linux/arch/ia64/include/asm/uaccess.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_IA64_UACCESS_H
   3#define _ASM_IA64_UACCESS_H
   4
   5/*
   6 * This file defines various macros to transfer memory areas across
   7 * the user/kernel boundary.  This needs to be done carefully because
   8 * this code is executed in kernel mode and uses user-specified
   9 * addresses.  Thus, we need to be careful not to let the user to
  10 * trick us into accessing kernel memory that would normally be
  11 * inaccessible.  This code is also fairly performance sensitive,
  12 * so we want to spend as little time doing safety checks as
  13 * possible.
  14 *
  15 * To make matters a bit more interesting, these macros sometimes also
  16 * called from within the kernel itself, in which case the address
  17 * validity check must be skipped.  The get_fs() macro tells us what
  18 * to do: if get_fs()==USER_DS, checking is performed, if
  19 * get_fs()==KERNEL_DS, checking is bypassed.
  20 *
  21 * Note that even if the memory area specified by the user is in a
  22 * valid address range, it is still possible that we'll get a page
  23 * fault while accessing it.  This is handled by filling out an
  24 * exception handler fixup entry for each instruction that has the
  25 * potential to fault.  When such a fault occurs, the page fault
  26 * handler checks to see whether the faulting instruction has a fixup
  27 * associated and, if so, sets r8 to -EFAULT and clears r9 to 0 and
  28 * then resumes execution at the continuation point.
  29 *
  30 * Based on <asm-alpha/uaccess.h>.
  31 *
  32 * Copyright (C) 1998, 1999, 2001-2004 Hewlett-Packard Co
  33 *      David Mosberger-Tang <davidm@hpl.hp.com>
  34 */
  35
  36#include <linux/compiler.h>
  37#include <linux/page-flags.h>
  38#include <linux/mm.h>
  39
  40#include <asm/intrinsics.h>
  41#include <asm/pgtable.h>
  42#include <asm/io.h>
  43#include <asm/extable.h>
  44
  45/*
  46 * For historical reasons, the following macros are grossly misnamed:
  47 */
  48#define KERNEL_DS       ((mm_segment_t) { ~0UL })               /* cf. access_ok() */
  49#define USER_DS         ((mm_segment_t) { TASK_SIZE-1 })        /* cf. access_ok() */
  50
  51#define get_ds()  (KERNEL_DS)
  52#define get_fs()  (current_thread_info()->addr_limit)
  53#define set_fs(x) (current_thread_info()->addr_limit = (x))
  54
  55#define segment_eq(a, b)        ((a).seg == (b).seg)
  56
  57/*
  58 * When accessing user memory, we need to make sure the entire area really is in
  59 * user-level space.  In order to do this efficiently, we make sure that the page at
  60 * address TASK_SIZE is never valid.  We also need to make sure that the address doesn't
  61 * point inside the virtually mapped linear page table.
  62 */
  63static inline int __access_ok(const void __user *p, unsigned long size)
  64{
  65        unsigned long addr = (unsigned long)p;
  66        unsigned long seg = get_fs().seg;
  67        return likely(addr <= seg) &&
  68         (seg == KERNEL_DS.seg || likely(REGION_OFFSET(addr) < RGN_MAP_LIMIT));
  69}
  70#define access_ok(type, addr, size)     __access_ok((addr), (size))
  71
  72/*
  73 * These are the main single-value transfer routines.  They automatically
  74 * use the right size if we just have the right pointer type.
  75 *
  76 * Careful to not
  77 * (a) re-use the arguments for side effects (sizeof/typeof is ok)
  78 * (b) require any knowledge of processes at this stage
  79 */
  80#define put_user(x, ptr)        __put_user_check((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)))
  81#define get_user(x, ptr)        __get_user_check((x), (ptr), sizeof(*(ptr)))
  82
  83/*
  84 * The "__xxx" versions do not do address space checking, useful when
  85 * doing multiple accesses to the same area (the programmer has to do the
  86 * checks by hand with "access_ok()")
  87 */
  88#define __put_user(x, ptr)      __put_user_nocheck((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)))
  89#define __get_user(x, ptr)      __get_user_nocheck((x), (ptr), sizeof(*(ptr)))
  90
  91#ifdef ASM_SUPPORTED
  92  struct __large_struct { unsigned long buf[100]; };
  93# define __m(x) (*(struct __large_struct __user *)(x))
  94
  95/* We need to declare the __ex_table section before we can use it in .xdata.  */
  96asm (".section \"__ex_table\", \"a\"\n\t.previous");
  97
  98# define __get_user_size(val, addr, n, err)                                                     \
  99do {                                                                                            \
 100        register long __gu_r8 asm ("r8") = 0;                                                   \
 101        register long __gu_r9 asm ("r9");                                                       \
 102        asm ("\n[1:]\tld"#n" %0=%2%P2\t// %0 and %1 get overwritten by exception handler\n"     \
 103             "\t.xdata4 \"__ex_table\", 1b-., 1f-.+4\n"                                         \
 104             "[1:]"                                                                             \
 105             : "=r"(__gu_r9), "=r"(__gu_r8) : "m"(__m(addr)), "1"(__gu_r8));                    \
 106        (err) = __gu_r8;                                                                        \
 107        (val) = __gu_r9;                                                                        \
 108} while (0)
 109
 110/*
 111 * The "__put_user_size()" macro tells gcc it reads from memory instead of writing it.  This
 112 * is because they do not write to any memory gcc knows about, so there are no aliasing
 113 * issues.
 114 */
 115# define __put_user_size(val, addr, n, err)                                                     \
 116do {                                                                                            \
 117        register long __pu_r8 asm ("r8") = 0;                                                   \
 118        asm volatile ("\n[1:]\tst"#n" %1=%r2%P1\t// %0 gets overwritten by exception handler\n" \
 119                      "\t.xdata4 \"__ex_table\", 1b-., 1f-.\n"                                  \
 120                      "[1:]"                                                                    \
 121                      : "=r"(__pu_r8) : "m"(__m(addr)), "rO"(val), "0"(__pu_r8));               \
 122        (err) = __pu_r8;                                                                        \
 123} while (0)
 124
 125#else /* !ASM_SUPPORTED */
 126# define RELOC_TYPE     2       /* ip-rel */
 127# define __get_user_size(val, addr, n, err)                             \
 128do {                                                                    \
 129        __ld_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE);   \
 130        (err) = ia64_getreg(_IA64_REG_R8);                              \
 131        (val) = ia64_getreg(_IA64_REG_R9);                              \
 132} while (0)
 133# define __put_user_size(val, addr, n, err)                             \
 134do {                                                                    \
 135        __st_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE,    \
 136                  (__force unsigned long) (val));                       \
 137        (err) = ia64_getreg(_IA64_REG_R8);                              \
 138} while (0)
 139#endif /* !ASM_SUPPORTED */
 140
 141extern void __get_user_unknown (void);
 142
 143/*
 144 * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which
 145 * could clobber r8 and r9 (among others).  Thus, be careful not to evaluate it while
 146 * using r8/r9.
 147 */
 148#define __do_get_user(check, x, ptr, size)                                              \
 149({                                                                                      \
 150        const __typeof__(*(ptr)) __user *__gu_ptr = (ptr);                              \
 151        __typeof__ (size) __gu_size = (size);                                           \
 152        long __gu_err = -EFAULT;                                                        \
 153        unsigned long __gu_val = 0;                                                     \
 154        if (!check || __access_ok(__gu_ptr, size))                                      \
 155                switch (__gu_size) {                                                    \
 156                      case 1: __get_user_size(__gu_val, __gu_ptr, 1, __gu_err); break;  \
 157                      case 2: __get_user_size(__gu_val, __gu_ptr, 2, __gu_err); break;  \
 158                      case 4: __get_user_size(__gu_val, __gu_ptr, 4, __gu_err); break;  \
 159                      case 8: __get_user_size(__gu_val, __gu_ptr, 8, __gu_err); break;  \
 160                      default: __get_user_unknown(); break;                             \
 161                }                                                                       \
 162        (x) = (__force __typeof__(*(__gu_ptr))) __gu_val;                               \
 163        __gu_err;                                                                       \
 164})
 165
 166#define __get_user_nocheck(x, ptr, size)        __do_get_user(0, x, ptr, size)
 167#define __get_user_check(x, ptr, size)  __do_get_user(1, x, ptr, size)
 168
 169extern void __put_user_unknown (void);
 170
 171/*
 172 * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which
 173 * could clobber r8 (among others).  Thus, be careful not to evaluate them while using r8.
 174 */
 175#define __do_put_user(check, x, ptr, size)                                              \
 176({                                                                                      \
 177        __typeof__ (x) __pu_x = (x);                                                    \
 178        __typeof__ (*(ptr)) __user *__pu_ptr = (ptr);                                   \
 179        __typeof__ (size) __pu_size = (size);                                           \
 180        long __pu_err = -EFAULT;                                                        \
 181                                                                                        \
 182        if (!check || __access_ok(__pu_ptr, __pu_size))                                 \
 183                switch (__pu_size) {                                                    \
 184                      case 1: __put_user_size(__pu_x, __pu_ptr, 1, __pu_err); break;    \
 185                      case 2: __put_user_size(__pu_x, __pu_ptr, 2, __pu_err); break;    \
 186                      case 4: __put_user_size(__pu_x, __pu_ptr, 4, __pu_err); break;    \
 187                      case 8: __put_user_size(__pu_x, __pu_ptr, 8, __pu_err); break;    \
 188                      default: __put_user_unknown(); break;                             \
 189                }                                                                       \
 190        __pu_err;                                                                       \
 191})
 192
 193#define __put_user_nocheck(x, ptr, size)        __do_put_user(0, x, ptr, size)
 194#define __put_user_check(x, ptr, size)  __do_put_user(1, x, ptr, size)
 195
 196/*
 197 * Complex access routines
 198 */
 199extern unsigned long __must_check __copy_user (void __user *to, const void __user *from,
 200                                               unsigned long count);
 201
 202static inline unsigned long
 203raw_copy_to_user(void __user *to, const void *from, unsigned long count)
 204{
 205        return __copy_user(to, (__force void __user *) from, count);
 206}
 207
 208static inline unsigned long
 209raw_copy_from_user(void *to, const void __user *from, unsigned long count)
 210{
 211        return __copy_user((__force void __user *) to, from, count);
 212}
 213
 214#define INLINE_COPY_FROM_USER
 215#define INLINE_COPY_TO_USER
 216
 217extern unsigned long __do_clear_user (void __user *, unsigned long);
 218
 219#define __clear_user(to, n)             __do_clear_user(to, n)
 220
 221#define clear_user(to, n)                                       \
 222({                                                              \
 223        unsigned long __cu_len = (n);                           \
 224        if (__access_ok(to, __cu_len))                          \
 225                __cu_len = __do_clear_user(to, __cu_len);       \
 226        __cu_len;                                               \
 227})
 228
 229
 230/*
 231 * Returns: -EFAULT if exception before terminator, N if the entire buffer filled, else
 232 * strlen.
 233 */
 234extern long __must_check __strncpy_from_user (char *to, const char __user *from, long to_len);
 235
 236#define strncpy_from_user(to, from, n)                                  \
 237({                                                                      \
 238        const char __user * __sfu_from = (from);                        \
 239        long __sfu_ret = -EFAULT;                                       \
 240        if (__access_ok(__sfu_from, 0))                                 \
 241                __sfu_ret = __strncpy_from_user((to), __sfu_from, (n)); \
 242        __sfu_ret;                                                      \
 243})
 244
 245/*
 246 * Returns: 0 if exception before NUL or reaching the supplied limit
 247 * (N), a value greater than N if the limit would be exceeded, else
 248 * strlen.
 249 */
 250extern unsigned long __strnlen_user (const char __user *, long);
 251
 252#define strnlen_user(str, len)                                  \
 253({                                                              \
 254        const char __user *__su_str = (str);                    \
 255        unsigned long __su_ret = 0;                             \
 256        if (__access_ok(__su_str, 0))                           \
 257                __su_ret = __strnlen_user(__su_str, len);       \
 258        __su_ret;                                               \
 259})
 260
 261#define ARCH_HAS_TRANSLATE_MEM_PTR      1
 262static __inline__ void *
 263xlate_dev_mem_ptr(phys_addr_t p)
 264{
 265        struct page *page;
 266        void *ptr;
 267
 268        page = pfn_to_page(p >> PAGE_SHIFT);
 269        if (PageUncached(page))
 270                ptr = (void *)p + __IA64_UNCACHED_OFFSET;
 271        else
 272                ptr = __va(p);
 273
 274        return ptr;
 275}
 276
 277/*
 278 * Convert a virtual cached kernel memory pointer to an uncached pointer
 279 */
 280static __inline__ void *
 281xlate_dev_kmem_ptr(void *p)
 282{
 283        struct page *page;
 284        void *ptr;
 285
 286        page = virt_to_page((unsigned long)p);
 287        if (PageUncached(page))
 288                ptr = (void *)__pa(p) + __IA64_UNCACHED_OFFSET;
 289        else
 290                ptr = p;
 291
 292        return ptr;
 293}
 294
 295#endif /* _ASM_IA64_UACCESS_H */
 296