linux/security/keys/key.c
<<
>>
Prefs
   1/* Basic authentication token and access key management
   2 *
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/poison.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/security.h>
  18#include <linux/workqueue.h>
  19#include <linux/random.h>
  20#include <linux/err.h>
  21#include "internal.h"
  22
  23struct kmem_cache *key_jar;
  24struct rb_root          key_serial_tree; /* tree of keys indexed by serial */
  25DEFINE_SPINLOCK(key_serial_lock);
  26
  27struct rb_root  key_user_tree; /* tree of quota records indexed by UID */
  28DEFINE_SPINLOCK(key_user_lock);
  29
  30unsigned int key_quota_root_maxkeys = 1000000;  /* root's key count quota */
  31unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  32unsigned int key_quota_maxkeys = 200;           /* general key count quota */
  33unsigned int key_quota_maxbytes = 20000;        /* general key space quota */
  34
  35static LIST_HEAD(key_types_list);
  36static DECLARE_RWSEM(key_types_sem);
  37
  38/* We serialise key instantiation and link */
  39DEFINE_MUTEX(key_construction_mutex);
  40
  41#ifdef KEY_DEBUGGING
  42void __key_check(const struct key *key)
  43{
  44        printk("__key_check: key %p {%08x} should be {%08x}\n",
  45               key, key->magic, KEY_DEBUG_MAGIC);
  46        BUG();
  47}
  48#endif
  49
  50/*
  51 * Get the key quota record for a user, allocating a new record if one doesn't
  52 * already exist.
  53 */
  54struct key_user *key_user_lookup(kuid_t uid)
  55{
  56        struct key_user *candidate = NULL, *user;
  57        struct rb_node *parent = NULL;
  58        struct rb_node **p;
  59
  60try_again:
  61        p = &key_user_tree.rb_node;
  62        spin_lock(&key_user_lock);
  63
  64        /* search the tree for a user record with a matching UID */
  65        while (*p) {
  66                parent = *p;
  67                user = rb_entry(parent, struct key_user, node);
  68
  69                if (uid_lt(uid, user->uid))
  70                        p = &(*p)->rb_left;
  71                else if (uid_gt(uid, user->uid))
  72                        p = &(*p)->rb_right;
  73                else
  74                        goto found;
  75        }
  76
  77        /* if we get here, we failed to find a match in the tree */
  78        if (!candidate) {
  79                /* allocate a candidate user record if we don't already have
  80                 * one */
  81                spin_unlock(&key_user_lock);
  82
  83                user = NULL;
  84                candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  85                if (unlikely(!candidate))
  86                        goto out;
  87
  88                /* the allocation may have scheduled, so we need to repeat the
  89                 * search lest someone else added the record whilst we were
  90                 * asleep */
  91                goto try_again;
  92        }
  93
  94        /* if we get here, then the user record still hadn't appeared on the
  95         * second pass - so we use the candidate record */
  96        refcount_set(&candidate->usage, 1);
  97        atomic_set(&candidate->nkeys, 0);
  98        atomic_set(&candidate->nikeys, 0);
  99        candidate->uid = uid;
 100        candidate->qnkeys = 0;
 101        candidate->qnbytes = 0;
 102        spin_lock_init(&candidate->lock);
 103        mutex_init(&candidate->cons_lock);
 104
 105        rb_link_node(&candidate->node, parent, p);
 106        rb_insert_color(&candidate->node, &key_user_tree);
 107        spin_unlock(&key_user_lock);
 108        user = candidate;
 109        goto out;
 110
 111        /* okay - we found a user record for this UID */
 112found:
 113        refcount_inc(&user->usage);
 114        spin_unlock(&key_user_lock);
 115        kfree(candidate);
 116out:
 117        return user;
 118}
 119
 120/*
 121 * Dispose of a user structure
 122 */
 123void key_user_put(struct key_user *user)
 124{
 125        if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
 126                rb_erase(&user->node, &key_user_tree);
 127                spin_unlock(&key_user_lock);
 128
 129                kfree(user);
 130        }
 131}
 132
 133/*
 134 * Allocate a serial number for a key.  These are assigned randomly to avoid
 135 * security issues through covert channel problems.
 136 */
 137static inline void key_alloc_serial(struct key *key)
 138{
 139        struct rb_node *parent, **p;
 140        struct key *xkey;
 141
 142        /* propose a random serial number and look for a hole for it in the
 143         * serial number tree */
 144        do {
 145                get_random_bytes(&key->serial, sizeof(key->serial));
 146
 147                key->serial >>= 1; /* negative numbers are not permitted */
 148        } while (key->serial < 3);
 149
 150        spin_lock(&key_serial_lock);
 151
 152attempt_insertion:
 153        parent = NULL;
 154        p = &key_serial_tree.rb_node;
 155
 156        while (*p) {
 157                parent = *p;
 158                xkey = rb_entry(parent, struct key, serial_node);
 159
 160                if (key->serial < xkey->serial)
 161                        p = &(*p)->rb_left;
 162                else if (key->serial > xkey->serial)
 163                        p = &(*p)->rb_right;
 164                else
 165                        goto serial_exists;
 166        }
 167
 168        /* we've found a suitable hole - arrange for this key to occupy it */
 169        rb_link_node(&key->serial_node, parent, p);
 170        rb_insert_color(&key->serial_node, &key_serial_tree);
 171
 172        spin_unlock(&key_serial_lock);
 173        return;
 174
 175        /* we found a key with the proposed serial number - walk the tree from
 176         * that point looking for the next unused serial number */
 177serial_exists:
 178        for (;;) {
 179                key->serial++;
 180                if (key->serial < 3) {
 181                        key->serial = 3;
 182                        goto attempt_insertion;
 183                }
 184
 185                parent = rb_next(parent);
 186                if (!parent)
 187                        goto attempt_insertion;
 188
 189                xkey = rb_entry(parent, struct key, serial_node);
 190                if (key->serial < xkey->serial)
 191                        goto attempt_insertion;
 192        }
 193}
 194
 195/**
 196 * key_alloc - Allocate a key of the specified type.
 197 * @type: The type of key to allocate.
 198 * @desc: The key description to allow the key to be searched out.
 199 * @uid: The owner of the new key.
 200 * @gid: The group ID for the new key's group permissions.
 201 * @cred: The credentials specifying UID namespace.
 202 * @perm: The permissions mask of the new key.
 203 * @flags: Flags specifying quota properties.
 204 * @restrict_link: Optional link restriction for new keyrings.
 205 *
 206 * Allocate a key of the specified type with the attributes given.  The key is
 207 * returned in an uninstantiated state and the caller needs to instantiate the
 208 * key before returning.
 209 *
 210 * The restrict_link structure (if not NULL) will be freed when the
 211 * keyring is destroyed, so it must be dynamically allocated.
 212 *
 213 * The user's key count quota is updated to reflect the creation of the key and
 214 * the user's key data quota has the default for the key type reserved.  The
 215 * instantiation function should amend this as necessary.  If insufficient
 216 * quota is available, -EDQUOT will be returned.
 217 *
 218 * The LSM security modules can prevent a key being created, in which case
 219 * -EACCES will be returned.
 220 *
 221 * Returns a pointer to the new key if successful and an error code otherwise.
 222 *
 223 * Note that the caller needs to ensure the key type isn't uninstantiated.
 224 * Internally this can be done by locking key_types_sem.  Externally, this can
 225 * be done by either never unregistering the key type, or making sure
 226 * key_alloc() calls don't race with module unloading.
 227 */
 228struct key *key_alloc(struct key_type *type, const char *desc,
 229                      kuid_t uid, kgid_t gid, const struct cred *cred,
 230                      key_perm_t perm, unsigned long flags,
 231                      struct key_restriction *restrict_link)
 232{
 233        struct key_user *user = NULL;
 234        struct key *key;
 235        size_t desclen, quotalen;
 236        int ret;
 237
 238        key = ERR_PTR(-EINVAL);
 239        if (!desc || !*desc)
 240                goto error;
 241
 242        if (type->vet_description) {
 243                ret = type->vet_description(desc);
 244                if (ret < 0) {
 245                        key = ERR_PTR(ret);
 246                        goto error;
 247                }
 248        }
 249
 250        desclen = strlen(desc);
 251        quotalen = desclen + 1 + type->def_datalen;
 252
 253        /* get hold of the key tracking for this user */
 254        user = key_user_lookup(uid);
 255        if (!user)
 256                goto no_memory_1;
 257
 258        /* check that the user's quota permits allocation of another key and
 259         * its description */
 260        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 261                unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 262                        key_quota_root_maxkeys : key_quota_maxkeys;
 263                unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 264                        key_quota_root_maxbytes : key_quota_maxbytes;
 265
 266                spin_lock(&user->lock);
 267                if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 268                        if (user->qnkeys + 1 >= maxkeys ||
 269                            user->qnbytes + quotalen >= maxbytes ||
 270                            user->qnbytes + quotalen < user->qnbytes)
 271                                goto no_quota;
 272                }
 273
 274                user->qnkeys++;
 275                user->qnbytes += quotalen;
 276                spin_unlock(&user->lock);
 277        }
 278
 279        /* allocate and initialise the key and its description */
 280        key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 281        if (!key)
 282                goto no_memory_2;
 283
 284        key->index_key.desc_len = desclen;
 285        key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 286        if (!key->index_key.description)
 287                goto no_memory_3;
 288
 289        refcount_set(&key->usage, 1);
 290        init_rwsem(&key->sem);
 291        lockdep_set_class(&key->sem, &type->lock_class);
 292        key->index_key.type = type;
 293        key->user = user;
 294        key->quotalen = quotalen;
 295        key->datalen = type->def_datalen;
 296        key->uid = uid;
 297        key->gid = gid;
 298        key->perm = perm;
 299        key->restrict_link = restrict_link;
 300
 301        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 302                key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 303        if (flags & KEY_ALLOC_BUILT_IN)
 304                key->flags |= 1 << KEY_FLAG_BUILTIN;
 305
 306#ifdef KEY_DEBUGGING
 307        key->magic = KEY_DEBUG_MAGIC;
 308#endif
 309
 310        /* let the security module know about the key */
 311        ret = security_key_alloc(key, cred, flags);
 312        if (ret < 0)
 313                goto security_error;
 314
 315        /* publish the key by giving it a serial number */
 316        atomic_inc(&user->nkeys);
 317        key_alloc_serial(key);
 318
 319error:
 320        return key;
 321
 322security_error:
 323        kfree(key->description);
 324        kmem_cache_free(key_jar, key);
 325        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 326                spin_lock(&user->lock);
 327                user->qnkeys--;
 328                user->qnbytes -= quotalen;
 329                spin_unlock(&user->lock);
 330        }
 331        key_user_put(user);
 332        key = ERR_PTR(ret);
 333        goto error;
 334
 335no_memory_3:
 336        kmem_cache_free(key_jar, key);
 337no_memory_2:
 338        if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 339                spin_lock(&user->lock);
 340                user->qnkeys--;
 341                user->qnbytes -= quotalen;
 342                spin_unlock(&user->lock);
 343        }
 344        key_user_put(user);
 345no_memory_1:
 346        key = ERR_PTR(-ENOMEM);
 347        goto error;
 348
 349no_quota:
 350        spin_unlock(&user->lock);
 351        key_user_put(user);
 352        key = ERR_PTR(-EDQUOT);
 353        goto error;
 354}
 355EXPORT_SYMBOL(key_alloc);
 356
 357/**
 358 * key_payload_reserve - Adjust data quota reservation for the key's payload
 359 * @key: The key to make the reservation for.
 360 * @datalen: The amount of data payload the caller now wants.
 361 *
 362 * Adjust the amount of the owning user's key data quota that a key reserves.
 363 * If the amount is increased, then -EDQUOT may be returned if there isn't
 364 * enough free quota available.
 365 *
 366 * If successful, 0 is returned.
 367 */
 368int key_payload_reserve(struct key *key, size_t datalen)
 369{
 370        int delta = (int)datalen - key->datalen;
 371        int ret = 0;
 372
 373        key_check(key);
 374
 375        /* contemplate the quota adjustment */
 376        if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 377                unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 378                        key_quota_root_maxbytes : key_quota_maxbytes;
 379
 380                spin_lock(&key->user->lock);
 381
 382                if (delta > 0 &&
 383                    (key->user->qnbytes + delta >= maxbytes ||
 384                     key->user->qnbytes + delta < key->user->qnbytes)) {
 385                        ret = -EDQUOT;
 386                }
 387                else {
 388                        key->user->qnbytes += delta;
 389                        key->quotalen += delta;
 390                }
 391                spin_unlock(&key->user->lock);
 392        }
 393
 394        /* change the recorded data length if that didn't generate an error */
 395        if (ret == 0)
 396                key->datalen = datalen;
 397
 398        return ret;
 399}
 400EXPORT_SYMBOL(key_payload_reserve);
 401
 402/*
 403 * Instantiate a key and link it into the target keyring atomically.  Must be
 404 * called with the target keyring's semaphore writelocked.  The target key's
 405 * semaphore need not be locked as instantiation is serialised by
 406 * key_construction_mutex.
 407 */
 408static int __key_instantiate_and_link(struct key *key,
 409                                      struct key_preparsed_payload *prep,
 410                                      struct key *keyring,
 411                                      struct key *authkey,
 412                                      struct assoc_array_edit **_edit)
 413{
 414        int ret, awaken;
 415
 416        key_check(key);
 417        key_check(keyring);
 418
 419        awaken = 0;
 420        ret = -EBUSY;
 421
 422        mutex_lock(&key_construction_mutex);
 423
 424        /* can't instantiate twice */
 425        if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 426                /* instantiate the key */
 427                ret = key->type->instantiate(key, prep);
 428
 429                if (ret == 0) {
 430                        /* mark the key as being instantiated */
 431                        atomic_inc(&key->user->nikeys);
 432                        set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 433
 434                        if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 435                                awaken = 1;
 436
 437                        /* and link it into the destination keyring */
 438                        if (keyring) {
 439                                if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 440                                        set_bit(KEY_FLAG_KEEP, &key->flags);
 441
 442                                __key_link(key, _edit);
 443                        }
 444
 445                        /* disable the authorisation key */
 446                        if (authkey)
 447                                key_revoke(authkey);
 448
 449                        if (prep->expiry != TIME_T_MAX) {
 450                                key->expiry = prep->expiry;
 451                                key_schedule_gc(prep->expiry + key_gc_delay);
 452                        }
 453                }
 454        }
 455
 456        mutex_unlock(&key_construction_mutex);
 457
 458        /* wake up anyone waiting for a key to be constructed */
 459        if (awaken)
 460                wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 461
 462        return ret;
 463}
 464
 465/**
 466 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 467 * @key: The key to instantiate.
 468 * @data: The data to use to instantiate the keyring.
 469 * @datalen: The length of @data.
 470 * @keyring: Keyring to create a link in on success (or NULL).
 471 * @authkey: The authorisation token permitting instantiation.
 472 *
 473 * Instantiate a key that's in the uninstantiated state using the provided data
 474 * and, if successful, link it in to the destination keyring if one is
 475 * supplied.
 476 *
 477 * If successful, 0 is returned, the authorisation token is revoked and anyone
 478 * waiting for the key is woken up.  If the key was already instantiated,
 479 * -EBUSY will be returned.
 480 */
 481int key_instantiate_and_link(struct key *key,
 482                             const void *data,
 483                             size_t datalen,
 484                             struct key *keyring,
 485                             struct key *authkey)
 486{
 487        struct key_preparsed_payload prep;
 488        struct assoc_array_edit *edit;
 489        int ret;
 490
 491        memset(&prep, 0, sizeof(prep));
 492        prep.data = data;
 493        prep.datalen = datalen;
 494        prep.quotalen = key->type->def_datalen;
 495        prep.expiry = TIME_T_MAX;
 496        if (key->type->preparse) {
 497                ret = key->type->preparse(&prep);
 498                if (ret < 0)
 499                        goto error;
 500        }
 501
 502        if (keyring) {
 503                ret = __key_link_begin(keyring, &key->index_key, &edit);
 504                if (ret < 0)
 505                        goto error;
 506
 507                if (keyring->restrict_link && keyring->restrict_link->check) {
 508                        struct key_restriction *keyres = keyring->restrict_link;
 509
 510                        ret = keyres->check(keyring, key->type, &prep.payload,
 511                                            keyres->key);
 512                        if (ret < 0)
 513                                goto error_link_end;
 514                }
 515        }
 516
 517        ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 518
 519error_link_end:
 520        if (keyring)
 521                __key_link_end(keyring, &key->index_key, edit);
 522
 523error:
 524        if (key->type->preparse)
 525                key->type->free_preparse(&prep);
 526        return ret;
 527}
 528
 529EXPORT_SYMBOL(key_instantiate_and_link);
 530
 531/**
 532 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 533 * @key: The key to instantiate.
 534 * @timeout: The timeout on the negative key.
 535 * @error: The error to return when the key is hit.
 536 * @keyring: Keyring to create a link in on success (or NULL).
 537 * @authkey: The authorisation token permitting instantiation.
 538 *
 539 * Negatively instantiate a key that's in the uninstantiated state and, if
 540 * successful, set its timeout and stored error and link it in to the
 541 * destination keyring if one is supplied.  The key and any links to the key
 542 * will be automatically garbage collected after the timeout expires.
 543 *
 544 * Negative keys are used to rate limit repeated request_key() calls by causing
 545 * them to return the stored error code (typically ENOKEY) until the negative
 546 * key expires.
 547 *
 548 * If successful, 0 is returned, the authorisation token is revoked and anyone
 549 * waiting for the key is woken up.  If the key was already instantiated,
 550 * -EBUSY will be returned.
 551 */
 552int key_reject_and_link(struct key *key,
 553                        unsigned timeout,
 554                        unsigned error,
 555                        struct key *keyring,
 556                        struct key *authkey)
 557{
 558        struct assoc_array_edit *edit;
 559        struct timespec now;
 560        int ret, awaken, link_ret = 0;
 561
 562        key_check(key);
 563        key_check(keyring);
 564
 565        awaken = 0;
 566        ret = -EBUSY;
 567
 568        if (keyring) {
 569                if (keyring->restrict_link)
 570                        return -EPERM;
 571
 572                link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 573        }
 574
 575        mutex_lock(&key_construction_mutex);
 576
 577        /* can't instantiate twice */
 578        if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 579                /* mark the key as being negatively instantiated */
 580                atomic_inc(&key->user->nikeys);
 581                key->reject_error = -error;
 582                smp_wmb();
 583                set_bit(KEY_FLAG_NEGATIVE, &key->flags);
 584                set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 585                now = current_kernel_time();
 586                key->expiry = now.tv_sec + timeout;
 587                key_schedule_gc(key->expiry + key_gc_delay);
 588
 589                if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 590                        awaken = 1;
 591
 592                ret = 0;
 593
 594                /* and link it into the destination keyring */
 595                if (keyring && link_ret == 0)
 596                        __key_link(key, &edit);
 597
 598                /* disable the authorisation key */
 599                if (authkey)
 600                        key_revoke(authkey);
 601        }
 602
 603        mutex_unlock(&key_construction_mutex);
 604
 605        if (keyring && link_ret == 0)
 606                __key_link_end(keyring, &key->index_key, edit);
 607
 608        /* wake up anyone waiting for a key to be constructed */
 609        if (awaken)
 610                wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 611
 612        return ret == 0 ? link_ret : ret;
 613}
 614EXPORT_SYMBOL(key_reject_and_link);
 615
 616/**
 617 * key_put - Discard a reference to a key.
 618 * @key: The key to discard a reference from.
 619 *
 620 * Discard a reference to a key, and when all the references are gone, we
 621 * schedule the cleanup task to come and pull it out of the tree in process
 622 * context at some later time.
 623 */
 624void key_put(struct key *key)
 625{
 626        if (key) {
 627                key_check(key);
 628
 629                if (refcount_dec_and_test(&key->usage))
 630                        schedule_work(&key_gc_work);
 631        }
 632}
 633EXPORT_SYMBOL(key_put);
 634
 635/*
 636 * Find a key by its serial number.
 637 */
 638struct key *key_lookup(key_serial_t id)
 639{
 640        struct rb_node *n;
 641        struct key *key;
 642
 643        spin_lock(&key_serial_lock);
 644
 645        /* search the tree for the specified key */
 646        n = key_serial_tree.rb_node;
 647        while (n) {
 648                key = rb_entry(n, struct key, serial_node);
 649
 650                if (id < key->serial)
 651                        n = n->rb_left;
 652                else if (id > key->serial)
 653                        n = n->rb_right;
 654                else
 655                        goto found;
 656        }
 657
 658not_found:
 659        key = ERR_PTR(-ENOKEY);
 660        goto error;
 661
 662found:
 663        /* A key is allowed to be looked up only if someone still owns a
 664         * reference to it - otherwise it's awaiting the gc.
 665         */
 666        if (!refcount_inc_not_zero(&key->usage))
 667                goto not_found;
 668
 669error:
 670        spin_unlock(&key_serial_lock);
 671        return key;
 672}
 673
 674/*
 675 * Find and lock the specified key type against removal.
 676 *
 677 * We return with the sem read-locked if successful.  If the type wasn't
 678 * available -ENOKEY is returned instead.
 679 */
 680struct key_type *key_type_lookup(const char *type)
 681{
 682        struct key_type *ktype;
 683
 684        down_read(&key_types_sem);
 685
 686        /* look up the key type to see if it's one of the registered kernel
 687         * types */
 688        list_for_each_entry(ktype, &key_types_list, link) {
 689                if (strcmp(ktype->name, type) == 0)
 690                        goto found_kernel_type;
 691        }
 692
 693        up_read(&key_types_sem);
 694        ktype = ERR_PTR(-ENOKEY);
 695
 696found_kernel_type:
 697        return ktype;
 698}
 699
 700void key_set_timeout(struct key *key, unsigned timeout)
 701{
 702        struct timespec now;
 703        time_t expiry = 0;
 704
 705        /* make the changes with the locks held to prevent races */
 706        down_write(&key->sem);
 707
 708        if (timeout > 0) {
 709                now = current_kernel_time();
 710                expiry = now.tv_sec + timeout;
 711        }
 712
 713        key->expiry = expiry;
 714        key_schedule_gc(key->expiry + key_gc_delay);
 715
 716        up_write(&key->sem);
 717}
 718EXPORT_SYMBOL_GPL(key_set_timeout);
 719
 720/*
 721 * Unlock a key type locked by key_type_lookup().
 722 */
 723void key_type_put(struct key_type *ktype)
 724{
 725        up_read(&key_types_sem);
 726}
 727
 728/*
 729 * Attempt to update an existing key.
 730 *
 731 * The key is given to us with an incremented refcount that we need to discard
 732 * if we get an error.
 733 */
 734static inline key_ref_t __key_update(key_ref_t key_ref,
 735                                     struct key_preparsed_payload *prep)
 736{
 737        struct key *key = key_ref_to_ptr(key_ref);
 738        int ret;
 739
 740        /* need write permission on the key to update it */
 741        ret = key_permission(key_ref, KEY_NEED_WRITE);
 742        if (ret < 0)
 743                goto error;
 744
 745        ret = -EEXIST;
 746        if (!key->type->update)
 747                goto error;
 748
 749        down_write(&key->sem);
 750
 751        ret = key->type->update(key, prep);
 752        if (ret == 0)
 753                /* updating a negative key instantiates it */
 754                clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 755
 756        up_write(&key->sem);
 757
 758        if (ret < 0)
 759                goto error;
 760out:
 761        return key_ref;
 762
 763error:
 764        key_put(key);
 765        key_ref = ERR_PTR(ret);
 766        goto out;
 767}
 768
 769/**
 770 * key_create_or_update - Update or create and instantiate a key.
 771 * @keyring_ref: A pointer to the destination keyring with possession flag.
 772 * @type: The type of key.
 773 * @description: The searchable description for the key.
 774 * @payload: The data to use to instantiate or update the key.
 775 * @plen: The length of @payload.
 776 * @perm: The permissions mask for a new key.
 777 * @flags: The quota flags for a new key.
 778 *
 779 * Search the destination keyring for a key of the same description and if one
 780 * is found, update it, otherwise create and instantiate a new one and create a
 781 * link to it from that keyring.
 782 *
 783 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 784 * concocted.
 785 *
 786 * Returns a pointer to the new key if successful, -ENODEV if the key type
 787 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 788 * caller isn't permitted to modify the keyring or the LSM did not permit
 789 * creation of the key.
 790 *
 791 * On success, the possession flag from the keyring ref will be tacked on to
 792 * the key ref before it is returned.
 793 */
 794key_ref_t key_create_or_update(key_ref_t keyring_ref,
 795                               const char *type,
 796                               const char *description,
 797                               const void *payload,
 798                               size_t plen,
 799                               key_perm_t perm,
 800                               unsigned long flags)
 801{
 802        struct keyring_index_key index_key = {
 803                .description    = description,
 804        };
 805        struct key_preparsed_payload prep;
 806        struct assoc_array_edit *edit;
 807        const struct cred *cred = current_cred();
 808        struct key *keyring, *key = NULL;
 809        key_ref_t key_ref;
 810        int ret;
 811        struct key_restriction *restrict_link = NULL;
 812
 813        /* look up the key type to see if it's one of the registered kernel
 814         * types */
 815        index_key.type = key_type_lookup(type);
 816        if (IS_ERR(index_key.type)) {
 817                key_ref = ERR_PTR(-ENODEV);
 818                goto error;
 819        }
 820
 821        key_ref = ERR_PTR(-EINVAL);
 822        if (!index_key.type->instantiate ||
 823            (!index_key.description && !index_key.type->preparse))
 824                goto error_put_type;
 825
 826        keyring = key_ref_to_ptr(keyring_ref);
 827
 828        key_check(keyring);
 829
 830        key_ref = ERR_PTR(-EPERM);
 831        if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
 832                restrict_link = keyring->restrict_link;
 833
 834        key_ref = ERR_PTR(-ENOTDIR);
 835        if (keyring->type != &key_type_keyring)
 836                goto error_put_type;
 837
 838        memset(&prep, 0, sizeof(prep));
 839        prep.data = payload;
 840        prep.datalen = plen;
 841        prep.quotalen = index_key.type->def_datalen;
 842        prep.expiry = TIME_T_MAX;
 843        if (index_key.type->preparse) {
 844                ret = index_key.type->preparse(&prep);
 845                if (ret < 0) {
 846                        key_ref = ERR_PTR(ret);
 847                        goto error_free_prep;
 848                }
 849                if (!index_key.description)
 850                        index_key.description = prep.description;
 851                key_ref = ERR_PTR(-EINVAL);
 852                if (!index_key.description)
 853                        goto error_free_prep;
 854        }
 855        index_key.desc_len = strlen(index_key.description);
 856
 857        ret = __key_link_begin(keyring, &index_key, &edit);
 858        if (ret < 0) {
 859                key_ref = ERR_PTR(ret);
 860                goto error_free_prep;
 861        }
 862
 863        if (restrict_link && restrict_link->check) {
 864                ret = restrict_link->check(keyring, index_key.type,
 865                                           &prep.payload, restrict_link->key);
 866                if (ret < 0) {
 867                        key_ref = ERR_PTR(ret);
 868                        goto error_link_end;
 869                }
 870        }
 871
 872        /* if we're going to allocate a new key, we're going to have
 873         * to modify the keyring */
 874        ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 875        if (ret < 0) {
 876                key_ref = ERR_PTR(ret);
 877                goto error_link_end;
 878        }
 879
 880        /* if it's possible to update this type of key, search for an existing
 881         * key of the same type and description in the destination keyring and
 882         * update that instead if possible
 883         */
 884        if (index_key.type->update) {
 885                key_ref = find_key_to_update(keyring_ref, &index_key);
 886                if (key_ref)
 887                        goto found_matching_key;
 888        }
 889
 890        /* if the client doesn't provide, decide on the permissions we want */
 891        if (perm == KEY_PERM_UNDEF) {
 892                perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 893                perm |= KEY_USR_VIEW;
 894
 895                if (index_key.type->read)
 896                        perm |= KEY_POS_READ;
 897
 898                if (index_key.type == &key_type_keyring ||
 899                    index_key.type->update)
 900                        perm |= KEY_POS_WRITE;
 901        }
 902
 903        /* allocate a new key */
 904        key = key_alloc(index_key.type, index_key.description,
 905                        cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
 906        if (IS_ERR(key)) {
 907                key_ref = ERR_CAST(key);
 908                goto error_link_end;
 909        }
 910
 911        /* instantiate it and link it into the target keyring */
 912        ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 913        if (ret < 0) {
 914                key_put(key);
 915                key_ref = ERR_PTR(ret);
 916                goto error_link_end;
 917        }
 918
 919        key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 920
 921error_link_end:
 922        __key_link_end(keyring, &index_key, edit);
 923error_free_prep:
 924        if (index_key.type->preparse)
 925                index_key.type->free_preparse(&prep);
 926error_put_type:
 927        key_type_put(index_key.type);
 928error:
 929        return key_ref;
 930
 931 found_matching_key:
 932        /* we found a matching key, so we're going to try to update it
 933         * - we can drop the locks first as we have the key pinned
 934         */
 935        __key_link_end(keyring, &index_key, edit);
 936
 937        key_ref = __key_update(key_ref, &prep);
 938        goto error_free_prep;
 939}
 940EXPORT_SYMBOL(key_create_or_update);
 941
 942/**
 943 * key_update - Update a key's contents.
 944 * @key_ref: The pointer (plus possession flag) to the key.
 945 * @payload: The data to be used to update the key.
 946 * @plen: The length of @payload.
 947 *
 948 * Attempt to update the contents of a key with the given payload data.  The
 949 * caller must be granted Write permission on the key.  Negative keys can be
 950 * instantiated by this method.
 951 *
 952 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 953 * type does not support updating.  The key type may return other errors.
 954 */
 955int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 956{
 957        struct key_preparsed_payload prep;
 958        struct key *key = key_ref_to_ptr(key_ref);
 959        int ret;
 960
 961        key_check(key);
 962
 963        /* the key must be writable */
 964        ret = key_permission(key_ref, KEY_NEED_WRITE);
 965        if (ret < 0)
 966                return ret;
 967
 968        /* attempt to update it if supported */
 969        if (!key->type->update)
 970                return -EOPNOTSUPP;
 971
 972        memset(&prep, 0, sizeof(prep));
 973        prep.data = payload;
 974        prep.datalen = plen;
 975        prep.quotalen = key->type->def_datalen;
 976        prep.expiry = TIME_T_MAX;
 977        if (key->type->preparse) {
 978                ret = key->type->preparse(&prep);
 979                if (ret < 0)
 980                        goto error;
 981        }
 982
 983        down_write(&key->sem);
 984
 985        ret = key->type->update(key, &prep);
 986        if (ret == 0)
 987                /* updating a negative key instantiates it */
 988                clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 989
 990        up_write(&key->sem);
 991
 992error:
 993        if (key->type->preparse)
 994                key->type->free_preparse(&prep);
 995        return ret;
 996}
 997EXPORT_SYMBOL(key_update);
 998
 999/**
1000 * key_revoke - Revoke a key.
1001 * @key: The key to be revoked.
1002 *
1003 * Mark a key as being revoked and ask the type to free up its resources.  The
1004 * revocation timeout is set and the key and all its links will be
1005 * automatically garbage collected after key_gc_delay amount of time if they
1006 * are not manually dealt with first.
1007 */
1008void key_revoke(struct key *key)
1009{
1010        struct timespec now;
1011        time_t time;
1012
1013        key_check(key);
1014
1015        /* make sure no one's trying to change or use the key when we mark it
1016         * - we tell lockdep that we might nest because we might be revoking an
1017         *   authorisation key whilst holding the sem on a key we've just
1018         *   instantiated
1019         */
1020        down_write_nested(&key->sem, 1);
1021        if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1022            key->type->revoke)
1023                key->type->revoke(key);
1024
1025        /* set the death time to no more than the expiry time */
1026        now = current_kernel_time();
1027        time = now.tv_sec;
1028        if (key->revoked_at == 0 || key->revoked_at > time) {
1029                key->revoked_at = time;
1030                key_schedule_gc(key->revoked_at + key_gc_delay);
1031        }
1032
1033        up_write(&key->sem);
1034}
1035EXPORT_SYMBOL(key_revoke);
1036
1037/**
1038 * key_invalidate - Invalidate a key.
1039 * @key: The key to be invalidated.
1040 *
1041 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1042 * is ignored by all searches and other operations from this point.
1043 */
1044void key_invalidate(struct key *key)
1045{
1046        kenter("%d", key_serial(key));
1047
1048        key_check(key);
1049
1050        if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1051                down_write_nested(&key->sem, 1);
1052                if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1053                        key_schedule_gc_links();
1054                up_write(&key->sem);
1055        }
1056}
1057EXPORT_SYMBOL(key_invalidate);
1058
1059/**
1060 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1061 * @key: The key to be instantiated
1062 * @prep: The preparsed data to load.
1063 *
1064 * Instantiate a key from preparsed data.  We assume we can just copy the data
1065 * in directly and clear the old pointers.
1066 *
1067 * This can be pointed to directly by the key type instantiate op pointer.
1068 */
1069int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1070{
1071        int ret;
1072
1073        pr_devel("==>%s()\n", __func__);
1074
1075        ret = key_payload_reserve(key, prep->quotalen);
1076        if (ret == 0) {
1077                rcu_assign_keypointer(key, prep->payload.data[0]);
1078                key->payload.data[1] = prep->payload.data[1];
1079                key->payload.data[2] = prep->payload.data[2];
1080                key->payload.data[3] = prep->payload.data[3];
1081                prep->payload.data[0] = NULL;
1082                prep->payload.data[1] = NULL;
1083                prep->payload.data[2] = NULL;
1084                prep->payload.data[3] = NULL;
1085        }
1086        pr_devel("<==%s() = %d\n", __func__, ret);
1087        return ret;
1088}
1089EXPORT_SYMBOL(generic_key_instantiate);
1090
1091/**
1092 * register_key_type - Register a type of key.
1093 * @ktype: The new key type.
1094 *
1095 * Register a new key type.
1096 *
1097 * Returns 0 on success or -EEXIST if a type of this name already exists.
1098 */
1099int register_key_type(struct key_type *ktype)
1100{
1101        struct key_type *p;
1102        int ret;
1103
1104        memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1105
1106        ret = -EEXIST;
1107        down_write(&key_types_sem);
1108
1109        /* disallow key types with the same name */
1110        list_for_each_entry(p, &key_types_list, link) {
1111                if (strcmp(p->name, ktype->name) == 0)
1112                        goto out;
1113        }
1114
1115        /* store the type */
1116        list_add(&ktype->link, &key_types_list);
1117
1118        pr_notice("Key type %s registered\n", ktype->name);
1119        ret = 0;
1120
1121out:
1122        up_write(&key_types_sem);
1123        return ret;
1124}
1125EXPORT_SYMBOL(register_key_type);
1126
1127/**
1128 * unregister_key_type - Unregister a type of key.
1129 * @ktype: The key type.
1130 *
1131 * Unregister a key type and mark all the extant keys of this type as dead.
1132 * Those keys of this type are then destroyed to get rid of their payloads and
1133 * they and their links will be garbage collected as soon as possible.
1134 */
1135void unregister_key_type(struct key_type *ktype)
1136{
1137        down_write(&key_types_sem);
1138        list_del_init(&ktype->link);
1139        downgrade_write(&key_types_sem);
1140        key_gc_keytype(ktype);
1141        pr_notice("Key type %s unregistered\n", ktype->name);
1142        up_read(&key_types_sem);
1143}
1144EXPORT_SYMBOL(unregister_key_type);
1145
1146/*
1147 * Initialise the key management state.
1148 */
1149void __init key_init(void)
1150{
1151        /* allocate a slab in which we can store keys */
1152        key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1153                        0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1154
1155        /* add the special key types */
1156        list_add_tail(&key_type_keyring.link, &key_types_list);
1157        list_add_tail(&key_type_dead.link, &key_types_list);
1158        list_add_tail(&key_type_user.link, &key_types_list);
1159        list_add_tail(&key_type_logon.link, &key_types_list);
1160
1161        /* record the root user tracking */
1162        rb_link_node(&root_key_user.node,
1163                     NULL,
1164                     &key_user_tree.rb_node);
1165
1166        rb_insert_color(&root_key_user.node,
1167                        &key_user_tree);
1168}
1169