linux/virt/kvm/kvm_main.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include <kvm/iodev.h>
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kvm.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/percpu.h>
  26#include <linux/mm.h>
  27#include <linux/miscdevice.h>
  28#include <linux/vmalloc.h>
  29#include <linux/reboot.h>
  30#include <linux/debugfs.h>
  31#include <linux/highmem.h>
  32#include <linux/file.h>
  33#include <linux/syscore_ops.h>
  34#include <linux/cpu.h>
  35#include <linux/sched/signal.h>
  36#include <linux/sched/mm.h>
  37#include <linux/sched/stat.h>
  38#include <linux/cpumask.h>
  39#include <linux/smp.h>
  40#include <linux/anon_inodes.h>
  41#include <linux/profile.h>
  42#include <linux/kvm_para.h>
  43#include <linux/pagemap.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/bitops.h>
  47#include <linux/spinlock.h>
  48#include <linux/compat.h>
  49#include <linux/srcu.h>
  50#include <linux/hugetlb.h>
  51#include <linux/slab.h>
  52#include <linux/sort.h>
  53#include <linux/bsearch.h>
  54
  55#include <asm/processor.h>
  56#include <asm/io.h>
  57#include <asm/ioctl.h>
  58#include <linux/uaccess.h>
  59#include <asm/pgtable.h>
  60
  61#include "coalesced_mmio.h"
  62#include "async_pf.h"
  63#include "vfio.h"
  64
  65#define CREATE_TRACE_POINTS
  66#include <trace/events/kvm.h>
  67
  68/* Worst case buffer size needed for holding an integer. */
  69#define ITOA_MAX_LEN 12
  70
  71MODULE_AUTHOR("Qumranet");
  72MODULE_LICENSE("GPL");
  73
  74/* Architectures should define their poll value according to the halt latency */
  75unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  76module_param(halt_poll_ns, uint, 0644);
  77EXPORT_SYMBOL_GPL(halt_poll_ns);
  78
  79/* Default doubles per-vcpu halt_poll_ns. */
  80unsigned int halt_poll_ns_grow = 2;
  81module_param(halt_poll_ns_grow, uint, 0644);
  82EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
  83
  84/* Default resets per-vcpu halt_poll_ns . */
  85unsigned int halt_poll_ns_shrink;
  86module_param(halt_poll_ns_shrink, uint, 0644);
  87EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
  88
  89/*
  90 * Ordering of locks:
  91 *
  92 *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  93 */
  94
  95DEFINE_SPINLOCK(kvm_lock);
  96static DEFINE_RAW_SPINLOCK(kvm_count_lock);
  97LIST_HEAD(vm_list);
  98
  99static cpumask_var_t cpus_hardware_enabled;
 100static int kvm_usage_count;
 101static atomic_t hardware_enable_failed;
 102
 103struct kmem_cache *kvm_vcpu_cache;
 104EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
 105
 106static __read_mostly struct preempt_ops kvm_preempt_ops;
 107
 108struct dentry *kvm_debugfs_dir;
 109EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
 110
 111static int kvm_debugfs_num_entries;
 112static const struct file_operations *stat_fops_per_vm[];
 113
 114static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
 115                           unsigned long arg);
 116#ifdef CONFIG_KVM_COMPAT
 117static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
 118                                  unsigned long arg);
 119#endif
 120static int hardware_enable_all(void);
 121static void hardware_disable_all(void);
 122
 123static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
 124
 125static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
 126static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
 127
 128__visible bool kvm_rebooting;
 129EXPORT_SYMBOL_GPL(kvm_rebooting);
 130
 131static bool largepages_enabled = true;
 132
 133#define KVM_EVENT_CREATE_VM 0
 134#define KVM_EVENT_DESTROY_VM 1
 135static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
 136static unsigned long long kvm_createvm_count;
 137static unsigned long long kvm_active_vms;
 138
 139bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
 140{
 141        if (pfn_valid(pfn))
 142                return PageReserved(pfn_to_page(pfn));
 143
 144        return true;
 145}
 146
 147/*
 148 * Switches to specified vcpu, until a matching vcpu_put()
 149 */
 150int vcpu_load(struct kvm_vcpu *vcpu)
 151{
 152        int cpu;
 153
 154        if (mutex_lock_killable(&vcpu->mutex))
 155                return -EINTR;
 156        cpu = get_cpu();
 157        preempt_notifier_register(&vcpu->preempt_notifier);
 158        kvm_arch_vcpu_load(vcpu, cpu);
 159        put_cpu();
 160        return 0;
 161}
 162EXPORT_SYMBOL_GPL(vcpu_load);
 163
 164void vcpu_put(struct kvm_vcpu *vcpu)
 165{
 166        preempt_disable();
 167        kvm_arch_vcpu_put(vcpu);
 168        preempt_notifier_unregister(&vcpu->preempt_notifier);
 169        preempt_enable();
 170        mutex_unlock(&vcpu->mutex);
 171}
 172EXPORT_SYMBOL_GPL(vcpu_put);
 173
 174/* TODO: merge with kvm_arch_vcpu_should_kick */
 175static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
 176{
 177        int mode = kvm_vcpu_exiting_guest_mode(vcpu);
 178
 179        /*
 180         * We need to wait for the VCPU to reenable interrupts and get out of
 181         * READING_SHADOW_PAGE_TABLES mode.
 182         */
 183        if (req & KVM_REQUEST_WAIT)
 184                return mode != OUTSIDE_GUEST_MODE;
 185
 186        /*
 187         * Need to kick a running VCPU, but otherwise there is nothing to do.
 188         */
 189        return mode == IN_GUEST_MODE;
 190}
 191
 192static void ack_flush(void *_completed)
 193{
 194}
 195
 196static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
 197{
 198        if (unlikely(!cpus))
 199                cpus = cpu_online_mask;
 200
 201        if (cpumask_empty(cpus))
 202                return false;
 203
 204        smp_call_function_many(cpus, ack_flush, NULL, wait);
 205        return true;
 206}
 207
 208bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
 209{
 210        int i, cpu, me;
 211        cpumask_var_t cpus;
 212        bool called;
 213        struct kvm_vcpu *vcpu;
 214
 215        zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 216
 217        me = get_cpu();
 218        kvm_for_each_vcpu(i, vcpu, kvm) {
 219                kvm_make_request(req, vcpu);
 220                cpu = vcpu->cpu;
 221
 222                if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
 223                        continue;
 224
 225                if (cpus != NULL && cpu != -1 && cpu != me &&
 226                    kvm_request_needs_ipi(vcpu, req))
 227                        __cpumask_set_cpu(cpu, cpus);
 228        }
 229        called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
 230        put_cpu();
 231        free_cpumask_var(cpus);
 232        return called;
 233}
 234
 235#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
 236void kvm_flush_remote_tlbs(struct kvm *kvm)
 237{
 238        /*
 239         * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
 240         * kvm_make_all_cpus_request.
 241         */
 242        long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
 243
 244        /*
 245         * We want to publish modifications to the page tables before reading
 246         * mode. Pairs with a memory barrier in arch-specific code.
 247         * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
 248         * and smp_mb in walk_shadow_page_lockless_begin/end.
 249         * - powerpc: smp_mb in kvmppc_prepare_to_enter.
 250         *
 251         * There is already an smp_mb__after_atomic() before
 252         * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
 253         * barrier here.
 254         */
 255        if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 256                ++kvm->stat.remote_tlb_flush;
 257        cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 258}
 259EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
 260#endif
 261
 262void kvm_reload_remote_mmus(struct kvm *kvm)
 263{
 264        kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 265}
 266
 267int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 268{
 269        struct page *page;
 270        int r;
 271
 272        mutex_init(&vcpu->mutex);
 273        vcpu->cpu = -1;
 274        vcpu->kvm = kvm;
 275        vcpu->vcpu_id = id;
 276        vcpu->pid = NULL;
 277        init_swait_queue_head(&vcpu->wq);
 278        kvm_async_pf_vcpu_init(vcpu);
 279
 280        vcpu->pre_pcpu = -1;
 281        INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
 282
 283        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 284        if (!page) {
 285                r = -ENOMEM;
 286                goto fail;
 287        }
 288        vcpu->run = page_address(page);
 289
 290        kvm_vcpu_set_in_spin_loop(vcpu, false);
 291        kvm_vcpu_set_dy_eligible(vcpu, false);
 292        vcpu->preempted = false;
 293
 294        r = kvm_arch_vcpu_init(vcpu);
 295        if (r < 0)
 296                goto fail_free_run;
 297        return 0;
 298
 299fail_free_run:
 300        free_page((unsigned long)vcpu->run);
 301fail:
 302        return r;
 303}
 304EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 305
 306void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 307{
 308        /*
 309         * no need for rcu_read_lock as VCPU_RUN is the only place that
 310         * will change the vcpu->pid pointer and on uninit all file
 311         * descriptors are already gone.
 312         */
 313        put_pid(rcu_dereference_protected(vcpu->pid, 1));
 314        kvm_arch_vcpu_uninit(vcpu);
 315        free_page((unsigned long)vcpu->run);
 316}
 317EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 318
 319#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 320static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 321{
 322        return container_of(mn, struct kvm, mmu_notifier);
 323}
 324
 325static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 326                                        struct mm_struct *mm,
 327                                        unsigned long address,
 328                                        pte_t pte)
 329{
 330        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 331        int idx;
 332
 333        idx = srcu_read_lock(&kvm->srcu);
 334        spin_lock(&kvm->mmu_lock);
 335        kvm->mmu_notifier_seq++;
 336        kvm_set_spte_hva(kvm, address, pte);
 337        spin_unlock(&kvm->mmu_lock);
 338        srcu_read_unlock(&kvm->srcu, idx);
 339}
 340
 341static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 342                                                    struct mm_struct *mm,
 343                                                    unsigned long start,
 344                                                    unsigned long end)
 345{
 346        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 347        int need_tlb_flush = 0, idx;
 348
 349        idx = srcu_read_lock(&kvm->srcu);
 350        spin_lock(&kvm->mmu_lock);
 351        /*
 352         * The count increase must become visible at unlock time as no
 353         * spte can be established without taking the mmu_lock and
 354         * count is also read inside the mmu_lock critical section.
 355         */
 356        kvm->mmu_notifier_count++;
 357        need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
 358        need_tlb_flush |= kvm->tlbs_dirty;
 359        /* we've to flush the tlb before the pages can be freed */
 360        if (need_tlb_flush)
 361                kvm_flush_remote_tlbs(kvm);
 362
 363        spin_unlock(&kvm->mmu_lock);
 364        srcu_read_unlock(&kvm->srcu, idx);
 365}
 366
 367static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 368                                                  struct mm_struct *mm,
 369                                                  unsigned long start,
 370                                                  unsigned long end)
 371{
 372        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 373
 374        spin_lock(&kvm->mmu_lock);
 375        /*
 376         * This sequence increase will notify the kvm page fault that
 377         * the page that is going to be mapped in the spte could have
 378         * been freed.
 379         */
 380        kvm->mmu_notifier_seq++;
 381        smp_wmb();
 382        /*
 383         * The above sequence increase must be visible before the
 384         * below count decrease, which is ensured by the smp_wmb above
 385         * in conjunction with the smp_rmb in mmu_notifier_retry().
 386         */
 387        kvm->mmu_notifier_count--;
 388        spin_unlock(&kvm->mmu_lock);
 389
 390        BUG_ON(kvm->mmu_notifier_count < 0);
 391}
 392
 393static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 394                                              struct mm_struct *mm,
 395                                              unsigned long start,
 396                                              unsigned long end)
 397{
 398        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 399        int young, idx;
 400
 401        idx = srcu_read_lock(&kvm->srcu);
 402        spin_lock(&kvm->mmu_lock);
 403
 404        young = kvm_age_hva(kvm, start, end);
 405        if (young)
 406                kvm_flush_remote_tlbs(kvm);
 407
 408        spin_unlock(&kvm->mmu_lock);
 409        srcu_read_unlock(&kvm->srcu, idx);
 410
 411        return young;
 412}
 413
 414static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
 415                                        struct mm_struct *mm,
 416                                        unsigned long start,
 417                                        unsigned long end)
 418{
 419        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 420        int young, idx;
 421
 422        idx = srcu_read_lock(&kvm->srcu);
 423        spin_lock(&kvm->mmu_lock);
 424        /*
 425         * Even though we do not flush TLB, this will still adversely
 426         * affect performance on pre-Haswell Intel EPT, where there is
 427         * no EPT Access Bit to clear so that we have to tear down EPT
 428         * tables instead. If we find this unacceptable, we can always
 429         * add a parameter to kvm_age_hva so that it effectively doesn't
 430         * do anything on clear_young.
 431         *
 432         * Also note that currently we never issue secondary TLB flushes
 433         * from clear_young, leaving this job up to the regular system
 434         * cadence. If we find this inaccurate, we might come up with a
 435         * more sophisticated heuristic later.
 436         */
 437        young = kvm_age_hva(kvm, start, end);
 438        spin_unlock(&kvm->mmu_lock);
 439        srcu_read_unlock(&kvm->srcu, idx);
 440
 441        return young;
 442}
 443
 444static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 445                                       struct mm_struct *mm,
 446                                       unsigned long address)
 447{
 448        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 449        int young, idx;
 450
 451        idx = srcu_read_lock(&kvm->srcu);
 452        spin_lock(&kvm->mmu_lock);
 453        young = kvm_test_age_hva(kvm, address);
 454        spin_unlock(&kvm->mmu_lock);
 455        srcu_read_unlock(&kvm->srcu, idx);
 456
 457        return young;
 458}
 459
 460static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 461                                     struct mm_struct *mm)
 462{
 463        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 464        int idx;
 465
 466        idx = srcu_read_lock(&kvm->srcu);
 467        kvm_arch_flush_shadow_all(kvm);
 468        srcu_read_unlock(&kvm->srcu, idx);
 469}
 470
 471static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 472        .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
 473        .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
 474        .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
 475        .clear_young            = kvm_mmu_notifier_clear_young,
 476        .test_young             = kvm_mmu_notifier_test_young,
 477        .change_pte             = kvm_mmu_notifier_change_pte,
 478        .release                = kvm_mmu_notifier_release,
 479};
 480
 481static int kvm_init_mmu_notifier(struct kvm *kvm)
 482{
 483        kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 484        return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 485}
 486
 487#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 488
 489static int kvm_init_mmu_notifier(struct kvm *kvm)
 490{
 491        return 0;
 492}
 493
 494#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 495
 496static struct kvm_memslots *kvm_alloc_memslots(void)
 497{
 498        int i;
 499        struct kvm_memslots *slots;
 500
 501        slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 502        if (!slots)
 503                return NULL;
 504
 505        for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 506                slots->id_to_index[i] = slots->memslots[i].id = i;
 507
 508        return slots;
 509}
 510
 511static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 512{
 513        if (!memslot->dirty_bitmap)
 514                return;
 515
 516        kvfree(memslot->dirty_bitmap);
 517        memslot->dirty_bitmap = NULL;
 518}
 519
 520/*
 521 * Free any memory in @free but not in @dont.
 522 */
 523static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
 524                              struct kvm_memory_slot *dont)
 525{
 526        if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 527                kvm_destroy_dirty_bitmap(free);
 528
 529        kvm_arch_free_memslot(kvm, free, dont);
 530
 531        free->npages = 0;
 532}
 533
 534static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
 535{
 536        struct kvm_memory_slot *memslot;
 537
 538        if (!slots)
 539                return;
 540
 541        kvm_for_each_memslot(memslot, slots)
 542                kvm_free_memslot(kvm, memslot, NULL);
 543
 544        kvfree(slots);
 545}
 546
 547static void kvm_destroy_vm_debugfs(struct kvm *kvm)
 548{
 549        int i;
 550
 551        if (!kvm->debugfs_dentry)
 552                return;
 553
 554        debugfs_remove_recursive(kvm->debugfs_dentry);
 555
 556        if (kvm->debugfs_stat_data) {
 557                for (i = 0; i < kvm_debugfs_num_entries; i++)
 558                        kfree(kvm->debugfs_stat_data[i]);
 559                kfree(kvm->debugfs_stat_data);
 560        }
 561}
 562
 563static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
 564{
 565        char dir_name[ITOA_MAX_LEN * 2];
 566        struct kvm_stat_data *stat_data;
 567        struct kvm_stats_debugfs_item *p;
 568
 569        if (!debugfs_initialized())
 570                return 0;
 571
 572        snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
 573        kvm->debugfs_dentry = debugfs_create_dir(dir_name,
 574                                                 kvm_debugfs_dir);
 575        if (!kvm->debugfs_dentry)
 576                return -ENOMEM;
 577
 578        kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
 579                                         sizeof(*kvm->debugfs_stat_data),
 580                                         GFP_KERNEL);
 581        if (!kvm->debugfs_stat_data)
 582                return -ENOMEM;
 583
 584        for (p = debugfs_entries; p->name; p++) {
 585                stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
 586                if (!stat_data)
 587                        return -ENOMEM;
 588
 589                stat_data->kvm = kvm;
 590                stat_data->offset = p->offset;
 591                kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
 592                if (!debugfs_create_file(p->name, 0644,
 593                                         kvm->debugfs_dentry,
 594                                         stat_data,
 595                                         stat_fops_per_vm[p->kind]))
 596                        return -ENOMEM;
 597        }
 598        return 0;
 599}
 600
 601static struct kvm *kvm_create_vm(unsigned long type)
 602{
 603        int r, i;
 604        struct kvm *kvm = kvm_arch_alloc_vm();
 605
 606        if (!kvm)
 607                return ERR_PTR(-ENOMEM);
 608
 609        spin_lock_init(&kvm->mmu_lock);
 610        mmgrab(current->mm);
 611        kvm->mm = current->mm;
 612        kvm_eventfd_init(kvm);
 613        mutex_init(&kvm->lock);
 614        mutex_init(&kvm->irq_lock);
 615        mutex_init(&kvm->slots_lock);
 616        refcount_set(&kvm->users_count, 1);
 617        INIT_LIST_HEAD(&kvm->devices);
 618
 619        r = kvm_arch_init_vm(kvm, type);
 620        if (r)
 621                goto out_err_no_disable;
 622
 623        r = hardware_enable_all();
 624        if (r)
 625                goto out_err_no_disable;
 626
 627#ifdef CONFIG_HAVE_KVM_IRQFD
 628        INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 629#endif
 630
 631        BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
 632
 633        r = -ENOMEM;
 634        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 635                struct kvm_memslots *slots = kvm_alloc_memslots();
 636                if (!slots)
 637                        goto out_err_no_srcu;
 638                /*
 639                 * Generations must be different for each address space.
 640                 * Init kvm generation close to the maximum to easily test the
 641                 * code of handling generation number wrap-around.
 642                 */
 643                slots->generation = i * 2 - 150;
 644                rcu_assign_pointer(kvm->memslots[i], slots);
 645        }
 646
 647        if (init_srcu_struct(&kvm->srcu))
 648                goto out_err_no_srcu;
 649        if (init_srcu_struct(&kvm->irq_srcu))
 650                goto out_err_no_irq_srcu;
 651        for (i = 0; i < KVM_NR_BUSES; i++) {
 652                rcu_assign_pointer(kvm->buses[i],
 653                        kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
 654                if (!kvm->buses[i])
 655                        goto out_err;
 656        }
 657
 658        r = kvm_init_mmu_notifier(kvm);
 659        if (r)
 660                goto out_err;
 661
 662        spin_lock(&kvm_lock);
 663        list_add(&kvm->vm_list, &vm_list);
 664        spin_unlock(&kvm_lock);
 665
 666        preempt_notifier_inc();
 667
 668        return kvm;
 669
 670out_err:
 671        cleanup_srcu_struct(&kvm->irq_srcu);
 672out_err_no_irq_srcu:
 673        cleanup_srcu_struct(&kvm->srcu);
 674out_err_no_srcu:
 675        hardware_disable_all();
 676out_err_no_disable:
 677        for (i = 0; i < KVM_NR_BUSES; i++)
 678                kfree(kvm_get_bus(kvm, i));
 679        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 680                kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 681        kvm_arch_free_vm(kvm);
 682        mmdrop(current->mm);
 683        return ERR_PTR(r);
 684}
 685
 686static void kvm_destroy_devices(struct kvm *kvm)
 687{
 688        struct kvm_device *dev, *tmp;
 689
 690        /*
 691         * We do not need to take the kvm->lock here, because nobody else
 692         * has a reference to the struct kvm at this point and therefore
 693         * cannot access the devices list anyhow.
 694         */
 695        list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
 696                list_del(&dev->vm_node);
 697                dev->ops->destroy(dev);
 698        }
 699}
 700
 701static void kvm_destroy_vm(struct kvm *kvm)
 702{
 703        int i;
 704        struct mm_struct *mm = kvm->mm;
 705
 706        kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
 707        kvm_destroy_vm_debugfs(kvm);
 708        kvm_arch_sync_events(kvm);
 709        spin_lock(&kvm_lock);
 710        list_del(&kvm->vm_list);
 711        spin_unlock(&kvm_lock);
 712        kvm_free_irq_routing(kvm);
 713        for (i = 0; i < KVM_NR_BUSES; i++) {
 714                struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
 715
 716                if (bus)
 717                        kvm_io_bus_destroy(bus);
 718                kvm->buses[i] = NULL;
 719        }
 720        kvm_coalesced_mmio_free(kvm);
 721#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 722        mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 723#else
 724        kvm_arch_flush_shadow_all(kvm);
 725#endif
 726        kvm_arch_destroy_vm(kvm);
 727        kvm_destroy_devices(kvm);
 728        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 729                kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 730        cleanup_srcu_struct(&kvm->irq_srcu);
 731        cleanup_srcu_struct(&kvm->srcu);
 732        kvm_arch_free_vm(kvm);
 733        preempt_notifier_dec();
 734        hardware_disable_all();
 735        mmdrop(mm);
 736}
 737
 738void kvm_get_kvm(struct kvm *kvm)
 739{
 740        refcount_inc(&kvm->users_count);
 741}
 742EXPORT_SYMBOL_GPL(kvm_get_kvm);
 743
 744void kvm_put_kvm(struct kvm *kvm)
 745{
 746        if (refcount_dec_and_test(&kvm->users_count))
 747                kvm_destroy_vm(kvm);
 748}
 749EXPORT_SYMBOL_GPL(kvm_put_kvm);
 750
 751
 752static int kvm_vm_release(struct inode *inode, struct file *filp)
 753{
 754        struct kvm *kvm = filp->private_data;
 755
 756        kvm_irqfd_release(kvm);
 757
 758        kvm_put_kvm(kvm);
 759        return 0;
 760}
 761
 762/*
 763 * Allocation size is twice as large as the actual dirty bitmap size.
 764 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
 765 */
 766static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 767{
 768        unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 769
 770        memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
 771        if (!memslot->dirty_bitmap)
 772                return -ENOMEM;
 773
 774        return 0;
 775}
 776
 777/*
 778 * Insert memslot and re-sort memslots based on their GFN,
 779 * so binary search could be used to lookup GFN.
 780 * Sorting algorithm takes advantage of having initially
 781 * sorted array and known changed memslot position.
 782 */
 783static void update_memslots(struct kvm_memslots *slots,
 784                            struct kvm_memory_slot *new)
 785{
 786        int id = new->id;
 787        int i = slots->id_to_index[id];
 788        struct kvm_memory_slot *mslots = slots->memslots;
 789
 790        WARN_ON(mslots[i].id != id);
 791        if (!new->npages) {
 792                WARN_ON(!mslots[i].npages);
 793                if (mslots[i].npages)
 794                        slots->used_slots--;
 795        } else {
 796                if (!mslots[i].npages)
 797                        slots->used_slots++;
 798        }
 799
 800        while (i < KVM_MEM_SLOTS_NUM - 1 &&
 801               new->base_gfn <= mslots[i + 1].base_gfn) {
 802                if (!mslots[i + 1].npages)
 803                        break;
 804                mslots[i] = mslots[i + 1];
 805                slots->id_to_index[mslots[i].id] = i;
 806                i++;
 807        }
 808
 809        /*
 810         * The ">=" is needed when creating a slot with base_gfn == 0,
 811         * so that it moves before all those with base_gfn == npages == 0.
 812         *
 813         * On the other hand, if new->npages is zero, the above loop has
 814         * already left i pointing to the beginning of the empty part of
 815         * mslots, and the ">=" would move the hole backwards in this
 816         * case---which is wrong.  So skip the loop when deleting a slot.
 817         */
 818        if (new->npages) {
 819                while (i > 0 &&
 820                       new->base_gfn >= mslots[i - 1].base_gfn) {
 821                        mslots[i] = mslots[i - 1];
 822                        slots->id_to_index[mslots[i].id] = i;
 823                        i--;
 824                }
 825        } else
 826                WARN_ON_ONCE(i != slots->used_slots);
 827
 828        mslots[i] = *new;
 829        slots->id_to_index[mslots[i].id] = i;
 830}
 831
 832static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
 833{
 834        u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
 835
 836#ifdef __KVM_HAVE_READONLY_MEM
 837        valid_flags |= KVM_MEM_READONLY;
 838#endif
 839
 840        if (mem->flags & ~valid_flags)
 841                return -EINVAL;
 842
 843        return 0;
 844}
 845
 846static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
 847                int as_id, struct kvm_memslots *slots)
 848{
 849        struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
 850
 851        /*
 852         * Set the low bit in the generation, which disables SPTE caching
 853         * until the end of synchronize_srcu_expedited.
 854         */
 855        WARN_ON(old_memslots->generation & 1);
 856        slots->generation = old_memslots->generation + 1;
 857
 858        rcu_assign_pointer(kvm->memslots[as_id], slots);
 859        synchronize_srcu_expedited(&kvm->srcu);
 860
 861        /*
 862         * Increment the new memslot generation a second time. This prevents
 863         * vm exits that race with memslot updates from caching a memslot
 864         * generation that will (potentially) be valid forever.
 865         *
 866         * Generations must be unique even across address spaces.  We do not need
 867         * a global counter for that, instead the generation space is evenly split
 868         * across address spaces.  For example, with two address spaces, address
 869         * space 0 will use generations 0, 4, 8, ... while * address space 1 will
 870         * use generations 2, 6, 10, 14, ...
 871         */
 872        slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
 873
 874        kvm_arch_memslots_updated(kvm, slots);
 875
 876        return old_memslots;
 877}
 878
 879/*
 880 * Allocate some memory and give it an address in the guest physical address
 881 * space.
 882 *
 883 * Discontiguous memory is allowed, mostly for framebuffers.
 884 *
 885 * Must be called holding kvm->slots_lock for write.
 886 */
 887int __kvm_set_memory_region(struct kvm *kvm,
 888                            const struct kvm_userspace_memory_region *mem)
 889{
 890        int r;
 891        gfn_t base_gfn;
 892        unsigned long npages;
 893        struct kvm_memory_slot *slot;
 894        struct kvm_memory_slot old, new;
 895        struct kvm_memslots *slots = NULL, *old_memslots;
 896        int as_id, id;
 897        enum kvm_mr_change change;
 898
 899        r = check_memory_region_flags(mem);
 900        if (r)
 901                goto out;
 902
 903        r = -EINVAL;
 904        as_id = mem->slot >> 16;
 905        id = (u16)mem->slot;
 906
 907        /* General sanity checks */
 908        if (mem->memory_size & (PAGE_SIZE - 1))
 909                goto out;
 910        if (mem->guest_phys_addr & (PAGE_SIZE - 1))
 911                goto out;
 912        /* We can read the guest memory with __xxx_user() later on. */
 913        if ((id < KVM_USER_MEM_SLOTS) &&
 914            ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
 915             !access_ok(VERIFY_WRITE,
 916                        (void __user *)(unsigned long)mem->userspace_addr,
 917                        mem->memory_size)))
 918                goto out;
 919        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
 920                goto out;
 921        if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
 922                goto out;
 923
 924        slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
 925        base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
 926        npages = mem->memory_size >> PAGE_SHIFT;
 927
 928        if (npages > KVM_MEM_MAX_NR_PAGES)
 929                goto out;
 930
 931        new = old = *slot;
 932
 933        new.id = id;
 934        new.base_gfn = base_gfn;
 935        new.npages = npages;
 936        new.flags = mem->flags;
 937
 938        if (npages) {
 939                if (!old.npages)
 940                        change = KVM_MR_CREATE;
 941                else { /* Modify an existing slot. */
 942                        if ((mem->userspace_addr != old.userspace_addr) ||
 943                            (npages != old.npages) ||
 944                            ((new.flags ^ old.flags) & KVM_MEM_READONLY))
 945                                goto out;
 946
 947                        if (base_gfn != old.base_gfn)
 948                                change = KVM_MR_MOVE;
 949                        else if (new.flags != old.flags)
 950                                change = KVM_MR_FLAGS_ONLY;
 951                        else { /* Nothing to change. */
 952                                r = 0;
 953                                goto out;
 954                        }
 955                }
 956        } else {
 957                if (!old.npages)
 958                        goto out;
 959
 960                change = KVM_MR_DELETE;
 961                new.base_gfn = 0;
 962                new.flags = 0;
 963        }
 964
 965        if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
 966                /* Check for overlaps */
 967                r = -EEXIST;
 968                kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
 969                        if ((slot->id >= KVM_USER_MEM_SLOTS) ||
 970                            (slot->id == id))
 971                                continue;
 972                        if (!((base_gfn + npages <= slot->base_gfn) ||
 973                              (base_gfn >= slot->base_gfn + slot->npages)))
 974                                goto out;
 975                }
 976        }
 977
 978        /* Free page dirty bitmap if unneeded */
 979        if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
 980                new.dirty_bitmap = NULL;
 981
 982        r = -ENOMEM;
 983        if (change == KVM_MR_CREATE) {
 984                new.userspace_addr = mem->userspace_addr;
 985
 986                if (kvm_arch_create_memslot(kvm, &new, npages))
 987                        goto out_free;
 988        }
 989
 990        /* Allocate page dirty bitmap if needed */
 991        if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
 992                if (kvm_create_dirty_bitmap(&new) < 0)
 993                        goto out_free;
 994        }
 995
 996        slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 997        if (!slots)
 998                goto out_free;
 999        memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1000
1001        if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1002                slot = id_to_memslot(slots, id);
1003                slot->flags |= KVM_MEMSLOT_INVALID;
1004
1005                old_memslots = install_new_memslots(kvm, as_id, slots);
1006
1007                /* From this point no new shadow pages pointing to a deleted,
1008                 * or moved, memslot will be created.
1009                 *
1010                 * validation of sp->gfn happens in:
1011                 *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1012                 *      - kvm_is_visible_gfn (mmu_check_roots)
1013                 */
1014                kvm_arch_flush_shadow_memslot(kvm, slot);
1015
1016                /*
1017                 * We can re-use the old_memslots from above, the only difference
1018                 * from the currently installed memslots is the invalid flag.  This
1019                 * will get overwritten by update_memslots anyway.
1020                 */
1021                slots = old_memslots;
1022        }
1023
1024        r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1025        if (r)
1026                goto out_slots;
1027
1028        /* actual memory is freed via old in kvm_free_memslot below */
1029        if (change == KVM_MR_DELETE) {
1030                new.dirty_bitmap = NULL;
1031                memset(&new.arch, 0, sizeof(new.arch));
1032        }
1033
1034        update_memslots(slots, &new);
1035        old_memslots = install_new_memslots(kvm, as_id, slots);
1036
1037        kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1038
1039        kvm_free_memslot(kvm, &old, &new);
1040        kvfree(old_memslots);
1041        return 0;
1042
1043out_slots:
1044        kvfree(slots);
1045out_free:
1046        kvm_free_memslot(kvm, &new, &old);
1047out:
1048        return r;
1049}
1050EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1051
1052int kvm_set_memory_region(struct kvm *kvm,
1053                          const struct kvm_userspace_memory_region *mem)
1054{
1055        int r;
1056
1057        mutex_lock(&kvm->slots_lock);
1058        r = __kvm_set_memory_region(kvm, mem);
1059        mutex_unlock(&kvm->slots_lock);
1060        return r;
1061}
1062EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1063
1064static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1065                                          struct kvm_userspace_memory_region *mem)
1066{
1067        if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1068                return -EINVAL;
1069
1070        return kvm_set_memory_region(kvm, mem);
1071}
1072
1073int kvm_get_dirty_log(struct kvm *kvm,
1074                        struct kvm_dirty_log *log, int *is_dirty)
1075{
1076        struct kvm_memslots *slots;
1077        struct kvm_memory_slot *memslot;
1078        int i, as_id, id;
1079        unsigned long n;
1080        unsigned long any = 0;
1081
1082        as_id = log->slot >> 16;
1083        id = (u16)log->slot;
1084        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1085                return -EINVAL;
1086
1087        slots = __kvm_memslots(kvm, as_id);
1088        memslot = id_to_memslot(slots, id);
1089        if (!memslot->dirty_bitmap)
1090                return -ENOENT;
1091
1092        n = kvm_dirty_bitmap_bytes(memslot);
1093
1094        for (i = 0; !any && i < n/sizeof(long); ++i)
1095                any = memslot->dirty_bitmap[i];
1096
1097        if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1098                return -EFAULT;
1099
1100        if (any)
1101                *is_dirty = 1;
1102        return 0;
1103}
1104EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1105
1106#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1107/**
1108 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1109 *      are dirty write protect them for next write.
1110 * @kvm:        pointer to kvm instance
1111 * @log:        slot id and address to which we copy the log
1112 * @is_dirty:   flag set if any page is dirty
1113 *
1114 * We need to keep it in mind that VCPU threads can write to the bitmap
1115 * concurrently. So, to avoid losing track of dirty pages we keep the
1116 * following order:
1117 *
1118 *    1. Take a snapshot of the bit and clear it if needed.
1119 *    2. Write protect the corresponding page.
1120 *    3. Copy the snapshot to the userspace.
1121 *    4. Upon return caller flushes TLB's if needed.
1122 *
1123 * Between 2 and 4, the guest may write to the page using the remaining TLB
1124 * entry.  This is not a problem because the page is reported dirty using
1125 * the snapshot taken before and step 4 ensures that writes done after
1126 * exiting to userspace will be logged for the next call.
1127 *
1128 */
1129int kvm_get_dirty_log_protect(struct kvm *kvm,
1130                        struct kvm_dirty_log *log, bool *is_dirty)
1131{
1132        struct kvm_memslots *slots;
1133        struct kvm_memory_slot *memslot;
1134        int i, as_id, id;
1135        unsigned long n;
1136        unsigned long *dirty_bitmap;
1137        unsigned long *dirty_bitmap_buffer;
1138
1139        as_id = log->slot >> 16;
1140        id = (u16)log->slot;
1141        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1142                return -EINVAL;
1143
1144        slots = __kvm_memslots(kvm, as_id);
1145        memslot = id_to_memslot(slots, id);
1146
1147        dirty_bitmap = memslot->dirty_bitmap;
1148        if (!dirty_bitmap)
1149                return -ENOENT;
1150
1151        n = kvm_dirty_bitmap_bytes(memslot);
1152
1153        dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1154        memset(dirty_bitmap_buffer, 0, n);
1155
1156        spin_lock(&kvm->mmu_lock);
1157        *is_dirty = false;
1158        for (i = 0; i < n / sizeof(long); i++) {
1159                unsigned long mask;
1160                gfn_t offset;
1161
1162                if (!dirty_bitmap[i])
1163                        continue;
1164
1165                *is_dirty = true;
1166
1167                mask = xchg(&dirty_bitmap[i], 0);
1168                dirty_bitmap_buffer[i] = mask;
1169
1170                if (mask) {
1171                        offset = i * BITS_PER_LONG;
1172                        kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1173                                                                offset, mask);
1174                }
1175        }
1176
1177        spin_unlock(&kvm->mmu_lock);
1178        if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1179                return -EFAULT;
1180        return 0;
1181}
1182EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1183#endif
1184
1185bool kvm_largepages_enabled(void)
1186{
1187        return largepages_enabled;
1188}
1189
1190void kvm_disable_largepages(void)
1191{
1192        largepages_enabled = false;
1193}
1194EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1195
1196struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1197{
1198        return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1199}
1200EXPORT_SYMBOL_GPL(gfn_to_memslot);
1201
1202struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1203{
1204        return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1205}
1206
1207bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1208{
1209        struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1210
1211        if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1212              memslot->flags & KVM_MEMSLOT_INVALID)
1213                return false;
1214
1215        return true;
1216}
1217EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1218
1219unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1220{
1221        struct vm_area_struct *vma;
1222        unsigned long addr, size;
1223
1224        size = PAGE_SIZE;
1225
1226        addr = gfn_to_hva(kvm, gfn);
1227        if (kvm_is_error_hva(addr))
1228                return PAGE_SIZE;
1229
1230        down_read(&current->mm->mmap_sem);
1231        vma = find_vma(current->mm, addr);
1232        if (!vma)
1233                goto out;
1234
1235        size = vma_kernel_pagesize(vma);
1236
1237out:
1238        up_read(&current->mm->mmap_sem);
1239
1240        return size;
1241}
1242
1243static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1244{
1245        return slot->flags & KVM_MEM_READONLY;
1246}
1247
1248static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1249                                       gfn_t *nr_pages, bool write)
1250{
1251        if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1252                return KVM_HVA_ERR_BAD;
1253
1254        if (memslot_is_readonly(slot) && write)
1255                return KVM_HVA_ERR_RO_BAD;
1256
1257        if (nr_pages)
1258                *nr_pages = slot->npages - (gfn - slot->base_gfn);
1259
1260        return __gfn_to_hva_memslot(slot, gfn);
1261}
1262
1263static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1264                                     gfn_t *nr_pages)
1265{
1266        return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1267}
1268
1269unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1270                                        gfn_t gfn)
1271{
1272        return gfn_to_hva_many(slot, gfn, NULL);
1273}
1274EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1275
1276unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1277{
1278        return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1279}
1280EXPORT_SYMBOL_GPL(gfn_to_hva);
1281
1282unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1283{
1284        return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1285}
1286EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1287
1288/*
1289 * If writable is set to false, the hva returned by this function is only
1290 * allowed to be read.
1291 */
1292unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1293                                      gfn_t gfn, bool *writable)
1294{
1295        unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1296
1297        if (!kvm_is_error_hva(hva) && writable)
1298                *writable = !memslot_is_readonly(slot);
1299
1300        return hva;
1301}
1302
1303unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1304{
1305        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1306
1307        return gfn_to_hva_memslot_prot(slot, gfn, writable);
1308}
1309
1310unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1311{
1312        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1313
1314        return gfn_to_hva_memslot_prot(slot, gfn, writable);
1315}
1316
1317static int get_user_page_nowait(unsigned long start, int write,
1318                struct page **page)
1319{
1320        int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1321
1322        if (write)
1323                flags |= FOLL_WRITE;
1324
1325        return get_user_pages(start, 1, flags, page, NULL);
1326}
1327
1328static inline int check_user_page_hwpoison(unsigned long addr)
1329{
1330        int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1331
1332        rc = get_user_pages(addr, 1, flags, NULL, NULL);
1333        return rc == -EHWPOISON;
1334}
1335
1336/*
1337 * The atomic path to get the writable pfn which will be stored in @pfn,
1338 * true indicates success, otherwise false is returned.
1339 */
1340static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1341                            bool write_fault, bool *writable, kvm_pfn_t *pfn)
1342{
1343        struct page *page[1];
1344        int npages;
1345
1346        if (!(async || atomic))
1347                return false;
1348
1349        /*
1350         * Fast pin a writable pfn only if it is a write fault request
1351         * or the caller allows to map a writable pfn for a read fault
1352         * request.
1353         */
1354        if (!(write_fault || writable))
1355                return false;
1356
1357        npages = __get_user_pages_fast(addr, 1, 1, page);
1358        if (npages == 1) {
1359                *pfn = page_to_pfn(page[0]);
1360
1361                if (writable)
1362                        *writable = true;
1363                return true;
1364        }
1365
1366        return false;
1367}
1368
1369/*
1370 * The slow path to get the pfn of the specified host virtual address,
1371 * 1 indicates success, -errno is returned if error is detected.
1372 */
1373static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1374                           bool *writable, kvm_pfn_t *pfn)
1375{
1376        struct page *page[1];
1377        int npages = 0;
1378
1379        might_sleep();
1380
1381        if (writable)
1382                *writable = write_fault;
1383
1384        if (async) {
1385                down_read(&current->mm->mmap_sem);
1386                npages = get_user_page_nowait(addr, write_fault, page);
1387                up_read(&current->mm->mmap_sem);
1388        } else {
1389                unsigned int flags = FOLL_HWPOISON;
1390
1391                if (write_fault)
1392                        flags |= FOLL_WRITE;
1393
1394                npages = get_user_pages_unlocked(addr, 1, page, flags);
1395        }
1396        if (npages != 1)
1397                return npages;
1398
1399        /* map read fault as writable if possible */
1400        if (unlikely(!write_fault) && writable) {
1401                struct page *wpage[1];
1402
1403                npages = __get_user_pages_fast(addr, 1, 1, wpage);
1404                if (npages == 1) {
1405                        *writable = true;
1406                        put_page(page[0]);
1407                        page[0] = wpage[0];
1408                }
1409
1410                npages = 1;
1411        }
1412        *pfn = page_to_pfn(page[0]);
1413        return npages;
1414}
1415
1416static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1417{
1418        if (unlikely(!(vma->vm_flags & VM_READ)))
1419                return false;
1420
1421        if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1422                return false;
1423
1424        return true;
1425}
1426
1427static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1428                               unsigned long addr, bool *async,
1429                               bool write_fault, kvm_pfn_t *p_pfn)
1430{
1431        unsigned long pfn;
1432        int r;
1433
1434        r = follow_pfn(vma, addr, &pfn);
1435        if (r) {
1436                /*
1437                 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1438                 * not call the fault handler, so do it here.
1439                 */
1440                bool unlocked = false;
1441                r = fixup_user_fault(current, current->mm, addr,
1442                                     (write_fault ? FAULT_FLAG_WRITE : 0),
1443                                     &unlocked);
1444                if (unlocked)
1445                        return -EAGAIN;
1446                if (r)
1447                        return r;
1448
1449                r = follow_pfn(vma, addr, &pfn);
1450                if (r)
1451                        return r;
1452
1453        }
1454
1455
1456        /*
1457         * Get a reference here because callers of *hva_to_pfn* and
1458         * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1459         * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1460         * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1461         * simply do nothing for reserved pfns.
1462         *
1463         * Whoever called remap_pfn_range is also going to call e.g.
1464         * unmap_mapping_range before the underlying pages are freed,
1465         * causing a call to our MMU notifier.
1466         */ 
1467        kvm_get_pfn(pfn);
1468
1469        *p_pfn = pfn;
1470        return 0;
1471}
1472
1473/*
1474 * Pin guest page in memory and return its pfn.
1475 * @addr: host virtual address which maps memory to the guest
1476 * @atomic: whether this function can sleep
1477 * @async: whether this function need to wait IO complete if the
1478 *         host page is not in the memory
1479 * @write_fault: whether we should get a writable host page
1480 * @writable: whether it allows to map a writable host page for !@write_fault
1481 *
1482 * The function will map a writable host page for these two cases:
1483 * 1): @write_fault = true
1484 * 2): @write_fault = false && @writable, @writable will tell the caller
1485 *     whether the mapping is writable.
1486 */
1487static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1488                        bool write_fault, bool *writable)
1489{
1490        struct vm_area_struct *vma;
1491        kvm_pfn_t pfn = 0;
1492        int npages, r;
1493
1494        /* we can do it either atomically or asynchronously, not both */
1495        BUG_ON(atomic && async);
1496
1497        if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1498                return pfn;
1499
1500        if (atomic)
1501                return KVM_PFN_ERR_FAULT;
1502
1503        npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1504        if (npages == 1)
1505                return pfn;
1506
1507        down_read(&current->mm->mmap_sem);
1508        if (npages == -EHWPOISON ||
1509              (!async && check_user_page_hwpoison(addr))) {
1510                pfn = KVM_PFN_ERR_HWPOISON;
1511                goto exit;
1512        }
1513
1514retry:
1515        vma = find_vma_intersection(current->mm, addr, addr + 1);
1516
1517        if (vma == NULL)
1518                pfn = KVM_PFN_ERR_FAULT;
1519        else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1520                r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1521                if (r == -EAGAIN)
1522                        goto retry;
1523                if (r < 0)
1524                        pfn = KVM_PFN_ERR_FAULT;
1525        } else {
1526                if (async && vma_is_valid(vma, write_fault))
1527                        *async = true;
1528                pfn = KVM_PFN_ERR_FAULT;
1529        }
1530exit:
1531        up_read(&current->mm->mmap_sem);
1532        return pfn;
1533}
1534
1535kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1536                               bool atomic, bool *async, bool write_fault,
1537                               bool *writable)
1538{
1539        unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1540
1541        if (addr == KVM_HVA_ERR_RO_BAD) {
1542                if (writable)
1543                        *writable = false;
1544                return KVM_PFN_ERR_RO_FAULT;
1545        }
1546
1547        if (kvm_is_error_hva(addr)) {
1548                if (writable)
1549                        *writable = false;
1550                return KVM_PFN_NOSLOT;
1551        }
1552
1553        /* Do not map writable pfn in the readonly memslot. */
1554        if (writable && memslot_is_readonly(slot)) {
1555                *writable = false;
1556                writable = NULL;
1557        }
1558
1559        return hva_to_pfn(addr, atomic, async, write_fault,
1560                          writable);
1561}
1562EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1563
1564kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1565                      bool *writable)
1566{
1567        return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1568                                    write_fault, writable);
1569}
1570EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1571
1572kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1573{
1574        return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1575}
1576EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1577
1578kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1579{
1580        return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1581}
1582EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1583
1584kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1585{
1586        return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1587}
1588EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1589
1590kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1591{
1592        return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1593}
1594EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1595
1596kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1597{
1598        return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1599}
1600EXPORT_SYMBOL_GPL(gfn_to_pfn);
1601
1602kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1603{
1604        return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1605}
1606EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1607
1608int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1609                            struct page **pages, int nr_pages)
1610{
1611        unsigned long addr;
1612        gfn_t entry;
1613
1614        addr = gfn_to_hva_many(slot, gfn, &entry);
1615        if (kvm_is_error_hva(addr))
1616                return -1;
1617
1618        if (entry < nr_pages)
1619                return 0;
1620
1621        return __get_user_pages_fast(addr, nr_pages, 1, pages);
1622}
1623EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1624
1625static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1626{
1627        if (is_error_noslot_pfn(pfn))
1628                return KVM_ERR_PTR_BAD_PAGE;
1629
1630        if (kvm_is_reserved_pfn(pfn)) {
1631                WARN_ON(1);
1632                return KVM_ERR_PTR_BAD_PAGE;
1633        }
1634
1635        return pfn_to_page(pfn);
1636}
1637
1638struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1639{
1640        kvm_pfn_t pfn;
1641
1642        pfn = gfn_to_pfn(kvm, gfn);
1643
1644        return kvm_pfn_to_page(pfn);
1645}
1646EXPORT_SYMBOL_GPL(gfn_to_page);
1647
1648struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1649{
1650        kvm_pfn_t pfn;
1651
1652        pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1653
1654        return kvm_pfn_to_page(pfn);
1655}
1656EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1657
1658void kvm_release_page_clean(struct page *page)
1659{
1660        WARN_ON(is_error_page(page));
1661
1662        kvm_release_pfn_clean(page_to_pfn(page));
1663}
1664EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1665
1666void kvm_release_pfn_clean(kvm_pfn_t pfn)
1667{
1668        if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1669                put_page(pfn_to_page(pfn));
1670}
1671EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1672
1673void kvm_release_page_dirty(struct page *page)
1674{
1675        WARN_ON(is_error_page(page));
1676
1677        kvm_release_pfn_dirty(page_to_pfn(page));
1678}
1679EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1680
1681static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1682{
1683        kvm_set_pfn_dirty(pfn);
1684        kvm_release_pfn_clean(pfn);
1685}
1686
1687void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1688{
1689        if (!kvm_is_reserved_pfn(pfn)) {
1690                struct page *page = pfn_to_page(pfn);
1691
1692                if (!PageReserved(page))
1693                        SetPageDirty(page);
1694        }
1695}
1696EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1697
1698void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1699{
1700        if (!kvm_is_reserved_pfn(pfn))
1701                mark_page_accessed(pfn_to_page(pfn));
1702}
1703EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1704
1705void kvm_get_pfn(kvm_pfn_t pfn)
1706{
1707        if (!kvm_is_reserved_pfn(pfn))
1708                get_page(pfn_to_page(pfn));
1709}
1710EXPORT_SYMBOL_GPL(kvm_get_pfn);
1711
1712static int next_segment(unsigned long len, int offset)
1713{
1714        if (len > PAGE_SIZE - offset)
1715                return PAGE_SIZE - offset;
1716        else
1717                return len;
1718}
1719
1720static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1721                                 void *data, int offset, int len)
1722{
1723        int r;
1724        unsigned long addr;
1725
1726        addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1727        if (kvm_is_error_hva(addr))
1728                return -EFAULT;
1729        r = __copy_from_user(data, (void __user *)addr + offset, len);
1730        if (r)
1731                return -EFAULT;
1732        return 0;
1733}
1734
1735int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1736                        int len)
1737{
1738        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1739
1740        return __kvm_read_guest_page(slot, gfn, data, offset, len);
1741}
1742EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1743
1744int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1745                             int offset, int len)
1746{
1747        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1748
1749        return __kvm_read_guest_page(slot, gfn, data, offset, len);
1750}
1751EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1752
1753int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1754{
1755        gfn_t gfn = gpa >> PAGE_SHIFT;
1756        int seg;
1757        int offset = offset_in_page(gpa);
1758        int ret;
1759
1760        while ((seg = next_segment(len, offset)) != 0) {
1761                ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1762                if (ret < 0)
1763                        return ret;
1764                offset = 0;
1765                len -= seg;
1766                data += seg;
1767                ++gfn;
1768        }
1769        return 0;
1770}
1771EXPORT_SYMBOL_GPL(kvm_read_guest);
1772
1773int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1774{
1775        gfn_t gfn = gpa >> PAGE_SHIFT;
1776        int seg;
1777        int offset = offset_in_page(gpa);
1778        int ret;
1779
1780        while ((seg = next_segment(len, offset)) != 0) {
1781                ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1782                if (ret < 0)
1783                        return ret;
1784                offset = 0;
1785                len -= seg;
1786                data += seg;
1787                ++gfn;
1788        }
1789        return 0;
1790}
1791EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1792
1793static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1794                                   void *data, int offset, unsigned long len)
1795{
1796        int r;
1797        unsigned long addr;
1798
1799        addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1800        if (kvm_is_error_hva(addr))
1801                return -EFAULT;
1802        pagefault_disable();
1803        r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1804        pagefault_enable();
1805        if (r)
1806                return -EFAULT;
1807        return 0;
1808}
1809
1810int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1811                          unsigned long len)
1812{
1813        gfn_t gfn = gpa >> PAGE_SHIFT;
1814        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1815        int offset = offset_in_page(gpa);
1816
1817        return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1818}
1819EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1820
1821int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1822                               void *data, unsigned long len)
1823{
1824        gfn_t gfn = gpa >> PAGE_SHIFT;
1825        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1826        int offset = offset_in_page(gpa);
1827
1828        return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1829}
1830EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1831
1832static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1833                                  const void *data, int offset, int len)
1834{
1835        int r;
1836        unsigned long addr;
1837
1838        addr = gfn_to_hva_memslot(memslot, gfn);
1839        if (kvm_is_error_hva(addr))
1840                return -EFAULT;
1841        r = __copy_to_user((void __user *)addr + offset, data, len);
1842        if (r)
1843                return -EFAULT;
1844        mark_page_dirty_in_slot(memslot, gfn);
1845        return 0;
1846}
1847
1848int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1849                         const void *data, int offset, int len)
1850{
1851        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1852
1853        return __kvm_write_guest_page(slot, gfn, data, offset, len);
1854}
1855EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1856
1857int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1858                              const void *data, int offset, int len)
1859{
1860        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1861
1862        return __kvm_write_guest_page(slot, gfn, data, offset, len);
1863}
1864EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1865
1866int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1867                    unsigned long len)
1868{
1869        gfn_t gfn = gpa >> PAGE_SHIFT;
1870        int seg;
1871        int offset = offset_in_page(gpa);
1872        int ret;
1873
1874        while ((seg = next_segment(len, offset)) != 0) {
1875                ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1876                if (ret < 0)
1877                        return ret;
1878                offset = 0;
1879                len -= seg;
1880                data += seg;
1881                ++gfn;
1882        }
1883        return 0;
1884}
1885EXPORT_SYMBOL_GPL(kvm_write_guest);
1886
1887int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1888                         unsigned long len)
1889{
1890        gfn_t gfn = gpa >> PAGE_SHIFT;
1891        int seg;
1892        int offset = offset_in_page(gpa);
1893        int ret;
1894
1895        while ((seg = next_segment(len, offset)) != 0) {
1896                ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1897                if (ret < 0)
1898                        return ret;
1899                offset = 0;
1900                len -= seg;
1901                data += seg;
1902                ++gfn;
1903        }
1904        return 0;
1905}
1906EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1907
1908static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1909                                       struct gfn_to_hva_cache *ghc,
1910                                       gpa_t gpa, unsigned long len)
1911{
1912        int offset = offset_in_page(gpa);
1913        gfn_t start_gfn = gpa >> PAGE_SHIFT;
1914        gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1915        gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1916        gfn_t nr_pages_avail;
1917
1918        ghc->gpa = gpa;
1919        ghc->generation = slots->generation;
1920        ghc->len = len;
1921        ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1922        ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1923        if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1924                ghc->hva += offset;
1925        } else {
1926                /*
1927                 * If the requested region crosses two memslots, we still
1928                 * verify that the entire region is valid here.
1929                 */
1930                while (start_gfn <= end_gfn) {
1931                        ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1932                        ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1933                                                   &nr_pages_avail);
1934                        if (kvm_is_error_hva(ghc->hva))
1935                                return -EFAULT;
1936                        start_gfn += nr_pages_avail;
1937                }
1938                /* Use the slow path for cross page reads and writes. */
1939                ghc->memslot = NULL;
1940        }
1941        return 0;
1942}
1943
1944int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1945                              gpa_t gpa, unsigned long len)
1946{
1947        struct kvm_memslots *slots = kvm_memslots(kvm);
1948        return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1949}
1950EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1951
1952int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1953                           void *data, int offset, unsigned long len)
1954{
1955        struct kvm_memslots *slots = kvm_memslots(kvm);
1956        int r;
1957        gpa_t gpa = ghc->gpa + offset;
1958
1959        BUG_ON(len + offset > ghc->len);
1960
1961        if (slots->generation != ghc->generation)
1962                __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1963
1964        if (unlikely(!ghc->memslot))
1965                return kvm_write_guest(kvm, gpa, data, len);
1966
1967        if (kvm_is_error_hva(ghc->hva))
1968                return -EFAULT;
1969
1970        r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1971        if (r)
1972                return -EFAULT;
1973        mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1974
1975        return 0;
1976}
1977EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1978
1979int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1980                           void *data, unsigned long len)
1981{
1982        return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1983}
1984EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1985
1986int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1987                           void *data, unsigned long len)
1988{
1989        struct kvm_memslots *slots = kvm_memslots(kvm);
1990        int r;
1991
1992        BUG_ON(len > ghc->len);
1993
1994        if (slots->generation != ghc->generation)
1995                __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1996
1997        if (unlikely(!ghc->memslot))
1998                return kvm_read_guest(kvm, ghc->gpa, data, len);
1999
2000        if (kvm_is_error_hva(ghc->hva))
2001                return -EFAULT;
2002
2003        r = __copy_from_user(data, (void __user *)ghc->hva, len);
2004        if (r)
2005                return -EFAULT;
2006
2007        return 0;
2008}
2009EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2010
2011int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2012{
2013        const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2014
2015        return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2016}
2017EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2018
2019int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2020{
2021        gfn_t gfn = gpa >> PAGE_SHIFT;
2022        int seg;
2023        int offset = offset_in_page(gpa);
2024        int ret;
2025
2026        while ((seg = next_segment(len, offset)) != 0) {
2027                ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2028                if (ret < 0)
2029                        return ret;
2030                offset = 0;
2031                len -= seg;
2032                ++gfn;
2033        }
2034        return 0;
2035}
2036EXPORT_SYMBOL_GPL(kvm_clear_guest);
2037
2038static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2039                                    gfn_t gfn)
2040{
2041        if (memslot && memslot->dirty_bitmap) {
2042                unsigned long rel_gfn = gfn - memslot->base_gfn;
2043
2044                set_bit_le(rel_gfn, memslot->dirty_bitmap);
2045        }
2046}
2047
2048void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2049{
2050        struct kvm_memory_slot *memslot;
2051
2052        memslot = gfn_to_memslot(kvm, gfn);
2053        mark_page_dirty_in_slot(memslot, gfn);
2054}
2055EXPORT_SYMBOL_GPL(mark_page_dirty);
2056
2057void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2058{
2059        struct kvm_memory_slot *memslot;
2060
2061        memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2062        mark_page_dirty_in_slot(memslot, gfn);
2063}
2064EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2065
2066static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2067{
2068        unsigned int old, val, grow;
2069
2070        old = val = vcpu->halt_poll_ns;
2071        grow = READ_ONCE(halt_poll_ns_grow);
2072        /* 10us base */
2073        if (val == 0 && grow)
2074                val = 10000;
2075        else
2076                val *= grow;
2077
2078        if (val > halt_poll_ns)
2079                val = halt_poll_ns;
2080
2081        vcpu->halt_poll_ns = val;
2082        trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2083}
2084
2085static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2086{
2087        unsigned int old, val, shrink;
2088
2089        old = val = vcpu->halt_poll_ns;
2090        shrink = READ_ONCE(halt_poll_ns_shrink);
2091        if (shrink == 0)
2092                val = 0;
2093        else
2094                val /= shrink;
2095
2096        vcpu->halt_poll_ns = val;
2097        trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2098}
2099
2100static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2101{
2102        if (kvm_arch_vcpu_runnable(vcpu)) {
2103                kvm_make_request(KVM_REQ_UNHALT, vcpu);
2104                return -EINTR;
2105        }
2106        if (kvm_cpu_has_pending_timer(vcpu))
2107                return -EINTR;
2108        if (signal_pending(current))
2109                return -EINTR;
2110
2111        return 0;
2112}
2113
2114/*
2115 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2116 */
2117void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2118{
2119        ktime_t start, cur;
2120        DECLARE_SWAITQUEUE(wait);
2121        bool waited = false;
2122        u64 block_ns;
2123
2124        start = cur = ktime_get();
2125        if (vcpu->halt_poll_ns) {
2126                ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2127
2128                ++vcpu->stat.halt_attempted_poll;
2129                do {
2130                        /*
2131                         * This sets KVM_REQ_UNHALT if an interrupt
2132                         * arrives.
2133                         */
2134                        if (kvm_vcpu_check_block(vcpu) < 0) {
2135                                ++vcpu->stat.halt_successful_poll;
2136                                if (!vcpu_valid_wakeup(vcpu))
2137                                        ++vcpu->stat.halt_poll_invalid;
2138                                goto out;
2139                        }
2140                        cur = ktime_get();
2141                } while (single_task_running() && ktime_before(cur, stop));
2142        }
2143
2144        kvm_arch_vcpu_blocking(vcpu);
2145
2146        for (;;) {
2147                prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2148
2149                if (kvm_vcpu_check_block(vcpu) < 0)
2150                        break;
2151
2152                waited = true;
2153                schedule();
2154        }
2155
2156        finish_swait(&vcpu->wq, &wait);
2157        cur = ktime_get();
2158
2159        kvm_arch_vcpu_unblocking(vcpu);
2160out:
2161        block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2162
2163        if (!vcpu_valid_wakeup(vcpu))
2164                shrink_halt_poll_ns(vcpu);
2165        else if (halt_poll_ns) {
2166                if (block_ns <= vcpu->halt_poll_ns)
2167                        ;
2168                /* we had a long block, shrink polling */
2169                else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2170                        shrink_halt_poll_ns(vcpu);
2171                /* we had a short halt and our poll time is too small */
2172                else if (vcpu->halt_poll_ns < halt_poll_ns &&
2173                        block_ns < halt_poll_ns)
2174                        grow_halt_poll_ns(vcpu);
2175        } else
2176                vcpu->halt_poll_ns = 0;
2177
2178        trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2179        kvm_arch_vcpu_block_finish(vcpu);
2180}
2181EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2182
2183bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2184{
2185        struct swait_queue_head *wqp;
2186
2187        wqp = kvm_arch_vcpu_wq(vcpu);
2188        if (swait_active(wqp)) {
2189                swake_up(wqp);
2190                ++vcpu->stat.halt_wakeup;
2191                return true;
2192        }
2193
2194        return false;
2195}
2196EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2197
2198#ifndef CONFIG_S390
2199/*
2200 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2201 */
2202void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2203{
2204        int me;
2205        int cpu = vcpu->cpu;
2206
2207        if (kvm_vcpu_wake_up(vcpu))
2208                return;
2209
2210        me = get_cpu();
2211        if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2212                if (kvm_arch_vcpu_should_kick(vcpu))
2213                        smp_send_reschedule(cpu);
2214        put_cpu();
2215}
2216EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2217#endif /* !CONFIG_S390 */
2218
2219int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2220{
2221        struct pid *pid;
2222        struct task_struct *task = NULL;
2223        int ret = 0;
2224
2225        rcu_read_lock();
2226        pid = rcu_dereference(target->pid);
2227        if (pid)
2228                task = get_pid_task(pid, PIDTYPE_PID);
2229        rcu_read_unlock();
2230        if (!task)
2231                return ret;
2232        ret = yield_to(task, 1);
2233        put_task_struct(task);
2234
2235        return ret;
2236}
2237EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2238
2239/*
2240 * Helper that checks whether a VCPU is eligible for directed yield.
2241 * Most eligible candidate to yield is decided by following heuristics:
2242 *
2243 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2244 *  (preempted lock holder), indicated by @in_spin_loop.
2245 *  Set at the beiginning and cleared at the end of interception/PLE handler.
2246 *
2247 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2248 *  chance last time (mostly it has become eligible now since we have probably
2249 *  yielded to lockholder in last iteration. This is done by toggling
2250 *  @dy_eligible each time a VCPU checked for eligibility.)
2251 *
2252 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2253 *  to preempted lock-holder could result in wrong VCPU selection and CPU
2254 *  burning. Giving priority for a potential lock-holder increases lock
2255 *  progress.
2256 *
2257 *  Since algorithm is based on heuristics, accessing another VCPU data without
2258 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2259 *  and continue with next VCPU and so on.
2260 */
2261static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2262{
2263#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2264        bool eligible;
2265
2266        eligible = !vcpu->spin_loop.in_spin_loop ||
2267                    vcpu->spin_loop.dy_eligible;
2268
2269        if (vcpu->spin_loop.in_spin_loop)
2270                kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2271
2272        return eligible;
2273#else
2274        return true;
2275#endif
2276}
2277
2278void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2279{
2280        struct kvm *kvm = me->kvm;
2281        struct kvm_vcpu *vcpu;
2282        int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2283        int yielded = 0;
2284        int try = 3;
2285        int pass;
2286        int i;
2287
2288        kvm_vcpu_set_in_spin_loop(me, true);
2289        /*
2290         * We boost the priority of a VCPU that is runnable but not
2291         * currently running, because it got preempted by something
2292         * else and called schedule in __vcpu_run.  Hopefully that
2293         * VCPU is holding the lock that we need and will release it.
2294         * We approximate round-robin by starting at the last boosted VCPU.
2295         */
2296        for (pass = 0; pass < 2 && !yielded && try; pass++) {
2297                kvm_for_each_vcpu(i, vcpu, kvm) {
2298                        if (!pass && i <= last_boosted_vcpu) {
2299                                i = last_boosted_vcpu;
2300                                continue;
2301                        } else if (pass && i > last_boosted_vcpu)
2302                                break;
2303                        if (!ACCESS_ONCE(vcpu->preempted))
2304                                continue;
2305                        if (vcpu == me)
2306                                continue;
2307                        if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2308                                continue;
2309                        if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2310                                continue;
2311
2312                        yielded = kvm_vcpu_yield_to(vcpu);
2313                        if (yielded > 0) {
2314                                kvm->last_boosted_vcpu = i;
2315                                break;
2316                        } else if (yielded < 0) {
2317                                try--;
2318                                if (!try)
2319                                        break;
2320                        }
2321                }
2322        }
2323        kvm_vcpu_set_in_spin_loop(me, false);
2324
2325        /* Ensure vcpu is not eligible during next spinloop */
2326        kvm_vcpu_set_dy_eligible(me, false);
2327}
2328EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2329
2330static int kvm_vcpu_fault(struct vm_fault *vmf)
2331{
2332        struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2333        struct page *page;
2334
2335        if (vmf->pgoff == 0)
2336                page = virt_to_page(vcpu->run);
2337#ifdef CONFIG_X86
2338        else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2339                page = virt_to_page(vcpu->arch.pio_data);
2340#endif
2341#ifdef CONFIG_KVM_MMIO
2342        else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2343                page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2344#endif
2345        else
2346                return kvm_arch_vcpu_fault(vcpu, vmf);
2347        get_page(page);
2348        vmf->page = page;
2349        return 0;
2350}
2351
2352static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2353        .fault = kvm_vcpu_fault,
2354};
2355
2356static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2357{
2358        vma->vm_ops = &kvm_vcpu_vm_ops;
2359        return 0;
2360}
2361
2362static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2363{
2364        struct kvm_vcpu *vcpu = filp->private_data;
2365
2366        debugfs_remove_recursive(vcpu->debugfs_dentry);
2367        kvm_put_kvm(vcpu->kvm);
2368        return 0;
2369}
2370
2371static struct file_operations kvm_vcpu_fops = {
2372        .release        = kvm_vcpu_release,
2373        .unlocked_ioctl = kvm_vcpu_ioctl,
2374#ifdef CONFIG_KVM_COMPAT
2375        .compat_ioctl   = kvm_vcpu_compat_ioctl,
2376#endif
2377        .mmap           = kvm_vcpu_mmap,
2378        .llseek         = noop_llseek,
2379};
2380
2381/*
2382 * Allocates an inode for the vcpu.
2383 */
2384static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2385{
2386        return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2387}
2388
2389static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2390{
2391        char dir_name[ITOA_MAX_LEN * 2];
2392        int ret;
2393
2394        if (!kvm_arch_has_vcpu_debugfs())
2395                return 0;
2396
2397        if (!debugfs_initialized())
2398                return 0;
2399
2400        snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2401        vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2402                                                                vcpu->kvm->debugfs_dentry);
2403        if (!vcpu->debugfs_dentry)
2404                return -ENOMEM;
2405
2406        ret = kvm_arch_create_vcpu_debugfs(vcpu);
2407        if (ret < 0) {
2408                debugfs_remove_recursive(vcpu->debugfs_dentry);
2409                return ret;
2410        }
2411
2412        return 0;
2413}
2414
2415/*
2416 * Creates some virtual cpus.  Good luck creating more than one.
2417 */
2418static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2419{
2420        int r;
2421        struct kvm_vcpu *vcpu;
2422
2423        if (id >= KVM_MAX_VCPU_ID)
2424                return -EINVAL;
2425
2426        mutex_lock(&kvm->lock);
2427        if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2428                mutex_unlock(&kvm->lock);
2429                return -EINVAL;
2430        }
2431
2432        kvm->created_vcpus++;
2433        mutex_unlock(&kvm->lock);
2434
2435        vcpu = kvm_arch_vcpu_create(kvm, id);
2436        if (IS_ERR(vcpu)) {
2437                r = PTR_ERR(vcpu);
2438                goto vcpu_decrement;
2439        }
2440
2441        preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2442
2443        r = kvm_arch_vcpu_setup(vcpu);
2444        if (r)
2445                goto vcpu_destroy;
2446
2447        r = kvm_create_vcpu_debugfs(vcpu);
2448        if (r)
2449                goto vcpu_destroy;
2450
2451        mutex_lock(&kvm->lock);
2452        if (kvm_get_vcpu_by_id(kvm, id)) {
2453                r = -EEXIST;
2454                goto unlock_vcpu_destroy;
2455        }
2456
2457        BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2458
2459        /* Now it's all set up, let userspace reach it */
2460        kvm_get_kvm(kvm);
2461        r = create_vcpu_fd(vcpu);
2462        if (r < 0) {
2463                kvm_put_kvm(kvm);
2464                goto unlock_vcpu_destroy;
2465        }
2466
2467        kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2468
2469        /*
2470         * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2471         * before kvm->online_vcpu's incremented value.
2472         */
2473        smp_wmb();
2474        atomic_inc(&kvm->online_vcpus);
2475
2476        mutex_unlock(&kvm->lock);
2477        kvm_arch_vcpu_postcreate(vcpu);
2478        return r;
2479
2480unlock_vcpu_destroy:
2481        mutex_unlock(&kvm->lock);
2482        debugfs_remove_recursive(vcpu->debugfs_dentry);
2483vcpu_destroy:
2484        kvm_arch_vcpu_destroy(vcpu);
2485vcpu_decrement:
2486        mutex_lock(&kvm->lock);
2487        kvm->created_vcpus--;
2488        mutex_unlock(&kvm->lock);
2489        return r;
2490}
2491
2492static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2493{
2494        if (sigset) {
2495                sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2496                vcpu->sigset_active = 1;
2497                vcpu->sigset = *sigset;
2498        } else
2499                vcpu->sigset_active = 0;
2500        return 0;
2501}
2502
2503static long kvm_vcpu_ioctl(struct file *filp,
2504                           unsigned int ioctl, unsigned long arg)
2505{
2506        struct kvm_vcpu *vcpu = filp->private_data;
2507        void __user *argp = (void __user *)arg;
2508        int r;
2509        struct kvm_fpu *fpu = NULL;
2510        struct kvm_sregs *kvm_sregs = NULL;
2511
2512        if (vcpu->kvm->mm != current->mm)
2513                return -EIO;
2514
2515        if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2516                return -EINVAL;
2517
2518#if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2519        /*
2520         * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2521         * so vcpu_load() would break it.
2522         */
2523        if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2524                return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2525#endif
2526
2527
2528        r = vcpu_load(vcpu);
2529        if (r)
2530                return r;
2531        switch (ioctl) {
2532        case KVM_RUN: {
2533                struct pid *oldpid;
2534                r = -EINVAL;
2535                if (arg)
2536                        goto out;
2537                oldpid = rcu_access_pointer(vcpu->pid);
2538                if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2539                        /* The thread running this VCPU changed. */
2540                        struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2541
2542                        rcu_assign_pointer(vcpu->pid, newpid);
2543                        if (oldpid)
2544                                synchronize_rcu();
2545                        put_pid(oldpid);
2546                }
2547                r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2548                trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2549                break;
2550        }
2551        case KVM_GET_REGS: {
2552                struct kvm_regs *kvm_regs;
2553
2554                r = -ENOMEM;
2555                kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2556                if (!kvm_regs)
2557                        goto out;
2558                r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2559                if (r)
2560                        goto out_free1;
2561                r = -EFAULT;
2562                if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2563                        goto out_free1;
2564                r = 0;
2565out_free1:
2566                kfree(kvm_regs);
2567                break;
2568        }
2569        case KVM_SET_REGS: {
2570                struct kvm_regs *kvm_regs;
2571
2572                r = -ENOMEM;
2573                kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2574                if (IS_ERR(kvm_regs)) {
2575                        r = PTR_ERR(kvm_regs);
2576                        goto out;
2577                }
2578                r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2579                kfree(kvm_regs);
2580                break;
2581        }
2582        case KVM_GET_SREGS: {
2583                kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2584                r = -ENOMEM;
2585                if (!kvm_sregs)
2586                        goto out;
2587                r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2588                if (r)
2589                        goto out;
2590                r = -EFAULT;
2591                if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2592                        goto out;
2593                r = 0;
2594                break;
2595        }
2596        case KVM_SET_SREGS: {
2597                kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2598                if (IS_ERR(kvm_sregs)) {
2599                        r = PTR_ERR(kvm_sregs);
2600                        kvm_sregs = NULL;
2601                        goto out;
2602                }
2603                r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2604                break;
2605        }
2606        case KVM_GET_MP_STATE: {
2607                struct kvm_mp_state mp_state;
2608
2609                r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2610                if (r)
2611                        goto out;
2612                r = -EFAULT;
2613                if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2614                        goto out;
2615                r = 0;
2616                break;
2617        }
2618        case KVM_SET_MP_STATE: {
2619                struct kvm_mp_state mp_state;
2620
2621                r = -EFAULT;
2622                if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2623                        goto out;
2624                r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2625                break;
2626        }
2627        case KVM_TRANSLATE: {
2628                struct kvm_translation tr;
2629
2630                r = -EFAULT;
2631                if (copy_from_user(&tr, argp, sizeof(tr)))
2632                        goto out;
2633                r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2634                if (r)
2635                        goto out;
2636                r = -EFAULT;
2637                if (copy_to_user(argp, &tr, sizeof(tr)))
2638                        goto out;
2639                r = 0;
2640                break;
2641        }
2642        case KVM_SET_GUEST_DEBUG: {
2643                struct kvm_guest_debug dbg;
2644
2645                r = -EFAULT;
2646                if (copy_from_user(&dbg, argp, sizeof(dbg)))
2647                        goto out;
2648                r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2649                break;
2650        }
2651        case KVM_SET_SIGNAL_MASK: {
2652                struct kvm_signal_mask __user *sigmask_arg = argp;
2653                struct kvm_signal_mask kvm_sigmask;
2654                sigset_t sigset, *p;
2655
2656                p = NULL;
2657                if (argp) {
2658                        r = -EFAULT;
2659                        if (copy_from_user(&kvm_sigmask, argp,
2660                                           sizeof(kvm_sigmask)))
2661                                goto out;
2662                        r = -EINVAL;
2663                        if (kvm_sigmask.len != sizeof(sigset))
2664                                goto out;
2665                        r = -EFAULT;
2666                        if (copy_from_user(&sigset, sigmask_arg->sigset,
2667                                           sizeof(sigset)))
2668                                goto out;
2669                        p = &sigset;
2670                }
2671                r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2672                break;
2673        }
2674        case KVM_GET_FPU: {
2675                fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2676                r = -ENOMEM;
2677                if (!fpu)
2678                        goto out;
2679                r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2680                if (r)
2681                        goto out;
2682                r = -EFAULT;
2683                if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2684                        goto out;
2685                r = 0;
2686                break;
2687        }
2688        case KVM_SET_FPU: {
2689                fpu = memdup_user(argp, sizeof(*fpu));
2690                if (IS_ERR(fpu)) {
2691                        r = PTR_ERR(fpu);
2692                        fpu = NULL;
2693                        goto out;
2694                }
2695                r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2696                break;
2697        }
2698        default:
2699                r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2700        }
2701out:
2702        vcpu_put(vcpu);
2703        kfree(fpu);
2704        kfree(kvm_sregs);
2705        return r;
2706}
2707
2708#ifdef CONFIG_KVM_COMPAT
2709static long kvm_vcpu_compat_ioctl(struct file *filp,
2710                                  unsigned int ioctl, unsigned long arg)
2711{
2712        struct kvm_vcpu *vcpu = filp->private_data;
2713        void __user *argp = compat_ptr(arg);
2714        int r;
2715
2716        if (vcpu->kvm->mm != current->mm)
2717                return -EIO;
2718
2719        switch (ioctl) {
2720        case KVM_SET_SIGNAL_MASK: {
2721                struct kvm_signal_mask __user *sigmask_arg = argp;
2722                struct kvm_signal_mask kvm_sigmask;
2723                compat_sigset_t csigset;
2724                sigset_t sigset;
2725
2726                if (argp) {
2727                        r = -EFAULT;
2728                        if (copy_from_user(&kvm_sigmask, argp,
2729                                           sizeof(kvm_sigmask)))
2730                                goto out;
2731                        r = -EINVAL;
2732                        if (kvm_sigmask.len != sizeof(csigset))
2733                                goto out;
2734                        r = -EFAULT;
2735                        if (copy_from_user(&csigset, sigmask_arg->sigset,
2736                                           sizeof(csigset)))
2737                                goto out;
2738                        sigset_from_compat(&sigset, &csigset);
2739                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2740                } else
2741                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2742                break;
2743        }
2744        default:
2745                r = kvm_vcpu_ioctl(filp, ioctl, arg);
2746        }
2747
2748out:
2749        return r;
2750}
2751#endif
2752
2753static int kvm_device_ioctl_attr(struct kvm_device *dev,
2754                                 int (*accessor)(struct kvm_device *dev,
2755                                                 struct kvm_device_attr *attr),
2756                                 unsigned long arg)
2757{
2758        struct kvm_device_attr attr;
2759
2760        if (!accessor)
2761                return -EPERM;
2762
2763        if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2764                return -EFAULT;
2765
2766        return accessor(dev, &attr);
2767}
2768
2769static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2770                             unsigned long arg)
2771{
2772        struct kvm_device *dev = filp->private_data;
2773
2774        switch (ioctl) {
2775        case KVM_SET_DEVICE_ATTR:
2776                return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2777        case KVM_GET_DEVICE_ATTR:
2778                return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2779        case KVM_HAS_DEVICE_ATTR:
2780                return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2781        default:
2782                if (dev->ops->ioctl)
2783                        return dev->ops->ioctl(dev, ioctl, arg);
2784
2785                return -ENOTTY;
2786        }
2787}
2788
2789static int kvm_device_release(struct inode *inode, struct file *filp)
2790{
2791        struct kvm_device *dev = filp->private_data;
2792        struct kvm *kvm = dev->kvm;
2793
2794        kvm_put_kvm(kvm);
2795        return 0;
2796}
2797
2798static const struct file_operations kvm_device_fops = {
2799        .unlocked_ioctl = kvm_device_ioctl,
2800#ifdef CONFIG_KVM_COMPAT
2801        .compat_ioctl = kvm_device_ioctl,
2802#endif
2803        .release = kvm_device_release,
2804};
2805
2806struct kvm_device *kvm_device_from_filp(struct file *filp)
2807{
2808        if (filp->f_op != &kvm_device_fops)
2809                return NULL;
2810
2811        return filp->private_data;
2812}
2813
2814static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2815#ifdef CONFIG_KVM_MPIC
2816        [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2817        [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2818#endif
2819};
2820
2821int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2822{
2823        if (type >= ARRAY_SIZE(kvm_device_ops_table))
2824                return -ENOSPC;
2825
2826        if (kvm_device_ops_table[type] != NULL)
2827                return -EEXIST;
2828
2829        kvm_device_ops_table[type] = ops;
2830        return 0;
2831}
2832
2833void kvm_unregister_device_ops(u32 type)
2834{
2835        if (kvm_device_ops_table[type] != NULL)
2836                kvm_device_ops_table[type] = NULL;
2837}
2838
2839static int kvm_ioctl_create_device(struct kvm *kvm,
2840                                   struct kvm_create_device *cd)
2841{
2842        struct kvm_device_ops *ops = NULL;
2843        struct kvm_device *dev;
2844        bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2845        int ret;
2846
2847        if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2848                return -ENODEV;
2849
2850        ops = kvm_device_ops_table[cd->type];
2851        if (ops == NULL)
2852                return -ENODEV;
2853
2854        if (test)
2855                return 0;
2856
2857        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2858        if (!dev)
2859                return -ENOMEM;
2860
2861        dev->ops = ops;
2862        dev->kvm = kvm;
2863
2864        mutex_lock(&kvm->lock);
2865        ret = ops->create(dev, cd->type);
2866        if (ret < 0) {
2867                mutex_unlock(&kvm->lock);
2868                kfree(dev);
2869                return ret;
2870        }
2871        list_add(&dev->vm_node, &kvm->devices);
2872        mutex_unlock(&kvm->lock);
2873
2874        if (ops->init)
2875                ops->init(dev);
2876
2877        ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2878        if (ret < 0) {
2879                mutex_lock(&kvm->lock);
2880                list_del(&dev->vm_node);
2881                mutex_unlock(&kvm->lock);
2882                ops->destroy(dev);
2883                return ret;
2884        }
2885
2886        kvm_get_kvm(kvm);
2887        cd->fd = ret;
2888        return 0;
2889}
2890
2891static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2892{
2893        switch (arg) {
2894        case KVM_CAP_USER_MEMORY:
2895        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2896        case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2897        case KVM_CAP_INTERNAL_ERROR_DATA:
2898#ifdef CONFIG_HAVE_KVM_MSI
2899        case KVM_CAP_SIGNAL_MSI:
2900#endif
2901#ifdef CONFIG_HAVE_KVM_IRQFD
2902        case KVM_CAP_IRQFD:
2903        case KVM_CAP_IRQFD_RESAMPLE:
2904#endif
2905        case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2906        case KVM_CAP_CHECK_EXTENSION_VM:
2907                return 1;
2908#ifdef CONFIG_KVM_MMIO
2909        case KVM_CAP_COALESCED_MMIO:
2910                return KVM_COALESCED_MMIO_PAGE_OFFSET;
2911#endif
2912#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2913        case KVM_CAP_IRQ_ROUTING:
2914                return KVM_MAX_IRQ_ROUTES;
2915#endif
2916#if KVM_ADDRESS_SPACE_NUM > 1
2917        case KVM_CAP_MULTI_ADDRESS_SPACE:
2918                return KVM_ADDRESS_SPACE_NUM;
2919#endif
2920        case KVM_CAP_MAX_VCPU_ID:
2921                return KVM_MAX_VCPU_ID;
2922        default:
2923                break;
2924        }
2925        return kvm_vm_ioctl_check_extension(kvm, arg);
2926}
2927
2928static long kvm_vm_ioctl(struct file *filp,
2929                           unsigned int ioctl, unsigned long arg)
2930{
2931        struct kvm *kvm = filp->private_data;
2932        void __user *argp = (void __user *)arg;
2933        int r;
2934
2935        if (kvm->mm != current->mm)
2936                return -EIO;
2937        switch (ioctl) {
2938        case KVM_CREATE_VCPU:
2939                r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2940                break;
2941        case KVM_SET_USER_MEMORY_REGION: {
2942                struct kvm_userspace_memory_region kvm_userspace_mem;
2943
2944                r = -EFAULT;
2945                if (copy_from_user(&kvm_userspace_mem, argp,
2946                                                sizeof(kvm_userspace_mem)))
2947                        goto out;
2948
2949                r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2950                break;
2951        }
2952        case KVM_GET_DIRTY_LOG: {
2953                struct kvm_dirty_log log;
2954
2955                r = -EFAULT;
2956                if (copy_from_user(&log, argp, sizeof(log)))
2957                        goto out;
2958                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2959                break;
2960        }
2961#ifdef CONFIG_KVM_MMIO
2962        case KVM_REGISTER_COALESCED_MMIO: {
2963                struct kvm_coalesced_mmio_zone zone;
2964
2965                r = -EFAULT;
2966                if (copy_from_user(&zone, argp, sizeof(zone)))
2967                        goto out;
2968                r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2969                break;
2970        }
2971        case KVM_UNREGISTER_COALESCED_MMIO: {
2972                struct kvm_coalesced_mmio_zone zone;
2973
2974                r = -EFAULT;
2975                if (copy_from_user(&zone, argp, sizeof(zone)))
2976                        goto out;
2977                r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2978                break;
2979        }
2980#endif
2981        case KVM_IRQFD: {
2982                struct kvm_irqfd data;
2983
2984                r = -EFAULT;
2985                if (copy_from_user(&data, argp, sizeof(data)))
2986                        goto out;
2987                r = kvm_irqfd(kvm, &data);
2988                break;
2989        }
2990        case KVM_IOEVENTFD: {
2991                struct kvm_ioeventfd data;
2992
2993                r = -EFAULT;
2994                if (copy_from_user(&data, argp, sizeof(data)))
2995                        goto out;
2996                r = kvm_ioeventfd(kvm, &data);
2997                break;
2998        }
2999#ifdef CONFIG_HAVE_KVM_MSI
3000        case KVM_SIGNAL_MSI: {
3001                struct kvm_msi msi;
3002
3003                r = -EFAULT;
3004                if (copy_from_user(&msi, argp, sizeof(msi)))
3005                        goto out;
3006                r = kvm_send_userspace_msi(kvm, &msi);
3007                break;
3008        }
3009#endif
3010#ifdef __KVM_HAVE_IRQ_LINE
3011        case KVM_IRQ_LINE_STATUS:
3012        case KVM_IRQ_LINE: {
3013                struct kvm_irq_level irq_event;
3014
3015                r = -EFAULT;
3016                if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3017                        goto out;
3018
3019                r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3020                                        ioctl == KVM_IRQ_LINE_STATUS);
3021                if (r)
3022                        goto out;
3023
3024                r = -EFAULT;
3025                if (ioctl == KVM_IRQ_LINE_STATUS) {
3026                        if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3027                                goto out;
3028                }
3029
3030                r = 0;
3031                break;
3032        }
3033#endif
3034#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3035        case KVM_SET_GSI_ROUTING: {
3036                struct kvm_irq_routing routing;
3037                struct kvm_irq_routing __user *urouting;
3038                struct kvm_irq_routing_entry *entries = NULL;
3039
3040                r = -EFAULT;
3041                if (copy_from_user(&routing, argp, sizeof(routing)))
3042                        goto out;
3043                r = -EINVAL;
3044                if (!kvm_arch_can_set_irq_routing(kvm))
3045                        goto out;
3046                if (routing.nr > KVM_MAX_IRQ_ROUTES)
3047                        goto out;
3048                if (routing.flags)
3049                        goto out;
3050                if (routing.nr) {
3051                        r = -ENOMEM;
3052                        entries = vmalloc(routing.nr * sizeof(*entries));
3053                        if (!entries)
3054                                goto out;
3055                        r = -EFAULT;
3056                        urouting = argp;
3057                        if (copy_from_user(entries, urouting->entries,
3058                                           routing.nr * sizeof(*entries)))
3059                                goto out_free_irq_routing;
3060                }
3061                r = kvm_set_irq_routing(kvm, entries, routing.nr,
3062                                        routing.flags);
3063out_free_irq_routing:
3064                vfree(entries);
3065                break;
3066        }
3067#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3068        case KVM_CREATE_DEVICE: {
3069                struct kvm_create_device cd;
3070
3071                r = -EFAULT;
3072                if (copy_from_user(&cd, argp, sizeof(cd)))
3073                        goto out;
3074
3075                r = kvm_ioctl_create_device(kvm, &cd);
3076                if (r)
3077                        goto out;
3078
3079                r = -EFAULT;
3080                if (copy_to_user(argp, &cd, sizeof(cd)))
3081                        goto out;
3082
3083                r = 0;
3084                break;
3085        }
3086        case KVM_CHECK_EXTENSION:
3087                r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3088                break;
3089        default:
3090                r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3091        }
3092out:
3093        return r;
3094}
3095
3096#ifdef CONFIG_KVM_COMPAT
3097struct compat_kvm_dirty_log {
3098        __u32 slot;
3099        __u32 padding1;
3100        union {
3101                compat_uptr_t dirty_bitmap; /* one bit per page */
3102                __u64 padding2;
3103        };
3104};
3105
3106static long kvm_vm_compat_ioctl(struct file *filp,
3107                           unsigned int ioctl, unsigned long arg)
3108{
3109        struct kvm *kvm = filp->private_data;
3110        int r;
3111
3112        if (kvm->mm != current->mm)
3113                return -EIO;
3114        switch (ioctl) {
3115        case KVM_GET_DIRTY_LOG: {
3116                struct compat_kvm_dirty_log compat_log;
3117                struct kvm_dirty_log log;
3118
3119                if (copy_from_user(&compat_log, (void __user *)arg,
3120                                   sizeof(compat_log)))
3121                        return -EFAULT;
3122                log.slot         = compat_log.slot;
3123                log.padding1     = compat_log.padding1;
3124                log.padding2     = compat_log.padding2;
3125                log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3126
3127                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3128                break;
3129        }
3130        default:
3131                r = kvm_vm_ioctl(filp, ioctl, arg);
3132        }
3133        return r;
3134}
3135#endif
3136
3137static struct file_operations kvm_vm_fops = {
3138        .release        = kvm_vm_release,
3139        .unlocked_ioctl = kvm_vm_ioctl,
3140#ifdef CONFIG_KVM_COMPAT
3141        .compat_ioctl   = kvm_vm_compat_ioctl,
3142#endif
3143        .llseek         = noop_llseek,
3144};
3145
3146static int kvm_dev_ioctl_create_vm(unsigned long type)
3147{
3148        int r;
3149        struct kvm *kvm;
3150        struct file *file;
3151
3152        kvm = kvm_create_vm(type);
3153        if (IS_ERR(kvm))
3154                return PTR_ERR(kvm);
3155#ifdef CONFIG_KVM_MMIO
3156        r = kvm_coalesced_mmio_init(kvm);
3157        if (r < 0) {
3158                kvm_put_kvm(kvm);
3159                return r;
3160        }
3161#endif
3162        r = get_unused_fd_flags(O_CLOEXEC);
3163        if (r < 0) {
3164                kvm_put_kvm(kvm);
3165                return r;
3166        }
3167        file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3168        if (IS_ERR(file)) {
3169                put_unused_fd(r);
3170                kvm_put_kvm(kvm);
3171                return PTR_ERR(file);
3172        }
3173
3174        /*
3175         * Don't call kvm_put_kvm anymore at this point; file->f_op is
3176         * already set, with ->release() being kvm_vm_release().  In error
3177         * cases it will be called by the final fput(file) and will take
3178         * care of doing kvm_put_kvm(kvm).
3179         */
3180        if (kvm_create_vm_debugfs(kvm, r) < 0) {
3181                put_unused_fd(r);
3182                fput(file);
3183                return -ENOMEM;
3184        }
3185        kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3186
3187        fd_install(r, file);
3188        return r;
3189}
3190
3191static long kvm_dev_ioctl(struct file *filp,
3192                          unsigned int ioctl, unsigned long arg)
3193{
3194        long r = -EINVAL;
3195
3196        switch (ioctl) {
3197        case KVM_GET_API_VERSION:
3198                if (arg)
3199                        goto out;
3200                r = KVM_API_VERSION;
3201                break;
3202        case KVM_CREATE_VM:
3203                r = kvm_dev_ioctl_create_vm(arg);
3204                break;
3205        case KVM_CHECK_EXTENSION:
3206                r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3207                break;
3208        case KVM_GET_VCPU_MMAP_SIZE:
3209                if (arg)
3210                        goto out;
3211                r = PAGE_SIZE;     /* struct kvm_run */
3212#ifdef CONFIG_X86
3213                r += PAGE_SIZE;    /* pio data page */
3214#endif
3215#ifdef CONFIG_KVM_MMIO
3216                r += PAGE_SIZE;    /* coalesced mmio ring page */
3217#endif
3218                break;
3219        case KVM_TRACE_ENABLE:
3220        case KVM_TRACE_PAUSE:
3221        case KVM_TRACE_DISABLE:
3222                r = -EOPNOTSUPP;
3223                break;
3224        default:
3225                return kvm_arch_dev_ioctl(filp, ioctl, arg);
3226        }
3227out:
3228        return r;
3229}
3230
3231static struct file_operations kvm_chardev_ops = {
3232        .unlocked_ioctl = kvm_dev_ioctl,
3233        .compat_ioctl   = kvm_dev_ioctl,
3234        .llseek         = noop_llseek,
3235};
3236
3237static struct miscdevice kvm_dev = {
3238        KVM_MINOR,
3239        "kvm",
3240        &kvm_chardev_ops,
3241};
3242
3243static void hardware_enable_nolock(void *junk)
3244{
3245        int cpu = raw_smp_processor_id();
3246        int r;
3247
3248        if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3249                return;
3250
3251        cpumask_set_cpu(cpu, cpus_hardware_enabled);
3252
3253        r = kvm_arch_hardware_enable();
3254
3255        if (r) {
3256                cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3257                atomic_inc(&hardware_enable_failed);
3258                pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3259        }
3260}
3261
3262static int kvm_starting_cpu(unsigned int cpu)
3263{
3264        raw_spin_lock(&kvm_count_lock);
3265        if (kvm_usage_count)
3266                hardware_enable_nolock(NULL);
3267        raw_spin_unlock(&kvm_count_lock);
3268        return 0;
3269}
3270
3271static void hardware_disable_nolock(void *junk)
3272{
3273        int cpu = raw_smp_processor_id();
3274
3275        if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3276                return;
3277        cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3278        kvm_arch_hardware_disable();
3279}
3280
3281static int kvm_dying_cpu(unsigned int cpu)
3282{
3283        raw_spin_lock(&kvm_count_lock);
3284        if (kvm_usage_count)
3285                hardware_disable_nolock(NULL);
3286        raw_spin_unlock(&kvm_count_lock);
3287        return 0;
3288}
3289
3290static void hardware_disable_all_nolock(void)
3291{
3292        BUG_ON(!kvm_usage_count);
3293
3294        kvm_usage_count--;
3295        if (!kvm_usage_count)
3296                on_each_cpu(hardware_disable_nolock, NULL, 1);
3297}
3298
3299static void hardware_disable_all(void)
3300{
3301        raw_spin_lock(&kvm_count_lock);
3302        hardware_disable_all_nolock();
3303        raw_spin_unlock(&kvm_count_lock);
3304}
3305
3306static int hardware_enable_all(void)
3307{
3308        int r = 0;
3309
3310        raw_spin_lock(&kvm_count_lock);
3311
3312        kvm_usage_count++;
3313        if (kvm_usage_count == 1) {
3314                atomic_set(&hardware_enable_failed, 0);
3315                on_each_cpu(hardware_enable_nolock, NULL, 1);
3316
3317                if (atomic_read(&hardware_enable_failed)) {
3318                        hardware_disable_all_nolock();
3319                        r = -EBUSY;
3320                }
3321        }
3322
3323        raw_spin_unlock(&kvm_count_lock);
3324
3325        return r;
3326}
3327
3328static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3329                      void *v)
3330{
3331        /*
3332         * Some (well, at least mine) BIOSes hang on reboot if
3333         * in vmx root mode.
3334         *
3335         * And Intel TXT required VMX off for all cpu when system shutdown.
3336         */
3337        pr_info("kvm: exiting hardware virtualization\n");
3338        kvm_rebooting = true;
3339        on_each_cpu(hardware_disable_nolock, NULL, 1);
3340        return NOTIFY_OK;
3341}
3342
3343static struct notifier_block kvm_reboot_notifier = {
3344        .notifier_call = kvm_reboot,
3345        .priority = 0,
3346};
3347
3348static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3349{
3350        int i;
3351
3352        for (i = 0; i < bus->dev_count; i++) {
3353                struct kvm_io_device *pos = bus->range[i].dev;
3354
3355                kvm_iodevice_destructor(pos);
3356        }
3357        kfree(bus);
3358}
3359
3360static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3361                                 const struct kvm_io_range *r2)
3362{
3363        gpa_t addr1 = r1->addr;
3364        gpa_t addr2 = r2->addr;
3365
3366        if (addr1 < addr2)
3367                return -1;
3368
3369        /* If r2->len == 0, match the exact address.  If r2->len != 0,
3370         * accept any overlapping write.  Any order is acceptable for
3371         * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3372         * we process all of them.
3373         */
3374        if (r2->len) {
3375                addr1 += r1->len;
3376                addr2 += r2->len;
3377        }
3378
3379        if (addr1 > addr2)
3380                return 1;
3381
3382        return 0;
3383}
3384
3385static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3386{
3387        return kvm_io_bus_cmp(p1, p2);
3388}
3389
3390static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3391                          gpa_t addr, int len)
3392{
3393        bus->range[bus->dev_count++] = (struct kvm_io_range) {
3394                .addr = addr,
3395                .len = len,
3396                .dev = dev,
3397        };
3398
3399        sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3400                kvm_io_bus_sort_cmp, NULL);
3401
3402        return 0;
3403}
3404
3405static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3406                             gpa_t addr, int len)
3407{
3408        struct kvm_io_range *range, key;
3409        int off;
3410
3411        key = (struct kvm_io_range) {
3412                .addr = addr,
3413                .len = len,
3414        };
3415
3416        range = bsearch(&key, bus->range, bus->dev_count,
3417                        sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3418        if (range == NULL)
3419                return -ENOENT;
3420
3421        off = range - bus->range;
3422
3423        while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3424                off--;
3425
3426        return off;
3427}
3428
3429static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3430                              struct kvm_io_range *range, const void *val)
3431{
3432        int idx;
3433
3434        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3435        if (idx < 0)
3436                return -EOPNOTSUPP;
3437
3438        while (idx < bus->dev_count &&
3439                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3440                if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3441                                        range->len, val))
3442                        return idx;
3443                idx++;
3444        }
3445
3446        return -EOPNOTSUPP;
3447}
3448
3449/* kvm_io_bus_write - called under kvm->slots_lock */
3450int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3451                     int len, const void *val)
3452{
3453        struct kvm_io_bus *bus;
3454        struct kvm_io_range range;
3455        int r;
3456
3457        range = (struct kvm_io_range) {
3458                .addr = addr,
3459                .len = len,
3460        };
3461
3462        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3463        if (!bus)
3464                return -ENOMEM;
3465        r = __kvm_io_bus_write(vcpu, bus, &range, val);
3466        return r < 0 ? r : 0;
3467}
3468
3469/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3470int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3471                            gpa_t addr, int len, const void *val, long cookie)
3472{
3473        struct kvm_io_bus *bus;
3474        struct kvm_io_range range;
3475
3476        range = (struct kvm_io_range) {
3477                .addr = addr,
3478                .len = len,
3479        };
3480
3481        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3482        if (!bus)
3483                return -ENOMEM;
3484
3485        /* First try the device referenced by cookie. */
3486        if ((cookie >= 0) && (cookie < bus->dev_count) &&
3487            (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3488                if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3489                                        val))
3490                        return cookie;
3491
3492        /*
3493         * cookie contained garbage; fall back to search and return the
3494         * correct cookie value.
3495         */
3496        return __kvm_io_bus_write(vcpu, bus, &range, val);
3497}
3498
3499static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3500                             struct kvm_io_range *range, void *val)
3501{
3502        int idx;
3503
3504        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3505        if (idx < 0)
3506                return -EOPNOTSUPP;
3507
3508        while (idx < bus->dev_count &&
3509                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3510                if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3511                                       range->len, val))
3512                        return idx;
3513                idx++;
3514        }
3515
3516        return -EOPNOTSUPP;
3517}
3518EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3519
3520/* kvm_io_bus_read - called under kvm->slots_lock */
3521int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3522                    int len, void *val)
3523{
3524        struct kvm_io_bus *bus;
3525        struct kvm_io_range range;
3526        int r;
3527
3528        range = (struct kvm_io_range) {
3529                .addr = addr,
3530                .len = len,
3531        };
3532
3533        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3534        if (!bus)
3535                return -ENOMEM;
3536        r = __kvm_io_bus_read(vcpu, bus, &range, val);
3537        return r < 0 ? r : 0;
3538}
3539
3540
3541/* Caller must hold slots_lock. */
3542int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3543                            int len, struct kvm_io_device *dev)
3544{
3545        struct kvm_io_bus *new_bus, *bus;
3546
3547        bus = kvm_get_bus(kvm, bus_idx);
3548        if (!bus)
3549                return -ENOMEM;
3550
3551        /* exclude ioeventfd which is limited by maximum fd */
3552        if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3553                return -ENOSPC;
3554
3555        new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3556                          sizeof(struct kvm_io_range)), GFP_KERNEL);
3557        if (!new_bus)
3558                return -ENOMEM;
3559        memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3560               sizeof(struct kvm_io_range)));
3561        kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3562        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3563        synchronize_srcu_expedited(&kvm->srcu);
3564        kfree(bus);
3565
3566        return 0;
3567}
3568
3569/* Caller must hold slots_lock. */
3570void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3571                               struct kvm_io_device *dev)
3572{
3573        int i;
3574        struct kvm_io_bus *new_bus, *bus;
3575
3576        bus = kvm_get_bus(kvm, bus_idx);
3577        if (!bus)
3578                return;
3579
3580        for (i = 0; i < bus->dev_count; i++)
3581                if (bus->range[i].dev == dev) {
3582                        break;
3583                }
3584
3585        if (i == bus->dev_count)
3586                return;
3587
3588        new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3589                          sizeof(struct kvm_io_range)), GFP_KERNEL);
3590        if (!new_bus)  {
3591                pr_err("kvm: failed to shrink bus, removing it completely\n");
3592                goto broken;
3593        }
3594
3595        memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3596        new_bus->dev_count--;
3597        memcpy(new_bus->range + i, bus->range + i + 1,
3598               (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3599
3600broken:
3601        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3602        synchronize_srcu_expedited(&kvm->srcu);
3603        kfree(bus);
3604        return;
3605}
3606
3607struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3608                                         gpa_t addr)
3609{
3610        struct kvm_io_bus *bus;
3611        int dev_idx, srcu_idx;
3612        struct kvm_io_device *iodev = NULL;
3613
3614        srcu_idx = srcu_read_lock(&kvm->srcu);
3615
3616        bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3617        if (!bus)
3618                goto out_unlock;
3619
3620        dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3621        if (dev_idx < 0)
3622                goto out_unlock;
3623
3624        iodev = bus->range[dev_idx].dev;
3625
3626out_unlock:
3627        srcu_read_unlock(&kvm->srcu, srcu_idx);
3628
3629        return iodev;
3630}
3631EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3632
3633static int kvm_debugfs_open(struct inode *inode, struct file *file,
3634                           int (*get)(void *, u64 *), int (*set)(void *, u64),
3635                           const char *fmt)
3636{
3637        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3638                                          inode->i_private;
3639
3640        /* The debugfs files are a reference to the kvm struct which
3641         * is still valid when kvm_destroy_vm is called.
3642         * To avoid the race between open and the removal of the debugfs
3643         * directory we test against the users count.
3644         */
3645        if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3646                return -ENOENT;
3647
3648        if (simple_attr_open(inode, file, get, set, fmt)) {
3649                kvm_put_kvm(stat_data->kvm);
3650                return -ENOMEM;
3651        }
3652
3653        return 0;
3654}
3655
3656static int kvm_debugfs_release(struct inode *inode, struct file *file)
3657{
3658        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3659                                          inode->i_private;
3660
3661        simple_attr_release(inode, file);
3662        kvm_put_kvm(stat_data->kvm);
3663
3664        return 0;
3665}
3666
3667static int vm_stat_get_per_vm(void *data, u64 *val)
3668{
3669        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3670
3671        *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3672
3673        return 0;
3674}
3675
3676static int vm_stat_clear_per_vm(void *data, u64 val)
3677{
3678        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3679
3680        if (val)
3681                return -EINVAL;
3682
3683        *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3684
3685        return 0;
3686}
3687
3688static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3689{
3690        __simple_attr_check_format("%llu\n", 0ull);
3691        return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3692                                vm_stat_clear_per_vm, "%llu\n");
3693}
3694
3695static const struct file_operations vm_stat_get_per_vm_fops = {
3696        .owner   = THIS_MODULE,
3697        .open    = vm_stat_get_per_vm_open,
3698        .release = kvm_debugfs_release,
3699        .read    = simple_attr_read,
3700        .write   = simple_attr_write,
3701        .llseek  = no_llseek,
3702};
3703
3704static int vcpu_stat_get_per_vm(void *data, u64 *val)
3705{
3706        int i;
3707        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3708        struct kvm_vcpu *vcpu;
3709
3710        *val = 0;
3711
3712        kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3713                *val += *(u64 *)((void *)vcpu + stat_data->offset);
3714
3715        return 0;
3716}
3717
3718static int vcpu_stat_clear_per_vm(void *data, u64 val)
3719{
3720        int i;
3721        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3722        struct kvm_vcpu *vcpu;
3723
3724        if (val)
3725                return -EINVAL;
3726
3727        kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3728                *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3729
3730        return 0;
3731}
3732
3733static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3734{
3735        __simple_attr_check_format("%llu\n", 0ull);
3736        return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3737                                 vcpu_stat_clear_per_vm, "%llu\n");
3738}
3739
3740static const struct file_operations vcpu_stat_get_per_vm_fops = {
3741        .owner   = THIS_MODULE,
3742        .open    = vcpu_stat_get_per_vm_open,
3743        .release = kvm_debugfs_release,
3744        .read    = simple_attr_read,
3745        .write   = simple_attr_write,
3746        .llseek  = no_llseek,
3747};
3748
3749static const struct file_operations *stat_fops_per_vm[] = {
3750        [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3751        [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3752};
3753
3754static int vm_stat_get(void *_offset, u64 *val)
3755{
3756        unsigned offset = (long)_offset;
3757        struct kvm *kvm;
3758        struct kvm_stat_data stat_tmp = {.offset = offset};
3759        u64 tmp_val;
3760
3761        *val = 0;
3762        spin_lock(&kvm_lock);
3763        list_for_each_entry(kvm, &vm_list, vm_list) {
3764                stat_tmp.kvm = kvm;
3765                vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3766                *val += tmp_val;
3767        }
3768        spin_unlock(&kvm_lock);
3769        return 0;
3770}
3771
3772static int vm_stat_clear(void *_offset, u64 val)
3773{
3774        unsigned offset = (long)_offset;
3775        struct kvm *kvm;
3776        struct kvm_stat_data stat_tmp = {.offset = offset};
3777
3778        if (val)
3779                return -EINVAL;
3780
3781        spin_lock(&kvm_lock);
3782        list_for_each_entry(kvm, &vm_list, vm_list) {
3783                stat_tmp.kvm = kvm;
3784                vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3785        }
3786        spin_unlock(&kvm_lock);
3787
3788        return 0;
3789}
3790
3791DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3792
3793static int vcpu_stat_get(void *_offset, u64 *val)
3794{
3795        unsigned offset = (long)_offset;
3796        struct kvm *kvm;
3797        struct kvm_stat_data stat_tmp = {.offset = offset};
3798        u64 tmp_val;
3799
3800        *val = 0;
3801        spin_lock(&kvm_lock);
3802        list_for_each_entry(kvm, &vm_list, vm_list) {
3803                stat_tmp.kvm = kvm;
3804                vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3805                *val += tmp_val;
3806        }
3807        spin_unlock(&kvm_lock);
3808        return 0;
3809}
3810
3811static int vcpu_stat_clear(void *_offset, u64 val)
3812{
3813        unsigned offset = (long)_offset;
3814        struct kvm *kvm;
3815        struct kvm_stat_data stat_tmp = {.offset = offset};
3816
3817        if (val)
3818                return -EINVAL;
3819
3820        spin_lock(&kvm_lock);
3821        list_for_each_entry(kvm, &vm_list, vm_list) {
3822                stat_tmp.kvm = kvm;
3823                vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3824        }
3825        spin_unlock(&kvm_lock);
3826
3827        return 0;
3828}
3829
3830DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3831                        "%llu\n");
3832
3833static const struct file_operations *stat_fops[] = {
3834        [KVM_STAT_VCPU] = &vcpu_stat_fops,
3835        [KVM_STAT_VM]   = &vm_stat_fops,
3836};
3837
3838static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3839{
3840        struct kobj_uevent_env *env;
3841        unsigned long long created, active;
3842
3843        if (!kvm_dev.this_device || !kvm)
3844                return;
3845
3846        spin_lock(&kvm_lock);
3847        if (type == KVM_EVENT_CREATE_VM) {
3848                kvm_createvm_count++;
3849                kvm_active_vms++;
3850        } else if (type == KVM_EVENT_DESTROY_VM) {
3851                kvm_active_vms--;
3852        }
3853        created = kvm_createvm_count;
3854        active = kvm_active_vms;
3855        spin_unlock(&kvm_lock);
3856
3857        env = kzalloc(sizeof(*env), GFP_KERNEL);
3858        if (!env)
3859                return;
3860
3861        add_uevent_var(env, "CREATED=%llu", created);
3862        add_uevent_var(env, "COUNT=%llu", active);
3863
3864        if (type == KVM_EVENT_CREATE_VM) {
3865                add_uevent_var(env, "EVENT=create");
3866                kvm->userspace_pid = task_pid_nr(current);
3867        } else if (type == KVM_EVENT_DESTROY_VM) {
3868                add_uevent_var(env, "EVENT=destroy");
3869        }
3870        add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3871
3872        if (kvm->debugfs_dentry) {
3873                char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3874
3875                if (p) {
3876                        tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3877                        if (!IS_ERR(tmp))
3878                                add_uevent_var(env, "STATS_PATH=%s", tmp);
3879                        kfree(p);
3880                }
3881        }
3882        /* no need for checks, since we are adding at most only 5 keys */
3883        env->envp[env->envp_idx++] = NULL;
3884        kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3885        kfree(env);
3886}
3887
3888static int kvm_init_debug(void)
3889{
3890        int r = -EEXIST;
3891        struct kvm_stats_debugfs_item *p;
3892
3893        kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3894        if (kvm_debugfs_dir == NULL)
3895                goto out;
3896
3897        kvm_debugfs_num_entries = 0;
3898        for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3899                if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3900                                         (void *)(long)p->offset,
3901                                         stat_fops[p->kind]))
3902                        goto out_dir;
3903        }
3904
3905        return 0;
3906
3907out_dir:
3908        debugfs_remove_recursive(kvm_debugfs_dir);
3909out:
3910        return r;
3911}
3912
3913static int kvm_suspend(void)
3914{
3915        if (kvm_usage_count)
3916                hardware_disable_nolock(NULL);
3917        return 0;
3918}
3919
3920static void kvm_resume(void)
3921{
3922        if (kvm_usage_count) {
3923                WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3924                hardware_enable_nolock(NULL);
3925        }
3926}
3927
3928static struct syscore_ops kvm_syscore_ops = {
3929        .suspend = kvm_suspend,
3930        .resume = kvm_resume,
3931};
3932
3933static inline
3934struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3935{
3936        return container_of(pn, struct kvm_vcpu, preempt_notifier);
3937}
3938
3939static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3940{
3941        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3942
3943        if (vcpu->preempted)
3944                vcpu->preempted = false;
3945
3946        kvm_arch_sched_in(vcpu, cpu);
3947
3948        kvm_arch_vcpu_load(vcpu, cpu);
3949}
3950
3951static void kvm_sched_out(struct preempt_notifier *pn,
3952                          struct task_struct *next)
3953{
3954        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3955
3956        if (current->state == TASK_RUNNING)
3957                vcpu->preempted = true;
3958        kvm_arch_vcpu_put(vcpu);
3959}
3960
3961int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3962                  struct module *module)
3963{
3964        int r;
3965        int cpu;
3966
3967        r = kvm_arch_init(opaque);
3968        if (r)
3969                goto out_fail;
3970
3971        /*
3972         * kvm_arch_init makes sure there's at most one caller
3973         * for architectures that support multiple implementations,
3974         * like intel and amd on x86.
3975         * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3976         * conflicts in case kvm is already setup for another implementation.
3977         */
3978        r = kvm_irqfd_init();
3979        if (r)
3980                goto out_irqfd;
3981
3982        if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3983                r = -ENOMEM;
3984                goto out_free_0;
3985        }
3986
3987        r = kvm_arch_hardware_setup();
3988        if (r < 0)
3989                goto out_free_0a;
3990
3991        for_each_online_cpu(cpu) {
3992                smp_call_function_single(cpu,
3993                                kvm_arch_check_processor_compat,
3994                                &r, 1);
3995                if (r < 0)
3996                        goto out_free_1;
3997        }
3998
3999        r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4000                                      kvm_starting_cpu, kvm_dying_cpu);
4001        if (r)
4002                goto out_free_2;
4003        register_reboot_notifier(&kvm_reboot_notifier);
4004
4005        /* A kmem cache lets us meet the alignment requirements of fx_save. */
4006        if (!vcpu_align)
4007                vcpu_align = __alignof__(struct kvm_vcpu);
4008        kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4009                                           0, NULL);
4010        if (!kvm_vcpu_cache) {
4011                r = -ENOMEM;
4012                goto out_free_3;
4013        }
4014
4015        r = kvm_async_pf_init();
4016        if (r)
4017                goto out_free;
4018
4019        kvm_chardev_ops.owner = module;
4020        kvm_vm_fops.owner = module;
4021        kvm_vcpu_fops.owner = module;
4022
4023        r = misc_register(&kvm_dev);
4024        if (r) {
4025                pr_err("kvm: misc device register failed\n");
4026                goto out_unreg;
4027        }
4028
4029        register_syscore_ops(&kvm_syscore_ops);
4030
4031        kvm_preempt_ops.sched_in = kvm_sched_in;
4032        kvm_preempt_ops.sched_out = kvm_sched_out;
4033
4034        r = kvm_init_debug();
4035        if (r) {
4036                pr_err("kvm: create debugfs files failed\n");
4037                goto out_undebugfs;
4038        }
4039
4040        r = kvm_vfio_ops_init();
4041        WARN_ON(r);
4042
4043        return 0;
4044
4045out_undebugfs:
4046        unregister_syscore_ops(&kvm_syscore_ops);
4047        misc_deregister(&kvm_dev);
4048out_unreg:
4049        kvm_async_pf_deinit();
4050out_free:
4051        kmem_cache_destroy(kvm_vcpu_cache);
4052out_free_3:
4053        unregister_reboot_notifier(&kvm_reboot_notifier);
4054        cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4055out_free_2:
4056out_free_1:
4057        kvm_arch_hardware_unsetup();
4058out_free_0a:
4059        free_cpumask_var(cpus_hardware_enabled);
4060out_free_0:
4061        kvm_irqfd_exit();
4062out_irqfd:
4063        kvm_arch_exit();
4064out_fail:
4065        return r;
4066}
4067EXPORT_SYMBOL_GPL(kvm_init);
4068
4069void kvm_exit(void)
4070{
4071        debugfs_remove_recursive(kvm_debugfs_dir);
4072        misc_deregister(&kvm_dev);
4073        kmem_cache_destroy(kvm_vcpu_cache);
4074        kvm_async_pf_deinit();
4075        unregister_syscore_ops(&kvm_syscore_ops);
4076        unregister_reboot_notifier(&kvm_reboot_notifier);
4077        cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4078        on_each_cpu(hardware_disable_nolock, NULL, 1);
4079        kvm_arch_hardware_unsetup();
4080        kvm_arch_exit();
4081        kvm_irqfd_exit();
4082        free_cpumask_var(cpus_hardware_enabled);
4083        kvm_vfio_ops_exit();
4084}
4085EXPORT_SYMBOL_GPL(kvm_exit);
4086