if (err)
 865                goto out;
 866
 867        try_to_freeze();
 868        cond_resched();
 869        err = -EINTR;
 870        if (signalled() || kthread_should_stop())
 871                goto out;
 872
 873        xprt = svc_get_next_xprt(rqstp, timeout);
 874        if (IS_ERR(xprt)) {
 875                err = PTR_ERR(xprt);
 876                goto out;
 877        }
 878
 879        len = svc_handle_xprt(rqstp, xprt);
 880
 881        /* No data, incomplete (TCP) read, or accept() */
 882        err = -EAGAIN;
 883        if (len <= 0)
 884                goto out_release;
 885
 886        clear_bit(XPT_OLD, &xprt->xpt_flags);
 887
 888        if (xprt->xpt_ops->xpo_secure_port(rqstp))
 889                set_bit(RQ_SECURE, &rqstp->rq_flags);
 890        else
 891                clear_bit(RQ_SECURE, &rqstp->rq_flags);
 892        rqstp->rq_chandle.defer = svc_defer;
 893        rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
 894
 895        if (serv->sv_stats)
 896                serv->sv_stats->netcnt++;
 897        trace_svc_recv(rqstp, len);
 898        return len;
 899out_release:
 900        rqstp->rq_res.len = 0;
 901        svc_xprt_release(rqstp);
 902out:
 903        trace_svc_recv(rqstp, err);
 904        return err;
 905}
 906EXPORT_SYMBOL_GPL(svc_recv);
 907
 908/*
 909 * Drop request
 910 */
 911void svc_drop(struct svc_rqst *rqstp)
 912{
 913        trace_svc_drop(rqstp);
 914        dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
 915        svc_xprt_release(rqstp);
 916}
 917EXPORT_SYMBOL_GPL(svc_drop);
 918
 919/*
 920 * Return reply to client.
 921 */
 922int svc_send(struct svc_rqst *rqstp)
 923{
 924        struct svc_xprt *xprt;
 925        int             len = -EFAULT;
 926        struct xdr_buf  *xb;
 927
 928        xprt = rqstp->rq_xprt;
 929        if (!xprt)
 930                goto out;
 931
 932        /* release the receive skb before sending the reply */
 933        rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
 934
 935        /* calculate over-all length */
 936        xb = &rqstp->rq_res;
 937        xb->len = xb->head[0].iov_len +
 938                xb->page_len +
 939                xb->tail[0].iov_len;
 940
 941        /* Grab mutex to serialize outgoing data. */
 942        mutex_lock(&xprt->xpt_mutex);
 943        if (test_bit(XPT_DEAD, &xprt->xpt_flags)
 944                        || test_bit(XPT_CLOSE, &xprt->xpt_flags))
 945                len = -ENOTCONN;
 946        else
 947                len = xprt->xpt_ops->xpo_sendto(rqstp);
 948        mutex_unlock(&xprt->xpt_mutex);
 949        rpc_wake_up(&xprt->xpt_bc_pending);
 950        svc_xprt_release(rqstp);
 951
 952        if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
 953                len = 0;
 954out:
 955        trace_svc_send(rqstp, len);
 956        return len;
 957}
 958
 959/*
 960 * Timer function to close old temporary transports, using
 961 * a mark-and-sweep algorithm.
 962 */
 963static void svc_age_temp_xprts(unsigned long closure)
 964{
 965        struct svc_serv *serv = (struct svc_serv *)closure;
 966        struct svc_xprt *xprt;
 967        struct list_head *le, *next;
 968
 969        dprintk("svc_age_temp_xprts\n");
 970
 971        if (!spin_trylock_bh(&serv->sv_lock)) {
 972                /* busy, try again 1 sec later */
 973                dprintk("svc_age_temp_xprts: busy\n");
 974                mod_timer(&serv->sv_temptimer, jiffies + HZ);
 975                return;
 976        }
 977
 978        list_for_each_safe(le, next, &serv->sv_tempsocks) {
 979                xprt = list_entry(le, struct svc_xprt, xpt_list);
 980
 981                /* First time through, just mark it OLD. Second time
 982                 * through, close it. */
 983                if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
 984                        continue;
 985                if (kref_read(&xprt->xpt_ref) > 1 ||
 986                    test_bit(XPT_BUSY, &xprt->xpt_flags))
 987                        continue;
 988                list_del_init(le);
 989                set_bit(XPT_CLOSE, &xprt->xpt_flags);
 990                dprintk("queuing xprt %p for closing\n", xprt);
 991
 992                /* a thread will dequeue and close it soon */
 993                svc_xprt_enqueue(xprt);
 994        }
 995        spin_unlock_bh(&serv->sv_lock);
 996
 997        mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
 998}
 999
1000/* Close temporary transports whose xpt_local matches server_addr immediately
1001 * instead of waiting for them to be picked up by the timer.
1002 *
1003 * This is meant to be called from a notifier_block that runs when an ip
1004 * address is deleted.
1005 */
1006void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
1007{
1008        struct svc_xprt *xprt;
1009        struct list_head *le, *next;
1010        LIST_HEAD(to_be_closed);
1011
1012        spin_lock_bh(&serv->sv_lock);
1013        list_for_each_safe(le, next, &serv->sv_tempsocks) {
1014                xprt = list_entry(le, struct svc_xprt, xpt_list);
1015                if (rpc_cmp_addr(server_addr, (struct sockaddr *)
1016                                &xprt->xpt_local)) {
1017                        dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
1018                        list_move(le, &to_be_closed);
1019                }
1020        }
1021        spin_unlock_bh(&serv->sv_lock);
1022
1023        while (!list_empty(&to_be_closed)) {
1024                le = to_be_closed.next;
1025                list_del_init(le);
1026                xprt = list_entry(le, struct svc_xprt, xpt_list);
1027                set_bit(XPT_CLOSE, &xprt->xpt_flags);
1028                set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
1029                dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
1030                                xprt);
1031                svc_xprt_enqueue(xprt);
1032        }
1033}
1034EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1035
1036static void call_xpt_users(struct svc_xprt *xprt)
1037{
1038        struct svc_xpt_user *u;
1039
1040        spin_lock(&xprt->xpt_lock);
1041        while (!list_empty(&xprt->xpt_users)) {
1042                u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1043                list_del(&u->list);
1044                u->callback(u);
1045        }
1046        spin_unlock(&xprt->xpt_lock);
1047}
1048
1049/*
1050 * Remove a dead transport
1051 */
1052static void svc_delete_xprt(struct svc_xprt *xprt)
1053{
1054        struct svc_serv *serv = xprt->xpt_server;
1055        struct svc_deferred_req *dr;
1056
1057        /* Only do this once */
1058        if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1059                BUG();
1060
1061        dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1062        xprt->xpt_ops->xpo_detach(xprt);
1063
1064        spin_lock_bh(&serv->sv_lock);
1065        list_del_init(&xprt->xpt_list);
1066        WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1067        if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1068                serv->sv_tmpcnt--;
1069        spin_unlock_bh(&serv->sv_lock);
1070
1071        while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1072                kfree(dr);
1073
1074        call_xpt_users(xprt);
1075        svc_xprt_put(xprt);
1076}
1077
1078void svc_close_xprt(struct svc_xprt *xprt)
1079{
1080        set_bit(XPT_CLOSE, &xprt->xpt_flags);
1081        if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1082                /* someone else will have to effect the close */
1083                return;
1084        /*
1085         * We expect svc_close_xprt() to work even when no threads are
1086         * running (e.g., while configuring the server before starting
1087         * any threads), so if the transport isn't busy, we delete
1088         * it ourself:
1089         */
1090        svc_delete_xprt(xprt);
1091}
1092EXPORT_SYMBOL_GPL(svc_close_xprt);
1093
1094static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1095{
1096        struct svc_xprt *xprt;
1097        int ret = 0;
1098
1099        spin_lock(&serv->sv_lock);
1100        list_for_each_entry(xprt, xprt_list, xpt_list) {
1101                if (xprt->xpt_net != net)
1102                        continue;
1103                ret++;
1104                set_bit(XPT_CLOSE, &xprt->xpt_flags);
1105                svc_xprt_enqueue(xprt);
1106        }
1107        spin_unlock(&serv->sv_lock);
1108        return ret;
1109}
1110
1111static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1112{
1113        struct svc_pool *pool;
1114        struct svc_xprt *xprt;
1115        struct svc_xprt *tmp;
1116        int i;
1117
1118        for (i = 0; i < serv->sv_nrpools; i++) {
1119                pool = &serv->sv_pools[i];
1120
1121                spin_lock_bh(&pool->sp_lock);
1122                list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1123                        if (xprt->xpt_net != net)
1124                                continue;
1125                        list_del_init(&xprt->xpt_ready);
1126                        spin_unlock_bh(&pool->sp_lock);
1127                        return xprt;
1128                }
1129                spin_unlock_bh(&pool->sp_lock);
1130        }
1131        return NULL;
1132}
1133
1134static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1135{
1136        struct svc_xprt *xprt;
1137
1138        while ((xprt = svc_dequeue_net(serv, net))) {
1139                set_bit(XPT_CLOSE, &xprt->xpt_flags);
1140                svc_delete_xprt(xprt);
1141        }
1142}
1143
1144/*
1145 * Server threads may still be running (especially in the case where the
1146 * service is still running in other network namespaces).
1147 *
1148 * So we shut down sockets the same way we would on a running server, by
1149 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1150 * the close.  In the case there are no such other threads,
1151 * threads running, svc_clean_up_xprts() does a simple version of a
1152 * server's main event loop, and in the case where there are other
1153 * threads, we may need to wait a little while and then check again to
1154 * see if they're done.
1155 */
1156void svc_close_net(struct svc_serv *serv, struct net *net)
1157{
1158        int delay = 0;
1159
1160        while (svc_close_list(serv, &serv->sv_permsocks, net) +
1161               svc_close_list(serv, &serv->sv_tempsocks, net)) {
1162
1163                svc_clean_up_xprts(serv, net);
1164                msleep(delay++);
1165        }
1166}
1167
1168/*
1169 * Handle defer and revisit of requests
1170 */
1171
1172static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1173{
1174        struct svc_deferred_req *dr =
1175                container_of(dreq, struct svc_deferred_req, handle);
1176        struct svc_xprt *xprt = dr->xprt;
1177
1178        spin_lock(&xprt->xpt_lock);
1179        set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1180        if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1181                spin_unlock(&xprt->xpt_lock);
1182                dprintk("revisit canceled\n");
1183                svc_xprt_put(xprt);
1184                trace_svc_drop_deferred(dr);
1185                kfree(dr);
1186                return;
1187        }
1188        dprintk("revisit queued\n");
1189        dr->xprt = NULL;
1190        list_add(&dr->handle.recent, &xprt->xpt_deferred);
1191        spin_unlock(&xprt->xpt_lock);
1192        svc_xprt_enqueue(xprt);
1193        svc_xprt_put(xprt);
1194}
1195
1196/*
1197 * Save the request off for later processing. The request buffer looks
1198 * like this:
1199 *
1200 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1201 *
1202 * This code can only handle requests that consist of an xprt-header
1203 * and rpc-header.
1204 */
1205static struct cache_deferred_req *svc_defer(struct cache_req *req)
1206{
1207        struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1208        struct svc_deferred_req *dr;
1209
1210        if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1211                return NULL; /* if more than a page, give up FIXME */
1212        if (rqstp->rq_deferred) {
1213                dr = rqstp->rq_deferred;
1214                rqstp->rq_deferred = NULL;
1215        } else {
1216                size_t skip;
1217                size_t size;
1218                /* FIXME maybe discard if size too large */
1219                size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1220                dr = kmalloc(size, GFP_KERNEL);
1221                if (dr == NULL)
1222                        return NULL;
1223
1224                dr->handle.owner = rqstp->rq_server;
1225                dr->prot = rqstp->rq_prot;
1226                memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1227                dr->addrlen = rqstp->rq_addrlen;
1228                dr->daddr = rqstp->rq_daddr;
1229                dr->argslen = rqstp->rq_arg.len >> 2;
1230                dr->xprt_hlen = rqstp->rq_xprt_hlen;
1231
1232                /* back up head to the start of the buffer and copy */
1233                skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1234                memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1235                       dr->argslen << 2);
1236        }
1237        svc_xprt_get(rqstp->rq_xprt);
1238        dr->xprt = rqstp->rq_xprt;
1239        set_bit(RQ_DROPME, &rqstp->rq_flags);
1240
1241        dr->handle.revisit = svc_revisit;
1242        trace_svc_defer(rqstp);
1243        return &dr->handle;
1244}
1245
1246/*
1247 * recv data from a deferred request into an active one
1248 */
1249static int svc_deferred_recv(struct svc_rqst *rqstp)
1250{
1251        struct svc_deferred_req *dr = rqstp->rq_deferred;
1252
1253        /* setup iov_base past transport header */
1254        rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1255        /* The iov_len does not include the transport header bytes */
1256        rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1257        rqstp->rq_arg.page_len = 0;
1258        /* The rq_arg.len includes the transport header bytes */
1259        rqstp->rq_arg.len     = dr->argslen<<2;
1260        rqstp->rq_prot        = dr->prot;
1261        memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1262        rqstp->rq_addrlen     = dr->addrlen;
1263        /* Save off transport header len in case we get deferred again */
1264        rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1265        rqstp->rq_daddr       = dr->daddr;
1266        rqstp->rq_respages    = rqstp->rq_pages;
1267        return (dr->argslen<<2) - dr->xprt_hlen;
1268}
1269
1270
1271static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1272{
1273        struct svc_deferred_req *dr = NULL;
1274
1275        if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1276                return NULL;
1277        spin_lock(&xprt->xpt_lock);
1278        if (!list_empty(&xprt->xpt_deferred)) {
1279                dr = list_entry(xprt->xpt_deferred.next,
1280                                struct svc_deferred_req,
1281                                handle.recent);
1282                list_del_init(&dr->handle.recent);
1283                trace_svc_revisit_deferred(dr);
1284        } else
1285                clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1286        spin_unlock(&xprt->xpt_lock);
1287        return dr;
1288}
1289
1290/**
1291 * svc_find_xprt - find an RPC transport instance
1292 * @serv: pointer to svc_serv to search
1293 * @xcl_name: C string containing transport's class name
1294 * @net: owner net pointer
1295 * @af: Address family of transport's local address
1296 * @port: transport's IP port number
1297 *
1298 * Return the transport instance pointer for the endpoint accepting
1299 * connections/peer traffic from the specified transport class,
1300 * address family and port.
1301 *
1302 * Specifying 0 for the address family or port is effectively a
1303 * wild-card, and will result in matching the first transport in the
1304 * service's list that has a matching class name.
1305 */
1306struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1307                               struct net *net, const sa_family_t af,
1308                               const unsigned short port)
1309{
1310        struct svc_xprt *xprt;
1311        struct svc_xprt *found = NULL;
1312
1313        /* Sanity check the args */
1314        if (serv == NULL || xcl_name == NULL)
1315                return found;
1316
1317        spin_lock_bh(&serv->sv_lock);
1318        list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1319                if (xprt->xpt_net != net)
1320                        continue;
1321                if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1322                        continue;
1323                if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1324                        continue;
1325                if (port != 0 && port != svc_xprt_local_port(xprt))
1326                        continue;
1327                found = xprt;
1328                svc_xprt_get(xprt);
1329                break;
1330        }
1331        spin_unlock_bh(&serv->sv_lock);
1332        return found;
1333}
1334EXPORT_SYMBOL_GPL(svc_find_xprt);
1335
1336static int svc_one_xprt_name(const struct svc_xprt *xprt,
1337                             char *pos, int remaining)
1338{
1339        int len;
1340
1341        len = snprintf(pos, remaining, "%s %u\n",
1342                        xprt->xpt_class->xcl_name,
1343                        svc_xprt_local_port(xprt));
1344        if (len >= remaining)
1345                return -ENAMETOOLONG;
1346        return len;
1347}
1348
1349/**
1350 * svc_xprt_names - format a buffer with a list of transport names
1351 * @serv: pointer to an RPC service
1352 * @buf: pointer to a buffer to be filled in
1353 * @buflen: length of buffer to be filled in
1354 *
1355 * Fills in @buf with a string containing a list of transport names,
1356 * each name terminated with '\n'.
1357 *
1358 * Returns positive length of the filled-in string on success; otherwise
1359 * a negative errno value is returned if an error occurs.
1360 */
1361int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1362{
1363        struct svc_xprt *xprt;
1364        int len, totlen;
1365        char *pos;
1366
1367        /* Sanity check args */
1368        if (!serv)
1369                return 0;
1370
1371        spin_lock_bh(&serv->sv_lock);
1372
1373        pos = buf;
1374        totlen = 0;
1375        list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1376                len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1377                if (len < 0) {
1378                        *buf = '\0';
1379                        totlen = len;
1380                }
1381                if (len <= 0)
1382                        break;
1383
1384                pos += len;
1385                totlen += len;
1386        }
1387
1388        spin_unlock_bh(&serv->sv_lock);
1389        return totlen;
1390}
1391EXPORT_SYMBOL_GPL(svc_xprt_names);
1392
1393
1394/*----------------------------------------------------------------------------*/
1395
1396static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1397{
1398        unsigned int pidx = (unsigned int)*pos;
1399        struct svc_serv *serv = m->private;
1400
1401        dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1402
1403        if (!pidx)
1404                return SEQ_START_TOKEN;
1405        return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1406}
1407
1408static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1409{
1410        struct svc_pool *pool = p;
1411        struct svc_serv *serv = m->private;
1412
1413        dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1414
1415        if (p == SEQ_START_TOKEN) {
1416                pool = &serv->sv_pools[0];
1417        } else {
1418                unsigned int pidx = (pool - &serv->sv_pools[0]);
1419                if (pidx < serv->sv_nrpools-1)
1420                        pool = &serv->sv_pools[pidx+1];
1421                else
1422                        pool = NULL;
1423        }
1424        ++*pos;
1425        return pool;
1426}
1427
1428static void svc_pool_stats_stop(struct seq_file *m, void *p)
1429{
1430}
1431
1432static int svc_pool_stats_show(struct seq_file *m, void *p)
1433{
1434        struct svc_pool *pool = p;
1435
1436        if (p == SEQ_START_TOKEN) {
1437                seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1438                return 0;
1439        }
1440
1441        seq_printf(m, "%u %lu %lu %lu %lu\n",
1442                pool->sp_id,
1443                (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1444                pool->sp_stats.sockets_queued,
1445                (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1446                (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1447
1448        return 0;
1449}
1450
1451static const struct seq_operations svc_pool_stats_seq_ops = {
1452        .start  = svc_pool_stats_start,
1453        .next   = svc_pool_stats_next,
1454        .stop   = svc_pool_stats_stop,
1455        .show   = svc_pool_stats_show,
1456};
1457
1458int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1459{
1460        int err;
1461
1462        err = seq_open(file, &svc_pool_stats_seq_ops);
1463        if (!err)
1464                ((struct seq_file *) file->private_data)->private = serv;
1465        return err;
1466}
1467EXPORT_SYMBOL(svc_pool_stats_open);
1468
1469/*----------------------------------------------------------------------------*/
1470