linux/virt/kvm/arm/vgic/vgic-its.c
<<
>>
Prefs
   1/*
   2 * GICv3 ITS emulation
   3 *
   4 * Copyright (C) 2015,2016 ARM Ltd.
   5 * Author: Andre Przywara <andre.przywara@arm.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include <linux/cpu.h>
  21#include <linux/kvm.h>
  22#include <linux/kvm_host.h>
  23#include <linux/interrupt.h>
  24#include <linux/list.h>
  25#include <linux/uaccess.h>
  26#include <linux/list_sort.h>
  27
  28#include <linux/irqchip/arm-gic-v3.h>
  29
  30#include <asm/kvm_emulate.h>
  31#include <asm/kvm_arm.h>
  32#include <asm/kvm_mmu.h>
  33
  34#include "vgic.h"
  35#include "vgic-mmio.h"
  36
  37static int vgic_its_save_tables_v0(struct vgic_its *its);
  38static int vgic_its_restore_tables_v0(struct vgic_its *its);
  39static int vgic_its_commit_v0(struct vgic_its *its);
  40static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
  41                             struct kvm_vcpu *filter_vcpu);
  42
  43/*
  44 * Creates a new (reference to a) struct vgic_irq for a given LPI.
  45 * If this LPI is already mapped on another ITS, we increase its refcount
  46 * and return a pointer to the existing structure.
  47 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
  48 * This function returns a pointer to the _unlocked_ structure.
  49 */
  50static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
  51                                     struct kvm_vcpu *vcpu)
  52{
  53        struct vgic_dist *dist = &kvm->arch.vgic;
  54        struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
  55        int ret;
  56
  57        /* In this case there is no put, since we keep the reference. */
  58        if (irq)
  59                return irq;
  60
  61        irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
  62        if (!irq)
  63                return ERR_PTR(-ENOMEM);
  64
  65        INIT_LIST_HEAD(&irq->lpi_list);
  66        INIT_LIST_HEAD(&irq->ap_list);
  67        spin_lock_init(&irq->irq_lock);
  68
  69        irq->config = VGIC_CONFIG_EDGE;
  70        kref_init(&irq->refcount);
  71        irq->intid = intid;
  72        irq->target_vcpu = vcpu;
  73
  74        spin_lock(&dist->lpi_list_lock);
  75
  76        /*
  77         * There could be a race with another vgic_add_lpi(), so we need to
  78         * check that we don't add a second list entry with the same LPI.
  79         */
  80        list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
  81                if (oldirq->intid != intid)
  82                        continue;
  83
  84                /* Someone was faster with adding this LPI, lets use that. */
  85                kfree(irq);
  86                irq = oldirq;
  87
  88                /*
  89                 * This increases the refcount, the caller is expected to
  90                 * call vgic_put_irq() on the returned pointer once it's
  91                 * finished with the IRQ.
  92                 */
  93                vgic_get_irq_kref(irq);
  94
  95                goto out_unlock;
  96        }
  97
  98        list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
  99        dist->lpi_list_count++;
 100
 101out_unlock:
 102        spin_unlock(&dist->lpi_list_lock);
 103
 104        /*
 105         * We "cache" the configuration table entries in our struct vgic_irq's.
 106         * However we only have those structs for mapped IRQs, so we read in
 107         * the respective config data from memory here upon mapping the LPI.
 108         */
 109        ret = update_lpi_config(kvm, irq, NULL);
 110        if (ret)
 111                return ERR_PTR(ret);
 112
 113        ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
 114        if (ret)
 115                return ERR_PTR(ret);
 116
 117        return irq;
 118}
 119
 120struct its_device {
 121        struct list_head dev_list;
 122
 123        /* the head for the list of ITTEs */
 124        struct list_head itt_head;
 125        u32 num_eventid_bits;
 126        gpa_t itt_addr;
 127        u32 device_id;
 128};
 129
 130#define COLLECTION_NOT_MAPPED ((u32)~0)
 131
 132struct its_collection {
 133        struct list_head coll_list;
 134
 135        u32 collection_id;
 136        u32 target_addr;
 137};
 138
 139#define its_is_collection_mapped(coll) ((coll) && \
 140                                ((coll)->target_addr != COLLECTION_NOT_MAPPED))
 141
 142struct its_ite {
 143        struct list_head ite_list;
 144
 145        struct vgic_irq *irq;
 146        struct its_collection *collection;
 147        u32 lpi;
 148        u32 event_id;
 149};
 150
 151/**
 152 * struct vgic_its_abi - ITS abi ops and settings
 153 * @cte_esz: collection table entry size
 154 * @dte_esz: device table entry size
 155 * @ite_esz: interrupt translation table entry size
 156 * @save tables: save the ITS tables into guest RAM
 157 * @restore_tables: restore the ITS internal structs from tables
 158 *  stored in guest RAM
 159 * @commit: initialize the registers which expose the ABI settings,
 160 *  especially the entry sizes
 161 */
 162struct vgic_its_abi {
 163        int cte_esz;
 164        int dte_esz;
 165        int ite_esz;
 166        int (*save_tables)(struct vgic_its *its);
 167        int (*restore_tables)(struct vgic_its *its);
 168        int (*commit)(struct vgic_its *its);
 169};
 170
 171static const struct vgic_its_abi its_table_abi_versions[] = {
 172        [0] = {.cte_esz = 8, .dte_esz = 8, .ite_esz = 8,
 173         .save_tables = vgic_its_save_tables_v0,
 174         .restore_tables = vgic_its_restore_tables_v0,
 175         .commit = vgic_its_commit_v0,
 176        },
 177};
 178
 179#define NR_ITS_ABIS     ARRAY_SIZE(its_table_abi_versions)
 180
 181inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
 182{
 183        return &its_table_abi_versions[its->abi_rev];
 184}
 185
 186int vgic_its_set_abi(struct vgic_its *its, int rev)
 187{
 188        const struct vgic_its_abi *abi;
 189
 190        its->abi_rev = rev;
 191        abi = vgic_its_get_abi(its);
 192        return abi->commit(its);
 193}
 194
 195/*
 196 * Find and returns a device in the device table for an ITS.
 197 * Must be called with the its_lock mutex held.
 198 */
 199static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
 200{
 201        struct its_device *device;
 202
 203        list_for_each_entry(device, &its->device_list, dev_list)
 204                if (device_id == device->device_id)
 205                        return device;
 206
 207        return NULL;
 208}
 209
 210/*
 211 * Find and returns an interrupt translation table entry (ITTE) for a given
 212 * Device ID/Event ID pair on an ITS.
 213 * Must be called with the its_lock mutex held.
 214 */
 215static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
 216                                  u32 event_id)
 217{
 218        struct its_device *device;
 219        struct its_ite *ite;
 220
 221        device = find_its_device(its, device_id);
 222        if (device == NULL)
 223                return NULL;
 224
 225        list_for_each_entry(ite, &device->itt_head, ite_list)
 226                if (ite->event_id == event_id)
 227                        return ite;
 228
 229        return NULL;
 230}
 231
 232/* To be used as an iterator this macro misses the enclosing parentheses */
 233#define for_each_lpi_its(dev, ite, its) \
 234        list_for_each_entry(dev, &(its)->device_list, dev_list) \
 235                list_for_each_entry(ite, &(dev)->itt_head, ite_list)
 236
 237/*
 238 * We only implement 48 bits of PA at the moment, although the ITS
 239 * supports more. Let's be restrictive here.
 240 */
 241#define BASER_ADDRESS(x)        ((x) & GENMASK_ULL(47, 16))
 242#define CBASER_ADDRESS(x)       ((x) & GENMASK_ULL(47, 12))
 243
 244#define GIC_LPI_OFFSET 8192
 245
 246#define VITS_TYPER_IDBITS 16
 247#define VITS_TYPER_DEVBITS 16
 248#define VITS_DTE_MAX_DEVID_OFFSET       (BIT(14) - 1)
 249#define VITS_ITE_MAX_EVENTID_OFFSET     (BIT(16) - 1)
 250
 251/*
 252 * Finds and returns a collection in the ITS collection table.
 253 * Must be called with the its_lock mutex held.
 254 */
 255static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
 256{
 257        struct its_collection *collection;
 258
 259        list_for_each_entry(collection, &its->collection_list, coll_list) {
 260                if (coll_id == collection->collection_id)
 261                        return collection;
 262        }
 263
 264        return NULL;
 265}
 266
 267#define LPI_PROP_ENABLE_BIT(p)  ((p) & LPI_PROP_ENABLED)
 268#define LPI_PROP_PRIORITY(p)    ((p) & 0xfc)
 269
 270/*
 271 * Reads the configuration data for a given LPI from guest memory and
 272 * updates the fields in struct vgic_irq.
 273 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
 274 * VCPU. Unconditionally applies if filter_vcpu is NULL.
 275 */
 276static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
 277                             struct kvm_vcpu *filter_vcpu)
 278{
 279        u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
 280        u8 prop;
 281        int ret;
 282
 283        ret = kvm_read_guest(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
 284                             &prop, 1);
 285
 286        if (ret)
 287                return ret;
 288
 289        spin_lock(&irq->irq_lock);
 290
 291        if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
 292                irq->priority = LPI_PROP_PRIORITY(prop);
 293                irq->enabled = LPI_PROP_ENABLE_BIT(prop);
 294
 295                vgic_queue_irq_unlock(kvm, irq);
 296        } else {
 297                spin_unlock(&irq->irq_lock);
 298        }
 299
 300        return 0;
 301}
 302
 303/*
 304 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
 305 * enumerate those LPIs without holding any lock.
 306 * Returns their number and puts the kmalloc'ed array into intid_ptr.
 307 */
 308static int vgic_copy_lpi_list(struct kvm_vcpu *vcpu, u32 **intid_ptr)
 309{
 310        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 311        struct vgic_irq *irq;
 312        u32 *intids;
 313        int irq_count = dist->lpi_list_count, i = 0;
 314
 315        /*
 316         * We use the current value of the list length, which may change
 317         * after the kmalloc. We don't care, because the guest shouldn't
 318         * change anything while the command handling is still running,
 319         * and in the worst case we would miss a new IRQ, which one wouldn't
 320         * expect to be covered by this command anyway.
 321         */
 322        intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
 323        if (!intids)
 324                return -ENOMEM;
 325
 326        spin_lock(&dist->lpi_list_lock);
 327        list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
 328                /* We don't need to "get" the IRQ, as we hold the list lock. */
 329                if (irq->target_vcpu != vcpu)
 330                        continue;
 331                intids[i++] = irq->intid;
 332        }
 333        spin_unlock(&dist->lpi_list_lock);
 334
 335        *intid_ptr = intids;
 336        return i;
 337}
 338
 339/*
 340 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
 341 * is targeting) to the VGIC's view, which deals with target VCPUs.
 342 * Needs to be called whenever either the collection for a LPIs has
 343 * changed or the collection itself got retargeted.
 344 */
 345static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
 346{
 347        struct kvm_vcpu *vcpu;
 348
 349        if (!its_is_collection_mapped(ite->collection))
 350                return;
 351
 352        vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
 353
 354        spin_lock(&ite->irq->irq_lock);
 355        ite->irq->target_vcpu = vcpu;
 356        spin_unlock(&ite->irq->irq_lock);
 357}
 358
 359/*
 360 * Updates the target VCPU for every LPI targeting this collection.
 361 * Must be called with the its_lock mutex held.
 362 */
 363static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
 364                                       struct its_collection *coll)
 365{
 366        struct its_device *device;
 367        struct its_ite *ite;
 368
 369        for_each_lpi_its(device, ite, its) {
 370                if (!ite->collection || coll != ite->collection)
 371                        continue;
 372
 373                update_affinity_ite(kvm, ite);
 374        }
 375}
 376
 377static u32 max_lpis_propbaser(u64 propbaser)
 378{
 379        int nr_idbits = (propbaser & 0x1f) + 1;
 380
 381        return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
 382}
 383
 384/*
 385 * Sync the pending table pending bit of LPIs targeting @vcpu
 386 * with our own data structures. This relies on the LPI being
 387 * mapped before.
 388 */
 389static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
 390{
 391        gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
 392        struct vgic_irq *irq;
 393        int last_byte_offset = -1;
 394        int ret = 0;
 395        u32 *intids;
 396        int nr_irqs, i;
 397
 398        nr_irqs = vgic_copy_lpi_list(vcpu, &intids);
 399        if (nr_irqs < 0)
 400                return nr_irqs;
 401
 402        for (i = 0; i < nr_irqs; i++) {
 403                int byte_offset, bit_nr;
 404                u8 pendmask;
 405
 406                byte_offset = intids[i] / BITS_PER_BYTE;
 407                bit_nr = intids[i] % BITS_PER_BYTE;
 408
 409                /*
 410                 * For contiguously allocated LPIs chances are we just read
 411                 * this very same byte in the last iteration. Reuse that.
 412                 */
 413                if (byte_offset != last_byte_offset) {
 414                        ret = kvm_read_guest(vcpu->kvm, pendbase + byte_offset,
 415                                             &pendmask, 1);
 416                        if (ret) {
 417                                kfree(intids);
 418                                return ret;
 419                        }
 420                        last_byte_offset = byte_offset;
 421                }
 422
 423                irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
 424                spin_lock(&irq->irq_lock);
 425                irq->pending_latch = pendmask & (1U << bit_nr);
 426                vgic_queue_irq_unlock(vcpu->kvm, irq);
 427                vgic_put_irq(vcpu->kvm, irq);
 428        }
 429
 430        kfree(intids);
 431
 432        return ret;
 433}
 434
 435static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
 436                                              struct vgic_its *its,
 437                                              gpa_t addr, unsigned int len)
 438{
 439        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
 440        u64 reg = GITS_TYPER_PLPIS;
 441
 442        /*
 443         * We use linear CPU numbers for redistributor addressing,
 444         * so GITS_TYPER.PTA is 0.
 445         * Also we force all PROPBASER registers to be the same, so
 446         * CommonLPIAff is 0 as well.
 447         * To avoid memory waste in the guest, we keep the number of IDBits and
 448         * DevBits low - as least for the time being.
 449         */
 450        reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
 451        reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
 452        reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
 453
 454        return extract_bytes(reg, addr & 7, len);
 455}
 456
 457static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
 458                                             struct vgic_its *its,
 459                                             gpa_t addr, unsigned int len)
 460{
 461        u32 val;
 462
 463        val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
 464        val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
 465        return val;
 466}
 467
 468static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
 469                                            struct vgic_its *its,
 470                                            gpa_t addr, unsigned int len,
 471                                            unsigned long val)
 472{
 473        u32 rev = GITS_IIDR_REV(val);
 474
 475        if (rev >= NR_ITS_ABIS)
 476                return -EINVAL;
 477        return vgic_its_set_abi(its, rev);
 478}
 479
 480static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
 481                                               struct vgic_its *its,
 482                                               gpa_t addr, unsigned int len)
 483{
 484        switch (addr & 0xffff) {
 485        case GITS_PIDR0:
 486                return 0x92;    /* part number, bits[7:0] */
 487        case GITS_PIDR1:
 488                return 0xb4;    /* part number, bits[11:8] */
 489        case GITS_PIDR2:
 490                return GIC_PIDR2_ARCH_GICv3 | 0x0b;
 491        case GITS_PIDR4:
 492                return 0x40;    /* This is a 64K software visible page */
 493        /* The following are the ID registers for (any) GIC. */
 494        case GITS_CIDR0:
 495                return 0x0d;
 496        case GITS_CIDR1:
 497                return 0xf0;
 498        case GITS_CIDR2:
 499                return 0x05;
 500        case GITS_CIDR3:
 501                return 0xb1;
 502        }
 503
 504        return 0;
 505}
 506
 507/*
 508 * Find the target VCPU and the LPI number for a given devid/eventid pair
 509 * and make this IRQ pending, possibly injecting it.
 510 * Must be called with the its_lock mutex held.
 511 * Returns 0 on success, a positive error value for any ITS mapping
 512 * related errors and negative error values for generic errors.
 513 */
 514static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
 515                                u32 devid, u32 eventid)
 516{
 517        struct kvm_vcpu *vcpu;
 518        struct its_ite *ite;
 519
 520        if (!its->enabled)
 521                return -EBUSY;
 522
 523        ite = find_ite(its, devid, eventid);
 524        if (!ite || !its_is_collection_mapped(ite->collection))
 525                return E_ITS_INT_UNMAPPED_INTERRUPT;
 526
 527        vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
 528        if (!vcpu)
 529                return E_ITS_INT_UNMAPPED_INTERRUPT;
 530
 531        if (!vcpu->arch.vgic_cpu.lpis_enabled)
 532                return -EBUSY;
 533
 534        spin_lock(&ite->irq->irq_lock);
 535        ite->irq->pending_latch = true;
 536        vgic_queue_irq_unlock(kvm, ite->irq);
 537
 538        return 0;
 539}
 540
 541static struct vgic_io_device *vgic_get_its_iodev(struct kvm_io_device *dev)
 542{
 543        struct vgic_io_device *iodev;
 544
 545        if (dev->ops != &kvm_io_gic_ops)
 546                return NULL;
 547
 548        iodev = container_of(dev, struct vgic_io_device, dev);
 549
 550        if (iodev->iodev_type != IODEV_ITS)
 551                return NULL;
 552
 553        return iodev;
 554}
 555
 556/*
 557 * Queries the KVM IO bus framework to get the ITS pointer from the given
 558 * doorbell address.
 559 * We then call vgic_its_trigger_msi() with the decoded data.
 560 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
 561 */
 562int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
 563{
 564        u64 address;
 565        struct kvm_io_device *kvm_io_dev;
 566        struct vgic_io_device *iodev;
 567        int ret;
 568
 569        if (!vgic_has_its(kvm))
 570                return -ENODEV;
 571
 572        if (!(msi->flags & KVM_MSI_VALID_DEVID))
 573                return -EINVAL;
 574
 575        address = (u64)msi->address_hi << 32 | msi->address_lo;
 576
 577        kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
 578        if (!kvm_io_dev)
 579                return -EINVAL;
 580
 581        iodev = vgic_get_its_iodev(kvm_io_dev);
 582        if (!iodev)
 583                return -EINVAL;
 584
 585        mutex_lock(&iodev->its->its_lock);
 586        ret = vgic_its_trigger_msi(kvm, iodev->its, msi->devid, msi->data);
 587        mutex_unlock(&iodev->its->its_lock);
 588
 589        if (ret < 0)
 590                return ret;
 591
 592        /*
 593         * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
 594         * if the guest has blocked the MSI. So we map any LPI mapping
 595         * related error to that.
 596         */
 597        if (ret)
 598                return 0;
 599        else
 600                return 1;
 601}
 602
 603/* Requires the its_lock to be held. */
 604static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
 605{
 606        list_del(&ite->ite_list);
 607
 608        /* This put matches the get in vgic_add_lpi. */
 609        if (ite->irq)
 610                vgic_put_irq(kvm, ite->irq);
 611
 612        kfree(ite);
 613}
 614
 615static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
 616{
 617        return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
 618}
 619
 620#define its_cmd_get_command(cmd)        its_cmd_mask_field(cmd, 0,  0,  8)
 621#define its_cmd_get_deviceid(cmd)       its_cmd_mask_field(cmd, 0, 32, 32)
 622#define its_cmd_get_size(cmd)           (its_cmd_mask_field(cmd, 1,  0,  5) + 1)
 623#define its_cmd_get_id(cmd)             its_cmd_mask_field(cmd, 1,  0, 32)
 624#define its_cmd_get_physical_id(cmd)    its_cmd_mask_field(cmd, 1, 32, 32)
 625#define its_cmd_get_collection(cmd)     its_cmd_mask_field(cmd, 2,  0, 16)
 626#define its_cmd_get_ittaddr(cmd)        (its_cmd_mask_field(cmd, 2,  8, 44) << 8)
 627#define its_cmd_get_target_addr(cmd)    its_cmd_mask_field(cmd, 2, 16, 32)
 628#define its_cmd_get_validbit(cmd)       its_cmd_mask_field(cmd, 2, 63,  1)
 629
 630/*
 631 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
 632 * Must be called with the its_lock mutex held.
 633 */
 634static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
 635                                       u64 *its_cmd)
 636{
 637        u32 device_id = its_cmd_get_deviceid(its_cmd);
 638        u32 event_id = its_cmd_get_id(its_cmd);
 639        struct its_ite *ite;
 640
 641
 642        ite = find_ite(its, device_id, event_id);
 643        if (ite && ite->collection) {
 644                /*
 645                 * Though the spec talks about removing the pending state, we
 646                 * don't bother here since we clear the ITTE anyway and the
 647                 * pending state is a property of the ITTE struct.
 648                 */
 649                its_free_ite(kvm, ite);
 650                return 0;
 651        }
 652
 653        return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
 654}
 655
 656/*
 657 * The MOVI command moves an ITTE to a different collection.
 658 * Must be called with the its_lock mutex held.
 659 */
 660static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
 661                                    u64 *its_cmd)
 662{
 663        u32 device_id = its_cmd_get_deviceid(its_cmd);
 664        u32 event_id = its_cmd_get_id(its_cmd);
 665        u32 coll_id = its_cmd_get_collection(its_cmd);
 666        struct kvm_vcpu *vcpu;
 667        struct its_ite *ite;
 668        struct its_collection *collection;
 669
 670        ite = find_ite(its, device_id, event_id);
 671        if (!ite)
 672                return E_ITS_MOVI_UNMAPPED_INTERRUPT;
 673
 674        if (!its_is_collection_mapped(ite->collection))
 675                return E_ITS_MOVI_UNMAPPED_COLLECTION;
 676
 677        collection = find_collection(its, coll_id);
 678        if (!its_is_collection_mapped(collection))
 679                return E_ITS_MOVI_UNMAPPED_COLLECTION;
 680
 681        ite->collection = collection;
 682        vcpu = kvm_get_vcpu(kvm, collection->target_addr);
 683
 684        spin_lock(&ite->irq->irq_lock);
 685        ite->irq->target_vcpu = vcpu;
 686        spin_unlock(&ite->irq->irq_lock);
 687
 688        return 0;
 689}
 690
 691/*
 692 * Check whether an ID can be stored into the corresponding guest table.
 693 * For a direct table this is pretty easy, but gets a bit nasty for
 694 * indirect tables. We check whether the resulting guest physical address
 695 * is actually valid (covered by a memslot and guest accessible).
 696 * For this we have to read the respective first level entry.
 697 */
 698static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
 699                              gpa_t *eaddr)
 700{
 701        int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
 702        u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
 703        int esz = GITS_BASER_ENTRY_SIZE(baser);
 704        int index;
 705        gfn_t gfn;
 706
 707        switch (type) {
 708        case GITS_BASER_TYPE_DEVICE:
 709                if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
 710                        return false;
 711                break;
 712        case GITS_BASER_TYPE_COLLECTION:
 713                /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
 714                if (id >= BIT_ULL(16))
 715                        return false;
 716                break;
 717        default:
 718                return false;
 719        }
 720
 721        if (!(baser & GITS_BASER_INDIRECT)) {
 722                phys_addr_t addr;
 723
 724                if (id >= (l1_tbl_size / esz))
 725                        return false;
 726
 727                addr = BASER_ADDRESS(baser) + id * esz;
 728                gfn = addr >> PAGE_SHIFT;
 729
 730                if (eaddr)
 731                        *eaddr = addr;
 732                return kvm_is_visible_gfn(its->dev->kvm, gfn);
 733        }
 734
 735        /* calculate and check the index into the 1st level */
 736        index = id / (SZ_64K / esz);
 737        if (index >= (l1_tbl_size / sizeof(u64)))
 738                return false;
 739
 740        /* Each 1st level entry is represented by a 64-bit value. */
 741        if (kvm_read_guest(its->dev->kvm,
 742                           BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
 743                           &indirect_ptr, sizeof(indirect_ptr)))
 744                return false;
 745
 746        indirect_ptr = le64_to_cpu(indirect_ptr);
 747
 748        /* check the valid bit of the first level entry */
 749        if (!(indirect_ptr & BIT_ULL(63)))
 750                return false;
 751
 752        /*
 753         * Mask the guest physical address and calculate the frame number.
 754         * Any address beyond our supported 48 bits of PA will be caught
 755         * by the actual check in the final step.
 756         */
 757        indirect_ptr &= GENMASK_ULL(51, 16);
 758
 759        /* Find the address of the actual entry */
 760        index = id % (SZ_64K / esz);
 761        indirect_ptr += index * esz;
 762        gfn = indirect_ptr >> PAGE_SHIFT;
 763
 764        if (eaddr)
 765                *eaddr = indirect_ptr;
 766        return kvm_is_visible_gfn(its->dev->kvm, gfn);
 767}
 768
 769static int vgic_its_alloc_collection(struct vgic_its *its,
 770                                     struct its_collection **colp,
 771                                     u32 coll_id)
 772{
 773        struct its_collection *collection;
 774
 775        if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
 776                return E_ITS_MAPC_COLLECTION_OOR;
 777
 778        collection = kzalloc(sizeof(*collection), GFP_KERNEL);
 779
 780        collection->collection_id = coll_id;
 781        collection->target_addr = COLLECTION_NOT_MAPPED;
 782
 783        list_add_tail(&collection->coll_list, &its->collection_list);
 784        *colp = collection;
 785
 786        return 0;
 787}
 788
 789static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
 790{
 791        struct its_collection *collection;
 792        struct its_device *device;
 793        struct its_ite *ite;
 794
 795        /*
 796         * Clearing the mapping for that collection ID removes the
 797         * entry from the list. If there wasn't any before, we can
 798         * go home early.
 799         */
 800        collection = find_collection(its, coll_id);
 801        if (!collection)
 802                return;
 803
 804        for_each_lpi_its(device, ite, its)
 805                if (ite->collection &&
 806                    ite->collection->collection_id == coll_id)
 807                        ite->collection = NULL;
 808
 809        list_del(&collection->coll_list);
 810        kfree(collection);
 811}
 812
 813/* Must be called with its_lock mutex held */
 814static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
 815                                          struct its_collection *collection,
 816                                          u32 lpi_id, u32 event_id)
 817{
 818        struct its_ite *ite;
 819
 820        ite = kzalloc(sizeof(*ite), GFP_KERNEL);
 821        if (!ite)
 822                return ERR_PTR(-ENOMEM);
 823
 824        ite->event_id   = event_id;
 825        ite->collection = collection;
 826        ite->lpi = lpi_id;
 827
 828        list_add_tail(&ite->ite_list, &device->itt_head);
 829        return ite;
 830}
 831
 832/*
 833 * The MAPTI and MAPI commands map LPIs to ITTEs.
 834 * Must be called with its_lock mutex held.
 835 */
 836static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
 837                                    u64 *its_cmd)
 838{
 839        u32 device_id = its_cmd_get_deviceid(its_cmd);
 840        u32 event_id = its_cmd_get_id(its_cmd);
 841        u32 coll_id = its_cmd_get_collection(its_cmd);
 842        struct its_ite *ite;
 843        struct kvm_vcpu *vcpu = NULL;
 844        struct its_device *device;
 845        struct its_collection *collection, *new_coll = NULL;
 846        struct vgic_irq *irq;
 847        int lpi_nr;
 848
 849        device = find_its_device(its, device_id);
 850        if (!device)
 851                return E_ITS_MAPTI_UNMAPPED_DEVICE;
 852
 853        if (event_id >= BIT_ULL(device->num_eventid_bits))
 854                return E_ITS_MAPTI_ID_OOR;
 855
 856        if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
 857                lpi_nr = its_cmd_get_physical_id(its_cmd);
 858        else
 859                lpi_nr = event_id;
 860        if (lpi_nr < GIC_LPI_OFFSET ||
 861            lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
 862                return E_ITS_MAPTI_PHYSICALID_OOR;
 863
 864        /* If there is an existing mapping, behavior is UNPREDICTABLE. */
 865        if (find_ite(its, device_id, event_id))
 866                return 0;
 867
 868        collection = find_collection(its, coll_id);
 869        if (!collection) {
 870                int ret = vgic_its_alloc_collection(its, &collection, coll_id);
 871                if (ret)
 872                        return ret;
 873                new_coll = collection;
 874        }
 875
 876        ite = vgic_its_alloc_ite(device, collection, lpi_nr, event_id);
 877        if (IS_ERR(ite)) {
 878                if (new_coll)
 879                        vgic_its_free_collection(its, coll_id);
 880                return PTR_ERR(ite);
 881        }
 882
 883        if (its_is_collection_mapped(collection))
 884                vcpu = kvm_get_vcpu(kvm, collection->target_addr);
 885
 886        irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
 887        if (IS_ERR(irq)) {
 888                if (new_coll)
 889                        vgic_its_free_collection(its, coll_id);
 890                its_free_ite(kvm, ite);
 891                return PTR_ERR(irq);
 892        }
 893        ite->irq = irq;
 894
 895        return 0;
 896}
 897
 898/* Requires the its_lock to be held. */
 899static void vgic_its_unmap_device(struct kvm *kvm, struct its_device *device)
 900{
 901        struct its_ite *ite, *temp;
 902
 903        /*
 904         * The spec says that unmapping a device with still valid
 905         * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
 906         * since we cannot leave the memory unreferenced.
 907         */
 908        list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
 909                its_free_ite(kvm, ite);
 910
 911        list_del(&device->dev_list);
 912        kfree(device);
 913}
 914
 915/* Must be called with its_lock mutex held */
 916static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
 917                                                u32 device_id, gpa_t itt_addr,
 918                                                u8 num_eventid_bits)
 919{
 920        struct its_device *device;
 921
 922        device = kzalloc(sizeof(*device), GFP_KERNEL);
 923        if (!device)
 924                return ERR_PTR(-ENOMEM);
 925
 926        device->device_id = device_id;
 927        device->itt_addr = itt_addr;
 928        device->num_eventid_bits = num_eventid_bits;
 929        INIT_LIST_HEAD(&device->itt_head);
 930
 931        list_add_tail(&device->dev_list, &its->device_list);
 932        return device;
 933}
 934
 935/*
 936 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
 937 * Must be called with the its_lock mutex held.
 938 */
 939static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
 940                                    u64 *its_cmd)
 941{
 942        u32 device_id = its_cmd_get_deviceid(its_cmd);
 943        bool valid = its_cmd_get_validbit(its_cmd);
 944        u8 num_eventid_bits = its_cmd_get_size(its_cmd);
 945        gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
 946        struct its_device *device;
 947
 948        if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
 949                return E_ITS_MAPD_DEVICE_OOR;
 950
 951        if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
 952                return E_ITS_MAPD_ITTSIZE_OOR;
 953
 954        device = find_its_device(its, device_id);
 955
 956        /*
 957         * The spec says that calling MAPD on an already mapped device
 958         * invalidates all cached data for this device. We implement this
 959         * by removing the mapping and re-establishing it.
 960         */
 961        if (device)
 962                vgic_its_unmap_device(kvm, device);
 963
 964        /*
 965         * The spec does not say whether unmapping a not-mapped device
 966         * is an error, so we are done in any case.
 967         */
 968        if (!valid)
 969                return 0;
 970
 971        device = vgic_its_alloc_device(its, device_id, itt_addr,
 972                                       num_eventid_bits);
 973        if (IS_ERR(device))
 974                return PTR_ERR(device);
 975
 976        return 0;
 977}
 978
 979/*
 980 * The MAPC command maps collection IDs to redistributors.
 981 * Must be called with the its_lock mutex held.
 982 */
 983static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
 984                                    u64 *its_cmd)
 985{
 986        u16 coll_id;
 987        u32 target_addr;
 988        struct its_collection *collection;
 989        bool valid;
 990
 991        valid = its_cmd_get_validbit(its_cmd);
 992        coll_id = its_cmd_get_collection(its_cmd);
 993        target_addr = its_cmd_get_target_addr(its_cmd);
 994
 995        if (target_addr >= atomic_read(&kvm->online_vcpus))
 996                return E_ITS_MAPC_PROCNUM_OOR;
 997
 998        if (!valid) {
 999                vgic_its_free_collection(its, coll_id);
1000        } else {
1001                collection = find_collection(its, coll_id);
1002
1003                if (!collection) {
1004                        int ret;
1005
1006                        ret = vgic_its_alloc_collection(its, &collection,
1007                                                        coll_id);
1008                        if (ret)
1009                                return ret;
1010                        collection->target_addr = target_addr;
1011                } else {
1012                        collection->target_addr = target_addr;
1013                        update_affinity_collection(kvm, its, collection);
1014                }
1015        }
1016
1017        return 0;
1018}
1019
1020/*
1021 * The CLEAR command removes the pending state for a particular LPI.
1022 * Must be called with the its_lock mutex held.
1023 */
1024static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1025                                     u64 *its_cmd)
1026{
1027        u32 device_id = its_cmd_get_deviceid(its_cmd);
1028        u32 event_id = its_cmd_get_id(its_cmd);
1029        struct its_ite *ite;
1030
1031
1032        ite = find_ite(its, device_id, event_id);
1033        if (!ite)
1034                return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1035
1036        ite->irq->pending_latch = false;
1037
1038        return 0;
1039}
1040
1041/*
1042 * The INV command syncs the configuration bits from the memory table.
1043 * Must be called with the its_lock mutex held.
1044 */
1045static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1046                                   u64 *its_cmd)
1047{
1048        u32 device_id = its_cmd_get_deviceid(its_cmd);
1049        u32 event_id = its_cmd_get_id(its_cmd);
1050        struct its_ite *ite;
1051
1052
1053        ite = find_ite(its, device_id, event_id);
1054        if (!ite)
1055                return E_ITS_INV_UNMAPPED_INTERRUPT;
1056
1057        return update_lpi_config(kvm, ite->irq, NULL);
1058}
1059
1060/*
1061 * The INVALL command requests flushing of all IRQ data in this collection.
1062 * Find the VCPU mapped to that collection, then iterate over the VM's list
1063 * of mapped LPIs and update the configuration for each IRQ which targets
1064 * the specified vcpu. The configuration will be read from the in-memory
1065 * configuration table.
1066 * Must be called with the its_lock mutex held.
1067 */
1068static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1069                                      u64 *its_cmd)
1070{
1071        u32 coll_id = its_cmd_get_collection(its_cmd);
1072        struct its_collection *collection;
1073        struct kvm_vcpu *vcpu;
1074        struct vgic_irq *irq;
1075        u32 *intids;
1076        int irq_count, i;
1077
1078        collection = find_collection(its, coll_id);
1079        if (!its_is_collection_mapped(collection))
1080                return E_ITS_INVALL_UNMAPPED_COLLECTION;
1081
1082        vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1083
1084        irq_count = vgic_copy_lpi_list(vcpu, &intids);
1085        if (irq_count < 0)
1086                return irq_count;
1087
1088        for (i = 0; i < irq_count; i++) {
1089                irq = vgic_get_irq(kvm, NULL, intids[i]);
1090                if (!irq)
1091                        continue;
1092                update_lpi_config(kvm, irq, vcpu);
1093                vgic_put_irq(kvm, irq);
1094        }
1095
1096        kfree(intids);
1097
1098        return 0;
1099}
1100
1101/*
1102 * The MOVALL command moves the pending state of all IRQs targeting one
1103 * redistributor to another. We don't hold the pending state in the VCPUs,
1104 * but in the IRQs instead, so there is really not much to do for us here.
1105 * However the spec says that no IRQ must target the old redistributor
1106 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1107 * This command affects all LPIs in the system that target that redistributor.
1108 */
1109static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1110                                      u64 *its_cmd)
1111{
1112        struct vgic_dist *dist = &kvm->arch.vgic;
1113        u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1114        u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1115        struct kvm_vcpu *vcpu1, *vcpu2;
1116        struct vgic_irq *irq;
1117
1118        if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1119            target2_addr >= atomic_read(&kvm->online_vcpus))
1120                return E_ITS_MOVALL_PROCNUM_OOR;
1121
1122        if (target1_addr == target2_addr)
1123                return 0;
1124
1125        vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1126        vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1127
1128        spin_lock(&dist->lpi_list_lock);
1129
1130        list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
1131                spin_lock(&irq->irq_lock);
1132
1133                if (irq->target_vcpu == vcpu1)
1134                        irq->target_vcpu = vcpu2;
1135
1136                spin_unlock(&irq->irq_lock);
1137        }
1138
1139        spin_unlock(&dist->lpi_list_lock);
1140
1141        return 0;
1142}
1143
1144/*
1145 * The INT command injects the LPI associated with that DevID/EvID pair.
1146 * Must be called with the its_lock mutex held.
1147 */
1148static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1149                                   u64 *its_cmd)
1150{
1151        u32 msi_data = its_cmd_get_id(its_cmd);
1152        u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1153
1154        return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1155}
1156
1157/*
1158 * This function is called with the its_cmd lock held, but the ITS data
1159 * structure lock dropped.
1160 */
1161static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1162                                   u64 *its_cmd)
1163{
1164        int ret = -ENODEV;
1165
1166        mutex_lock(&its->its_lock);
1167        switch (its_cmd_get_command(its_cmd)) {
1168        case GITS_CMD_MAPD:
1169                ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1170                break;
1171        case GITS_CMD_MAPC:
1172                ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1173                break;
1174        case GITS_CMD_MAPI:
1175                ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1176                break;
1177        case GITS_CMD_MAPTI:
1178                ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1179                break;
1180        case GITS_CMD_MOVI:
1181                ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1182                break;
1183        case GITS_CMD_DISCARD:
1184                ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1185                break;
1186        case GITS_CMD_CLEAR:
1187                ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1188                break;
1189        case GITS_CMD_MOVALL:
1190                ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1191                break;
1192        case GITS_CMD_INT:
1193                ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1194                break;
1195        case GITS_CMD_INV:
1196                ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1197                break;
1198        case GITS_CMD_INVALL:
1199                ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1200                break;
1201        case GITS_CMD_SYNC:
1202                /* we ignore this command: we are in sync all of the time */
1203                ret = 0;
1204                break;
1205        }
1206        mutex_unlock(&its->its_lock);
1207
1208        return ret;
1209}
1210
1211static u64 vgic_sanitise_its_baser(u64 reg)
1212{
1213        reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1214                                  GITS_BASER_SHAREABILITY_SHIFT,
1215                                  vgic_sanitise_shareability);
1216        reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1217                                  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1218                                  vgic_sanitise_inner_cacheability);
1219        reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1220                                  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1221                                  vgic_sanitise_outer_cacheability);
1222
1223        /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1224        reg &= ~GENMASK_ULL(15, 12);
1225
1226        /* We support only one (ITS) page size: 64K */
1227        reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1228
1229        return reg;
1230}
1231
1232static u64 vgic_sanitise_its_cbaser(u64 reg)
1233{
1234        reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1235                                  GITS_CBASER_SHAREABILITY_SHIFT,
1236                                  vgic_sanitise_shareability);
1237        reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1238                                  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1239                                  vgic_sanitise_inner_cacheability);
1240        reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1241                                  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1242                                  vgic_sanitise_outer_cacheability);
1243
1244        /*
1245         * Sanitise the physical address to be 64k aligned.
1246         * Also limit the physical addresses to 48 bits.
1247         */
1248        reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1249
1250        return reg;
1251}
1252
1253static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1254                                               struct vgic_its *its,
1255                                               gpa_t addr, unsigned int len)
1256{
1257        return extract_bytes(its->cbaser, addr & 7, len);
1258}
1259
1260static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1261                                       gpa_t addr, unsigned int len,
1262                                       unsigned long val)
1263{
1264        /* When GITS_CTLR.Enable is 1, this register is RO. */
1265        if (its->enabled)
1266                return;
1267
1268        mutex_lock(&its->cmd_lock);
1269        its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1270        its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1271        its->creadr = 0;
1272        /*
1273         * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1274         * it to CREADR to make sure we start with an empty command buffer.
1275         */
1276        its->cwriter = its->creadr;
1277        mutex_unlock(&its->cmd_lock);
1278}
1279
1280#define ITS_CMD_BUFFER_SIZE(baser)      ((((baser) & 0xff) + 1) << 12)
1281#define ITS_CMD_SIZE                    32
1282#define ITS_CMD_OFFSET(reg)             ((reg) & GENMASK(19, 5))
1283
1284/* Must be called with the cmd_lock held. */
1285static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1286{
1287        gpa_t cbaser;
1288        u64 cmd_buf[4];
1289
1290        /* Commands are only processed when the ITS is enabled. */
1291        if (!its->enabled)
1292                return;
1293
1294        cbaser = CBASER_ADDRESS(its->cbaser);
1295
1296        while (its->cwriter != its->creadr) {
1297                int ret = kvm_read_guest(kvm, cbaser + its->creadr,
1298                                         cmd_buf, ITS_CMD_SIZE);
1299                /*
1300                 * If kvm_read_guest() fails, this could be due to the guest
1301                 * programming a bogus value in CBASER or something else going
1302                 * wrong from which we cannot easily recover.
1303                 * According to section 6.3.2 in the GICv3 spec we can just
1304                 * ignore that command then.
1305                 */
1306                if (!ret)
1307                        vgic_its_handle_command(kvm, its, cmd_buf);
1308
1309                its->creadr += ITS_CMD_SIZE;
1310                if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1311                        its->creadr = 0;
1312        }
1313}
1314
1315/*
1316 * By writing to CWRITER the guest announces new commands to be processed.
1317 * To avoid any races in the first place, we take the its_cmd lock, which
1318 * protects our ring buffer variables, so that there is only one user
1319 * per ITS handling commands at a given time.
1320 */
1321static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1322                                        gpa_t addr, unsigned int len,
1323                                        unsigned long val)
1324{
1325        u64 reg;
1326
1327        if (!its)
1328                return;
1329
1330        mutex_lock(&its->cmd_lock);
1331
1332        reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1333        reg = ITS_CMD_OFFSET(reg);
1334        if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1335                mutex_unlock(&its->cmd_lock);
1336                return;
1337        }
1338        its->cwriter = reg;
1339
1340        vgic_its_process_commands(kvm, its);
1341
1342        mutex_unlock(&its->cmd_lock);
1343}
1344
1345static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1346                                                struct vgic_its *its,
1347                                                gpa_t addr, unsigned int len)
1348{
1349        return extract_bytes(its->cwriter, addr & 0x7, len);
1350}
1351
1352static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1353                                               struct vgic_its *its,
1354                                               gpa_t addr, unsigned int len)
1355{
1356        return extract_bytes(its->creadr, addr & 0x7, len);
1357}
1358
1359static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1360                                              struct vgic_its *its,
1361                                              gpa_t addr, unsigned int len,
1362                                              unsigned long val)
1363{
1364        u32 cmd_offset;
1365        int ret = 0;
1366
1367        mutex_lock(&its->cmd_lock);
1368
1369        if (its->enabled) {
1370                ret = -EBUSY;
1371                goto out;
1372        }
1373
1374        cmd_offset = ITS_CMD_OFFSET(val);
1375        if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1376                ret = -EINVAL;
1377                goto out;
1378        }
1379
1380        its->creadr = cmd_offset;
1381out:
1382        mutex_unlock(&its->cmd_lock);
1383        return ret;
1384}
1385
1386#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1387static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1388                                              struct vgic_its *its,
1389                                              gpa_t addr, unsigned int len)
1390{
1391        u64 reg;
1392
1393        switch (BASER_INDEX(addr)) {
1394        case 0:
1395                reg = its->baser_device_table;
1396                break;
1397        case 1:
1398                reg = its->baser_coll_table;
1399                break;
1400        default:
1401                reg = 0;
1402                break;
1403        }
1404
1405        return extract_bytes(reg, addr & 7, len);
1406}
1407
1408#define GITS_BASER_RO_MASK      (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1409static void vgic_mmio_write_its_baser(struct kvm *kvm,
1410                                      struct vgic_its *its,
1411                                      gpa_t addr, unsigned int len,
1412                                      unsigned long val)
1413{
1414        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1415        u64 entry_size, device_type;
1416        u64 reg, *regptr, clearbits = 0;
1417
1418        /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1419        if (its->enabled)
1420                return;
1421
1422        switch (BASER_INDEX(addr)) {
1423        case 0:
1424                regptr = &its->baser_device_table;
1425                entry_size = abi->dte_esz;
1426                device_type = GITS_BASER_TYPE_DEVICE;
1427                break;
1428        case 1:
1429                regptr = &its->baser_coll_table;
1430                entry_size = abi->cte_esz;
1431                device_type = GITS_BASER_TYPE_COLLECTION;
1432                clearbits = GITS_BASER_INDIRECT;
1433                break;
1434        default:
1435                return;
1436        }
1437
1438        reg = update_64bit_reg(*regptr, addr & 7, len, val);
1439        reg &= ~GITS_BASER_RO_MASK;
1440        reg &= ~clearbits;
1441
1442        reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1443        reg |= device_type << GITS_BASER_TYPE_SHIFT;
1444        reg = vgic_sanitise_its_baser(reg);
1445
1446        *regptr = reg;
1447}
1448
1449static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1450                                             struct vgic_its *its,
1451                                             gpa_t addr, unsigned int len)
1452{
1453        u32 reg = 0;
1454
1455        mutex_lock(&its->cmd_lock);
1456        if (its->creadr == its->cwriter)
1457                reg |= GITS_CTLR_QUIESCENT;
1458        if (its->enabled)
1459                reg |= GITS_CTLR_ENABLE;
1460        mutex_unlock(&its->cmd_lock);
1461
1462        return reg;
1463}
1464
1465static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1466                                     gpa_t addr, unsigned int len,
1467                                     unsigned long val)
1468{
1469        mutex_lock(&its->cmd_lock);
1470
1471        its->enabled = !!(val & GITS_CTLR_ENABLE);
1472
1473        /*
1474         * Try to process any pending commands. This function bails out early
1475         * if the ITS is disabled or no commands have been queued.
1476         */
1477        vgic_its_process_commands(kvm, its);
1478
1479        mutex_unlock(&its->cmd_lock);
1480}
1481
1482#define REGISTER_ITS_DESC(off, rd, wr, length, acc)             \
1483{                                                               \
1484        .reg_offset = off,                                      \
1485        .len = length,                                          \
1486        .access_flags = acc,                                    \
1487        .its_read = rd,                                         \
1488        .its_write = wr,                                        \
1489}
1490
1491#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1492{                                                               \
1493        .reg_offset = off,                                      \
1494        .len = length,                                          \
1495        .access_flags = acc,                                    \
1496        .its_read = rd,                                         \
1497        .its_write = wr,                                        \
1498        .uaccess_its_write = uwr,                               \
1499}
1500
1501static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1502                              gpa_t addr, unsigned int len, unsigned long val)
1503{
1504        /* Ignore */
1505}
1506
1507static struct vgic_register_region its_registers[] = {
1508        REGISTER_ITS_DESC(GITS_CTLR,
1509                vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1510                VGIC_ACCESS_32bit),
1511        REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1512                vgic_mmio_read_its_iidr, its_mmio_write_wi,
1513                vgic_mmio_uaccess_write_its_iidr, 4,
1514                VGIC_ACCESS_32bit),
1515        REGISTER_ITS_DESC(GITS_TYPER,
1516                vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1517                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1518        REGISTER_ITS_DESC(GITS_CBASER,
1519                vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1520                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1521        REGISTER_ITS_DESC(GITS_CWRITER,
1522                vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1523                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1524        REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1525                vgic_mmio_read_its_creadr, its_mmio_write_wi,
1526                vgic_mmio_uaccess_write_its_creadr, 8,
1527                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1528        REGISTER_ITS_DESC(GITS_BASER,
1529                vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1530                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1531        REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1532                vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1533                VGIC_ACCESS_32bit),
1534};
1535
1536/* This is called on setting the LPI enable bit in the redistributor. */
1537void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1538{
1539        if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1540                its_sync_lpi_pending_table(vcpu);
1541}
1542
1543static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1544                                   u64 addr)
1545{
1546        struct vgic_io_device *iodev = &its->iodev;
1547        int ret;
1548
1549        mutex_lock(&kvm->slots_lock);
1550        if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1551                ret = -EBUSY;
1552                goto out;
1553        }
1554
1555        its->vgic_its_base = addr;
1556        iodev->regions = its_registers;
1557        iodev->nr_regions = ARRAY_SIZE(its_registers);
1558        kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1559
1560        iodev->base_addr = its->vgic_its_base;
1561        iodev->iodev_type = IODEV_ITS;
1562        iodev->its = its;
1563        ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1564                                      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1565out:
1566        mutex_unlock(&kvm->slots_lock);
1567
1568        return ret;
1569}
1570
1571#define INITIAL_BASER_VALUE                                               \
1572        (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)                | \
1573         GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)         | \
1574         GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)             | \
1575         GITS_BASER_PAGE_SIZE_64K)
1576
1577#define INITIAL_PROPBASER_VALUE                                           \
1578        (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)            | \
1579         GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)     | \
1580         GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1581
1582static int vgic_its_create(struct kvm_device *dev, u32 type)
1583{
1584        struct vgic_its *its;
1585
1586        if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1587                return -ENODEV;
1588
1589        its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1590        if (!its)
1591                return -ENOMEM;
1592
1593        mutex_init(&its->its_lock);
1594        mutex_init(&its->cmd_lock);
1595
1596        its->vgic_its_base = VGIC_ADDR_UNDEF;
1597
1598        INIT_LIST_HEAD(&its->device_list);
1599        INIT_LIST_HEAD(&its->collection_list);
1600
1601        dev->kvm->arch.vgic.msis_require_devid = true;
1602        dev->kvm->arch.vgic.has_its = true;
1603        its->enabled = false;
1604        its->dev = dev;
1605
1606        its->baser_device_table = INITIAL_BASER_VALUE                   |
1607                ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1608        its->baser_coll_table = INITIAL_BASER_VALUE |
1609                ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1610        dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1611
1612        dev->private = its;
1613
1614        return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1615}
1616
1617static void vgic_its_free_device(struct kvm *kvm, struct its_device *dev)
1618{
1619        struct its_ite *ite, *tmp;
1620
1621        list_for_each_entry_safe(ite, tmp, &dev->itt_head, ite_list)
1622                its_free_ite(kvm, ite);
1623        list_del(&dev->dev_list);
1624        kfree(dev);
1625}
1626
1627static void vgic_its_destroy(struct kvm_device *kvm_dev)
1628{
1629        struct kvm *kvm = kvm_dev->kvm;
1630        struct vgic_its *its = kvm_dev->private;
1631        struct list_head *cur, *temp;
1632
1633        /*
1634         * We may end up here without the lists ever having been initialized.
1635         * Check this and bail out early to avoid dereferencing a NULL pointer.
1636         */
1637        if (!its->device_list.next)
1638                return;
1639
1640        mutex_lock(&its->its_lock);
1641        list_for_each_safe(cur, temp, &its->device_list) {
1642                struct its_device *dev;
1643
1644                dev = list_entry(cur, struct its_device, dev_list);
1645                vgic_its_free_device(kvm, dev);
1646        }
1647
1648        list_for_each_safe(cur, temp, &its->collection_list) {
1649                struct its_collection *coll;
1650
1651                coll = list_entry(cur, struct its_collection, coll_list);
1652                list_del(cur);
1653                kfree(coll);
1654        }
1655        mutex_unlock(&its->its_lock);
1656
1657        kfree(its);
1658}
1659
1660int vgic_its_has_attr_regs(struct kvm_device *dev,
1661                           struct kvm_device_attr *attr)
1662{
1663        const struct vgic_register_region *region;
1664        gpa_t offset = attr->attr;
1665        int align;
1666
1667        align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1668
1669        if (offset & align)
1670                return -EINVAL;
1671
1672        region = vgic_find_mmio_region(its_registers,
1673                                       ARRAY_SIZE(its_registers),
1674                                       offset);
1675        if (!region)
1676                return -ENXIO;
1677
1678        return 0;
1679}
1680
1681int vgic_its_attr_regs_access(struct kvm_device *dev,
1682                              struct kvm_device_attr *attr,
1683                              u64 *reg, bool is_write)
1684{
1685        const struct vgic_register_region *region;
1686        struct vgic_its *its;
1687        gpa_t addr, offset;
1688        unsigned int len;
1689        int align, ret = 0;
1690
1691        its = dev->private;
1692        offset = attr->attr;
1693
1694        /*
1695         * Although the spec supports upper/lower 32-bit accesses to
1696         * 64-bit ITS registers, the userspace ABI requires 64-bit
1697         * accesses to all 64-bit wide registers. We therefore only
1698         * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1699         * registers
1700         */
1701        if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1702                align = 0x3;
1703        else
1704                align = 0x7;
1705
1706        if (offset & align)
1707                return -EINVAL;
1708
1709        mutex_lock(&dev->kvm->lock);
1710
1711        if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1712                ret = -ENXIO;
1713                goto out;
1714        }
1715
1716        region = vgic_find_mmio_region(its_registers,
1717                                       ARRAY_SIZE(its_registers),
1718                                       offset);
1719        if (!region) {
1720                ret = -ENXIO;
1721                goto out;
1722        }
1723
1724        if (!lock_all_vcpus(dev->kvm)) {
1725                ret = -EBUSY;
1726                goto out;
1727        }
1728
1729        addr = its->vgic_its_base + offset;
1730
1731        len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1732
1733        if (is_write) {
1734                if (region->uaccess_its_write)
1735                        ret = region->uaccess_its_write(dev->kvm, its, addr,
1736                                                        len, *reg);
1737                else
1738                        region->its_write(dev->kvm, its, addr, len, *reg);
1739        } else {
1740                *reg = region->its_read(dev->kvm, its, addr, len);
1741        }
1742        unlock_all_vcpus(dev->kvm);
1743out:
1744        mutex_unlock(&dev->kvm->lock);
1745        return ret;
1746}
1747
1748static u32 compute_next_devid_offset(struct list_head *h,
1749                                     struct its_device *dev)
1750{
1751        struct its_device *next;
1752        u32 next_offset;
1753
1754        if (list_is_last(&dev->dev_list, h))
1755                return 0;
1756        next = list_next_entry(dev, dev_list);
1757        next_offset = next->device_id - dev->device_id;
1758
1759        return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
1760}
1761
1762static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
1763{
1764        struct its_ite *next;
1765        u32 next_offset;
1766
1767        if (list_is_last(&ite->ite_list, h))
1768                return 0;
1769        next = list_next_entry(ite, ite_list);
1770        next_offset = next->event_id - ite->event_id;
1771
1772        return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
1773}
1774
1775/**
1776 * entry_fn_t - Callback called on a table entry restore path
1777 * @its: its handle
1778 * @id: id of the entry
1779 * @entry: pointer to the entry
1780 * @opaque: pointer to an opaque data
1781 *
1782 * Return: < 0 on error, 0 if last element was identified, id offset to next
1783 * element otherwise
1784 */
1785typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
1786                          void *opaque);
1787
1788/**
1789 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
1790 * to each entry
1791 *
1792 * @its: its handle
1793 * @base: base gpa of the table
1794 * @size: size of the table in bytes
1795 * @esz: entry size in bytes
1796 * @start_id: the ID of the first entry in the table
1797 * (non zero for 2d level tables)
1798 * @fn: function to apply on each entry
1799 *
1800 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
1801 * (the last element may not be found on second level tables)
1802 */
1803static int scan_its_table(struct vgic_its *its, gpa_t base, int size, int esz,
1804                          int start_id, entry_fn_t fn, void *opaque)
1805{
1806        void *entry = kzalloc(esz, GFP_KERNEL);
1807        struct kvm *kvm = its->dev->kvm;
1808        unsigned long len = size;
1809        int id = start_id;
1810        gpa_t gpa = base;
1811        int ret;
1812
1813        while (len > 0) {
1814                int next_offset;
1815                size_t byte_offset;
1816
1817                ret = kvm_read_guest(kvm, gpa, entry, esz);
1818                if (ret)
1819                        goto out;
1820
1821                next_offset = fn(its, id, entry, opaque);
1822                if (next_offset <= 0) {
1823                        ret = next_offset;
1824                        goto out;
1825                }
1826
1827                byte_offset = next_offset * esz;
1828                id += next_offset;
1829                gpa += byte_offset;
1830                len -= byte_offset;
1831        }
1832        ret =  1;
1833
1834out:
1835        kfree(entry);
1836        return ret;
1837}
1838
1839/**
1840 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
1841 */
1842static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
1843                              struct its_ite *ite, gpa_t gpa, int ite_esz)
1844{
1845        struct kvm *kvm = its->dev->kvm;
1846        u32 next_offset;
1847        u64 val;
1848
1849        next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
1850        val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
1851               ((u64)ite->lpi << KVM_ITS_ITE_PINTID_SHIFT) |
1852                ite->collection->collection_id;
1853        val = cpu_to_le64(val);
1854        return kvm_write_guest(kvm, gpa, &val, ite_esz);
1855}
1856
1857/**
1858 * vgic_its_restore_ite - restore an interrupt translation entry
1859 * @event_id: id used for indexing
1860 * @ptr: pointer to the ITE entry
1861 * @opaque: pointer to the its_device
1862 */
1863static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
1864                                void *ptr, void *opaque)
1865{
1866        struct its_device *dev = (struct its_device *)opaque;
1867        struct its_collection *collection;
1868        struct kvm *kvm = its->dev->kvm;
1869        struct kvm_vcpu *vcpu = NULL;
1870        u64 val;
1871        u64 *p = (u64 *)ptr;
1872        struct vgic_irq *irq;
1873        u32 coll_id, lpi_id;
1874        struct its_ite *ite;
1875        u32 offset;
1876
1877        val = *p;
1878
1879        val = le64_to_cpu(val);
1880
1881        coll_id = val & KVM_ITS_ITE_ICID_MASK;
1882        lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
1883
1884        if (!lpi_id)
1885                return 1; /* invalid entry, no choice but to scan next entry */
1886
1887        if (lpi_id < VGIC_MIN_LPI)
1888                return -EINVAL;
1889
1890        offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
1891        if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
1892                return -EINVAL;
1893
1894        collection = find_collection(its, coll_id);
1895        if (!collection)
1896                return -EINVAL;
1897
1898        ite = vgic_its_alloc_ite(dev, collection, lpi_id, event_id);
1899        if (IS_ERR(ite))
1900                return PTR_ERR(ite);
1901
1902        if (its_is_collection_mapped(collection))
1903                vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1904
1905        irq = vgic_add_lpi(kvm, lpi_id, vcpu);
1906        if (IS_ERR(irq))
1907                return PTR_ERR(irq);
1908        ite->irq = irq;
1909
1910        return offset;
1911}
1912
1913static int vgic_its_ite_cmp(void *priv, struct list_head *a,
1914                            struct list_head *b)
1915{
1916        struct its_ite *itea = container_of(a, struct its_ite, ite_list);
1917        struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
1918
1919        if (itea->event_id < iteb->event_id)
1920                return -1;
1921        else
1922                return 1;
1923}
1924
1925static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
1926{
1927        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1928        gpa_t base = device->itt_addr;
1929        struct its_ite *ite;
1930        int ret;
1931        int ite_esz = abi->ite_esz;
1932
1933        list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
1934
1935        list_for_each_entry(ite, &device->itt_head, ite_list) {
1936                gpa_t gpa = base + ite->event_id * ite_esz;
1937
1938                ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
1939                if (ret)
1940                        return ret;
1941        }
1942        return 0;
1943}
1944
1945static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
1946{
1947        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1948        gpa_t base = dev->itt_addr;
1949        int ret;
1950        int ite_esz = abi->ite_esz;
1951        size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
1952
1953        ret = scan_its_table(its, base, max_size, ite_esz, 0,
1954                             vgic_its_restore_ite, dev);
1955
1956        return ret;
1957}
1958
1959/**
1960 * vgic_its_save_dte - Save a device table entry at a given GPA
1961 *
1962 * @its: ITS handle
1963 * @dev: ITS device
1964 * @ptr: GPA
1965 */
1966static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
1967                             gpa_t ptr, int dte_esz)
1968{
1969        struct kvm *kvm = its->dev->kvm;
1970        u64 val, itt_addr_field;
1971        u32 next_offset;
1972
1973        itt_addr_field = dev->itt_addr >> 8;
1974        next_offset = compute_next_devid_offset(&its->device_list, dev);
1975        val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
1976               ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
1977               (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
1978                (dev->num_eventid_bits - 1));
1979        val = cpu_to_le64(val);
1980        return kvm_write_guest(kvm, ptr, &val, dte_esz);
1981}
1982
1983/**
1984 * vgic_its_restore_dte - restore a device table entry
1985 *
1986 * @its: its handle
1987 * @id: device id the DTE corresponds to
1988 * @ptr: kernel VA where the 8 byte DTE is located
1989 * @opaque: unused
1990 *
1991 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
1992 * next dte otherwise
1993 */
1994static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
1995                                void *ptr, void *opaque)
1996{
1997        struct its_device *dev;
1998        gpa_t itt_addr;
1999        u8 num_eventid_bits;
2000        u64 entry = *(u64 *)ptr;
2001        bool valid;
2002        u32 offset;
2003        int ret;
2004
2005        entry = le64_to_cpu(entry);
2006
2007        valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2008        num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2009        itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2010                        >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2011
2012        if (!valid)
2013                return 1;
2014
2015        /* dte entry is valid */
2016        offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2017
2018        dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2019        if (IS_ERR(dev))
2020                return PTR_ERR(dev);
2021
2022        ret = vgic_its_restore_itt(its, dev);
2023        if (ret) {
2024                vgic_its_free_device(its->dev->kvm, dev);
2025                return ret;
2026        }
2027
2028        return offset;
2029}
2030
2031static int vgic_its_device_cmp(void *priv, struct list_head *a,
2032                               struct list_head *b)
2033{
2034        struct its_device *deva = container_of(a, struct its_device, dev_list);
2035        struct its_device *devb = container_of(b, struct its_device, dev_list);
2036
2037        if (deva->device_id < devb->device_id)
2038                return -1;
2039        else
2040                return 1;
2041}
2042
2043/**
2044 * vgic_its_save_device_tables - Save the device table and all ITT
2045 * into guest RAM
2046 *
2047 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2048 * returns the GPA of the device entry
2049 */
2050static int vgic_its_save_device_tables(struct vgic_its *its)
2051{
2052        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2053        struct its_device *dev;
2054        int dte_esz = abi->dte_esz;
2055        u64 baser;
2056
2057        baser = its->baser_device_table;
2058
2059        list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2060
2061        list_for_each_entry(dev, &its->device_list, dev_list) {
2062                int ret;
2063                gpa_t eaddr;
2064
2065                if (!vgic_its_check_id(its, baser,
2066                                       dev->device_id, &eaddr))
2067                        return -EINVAL;
2068
2069                ret = vgic_its_save_itt(its, dev);
2070                if (ret)
2071                        return ret;
2072
2073                ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2074                if (ret)
2075                        return ret;
2076        }
2077        return 0;
2078}
2079
2080/**
2081 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2082 *
2083 * @its: its handle
2084 * @id: index of the entry in the L1 table
2085 * @addr: kernel VA
2086 * @opaque: unused
2087 *
2088 * L1 table entries are scanned by steps of 1 entry
2089 * Return < 0 if error, 0 if last dte was found when scanning the L2
2090 * table, +1 otherwise (meaning next L1 entry must be scanned)
2091 */
2092static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2093                         void *opaque)
2094{
2095        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2096        int l2_start_id = id * (SZ_64K / abi->dte_esz);
2097        u64 entry = *(u64 *)addr;
2098        int dte_esz = abi->dte_esz;
2099        gpa_t gpa;
2100        int ret;
2101
2102        entry = le64_to_cpu(entry);
2103
2104        if (!(entry & KVM_ITS_L1E_VALID_MASK))
2105                return 1;
2106
2107        gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2108
2109        ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2110                             l2_start_id, vgic_its_restore_dte, NULL);
2111
2112        if (ret <= 0)
2113                return ret;
2114
2115        return 1;
2116}
2117
2118/**
2119 * vgic_its_restore_device_tables - Restore the device table and all ITT
2120 * from guest RAM to internal data structs
2121 */
2122static int vgic_its_restore_device_tables(struct vgic_its *its)
2123{
2124        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2125        u64 baser = its->baser_device_table;
2126        int l1_esz, ret;
2127        int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2128        gpa_t l1_gpa;
2129
2130        if (!(baser & GITS_BASER_VALID))
2131                return 0;
2132
2133        l1_gpa = BASER_ADDRESS(baser);
2134
2135        if (baser & GITS_BASER_INDIRECT) {
2136                l1_esz = GITS_LVL1_ENTRY_SIZE;
2137                ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2138                                     handle_l1_dte, NULL);
2139        } else {
2140                l1_esz = abi->dte_esz;
2141                ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2142                                     vgic_its_restore_dte, NULL);
2143        }
2144
2145        if (ret > 0)
2146                ret = -EINVAL;
2147
2148        return ret;
2149}
2150
2151static int vgic_its_save_cte(struct vgic_its *its,
2152                             struct its_collection *collection,
2153                             gpa_t gpa, int esz)
2154{
2155        u64 val;
2156
2157        val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2158               ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2159               collection->collection_id);
2160        val = cpu_to_le64(val);
2161        return kvm_write_guest(its->dev->kvm, gpa, &val, esz);
2162}
2163
2164static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2165{
2166        struct its_collection *collection;
2167        struct kvm *kvm = its->dev->kvm;
2168        u32 target_addr, coll_id;
2169        u64 val;
2170        int ret;
2171
2172        BUG_ON(esz > sizeof(val));
2173        ret = kvm_read_guest(kvm, gpa, &val, esz);
2174        if (ret)
2175                return ret;
2176        val = le64_to_cpu(val);
2177        if (!(val & KVM_ITS_CTE_VALID_MASK))
2178                return 0;
2179
2180        target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2181        coll_id = val & KVM_ITS_CTE_ICID_MASK;
2182
2183        if (target_addr >= atomic_read(&kvm->online_vcpus))
2184                return -EINVAL;
2185
2186        collection = find_collection(its, coll_id);
2187        if (collection)
2188                return -EEXIST;
2189        ret = vgic_its_alloc_collection(its, &collection, coll_id);
2190        if (ret)
2191                return ret;
2192        collection->target_addr = target_addr;
2193        return 1;
2194}
2195
2196/**
2197 * vgic_its_save_collection_table - Save the collection table into
2198 * guest RAM
2199 */
2200static int vgic_its_save_collection_table(struct vgic_its *its)
2201{
2202        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2203        struct its_collection *collection;
2204        u64 val;
2205        gpa_t gpa;
2206        size_t max_size, filled = 0;
2207        int ret, cte_esz = abi->cte_esz;
2208
2209        gpa = BASER_ADDRESS(its->baser_coll_table);
2210        if (!gpa)
2211                return 0;
2212
2213        max_size = GITS_BASER_NR_PAGES(its->baser_coll_table) * SZ_64K;
2214
2215        list_for_each_entry(collection, &its->collection_list, coll_list) {
2216                ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2217                if (ret)
2218                        return ret;
2219                gpa += cte_esz;
2220                filled += cte_esz;
2221        }
2222
2223        if (filled == max_size)
2224                return 0;
2225
2226        /*
2227         * table is not fully filled, add a last dummy element
2228         * with valid bit unset
2229         */
2230        val = 0;
2231        BUG_ON(cte_esz > sizeof(val));
2232        ret = kvm_write_guest(its->dev->kvm, gpa, &val, cte_esz);
2233        return ret;
2234}
2235
2236/**
2237 * vgic_its_restore_collection_table - reads the collection table
2238 * in guest memory and restores the ITS internal state. Requires the
2239 * BASER registers to be restored before.
2240 */
2241static int vgic_its_restore_collection_table(struct vgic_its *its)
2242{
2243        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2244        int cte_esz = abi->cte_esz;
2245        size_t max_size, read = 0;
2246        gpa_t gpa;
2247        int ret;
2248
2249        if (!(its->baser_coll_table & GITS_BASER_VALID))
2250                return 0;
2251
2252        gpa = BASER_ADDRESS(its->baser_coll_table);
2253
2254        max_size = GITS_BASER_NR_PAGES(its->baser_coll_table) * SZ_64K;
2255
2256        while (read < max_size) {
2257                ret = vgic_its_restore_cte(its, gpa, cte_esz);
2258                if (ret <= 0)
2259                        break;
2260                gpa += cte_esz;
2261                read += cte_esz;
2262        }
2263        return ret;
2264}
2265
2266/**
2267 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2268 * according to v0 ABI
2269 */
2270static int vgic_its_save_tables_v0(struct vgic_its *its)
2271{
2272        struct kvm *kvm = its->dev->kvm;
2273        int ret;
2274
2275        mutex_lock(&kvm->lock);
2276        mutex_lock(&its->its_lock);
2277
2278        if (!lock_all_vcpus(kvm)) {
2279                mutex_unlock(&its->its_lock);
2280                mutex_unlock(&kvm->lock);
2281                return -EBUSY;
2282        }
2283
2284        ret = vgic_its_save_device_tables(its);
2285        if (ret)
2286                goto out;
2287
2288        ret = vgic_its_save_collection_table(its);
2289
2290out:
2291        unlock_all_vcpus(kvm);
2292        mutex_unlock(&its->its_lock);
2293        mutex_unlock(&kvm->lock);
2294        return ret;
2295}
2296
2297/**
2298 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2299 * to internal data structs according to V0 ABI
2300 *
2301 */
2302static int vgic_its_restore_tables_v0(struct vgic_its *its)
2303{
2304        struct kvm *kvm = its->dev->kvm;
2305        int ret;
2306
2307        mutex_lock(&kvm->lock);
2308        mutex_lock(&its->its_lock);
2309
2310        if (!lock_all_vcpus(kvm)) {
2311                mutex_unlock(&its->its_lock);
2312                mutex_unlock(&kvm->lock);
2313                return -EBUSY;
2314        }
2315
2316        ret = vgic_its_restore_collection_table(its);
2317        if (ret)
2318                goto out;
2319
2320        ret = vgic_its_restore_device_tables(its);
2321out:
2322        unlock_all_vcpus(kvm);
2323        mutex_unlock(&its->its_lock);
2324        mutex_unlock(&kvm->lock);
2325
2326        return ret;
2327}
2328
2329static int vgic_its_commit_v0(struct vgic_its *its)
2330{
2331        const struct vgic_its_abi *abi;
2332
2333        abi = vgic_its_get_abi(its);
2334        its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2335        its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2336
2337        its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2338                                        << GITS_BASER_ENTRY_SIZE_SHIFT);
2339
2340        its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2341                                        << GITS_BASER_ENTRY_SIZE_SHIFT);
2342        return 0;
2343}
2344
2345static int vgic_its_has_attr(struct kvm_device *dev,
2346                             struct kvm_device_attr *attr)
2347{
2348        switch (attr->group) {
2349        case KVM_DEV_ARM_VGIC_GRP_ADDR:
2350                switch (attr->attr) {
2351                case KVM_VGIC_ITS_ADDR_TYPE:
2352                        return 0;
2353                }
2354                break;
2355        case KVM_DEV_ARM_VGIC_GRP_CTRL:
2356                switch (attr->attr) {
2357                case KVM_DEV_ARM_VGIC_CTRL_INIT:
2358                        return 0;
2359                case KVM_DEV_ARM_ITS_SAVE_TABLES:
2360                        return 0;
2361                case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2362                        return 0;
2363                }
2364                break;
2365        case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2366                return vgic_its_has_attr_regs(dev, attr);
2367        }
2368        return -ENXIO;
2369}
2370
2371static int vgic_its_set_attr(struct kvm_device *dev,
2372                             struct kvm_device_attr *attr)
2373{
2374        struct vgic_its *its = dev->private;
2375        int ret;
2376
2377        switch (attr->group) {
2378        case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2379                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2380                unsigned long type = (unsigned long)attr->attr;
2381                u64 addr;
2382
2383                if (type != KVM_VGIC_ITS_ADDR_TYPE)
2384                        return -ENODEV;
2385
2386                if (copy_from_user(&addr, uaddr, sizeof(addr)))
2387                        return -EFAULT;
2388
2389                ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2390                                        addr, SZ_64K);
2391                if (ret)
2392                        return ret;
2393
2394                return vgic_register_its_iodev(dev->kvm, its, addr);
2395        }
2396        case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2397                const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2398
2399                switch (attr->attr) {
2400                case KVM_DEV_ARM_VGIC_CTRL_INIT:
2401                        /* Nothing to do */
2402                        return 0;
2403                case KVM_DEV_ARM_ITS_SAVE_TABLES:
2404                        return abi->save_tables(its);
2405                case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2406                        return abi->restore_tables(its);
2407                }
2408        }
2409        case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2410                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2411                u64 reg;
2412
2413                if (get_user(reg, uaddr))
2414                        return -EFAULT;
2415
2416                return vgic_its_attr_regs_access(dev, attr, &reg, true);
2417        }
2418        }
2419        return -ENXIO;
2420}
2421
2422static int vgic_its_get_attr(struct kvm_device *dev,
2423                             struct kvm_device_attr *attr)
2424{
2425        switch (attr->group) {
2426        case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2427                struct vgic_its *its = dev->private;
2428                u64 addr = its->vgic_its_base;
2429                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2430                unsigned long type = (unsigned long)attr->attr;
2431
2432                if (type != KVM_VGIC_ITS_ADDR_TYPE)
2433                        return -ENODEV;
2434
2435                if (copy_to_user(uaddr, &addr, sizeof(addr)))
2436                        return -EFAULT;
2437                break;
2438        }
2439        case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2440                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2441                u64 reg;
2442                int ret;
2443
2444                ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2445                if (ret)
2446                        return ret;
2447                return put_user(reg, uaddr);
2448        }
2449        default:
2450                return -ENXIO;
2451        }
2452
2453        return 0;
2454}
2455
2456static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2457        .name = "kvm-arm-vgic-its",
2458        .create = vgic_its_create,
2459        .destroy = vgic_its_destroy,
2460        .set_attr = vgic_its_set_attr,
2461        .get_attr = vgic_its_get_attr,
2462        .has_attr = vgic_its_has_attr,
2463};
2464
2465int kvm_vgic_register_its_device(void)
2466{
2467        return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2468                                       KVM_DEV_TYPE_ARM_VGIC_ITS);
2469}
2470