linux/arch/cris/include/asm/pgtable.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * CRIS pgtable.h - macros and functions to manipulate page tables.
   4 */
   5
   6#ifndef _CRIS_PGTABLE_H
   7#define _CRIS_PGTABLE_H
   8
   9#include <asm/page.h>
  10#define __ARCH_USE_5LEVEL_HACK
  11#include <asm-generic/pgtable-nopmd.h>
  12
  13#ifndef __ASSEMBLY__
  14#include <linux/sched/mm.h>
  15#include <asm/mmu.h>
  16#endif
  17#include <arch/pgtable.h>
  18
  19/*
  20 * The Linux memory management assumes a three-level page table setup. On
  21 * CRIS, we use that, but "fold" the mid level into the top-level page
  22 * table. Since the MMU TLB is software loaded through an interrupt, it
  23 * supports any page table structure, so we could have used a three-level
  24 * setup, but for the amounts of memory we normally use, a two-level is
  25 * probably more efficient.
  26 *
  27 * This file contains the functions and defines necessary to modify and use
  28 * the CRIS page table tree.
  29 */
  30#ifndef __ASSEMBLY__
  31extern void paging_init(void);
  32#endif
  33
  34/* Certain architectures need to do special things when pte's
  35 * within a page table are directly modified.  Thus, the following
  36 * hook is made available.
  37 */
  38#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
  39#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
  40
  41/*
  42 * (pmds are folded into pgds so this doesn't get actually called,
  43 * but the define is needed for a generic inline function.)
  44 */
  45#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
  46#define set_pgu(pudptr, pudval) (*(pudptr) = pudval)
  47
  48/* PGDIR_SHIFT determines the size of the area a second-level page table can
  49 * map. It is equal to the page size times the number of PTE's that fit in
  50 * a PMD page. A PTE is 4-bytes in CRIS. Hence the following number.
  51 */
  52
  53#define PGDIR_SHIFT     (PAGE_SHIFT + (PAGE_SHIFT-2))
  54#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
  55#define PGDIR_MASK      (~(PGDIR_SIZE-1))
  56
  57/*
  58 * entries per page directory level: we use a two-level, so
  59 * we don't really have any PMD directory physically.
  60 * pointers are 4 bytes so we can use the page size and 
  61 * divide it by 4 (shift by 2).
  62 */
  63#define PTRS_PER_PTE    (1UL << (PAGE_SHIFT-2))
  64#define PTRS_PER_PGD    (1UL << (PAGE_SHIFT-2))
  65
  66/* calculate how many PGD entries a user-level program can use
  67 * the first mappable virtual address is 0
  68 * (TASK_SIZE is the maximum virtual address space)
  69 */
  70
  71#define USER_PTRS_PER_PGD       (TASK_SIZE/PGDIR_SIZE)
  72#define FIRST_USER_ADDRESS      0UL
  73
  74/* zero page used for uninitialized stuff */
  75#ifndef __ASSEMBLY__
  76extern unsigned long empty_zero_page;
  77#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
  78#endif
  79
  80/* number of bits that fit into a memory pointer */
  81#define BITS_PER_PTR                    (8*sizeof(unsigned long))
  82
  83/* to align the pointer to a pointer address */
  84#define PTR_MASK                        (~(sizeof(void*)-1))
  85
  86/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
  87/* 64-bit machines, beware!  SRB. */
  88#define SIZEOF_PTR_LOG2                 2
  89
  90/* to find an entry in a page-table */
  91#define PAGE_PTR(address) \
  92((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
  93
  94/* to set the page-dir */
  95#define SET_PAGE_DIR(tsk,pgdir)
  96
  97#define pte_none(x)     (!pte_val(x))
  98#define pte_present(x)  (pte_val(x) & _PAGE_PRESENT)
  99#define pte_clear(mm,addr,xp)   do { pte_val(*(xp)) = 0; } while (0)
 100
 101#define pmd_none(x)     (!pmd_val(x))
 102/* by removing the _PAGE_KERNEL bit from the comparison, the same pmd_bad
 103 * works for both _PAGE_TABLE and _KERNPG_TABLE pmd entries.
 104 */
 105#define pmd_bad(x)      ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_KERNEL)) != _PAGE_TABLE)
 106#define pmd_present(x)  (pmd_val(x) & _PAGE_PRESENT)
 107#define pmd_clear(xp)   do { pmd_val(*(xp)) = 0; } while (0)
 108
 109#ifndef __ASSEMBLY__
 110
 111/*
 112 * The following only work if pte_present() is true.
 113 * Undefined behaviour if not..
 114 */
 115
 116static inline int pte_write(pte_t pte)          { return pte_val(pte) & _PAGE_WRITE; }
 117static inline int pte_dirty(pte_t pte)          { return pte_val(pte) & _PAGE_MODIFIED; }
 118static inline int pte_young(pte_t pte)          { return pte_val(pte) & _PAGE_ACCESSED; }
 119static inline int pte_special(pte_t pte)        { return 0; }
 120
 121static inline pte_t pte_wrprotect(pte_t pte)
 122{
 123        pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE);
 124        return pte;
 125}
 126
 127static inline pte_t pte_mkclean(pte_t pte)
 128{
 129        pte_val(pte) &= ~(_PAGE_MODIFIED | _PAGE_SILENT_WRITE); 
 130        return pte; 
 131}
 132
 133static inline pte_t pte_mkold(pte_t pte)
 134{
 135        pte_val(pte) &= ~(_PAGE_ACCESSED | _PAGE_SILENT_READ);
 136        return pte;
 137}
 138
 139static inline pte_t pte_mkwrite(pte_t pte)
 140{
 141        pte_val(pte) |= _PAGE_WRITE;
 142        if (pte_val(pte) & _PAGE_MODIFIED)
 143                pte_val(pte) |= _PAGE_SILENT_WRITE;
 144        return pte;
 145}
 146
 147static inline pte_t pte_mkdirty(pte_t pte)
 148{
 149        pte_val(pte) |= _PAGE_MODIFIED;
 150        if (pte_val(pte) & _PAGE_WRITE)
 151                pte_val(pte) |= _PAGE_SILENT_WRITE;
 152        return pte;
 153}
 154
 155static inline pte_t pte_mkyoung(pte_t pte)
 156{
 157        pte_val(pte) |= _PAGE_ACCESSED;
 158        if (pte_val(pte) & _PAGE_READ)
 159        {
 160                pte_val(pte) |= _PAGE_SILENT_READ;
 161                if ((pte_val(pte) & (_PAGE_WRITE | _PAGE_MODIFIED)) ==
 162                    (_PAGE_WRITE | _PAGE_MODIFIED))
 163                        pte_val(pte) |= _PAGE_SILENT_WRITE;
 164        }
 165        return pte;
 166}
 167static inline pte_t pte_mkspecial(pte_t pte)    { return pte; }
 168
 169/*
 170 * Conversion functions: convert a page and protection to a page entry,
 171 * and a page entry and page directory to the page they refer to.
 172 */
 173
 174/* What actually goes as arguments to the various functions is less than
 175 * obvious, but a rule of thumb is that struct page's goes as struct page *,
 176 * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
 177 * addresses (the 0xc0xxxxxx's) goes as void *'s.
 178 */
 179
 180static inline pte_t __mk_pte(void * page, pgprot_t pgprot)
 181{
 182        pte_t pte;
 183        /* the PTE needs a physical address */
 184        pte_val(pte) = __pa(page) | pgprot_val(pgprot);
 185        return pte;
 186}
 187
 188#define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
 189
 190#define mk_pte_phys(physpage, pgprot) \
 191({                                                                      \
 192        pte_t __pte;                                                    \
 193                                                                        \
 194        pte_val(__pte) = (physpage) + pgprot_val(pgprot);               \
 195        __pte;                                                          \
 196})
 197
 198static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 199{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
 200
 201#define pgprot_noncached(prot) __pgprot((pgprot_val(prot) | _PAGE_NO_CACHE))
 202
 203
 204/* pte_val refers to a page in the 0x4xxxxxxx physical DRAM interval
 205 * __pte_page(pte_val) refers to the "virtual" DRAM interval
 206 * pte_pagenr refers to the page-number counted starting from the virtual DRAM start
 207 */
 208
 209static inline unsigned long __pte_page(pte_t pte)
 210{
 211        /* the PTE contains a physical address */
 212        return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
 213}
 214
 215#define pte_pagenr(pte)         ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
 216
 217/* permanent address of a page */
 218
 219#define __page_address(page)    (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
 220#define pte_page(pte)           (mem_map+pte_pagenr(pte))
 221
 222/* only the pte's themselves need to point to physical DRAM (see above)
 223 * the pagetable links are purely handled within the kernel SW and thus
 224 * don't need the __pa and __va transformations.
 225 */
 226
 227static inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
 228{ pmd_val(*pmdp) = _PAGE_TABLE | (unsigned long) ptep; }
 229
 230#define pmd_page(pmd)           (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
 231#define pmd_page_vaddr(pmd)     ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
 232
 233/* to find an entry in a page-table-directory. */
 234#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
 235
 236/* to find an entry in a page-table-directory */
 237static inline pgd_t * pgd_offset(const struct mm_struct *mm, unsigned long address)
 238{
 239        return mm->pgd + pgd_index(address);
 240}
 241
 242/* to find an entry in a kernel page-table-directory */
 243#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 244
 245/* Find an entry in the third-level page table.. */
 246#define __pte_offset(address) \
 247        (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 248#define pte_offset_kernel(dir, address) \
 249        ((pte_t *) pmd_page_vaddr(*(dir)) +  __pte_offset(address))
 250#define pte_offset_map(dir, address) \
 251        ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
 252
 253#define pte_unmap(pte) do { } while (0)
 254#define pte_pfn(x)              ((unsigned long)(__va((x).pte)) >> PAGE_SHIFT)
 255#define pfn_pte(pfn, prot)      __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
 256
 257#define pte_ERROR(e) \
 258        printk("%s:%d: bad pte %p(%08lx).\n", __FILE__, __LINE__, &(e), pte_val(e))
 259#define pgd_ERROR(e) \
 260        printk("%s:%d: bad pgd %p(%08lx).\n", __FILE__, __LINE__, &(e), pgd_val(e))
 261
 262
 263extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
 264
 265/*
 266 * CRIS doesn't have any external MMU info: the kernel page
 267 * tables contain all the necessary information.
 268 * 
 269 * Actually I am not sure on what this could be used for.
 270 */
 271static inline void update_mmu_cache(struct vm_area_struct * vma,
 272        unsigned long address, pte_t *ptep)
 273{
 274}
 275
 276/* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
 277/* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */
 278
 279#define __swp_type(x)                   (((x).val >> 5) & 0x7f)
 280#define __swp_offset(x)                 ((x).val >> 12)
 281#define __swp_entry(type, offset)       ((swp_entry_t) { ((type) << 5) | ((offset) << 12) })
 282#define __pte_to_swp_entry(pte)         ((swp_entry_t) { pte_val(pte) })
 283#define __swp_entry_to_pte(x)           ((pte_t) { (x).val })
 284
 285#define kern_addr_valid(addr)   (1)
 286
 287#include <asm-generic/pgtable.h>
 288
 289/*
 290 * No page table caches to initialise
 291 */
 292#define pgtable_cache_init()   do { } while (0)
 293
 294typedef pte_t *pte_addr_t;
 295
 296#endif /* __ASSEMBLY__ */
 297#endif /* _CRIS_PGTABLE_H */
 298