linux/arch/powerpc/perf/core-book3s.c
<<
>>
Prefs
   1/*
   2 * Performance event support - powerpc architecture code
   3 *
   4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11#include <linux/kernel.h>
  12#include <linux/sched.h>
  13#include <linux/perf_event.h>
  14#include <linux/percpu.h>
  15#include <linux/hardirq.h>
  16#include <linux/uaccess.h>
  17#include <asm/reg.h>
  18#include <asm/pmc.h>
  19#include <asm/machdep.h>
  20#include <asm/firmware.h>
  21#include <asm/ptrace.h>
  22#include <asm/code-patching.h>
  23
  24#define BHRB_MAX_ENTRIES        32
  25#define BHRB_TARGET             0x0000000000000002
  26#define BHRB_PREDICTION         0x0000000000000001
  27#define BHRB_EA                 0xFFFFFFFFFFFFFFFCUL
  28
  29struct cpu_hw_events {
  30        int n_events;
  31        int n_percpu;
  32        int disabled;
  33        int n_added;
  34        int n_limited;
  35        u8  pmcs_enabled;
  36        struct perf_event *event[MAX_HWEVENTS];
  37        u64 events[MAX_HWEVENTS];
  38        unsigned int flags[MAX_HWEVENTS];
  39        /*
  40         * The order of the MMCR array is:
  41         *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
  42         *  - 32-bit, MMCR0, MMCR1, MMCR2
  43         */
  44        unsigned long mmcr[4];
  45        struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
  46        u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
  47        u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  48        unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  49        unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  50
  51        unsigned int txn_flags;
  52        int n_txn_start;
  53
  54        /* BHRB bits */
  55        u64                             bhrb_filter;    /* BHRB HW branch filter */
  56        unsigned int                    bhrb_users;
  57        void                            *bhrb_context;
  58        struct  perf_branch_stack       bhrb_stack;
  59        struct  perf_branch_entry       bhrb_entries[BHRB_MAX_ENTRIES];
  60        u64                             ic_init;
  61};
  62
  63static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  64
  65static struct power_pmu *ppmu;
  66
  67/*
  68 * Normally, to ignore kernel events we set the FCS (freeze counters
  69 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
  70 * hypervisor bit set in the MSR, or if we are running on a processor
  71 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
  72 * then we need to use the FCHV bit to ignore kernel events.
  73 */
  74static unsigned int freeze_events_kernel = MMCR0_FCS;
  75
  76/*
  77 * 32-bit doesn't have MMCRA but does have an MMCR2,
  78 * and a few other names are different.
  79 */
  80#ifdef CONFIG_PPC32
  81
  82#define MMCR0_FCHV              0
  83#define MMCR0_PMCjCE            MMCR0_PMCnCE
  84#define MMCR0_FC56              0
  85#define MMCR0_PMAO              0
  86#define MMCR0_EBE               0
  87#define MMCR0_BHRBA             0
  88#define MMCR0_PMCC              0
  89#define MMCR0_PMCC_U6           0
  90
  91#define SPRN_MMCRA              SPRN_MMCR2
  92#define MMCRA_SAMPLE_ENABLE     0
  93
  94static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
  95{
  96        return 0;
  97}
  98static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
  99static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 100{
 101        return 0;
 102}
 103static inline void perf_read_regs(struct pt_regs *regs)
 104{
 105        regs->result = 0;
 106}
 107static inline int perf_intr_is_nmi(struct pt_regs *regs)
 108{
 109        return 0;
 110}
 111
 112static inline int siar_valid(struct pt_regs *regs)
 113{
 114        return 1;
 115}
 116
 117static bool is_ebb_event(struct perf_event *event) { return false; }
 118static int ebb_event_check(struct perf_event *event) { return 0; }
 119static void ebb_event_add(struct perf_event *event) { }
 120static void ebb_switch_out(unsigned long mmcr0) { }
 121static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 122{
 123        return cpuhw->mmcr[0];
 124}
 125
 126static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
 127static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
 128static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
 129static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
 130static void pmao_restore_workaround(bool ebb) { }
 131static bool use_ic(u64 event)
 132{
 133        return false;
 134}
 135#endif /* CONFIG_PPC32 */
 136
 137static bool regs_use_siar(struct pt_regs *regs)
 138{
 139        /*
 140         * When we take a performance monitor exception the regs are setup
 141         * using perf_read_regs() which overloads some fields, in particular
 142         * regs->result to tell us whether to use SIAR.
 143         *
 144         * However if the regs are from another exception, eg. a syscall, then
 145         * they have not been setup using perf_read_regs() and so regs->result
 146         * is something random.
 147         */
 148        return ((TRAP(regs) == 0xf00) && regs->result);
 149}
 150
 151/*
 152 * Things that are specific to 64-bit implementations.
 153 */
 154#ifdef CONFIG_PPC64
 155
 156static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
 157{
 158        unsigned long mmcra = regs->dsisr;
 159
 160        if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
 161                unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
 162                if (slot > 1)
 163                        return 4 * (slot - 1);
 164        }
 165
 166        return 0;
 167}
 168
 169/*
 170 * The user wants a data address recorded.
 171 * If we're not doing instruction sampling, give them the SDAR
 172 * (sampled data address).  If we are doing instruction sampling, then
 173 * only give them the SDAR if it corresponds to the instruction
 174 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 175 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
 176 */
 177static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
 178{
 179        unsigned long mmcra = regs->dsisr;
 180        bool sdar_valid;
 181
 182        if (ppmu->flags & PPMU_HAS_SIER)
 183                sdar_valid = regs->dar & SIER_SDAR_VALID;
 184        else {
 185                unsigned long sdsync;
 186
 187                if (ppmu->flags & PPMU_SIAR_VALID)
 188                        sdsync = POWER7P_MMCRA_SDAR_VALID;
 189                else if (ppmu->flags & PPMU_ALT_SIPR)
 190                        sdsync = POWER6_MMCRA_SDSYNC;
 191                else if (ppmu->flags & PPMU_NO_SIAR)
 192                        sdsync = MMCRA_SAMPLE_ENABLE;
 193                else
 194                        sdsync = MMCRA_SDSYNC;
 195
 196                sdar_valid = mmcra & sdsync;
 197        }
 198
 199        if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
 200                *addrp = mfspr(SPRN_SDAR);
 201}
 202
 203static bool regs_sihv(struct pt_regs *regs)
 204{
 205        unsigned long sihv = MMCRA_SIHV;
 206
 207        if (ppmu->flags & PPMU_HAS_SIER)
 208                return !!(regs->dar & SIER_SIHV);
 209
 210        if (ppmu->flags & PPMU_ALT_SIPR)
 211                sihv = POWER6_MMCRA_SIHV;
 212
 213        return !!(regs->dsisr & sihv);
 214}
 215
 216static bool regs_sipr(struct pt_regs *regs)
 217{
 218        unsigned long sipr = MMCRA_SIPR;
 219
 220        if (ppmu->flags & PPMU_HAS_SIER)
 221                return !!(regs->dar & SIER_SIPR);
 222
 223        if (ppmu->flags & PPMU_ALT_SIPR)
 224                sipr = POWER6_MMCRA_SIPR;
 225
 226        return !!(regs->dsisr & sipr);
 227}
 228
 229static inline u32 perf_flags_from_msr(struct pt_regs *regs)
 230{
 231        if (regs->msr & MSR_PR)
 232                return PERF_RECORD_MISC_USER;
 233        if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
 234                return PERF_RECORD_MISC_HYPERVISOR;
 235        return PERF_RECORD_MISC_KERNEL;
 236}
 237
 238static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 239{
 240        bool use_siar = regs_use_siar(regs);
 241
 242        if (!use_siar)
 243                return perf_flags_from_msr(regs);
 244
 245        /*
 246         * If we don't have flags in MMCRA, rather than using
 247         * the MSR, we intuit the flags from the address in
 248         * SIAR which should give slightly more reliable
 249         * results
 250         */
 251        if (ppmu->flags & PPMU_NO_SIPR) {
 252                unsigned long siar = mfspr(SPRN_SIAR);
 253                if (is_kernel_addr(siar))
 254                        return PERF_RECORD_MISC_KERNEL;
 255                return PERF_RECORD_MISC_USER;
 256        }
 257
 258        /* PR has priority over HV, so order below is important */
 259        if (regs_sipr(regs))
 260                return PERF_RECORD_MISC_USER;
 261
 262        if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
 263                return PERF_RECORD_MISC_HYPERVISOR;
 264
 265        return PERF_RECORD_MISC_KERNEL;
 266}
 267
 268/*
 269 * Overload regs->dsisr to store MMCRA so we only need to read it once
 270 * on each interrupt.
 271 * Overload regs->dar to store SIER if we have it.
 272 * Overload regs->result to specify whether we should use the MSR (result
 273 * is zero) or the SIAR (result is non zero).
 274 */
 275static inline void perf_read_regs(struct pt_regs *regs)
 276{
 277        unsigned long mmcra = mfspr(SPRN_MMCRA);
 278        int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 279        int use_siar;
 280
 281        regs->dsisr = mmcra;
 282
 283        if (ppmu->flags & PPMU_HAS_SIER)
 284                regs->dar = mfspr(SPRN_SIER);
 285
 286        /*
 287         * If this isn't a PMU exception (eg a software event) the SIAR is
 288         * not valid. Use pt_regs.
 289         *
 290         * If it is a marked event use the SIAR.
 291         *
 292         * If the PMU doesn't update the SIAR for non marked events use
 293         * pt_regs.
 294         *
 295         * If the PMU has HV/PR flags then check to see if they
 296         * place the exception in userspace. If so, use pt_regs. In
 297         * continuous sampling mode the SIAR and the PMU exception are
 298         * not synchronised, so they may be many instructions apart.
 299         * This can result in confusing backtraces. We still want
 300         * hypervisor samples as well as samples in the kernel with
 301         * interrupts off hence the userspace check.
 302         */
 303        if (TRAP(regs) != 0xf00)
 304                use_siar = 0;
 305        else if ((ppmu->flags & PPMU_NO_SIAR))
 306                use_siar = 0;
 307        else if (marked)
 308                use_siar = 1;
 309        else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
 310                use_siar = 0;
 311        else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
 312                use_siar = 0;
 313        else
 314                use_siar = 1;
 315
 316        regs->result = use_siar;
 317}
 318
 319/*
 320 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 321 * it as an NMI.
 322 */
 323static inline int perf_intr_is_nmi(struct pt_regs *regs)
 324{
 325        return !regs->softe;
 326}
 327
 328/*
 329 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 330 * must be sampled only if the SIAR-valid bit is set.
 331 *
 332 * For unmarked instructions and for processors that don't have the SIAR-Valid
 333 * bit, assume that SIAR is valid.
 334 */
 335static inline int siar_valid(struct pt_regs *regs)
 336{
 337        unsigned long mmcra = regs->dsisr;
 338        int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 339
 340        if (marked) {
 341                if (ppmu->flags & PPMU_HAS_SIER)
 342                        return regs->dar & SIER_SIAR_VALID;
 343
 344                if (ppmu->flags & PPMU_SIAR_VALID)
 345                        return mmcra & POWER7P_MMCRA_SIAR_VALID;
 346        }
 347
 348        return 1;
 349}
 350
 351
 352/* Reset all possible BHRB entries */
 353static void power_pmu_bhrb_reset(void)
 354{
 355        asm volatile(PPC_CLRBHRB);
 356}
 357
 358static void power_pmu_bhrb_enable(struct perf_event *event)
 359{
 360        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 361
 362        if (!ppmu->bhrb_nr)
 363                return;
 364
 365        /* Clear BHRB if we changed task context to avoid data leaks */
 366        if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
 367                power_pmu_bhrb_reset();
 368                cpuhw->bhrb_context = event->ctx;
 369        }
 370        cpuhw->bhrb_users++;
 371        perf_sched_cb_inc(event->ctx->pmu);
 372}
 373
 374static void power_pmu_bhrb_disable(struct perf_event *event)
 375{
 376        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 377
 378        if (!ppmu->bhrb_nr)
 379                return;
 380
 381        WARN_ON_ONCE(!cpuhw->bhrb_users);
 382        cpuhw->bhrb_users--;
 383        perf_sched_cb_dec(event->ctx->pmu);
 384
 385        if (!cpuhw->disabled && !cpuhw->bhrb_users) {
 386                /* BHRB cannot be turned off when other
 387                 * events are active on the PMU.
 388                 */
 389
 390                /* avoid stale pointer */
 391                cpuhw->bhrb_context = NULL;
 392        }
 393}
 394
 395/* Called from ctxsw to prevent one process's branch entries to
 396 * mingle with the other process's entries during context switch.
 397 */
 398static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
 399{
 400        if (!ppmu->bhrb_nr)
 401                return;
 402
 403        if (sched_in)
 404                power_pmu_bhrb_reset();
 405}
 406/* Calculate the to address for a branch */
 407static __u64 power_pmu_bhrb_to(u64 addr)
 408{
 409        unsigned int instr;
 410        int ret;
 411        __u64 target;
 412
 413        if (is_kernel_addr(addr))
 414                return branch_target((unsigned int *)addr);
 415
 416        /* Userspace: need copy instruction here then translate it */
 417        pagefault_disable();
 418        ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
 419        if (ret) {
 420                pagefault_enable();
 421                return 0;
 422        }
 423        pagefault_enable();
 424
 425        target = branch_target(&instr);
 426        if ((!target) || (instr & BRANCH_ABSOLUTE))
 427                return target;
 428
 429        /* Translate relative branch target from kernel to user address */
 430        return target - (unsigned long)&instr + addr;
 431}
 432
 433/* Processing BHRB entries */
 434static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
 435{
 436        u64 val;
 437        u64 addr;
 438        int r_index, u_index, pred;
 439
 440        r_index = 0;
 441        u_index = 0;
 442        while (r_index < ppmu->bhrb_nr) {
 443                /* Assembly read function */
 444                val = read_bhrb(r_index++);
 445                if (!val)
 446                        /* Terminal marker: End of valid BHRB entries */
 447                        break;
 448                else {
 449                        addr = val & BHRB_EA;
 450                        pred = val & BHRB_PREDICTION;
 451
 452                        if (!addr)
 453                                /* invalid entry */
 454                                continue;
 455
 456                        /* Branches are read most recent first (ie. mfbhrb 0 is
 457                         * the most recent branch).
 458                         * There are two types of valid entries:
 459                         * 1) a target entry which is the to address of a
 460                         *    computed goto like a blr,bctr,btar.  The next
 461                         *    entry read from the bhrb will be branch
 462                         *    corresponding to this target (ie. the actual
 463                         *    blr/bctr/btar instruction).
 464                         * 2) a from address which is an actual branch.  If a
 465                         *    target entry proceeds this, then this is the
 466                         *    matching branch for that target.  If this is not
 467                         *    following a target entry, then this is a branch
 468                         *    where the target is given as an immediate field
 469                         *    in the instruction (ie. an i or b form branch).
 470                         *    In this case we need to read the instruction from
 471                         *    memory to determine the target/to address.
 472                         */
 473
 474                        if (val & BHRB_TARGET) {
 475                                /* Target branches use two entries
 476                                 * (ie. computed gotos/XL form)
 477                                 */
 478                                cpuhw->bhrb_entries[u_index].to = addr;
 479                                cpuhw->bhrb_entries[u_index].mispred = pred;
 480                                cpuhw->bhrb_entries[u_index].predicted = ~pred;
 481
 482                                /* Get from address in next entry */
 483                                val = read_bhrb(r_index++);
 484                                addr = val & BHRB_EA;
 485                                if (val & BHRB_TARGET) {
 486                                        /* Shouldn't have two targets in a
 487                                           row.. Reset index and try again */
 488                                        r_index--;
 489                                        addr = 0;
 490                                }
 491                                cpuhw->bhrb_entries[u_index].from = addr;
 492                        } else {
 493                                /* Branches to immediate field 
 494                                   (ie I or B form) */
 495                                cpuhw->bhrb_entries[u_index].from = addr;
 496                                cpuhw->bhrb_entries[u_index].to =
 497                                        power_pmu_bhrb_to(addr);
 498                                cpuhw->bhrb_entries[u_index].mispred = pred;
 499                                cpuhw->bhrb_entries[u_index].predicted = ~pred;
 500                        }
 501                        u_index++;
 502
 503                }
 504        }
 505        cpuhw->bhrb_stack.nr = u_index;
 506        return;
 507}
 508
 509static bool is_ebb_event(struct perf_event *event)
 510{
 511        /*
 512         * This could be a per-PMU callback, but we'd rather avoid the cost. We
 513         * check that the PMU supports EBB, meaning those that don't can still
 514         * use bit 63 of the event code for something else if they wish.
 515         */
 516        return (ppmu->flags & PPMU_ARCH_207S) &&
 517               ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
 518}
 519
 520static int ebb_event_check(struct perf_event *event)
 521{
 522        struct perf_event *leader = event->group_leader;
 523
 524        /* Event and group leader must agree on EBB */
 525        if (is_ebb_event(leader) != is_ebb_event(event))
 526                return -EINVAL;
 527
 528        if (is_ebb_event(event)) {
 529                if (!(event->attach_state & PERF_ATTACH_TASK))
 530                        return -EINVAL;
 531
 532                if (!leader->attr.pinned || !leader->attr.exclusive)
 533                        return -EINVAL;
 534
 535                if (event->attr.freq ||
 536                    event->attr.inherit ||
 537                    event->attr.sample_type ||
 538                    event->attr.sample_period ||
 539                    event->attr.enable_on_exec)
 540                        return -EINVAL;
 541        }
 542
 543        return 0;
 544}
 545
 546static void ebb_event_add(struct perf_event *event)
 547{
 548        if (!is_ebb_event(event) || current->thread.used_ebb)
 549                return;
 550
 551        /*
 552         * IFF this is the first time we've added an EBB event, set
 553         * PMXE in the user MMCR0 so we can detect when it's cleared by
 554         * userspace. We need this so that we can context switch while
 555         * userspace is in the EBB handler (where PMXE is 0).
 556         */
 557        current->thread.used_ebb = 1;
 558        current->thread.mmcr0 |= MMCR0_PMXE;
 559}
 560
 561static void ebb_switch_out(unsigned long mmcr0)
 562{
 563        if (!(mmcr0 & MMCR0_EBE))
 564                return;
 565
 566        current->thread.siar  = mfspr(SPRN_SIAR);
 567        current->thread.sier  = mfspr(SPRN_SIER);
 568        current->thread.sdar  = mfspr(SPRN_SDAR);
 569        current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
 570        current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
 571}
 572
 573static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 574{
 575        unsigned long mmcr0 = cpuhw->mmcr[0];
 576
 577        if (!ebb)
 578                goto out;
 579
 580        /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
 581        mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
 582
 583        /*
 584         * Add any bits from the user MMCR0, FC or PMAO. This is compatible
 585         * with pmao_restore_workaround() because we may add PMAO but we never
 586         * clear it here.
 587         */
 588        mmcr0 |= current->thread.mmcr0;
 589
 590        /*
 591         * Be careful not to set PMXE if userspace had it cleared. This is also
 592         * compatible with pmao_restore_workaround() because it has already
 593         * cleared PMXE and we leave PMAO alone.
 594         */
 595        if (!(current->thread.mmcr0 & MMCR0_PMXE))
 596                mmcr0 &= ~MMCR0_PMXE;
 597
 598        mtspr(SPRN_SIAR, current->thread.siar);
 599        mtspr(SPRN_SIER, current->thread.sier);
 600        mtspr(SPRN_SDAR, current->thread.sdar);
 601
 602        /*
 603         * Merge the kernel & user values of MMCR2. The semantics we implement
 604         * are that the user MMCR2 can set bits, ie. cause counters to freeze,
 605         * but not clear bits. If a task wants to be able to clear bits, ie.
 606         * unfreeze counters, it should not set exclude_xxx in its events and
 607         * instead manage the MMCR2 entirely by itself.
 608         */
 609        mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
 610out:
 611        return mmcr0;
 612}
 613
 614static void pmao_restore_workaround(bool ebb)
 615{
 616        unsigned pmcs[6];
 617
 618        if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
 619                return;
 620
 621        /*
 622         * On POWER8E there is a hardware defect which affects the PMU context
 623         * switch logic, ie. power_pmu_disable/enable().
 624         *
 625         * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
 626         * by the hardware. Sometime later the actual PMU exception is
 627         * delivered.
 628         *
 629         * If we context switch, or simply disable/enable, the PMU prior to the
 630         * exception arriving, the exception will be lost when we clear PMAO.
 631         *
 632         * When we reenable the PMU, we will write the saved MMCR0 with PMAO
 633         * set, and this _should_ generate an exception. However because of the
 634         * defect no exception is generated when we write PMAO, and we get
 635         * stuck with no counters counting but no exception delivered.
 636         *
 637         * The workaround is to detect this case and tweak the hardware to
 638         * create another pending PMU exception.
 639         *
 640         * We do that by setting up PMC6 (cycles) for an imminent overflow and
 641         * enabling the PMU. That causes a new exception to be generated in the
 642         * chip, but we don't take it yet because we have interrupts hard
 643         * disabled. We then write back the PMU state as we want it to be seen
 644         * by the exception handler. When we reenable interrupts the exception
 645         * handler will be called and see the correct state.
 646         *
 647         * The logic is the same for EBB, except that the exception is gated by
 648         * us having interrupts hard disabled as well as the fact that we are
 649         * not in userspace. The exception is finally delivered when we return
 650         * to userspace.
 651         */
 652
 653        /* Only if PMAO is set and PMAO_SYNC is clear */
 654        if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
 655                return;
 656
 657        /* If we're doing EBB, only if BESCR[GE] is set */
 658        if (ebb && !(current->thread.bescr & BESCR_GE))
 659                return;
 660
 661        /*
 662         * We are already soft-disabled in power_pmu_enable(). We need to hard
 663         * disable to actually prevent the PMU exception from firing.
 664         */
 665        hard_irq_disable();
 666
 667        /*
 668         * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
 669         * Using read/write_pmc() in a for loop adds 12 function calls and
 670         * almost doubles our code size.
 671         */
 672        pmcs[0] = mfspr(SPRN_PMC1);
 673        pmcs[1] = mfspr(SPRN_PMC2);
 674        pmcs[2] = mfspr(SPRN_PMC3);
 675        pmcs[3] = mfspr(SPRN_PMC4);
 676        pmcs[4] = mfspr(SPRN_PMC5);
 677        pmcs[5] = mfspr(SPRN_PMC6);
 678
 679        /* Ensure all freeze bits are unset */
 680        mtspr(SPRN_MMCR2, 0);
 681
 682        /* Set up PMC6 to overflow in one cycle */
 683        mtspr(SPRN_PMC6, 0x7FFFFFFE);
 684
 685        /* Enable exceptions and unfreeze PMC6 */
 686        mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
 687
 688        /* Now we need to refreeze and restore the PMCs */
 689        mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
 690
 691        mtspr(SPRN_PMC1, pmcs[0]);
 692        mtspr(SPRN_PMC2, pmcs[1]);
 693        mtspr(SPRN_PMC3, pmcs[2]);
 694        mtspr(SPRN_PMC4, pmcs[3]);
 695        mtspr(SPRN_PMC5, pmcs[4]);
 696        mtspr(SPRN_PMC6, pmcs[5]);
 697}
 698
 699static bool use_ic(u64 event)
 700{
 701        if (cpu_has_feature(CPU_FTR_POWER9_DD1) &&
 702                        (event == 0x200f2 || event == 0x300f2))
 703                return true;
 704
 705        return false;
 706}
 707#endif /* CONFIG_PPC64 */
 708
 709static void perf_event_interrupt(struct pt_regs *regs);
 710
 711/*
 712 * Read one performance monitor counter (PMC).
 713 */
 714static unsigned long read_pmc(int idx)
 715{
 716        unsigned long val;
 717
 718        switch (idx) {
 719        case 1:
 720                val = mfspr(SPRN_PMC1);
 721                break;
 722        case 2:
 723                val = mfspr(SPRN_PMC2);
 724                break;
 725        case 3:
 726                val = mfspr(SPRN_PMC3);
 727                break;
 728        case 4:
 729                val = mfspr(SPRN_PMC4);
 730                break;
 731        case 5:
 732                val = mfspr(SPRN_PMC5);
 733                break;
 734        case 6:
 735                val = mfspr(SPRN_PMC6);
 736                break;
 737#ifdef CONFIG_PPC64
 738        case 7:
 739                val = mfspr(SPRN_PMC7);
 740                break;
 741        case 8:
 742                val = mfspr(SPRN_PMC8);
 743                break;
 744#endif /* CONFIG_PPC64 */
 745        default:
 746                printk(KERN_ERR "oops trying to read PMC%d\n", idx);
 747                val = 0;
 748        }
 749        return val;
 750}
 751
 752/*
 753 * Write one PMC.
 754 */
 755static void write_pmc(int idx, unsigned long val)
 756{
 757        switch (idx) {
 758        case 1:
 759                mtspr(SPRN_PMC1, val);
 760                break;
 761        case 2:
 762                mtspr(SPRN_PMC2, val);
 763                break;
 764        case 3:
 765                mtspr(SPRN_PMC3, val);
 766                break;
 767        case 4:
 768                mtspr(SPRN_PMC4, val);
 769                break;
 770        case 5:
 771                mtspr(SPRN_PMC5, val);
 772                break;
 773        case 6:
 774                mtspr(SPRN_PMC6, val);
 775                break;
 776#ifdef CONFIG_PPC64
 777        case 7:
 778                mtspr(SPRN_PMC7, val);
 779                break;
 780        case 8:
 781                mtspr(SPRN_PMC8, val);
 782                break;
 783#endif /* CONFIG_PPC64 */
 784        default:
 785                printk(KERN_ERR "oops trying to write PMC%d\n", idx);
 786        }
 787}
 788
 789/* Called from sysrq_handle_showregs() */
 790void perf_event_print_debug(void)
 791{
 792        unsigned long sdar, sier, flags;
 793        u32 pmcs[MAX_HWEVENTS];
 794        int i;
 795
 796        if (!ppmu) {
 797                pr_info("Performance monitor hardware not registered.\n");
 798                return;
 799        }
 800
 801        if (!ppmu->n_counter)
 802                return;
 803
 804        local_irq_save(flags);
 805
 806        pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
 807                 smp_processor_id(), ppmu->name, ppmu->n_counter);
 808
 809        for (i = 0; i < ppmu->n_counter; i++)
 810                pmcs[i] = read_pmc(i + 1);
 811
 812        for (; i < MAX_HWEVENTS; i++)
 813                pmcs[i] = 0xdeadbeef;
 814
 815        pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
 816                 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
 817
 818        if (ppmu->n_counter > 4)
 819                pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
 820                         pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
 821
 822        pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
 823                mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
 824
 825        sdar = sier = 0;
 826#ifdef CONFIG_PPC64
 827        sdar = mfspr(SPRN_SDAR);
 828
 829        if (ppmu->flags & PPMU_HAS_SIER)
 830                sier = mfspr(SPRN_SIER);
 831
 832        if (ppmu->flags & PPMU_ARCH_207S) {
 833                pr_info("MMCR2: %016lx EBBHR: %016lx\n",
 834                        mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
 835                pr_info("EBBRR: %016lx BESCR: %016lx\n",
 836                        mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
 837        }
 838#endif
 839        pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
 840                mfspr(SPRN_SIAR), sdar, sier);
 841
 842        local_irq_restore(flags);
 843}
 844
 845/*
 846 * Check if a set of events can all go on the PMU at once.
 847 * If they can't, this will look at alternative codes for the events
 848 * and see if any combination of alternative codes is feasible.
 849 * The feasible set is returned in event_id[].
 850 */
 851static int power_check_constraints(struct cpu_hw_events *cpuhw,
 852                                   u64 event_id[], unsigned int cflags[],
 853                                   int n_ev)
 854{
 855        unsigned long mask, value, nv;
 856        unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
 857        int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
 858        int i, j;
 859        unsigned long addf = ppmu->add_fields;
 860        unsigned long tadd = ppmu->test_adder;
 861
 862        if (n_ev > ppmu->n_counter)
 863                return -1;
 864
 865        /* First see if the events will go on as-is */
 866        for (i = 0; i < n_ev; ++i) {
 867                if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
 868                    && !ppmu->limited_pmc_event(event_id[i])) {
 869                        ppmu->get_alternatives(event_id[i], cflags[i],
 870                                               cpuhw->alternatives[i]);
 871                        event_id[i] = cpuhw->alternatives[i][0];
 872                }
 873                if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
 874                                         &cpuhw->avalues[i][0]))
 875                        return -1;
 876        }
 877        value = mask = 0;
 878        for (i = 0; i < n_ev; ++i) {
 879                nv = (value | cpuhw->avalues[i][0]) +
 880                        (value & cpuhw->avalues[i][0] & addf);
 881                if ((((nv + tadd) ^ value) & mask) != 0 ||
 882                    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
 883                     cpuhw->amasks[i][0]) != 0)
 884                        break;
 885                value = nv;
 886                mask |= cpuhw->amasks[i][0];
 887        }
 888        if (i == n_ev)
 889                return 0;       /* all OK */
 890
 891        /* doesn't work, gather alternatives... */
 892        if (!ppmu->get_alternatives)
 893                return -1;
 894        for (i = 0; i < n_ev; ++i) {
 895                choice[i] = 0;
 896                n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
 897                                                  cpuhw->alternatives[i]);
 898                for (j = 1; j < n_alt[i]; ++j)
 899                        ppmu->get_constraint(cpuhw->alternatives[i][j],
 900                                             &cpuhw->amasks[i][j],
 901                                             &cpuhw->avalues[i][j]);
 902        }
 903
 904        /* enumerate all possibilities and see if any will work */
 905        i = 0;
 906        j = -1;
 907        value = mask = nv = 0;
 908        while (i < n_ev) {
 909                if (j >= 0) {
 910                        /* we're backtracking, restore context */
 911                        value = svalues[i];
 912                        mask = smasks[i];
 913                        j = choice[i];
 914                }
 915                /*
 916                 * See if any alternative k for event_id i,
 917                 * where k > j, will satisfy the constraints.
 918                 */
 919                while (++j < n_alt[i]) {
 920                        nv = (value | cpuhw->avalues[i][j]) +
 921                                (value & cpuhw->avalues[i][j] & addf);
 922                        if ((((nv + tadd) ^ value) & mask) == 0 &&
 923                            (((nv + tadd) ^ cpuhw->avalues[i][j])
 924                             & cpuhw->amasks[i][j]) == 0)
 925                                break;
 926                }
 927                if (j >= n_alt[i]) {
 928                        /*
 929                         * No feasible alternative, backtrack
 930                         * to event_id i-1 and continue enumerating its
 931                         * alternatives from where we got up to.
 932                         */
 933                        if (--i < 0)
 934                                return -1;
 935                } else {
 936                        /*
 937                         * Found a feasible alternative for event_id i,
 938                         * remember where we got up to with this event_id,
 939                         * go on to the next event_id, and start with
 940                         * the first alternative for it.
 941                         */
 942                        choice[i] = j;
 943                        svalues[i] = value;
 944                        smasks[i] = mask;
 945                        value = nv;
 946                        mask |= cpuhw->amasks[i][j];
 947                        ++i;
 948                        j = -1;
 949                }
 950        }
 951
 952        /* OK, we have a feasible combination, tell the caller the solution */
 953        for (i = 0; i < n_ev; ++i)
 954                event_id[i] = cpuhw->alternatives[i][choice[i]];
 955        return 0;
 956}
 957
 958/*
 959 * Check if newly-added events have consistent settings for
 960 * exclude_{user,kernel,hv} with each other and any previously
 961 * added events.
 962 */
 963static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
 964                          int n_prev, int n_new)
 965{
 966        int eu = 0, ek = 0, eh = 0;
 967        int i, n, first;
 968        struct perf_event *event;
 969
 970        /*
 971         * If the PMU we're on supports per event exclude settings then we
 972         * don't need to do any of this logic. NB. This assumes no PMU has both
 973         * per event exclude and limited PMCs.
 974         */
 975        if (ppmu->flags & PPMU_ARCH_207S)
 976                return 0;
 977
 978        n = n_prev + n_new;
 979        if (n <= 1)
 980                return 0;
 981
 982        first = 1;
 983        for (i = 0; i < n; ++i) {
 984                if (cflags[i] & PPMU_LIMITED_PMC_OK) {
 985                        cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
 986                        continue;
 987                }
 988                event = ctrs[i];
 989                if (first) {
 990                        eu = event->attr.exclude_user;
 991                        ek = event->attr.exclude_kernel;
 992                        eh = event->attr.exclude_hv;
 993                        first = 0;
 994                } else if (event->attr.exclude_user != eu ||
 995                           event->attr.exclude_kernel != ek ||
 996                           event->attr.exclude_hv != eh) {
 997                        return -EAGAIN;
 998                }
 999        }
1000
1001        if (eu || ek || eh)
1002                for (i = 0; i < n; ++i)
1003                        if (cflags[i] & PPMU_LIMITED_PMC_OK)
1004                                cflags[i] |= PPMU_LIMITED_PMC_REQD;
1005
1006        return 0;
1007}
1008
1009static u64 check_and_compute_delta(u64 prev, u64 val)
1010{
1011        u64 delta = (val - prev) & 0xfffffffful;
1012
1013        /*
1014         * POWER7 can roll back counter values, if the new value is smaller
1015         * than the previous value it will cause the delta and the counter to
1016         * have bogus values unless we rolled a counter over.  If a coutner is
1017         * rolled back, it will be smaller, but within 256, which is the maximum
1018         * number of events to rollback at once.  If we detect a rollback
1019         * return 0.  This can lead to a small lack of precision in the
1020         * counters.
1021         */
1022        if (prev > val && (prev - val) < 256)
1023                delta = 0;
1024
1025        return delta;
1026}
1027
1028static void power_pmu_read(struct perf_event *event)
1029{
1030        s64 val, delta, prev;
1031        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1032
1033        if (event->hw.state & PERF_HES_STOPPED)
1034                return;
1035
1036        if (!event->hw.idx)
1037                return;
1038
1039        if (is_ebb_event(event)) {
1040                val = read_pmc(event->hw.idx);
1041                if (use_ic(event->attr.config)) {
1042                        val = mfspr(SPRN_IC);
1043                        if (val > cpuhw->ic_init)
1044                                val = val - cpuhw->ic_init;
1045                        else
1046                                val = val + (0 - cpuhw->ic_init);
1047                }
1048                local64_set(&event->hw.prev_count, val);
1049                return;
1050        }
1051
1052        /*
1053         * Performance monitor interrupts come even when interrupts
1054         * are soft-disabled, as long as interrupts are hard-enabled.
1055         * Therefore we treat them like NMIs.
1056         */
1057        do {
1058                prev = local64_read(&event->hw.prev_count);
1059                barrier();
1060                val = read_pmc(event->hw.idx);
1061                if (use_ic(event->attr.config)) {
1062                        val = mfspr(SPRN_IC);
1063                        if (val > cpuhw->ic_init)
1064                                val = val - cpuhw->ic_init;
1065                        else
1066                                val = val + (0 - cpuhw->ic_init);
1067                }
1068                delta = check_and_compute_delta(prev, val);
1069                if (!delta)
1070                        return;
1071        } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1072
1073        local64_add(delta, &event->count);
1074
1075        /*
1076         * A number of places program the PMC with (0x80000000 - period_left).
1077         * We never want period_left to be less than 1 because we will program
1078         * the PMC with a value >= 0x800000000 and an edge detected PMC will
1079         * roll around to 0 before taking an exception. We have seen this
1080         * on POWER8.
1081         *
1082         * To fix this, clamp the minimum value of period_left to 1.
1083         */
1084        do {
1085                prev = local64_read(&event->hw.period_left);
1086                val = prev - delta;
1087                if (val < 1)
1088                        val = 1;
1089        } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1090}
1091
1092/*
1093 * On some machines, PMC5 and PMC6 can't be written, don't respect
1094 * the freeze conditions, and don't generate interrupts.  This tells
1095 * us if `event' is using such a PMC.
1096 */
1097static int is_limited_pmc(int pmcnum)
1098{
1099        return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1100                && (pmcnum == 5 || pmcnum == 6);
1101}
1102
1103static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1104                                    unsigned long pmc5, unsigned long pmc6)
1105{
1106        struct perf_event *event;
1107        u64 val, prev, delta;
1108        int i;
1109
1110        for (i = 0; i < cpuhw->n_limited; ++i) {
1111                event = cpuhw->limited_counter[i];
1112                if (!event->hw.idx)
1113                        continue;
1114                val = (event->hw.idx == 5) ? pmc5 : pmc6;
1115                prev = local64_read(&event->hw.prev_count);
1116                event->hw.idx = 0;
1117                delta = check_and_compute_delta(prev, val);
1118                if (delta)
1119                        local64_add(delta, &event->count);
1120        }
1121}
1122
1123static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1124                                  unsigned long pmc5, unsigned long pmc6)
1125{
1126        struct perf_event *event;
1127        u64 val, prev;
1128        int i;
1129
1130        for (i = 0; i < cpuhw->n_limited; ++i) {
1131                event = cpuhw->limited_counter[i];
1132                event->hw.idx = cpuhw->limited_hwidx[i];
1133                val = (event->hw.idx == 5) ? pmc5 : pmc6;
1134                prev = local64_read(&event->hw.prev_count);
1135                if (check_and_compute_delta(prev, val))
1136                        local64_set(&event->hw.prev_count, val);
1137                perf_event_update_userpage(event);
1138        }
1139}
1140
1141/*
1142 * Since limited events don't respect the freeze conditions, we
1143 * have to read them immediately after freezing or unfreezing the
1144 * other events.  We try to keep the values from the limited
1145 * events as consistent as possible by keeping the delay (in
1146 * cycles and instructions) between freezing/unfreezing and reading
1147 * the limited events as small and consistent as possible.
1148 * Therefore, if any limited events are in use, we read them
1149 * both, and always in the same order, to minimize variability,
1150 * and do it inside the same asm that writes MMCR0.
1151 */
1152static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1153{
1154        unsigned long pmc5, pmc6;
1155
1156        if (!cpuhw->n_limited) {
1157                mtspr(SPRN_MMCR0, mmcr0);
1158                return;
1159        }
1160
1161        /*
1162         * Write MMCR0, then read PMC5 and PMC6 immediately.
1163         * To ensure we don't get a performance monitor interrupt
1164         * between writing MMCR0 and freezing/thawing the limited
1165         * events, we first write MMCR0 with the event overflow
1166         * interrupt enable bits turned off.
1167         */
1168        asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1169                     : "=&r" (pmc5), "=&r" (pmc6)
1170                     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1171                       "i" (SPRN_MMCR0),
1172                       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1173
1174        if (mmcr0 & MMCR0_FC)
1175                freeze_limited_counters(cpuhw, pmc5, pmc6);
1176        else
1177                thaw_limited_counters(cpuhw, pmc5, pmc6);
1178
1179        /*
1180         * Write the full MMCR0 including the event overflow interrupt
1181         * enable bits, if necessary.
1182         */
1183        if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1184                mtspr(SPRN_MMCR0, mmcr0);
1185}
1186
1187/*
1188 * Disable all events to prevent PMU interrupts and to allow
1189 * events to be added or removed.
1190 */
1191static void power_pmu_disable(struct pmu *pmu)
1192{
1193        struct cpu_hw_events *cpuhw;
1194        unsigned long flags, mmcr0, val;
1195
1196        if (!ppmu)
1197                return;
1198        local_irq_save(flags);
1199        cpuhw = this_cpu_ptr(&cpu_hw_events);
1200
1201        if (!cpuhw->disabled) {
1202                /*
1203                 * Check if we ever enabled the PMU on this cpu.
1204                 */
1205                if (!cpuhw->pmcs_enabled) {
1206                        ppc_enable_pmcs();
1207                        cpuhw->pmcs_enabled = 1;
1208                }
1209
1210                /*
1211                 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1212                 */
1213                val  = mmcr0 = mfspr(SPRN_MMCR0);
1214                val |= MMCR0_FC;
1215                val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1216                         MMCR0_FC56);
1217
1218                /*
1219                 * The barrier is to make sure the mtspr has been
1220                 * executed and the PMU has frozen the events etc.
1221                 * before we return.
1222                 */
1223                write_mmcr0(cpuhw, val);
1224                mb();
1225
1226                /*
1227                 * Disable instruction sampling if it was enabled
1228                 */
1229                if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1230                        mtspr(SPRN_MMCRA,
1231                              cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1232                        mb();
1233                }
1234
1235                cpuhw->disabled = 1;
1236                cpuhw->n_added = 0;
1237
1238                ebb_switch_out(mmcr0);
1239        }
1240
1241        local_irq_restore(flags);
1242}
1243
1244/*
1245 * Re-enable all events if disable == 0.
1246 * If we were previously disabled and events were added, then
1247 * put the new config on the PMU.
1248 */
1249static void power_pmu_enable(struct pmu *pmu)
1250{
1251        struct perf_event *event;
1252        struct cpu_hw_events *cpuhw;
1253        unsigned long flags;
1254        long i;
1255        unsigned long val, mmcr0;
1256        s64 left;
1257        unsigned int hwc_index[MAX_HWEVENTS];
1258        int n_lim;
1259        int idx;
1260        bool ebb;
1261
1262        if (!ppmu)
1263                return;
1264        local_irq_save(flags);
1265
1266        cpuhw = this_cpu_ptr(&cpu_hw_events);
1267        if (!cpuhw->disabled)
1268                goto out;
1269
1270        if (cpuhw->n_events == 0) {
1271                ppc_set_pmu_inuse(0);
1272                goto out;
1273        }
1274
1275        cpuhw->disabled = 0;
1276
1277        /*
1278         * EBB requires an exclusive group and all events must have the EBB
1279         * flag set, or not set, so we can just check a single event. Also we
1280         * know we have at least one event.
1281         */
1282        ebb = is_ebb_event(cpuhw->event[0]);
1283
1284        /*
1285         * If we didn't change anything, or only removed events,
1286         * no need to recalculate MMCR* settings and reset the PMCs.
1287         * Just reenable the PMU with the current MMCR* settings
1288         * (possibly updated for removal of events).
1289         */
1290        if (!cpuhw->n_added) {
1291                mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1292                mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1293                goto out_enable;
1294        }
1295
1296        /*
1297         * Clear all MMCR settings and recompute them for the new set of events.
1298         */
1299        memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1300
1301        if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1302                               cpuhw->mmcr, cpuhw->event)) {
1303                /* shouldn't ever get here */
1304                printk(KERN_ERR "oops compute_mmcr failed\n");
1305                goto out;
1306        }
1307
1308        if (!(ppmu->flags & PPMU_ARCH_207S)) {
1309                /*
1310                 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1311                 * bits for the first event. We have already checked that all
1312                 * events have the same value for these bits as the first event.
1313                 */
1314                event = cpuhw->event[0];
1315                if (event->attr.exclude_user)
1316                        cpuhw->mmcr[0] |= MMCR0_FCP;
1317                if (event->attr.exclude_kernel)
1318                        cpuhw->mmcr[0] |= freeze_events_kernel;
1319                if (event->attr.exclude_hv)
1320                        cpuhw->mmcr[0] |= MMCR0_FCHV;
1321        }
1322
1323        /*
1324         * Write the new configuration to MMCR* with the freeze
1325         * bit set and set the hardware events to their initial values.
1326         * Then unfreeze the events.
1327         */
1328        ppc_set_pmu_inuse(1);
1329        mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1330        mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1331        mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1332                                | MMCR0_FC);
1333        if (ppmu->flags & PPMU_ARCH_207S)
1334                mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1335
1336        /*
1337         * Read off any pre-existing events that need to move
1338         * to another PMC.
1339         */
1340        for (i = 0; i < cpuhw->n_events; ++i) {
1341                event = cpuhw->event[i];
1342                if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1343                        power_pmu_read(event);
1344                        write_pmc(event->hw.idx, 0);
1345                        event->hw.idx = 0;
1346                }
1347        }
1348
1349        /*
1350         * Initialize the PMCs for all the new and moved events.
1351         */
1352        cpuhw->n_limited = n_lim = 0;
1353        for (i = 0; i < cpuhw->n_events; ++i) {
1354                event = cpuhw->event[i];
1355                if (event->hw.idx)
1356                        continue;
1357                idx = hwc_index[i] + 1;
1358                if (is_limited_pmc(idx)) {
1359                        cpuhw->limited_counter[n_lim] = event;
1360                        cpuhw->limited_hwidx[n_lim] = idx;
1361                        ++n_lim;
1362                        continue;
1363                }
1364
1365                if (ebb)
1366                        val = local64_read(&event->hw.prev_count);
1367                else {
1368                        val = 0;
1369                        if (event->hw.sample_period) {
1370                                left = local64_read(&event->hw.period_left);
1371                                if (left < 0x80000000L)
1372                                        val = 0x80000000L - left;
1373                        }
1374                        local64_set(&event->hw.prev_count, val);
1375                }
1376
1377                event->hw.idx = idx;
1378                if (event->hw.state & PERF_HES_STOPPED)
1379                        val = 0;
1380                write_pmc(idx, val);
1381
1382                perf_event_update_userpage(event);
1383        }
1384        cpuhw->n_limited = n_lim;
1385        cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1386
1387 out_enable:
1388        pmao_restore_workaround(ebb);
1389
1390        mmcr0 = ebb_switch_in(ebb, cpuhw);
1391
1392        mb();
1393        if (cpuhw->bhrb_users)
1394                ppmu->config_bhrb(cpuhw->bhrb_filter);
1395
1396        write_mmcr0(cpuhw, mmcr0);
1397
1398        /*
1399         * Enable instruction sampling if necessary
1400         */
1401        if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1402                mb();
1403                mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1404        }
1405
1406 out:
1407
1408        local_irq_restore(flags);
1409}
1410
1411static int collect_events(struct perf_event *group, int max_count,
1412                          struct perf_event *ctrs[], u64 *events,
1413                          unsigned int *flags)
1414{
1415        int n = 0;
1416        struct perf_event *event;
1417
1418        if (!is_software_event(group)) {
1419                if (n >= max_count)
1420                        return -1;
1421                ctrs[n] = group;
1422                flags[n] = group->hw.event_base;
1423                events[n++] = group->hw.config;
1424        }
1425        list_for_each_entry(event, &group->sibling_list, group_entry) {
1426                if (!is_software_event(event) &&
1427                    event->state != PERF_EVENT_STATE_OFF) {
1428                        if (n >= max_count)
1429                                return -1;
1430                        ctrs[n] = event;
1431                        flags[n] = event->hw.event_base;
1432                        events[n++] = event->hw.config;
1433                }
1434        }
1435        return n;
1436}
1437
1438/*
1439 * Add a event to the PMU.
1440 * If all events are not already frozen, then we disable and
1441 * re-enable the PMU in order to get hw_perf_enable to do the
1442 * actual work of reconfiguring the PMU.
1443 */
1444static int power_pmu_add(struct perf_event *event, int ef_flags)
1445{
1446        struct cpu_hw_events *cpuhw;
1447        unsigned long flags;
1448        int n0;
1449        int ret = -EAGAIN;
1450
1451        local_irq_save(flags);
1452        perf_pmu_disable(event->pmu);
1453
1454        /*
1455         * Add the event to the list (if there is room)
1456         * and check whether the total set is still feasible.
1457         */
1458        cpuhw = this_cpu_ptr(&cpu_hw_events);
1459        n0 = cpuhw->n_events;
1460        if (n0 >= ppmu->n_counter)
1461                goto out;
1462        cpuhw->event[n0] = event;
1463        cpuhw->events[n0] = event->hw.config;
1464        cpuhw->flags[n0] = event->hw.event_base;
1465
1466        /*
1467         * This event may have been disabled/stopped in record_and_restart()
1468         * because we exceeded the ->event_limit. If re-starting the event,
1469         * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1470         * notification is re-enabled.
1471         */
1472        if (!(ef_flags & PERF_EF_START))
1473                event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1474        else
1475                event->hw.state = 0;
1476
1477        /*
1478         * If group events scheduling transaction was started,
1479         * skip the schedulability test here, it will be performed
1480         * at commit time(->commit_txn) as a whole
1481         */
1482        if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1483                goto nocheck;
1484
1485        if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1486                goto out;
1487        if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1488                goto out;
1489        event->hw.config = cpuhw->events[n0];
1490
1491nocheck:
1492        ebb_event_add(event);
1493
1494        ++cpuhw->n_events;
1495        ++cpuhw->n_added;
1496
1497        ret = 0;
1498 out:
1499        if (has_branch_stack(event)) {
1500                power_pmu_bhrb_enable(event);
1501                cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1502                                        event->attr.branch_sample_type);
1503        }
1504
1505        /*
1506         * Workaround for POWER9 DD1 to use the Instruction Counter
1507         * register value for instruction counting
1508         */
1509        if (use_ic(event->attr.config))
1510                cpuhw->ic_init = mfspr(SPRN_IC);
1511
1512        perf_pmu_enable(event->pmu);
1513        local_irq_restore(flags);
1514        return ret;
1515}
1516
1517/*
1518 * Remove a event from the PMU.
1519 */
1520static void power_pmu_del(struct perf_event *event, int ef_flags)
1521{
1522        struct cpu_hw_events *cpuhw;
1523        long i;
1524        unsigned long flags;
1525
1526        local_irq_save(flags);
1527        perf_pmu_disable(event->pmu);
1528
1529        power_pmu_read(event);
1530
1531        cpuhw = this_cpu_ptr(&cpu_hw_events);
1532        for (i = 0; i < cpuhw->n_events; ++i) {
1533                if (event == cpuhw->event[i]) {
1534                        while (++i < cpuhw->n_events) {
1535                                cpuhw->event[i-1] = cpuhw->event[i];
1536                                cpuhw->events[i-1] = cpuhw->events[i];
1537                                cpuhw->flags[i-1] = cpuhw->flags[i];
1538                        }
1539                        --cpuhw->n_events;
1540                        ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1541                        if (event->hw.idx) {
1542                                write_pmc(event->hw.idx, 0);
1543                                event->hw.idx = 0;
1544                        }
1545                        perf_event_update_userpage(event);
1546                        break;
1547                }
1548        }
1549        for (i = 0; i < cpuhw->n_limited; ++i)
1550                if (event == cpuhw->limited_counter[i])
1551                        break;
1552        if (i < cpuhw->n_limited) {
1553                while (++i < cpuhw->n_limited) {
1554                        cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1555                        cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1556                }
1557                --cpuhw->n_limited;
1558        }
1559        if (cpuhw->n_events == 0) {
1560                /* disable exceptions if no events are running */
1561                cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1562        }
1563
1564        if (has_branch_stack(event))
1565                power_pmu_bhrb_disable(event);
1566
1567        perf_pmu_enable(event->pmu);
1568        local_irq_restore(flags);
1569}
1570
1571/*
1572 * POWER-PMU does not support disabling individual counters, hence
1573 * program their cycle counter to their max value and ignore the interrupts.
1574 */
1575
1576static void power_pmu_start(struct perf_event *event, int ef_flags)
1577{
1578        unsigned long flags;
1579        s64 left;
1580        unsigned long val;
1581
1582        if (!event->hw.idx || !event->hw.sample_period)
1583                return;
1584
1585        if (!(event->hw.state & PERF_HES_STOPPED))
1586                return;
1587
1588        if (ef_flags & PERF_EF_RELOAD)
1589                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1590
1591        local_irq_save(flags);
1592        perf_pmu_disable(event->pmu);
1593
1594        event->hw.state = 0;
1595        left = local64_read(&event->hw.period_left);
1596
1597        val = 0;
1598        if (left < 0x80000000L)
1599                val = 0x80000000L - left;
1600
1601        write_pmc(event->hw.idx, val);
1602
1603        perf_event_update_userpage(event);
1604        perf_pmu_enable(event->pmu);
1605        local_irq_restore(flags);
1606}
1607
1608static void power_pmu_stop(struct perf_event *event, int ef_flags)
1609{
1610        unsigned long flags;
1611
1612        if (!event->hw.idx || !event->hw.sample_period)
1613                return;
1614
1615        if (event->hw.state & PERF_HES_STOPPED)
1616                return;
1617
1618        local_irq_save(flags);
1619        perf_pmu_disable(event->pmu);
1620
1621        power_pmu_read(event);
1622        event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1623        write_pmc(event->hw.idx, 0);
1624
1625        perf_event_update_userpage(event);
1626        perf_pmu_enable(event->pmu);
1627        local_irq_restore(flags);
1628}
1629
1630/*
1631 * Start group events scheduling transaction
1632 * Set the flag to make pmu::enable() not perform the
1633 * schedulability test, it will be performed at commit time
1634 *
1635 * We only support PERF_PMU_TXN_ADD transactions. Save the
1636 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1637 * transactions.
1638 */
1639static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1640{
1641        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1642
1643        WARN_ON_ONCE(cpuhw->txn_flags);         /* txn already in flight */
1644
1645        cpuhw->txn_flags = txn_flags;
1646        if (txn_flags & ~PERF_PMU_TXN_ADD)
1647                return;
1648
1649        perf_pmu_disable(pmu);
1650        cpuhw->n_txn_start = cpuhw->n_events;
1651}
1652
1653/*
1654 * Stop group events scheduling transaction
1655 * Clear the flag and pmu::enable() will perform the
1656 * schedulability test.
1657 */
1658static void power_pmu_cancel_txn(struct pmu *pmu)
1659{
1660        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1661        unsigned int txn_flags;
1662
1663        WARN_ON_ONCE(!cpuhw->txn_flags);        /* no txn in flight */
1664
1665        txn_flags = cpuhw->txn_flags;
1666        cpuhw->txn_flags = 0;
1667        if (txn_flags & ~PERF_PMU_TXN_ADD)
1668                return;
1669
1670        perf_pmu_enable(pmu);
1671}
1672
1673/*
1674 * Commit group events scheduling transaction
1675 * Perform the group schedulability test as a whole
1676 * Return 0 if success
1677 */
1678static int power_pmu_commit_txn(struct pmu *pmu)
1679{
1680        struct cpu_hw_events *cpuhw;
1681        long i, n;
1682
1683        if (!ppmu)
1684                return -EAGAIN;
1685
1686        cpuhw = this_cpu_ptr(&cpu_hw_events);
1687        WARN_ON_ONCE(!cpuhw->txn_flags);        /* no txn in flight */
1688
1689        if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1690                cpuhw->txn_flags = 0;
1691                return 0;
1692        }
1693
1694        n = cpuhw->n_events;
1695        if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1696                return -EAGAIN;
1697        i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1698        if (i < 0)
1699                return -EAGAIN;
1700
1701        for (i = cpuhw->n_txn_start; i < n; ++i)
1702                cpuhw->event[i]->hw.config = cpuhw->events[i];
1703
1704        cpuhw->txn_flags = 0;
1705        perf_pmu_enable(pmu);
1706        return 0;
1707}
1708
1709/*
1710 * Return 1 if we might be able to put event on a limited PMC,
1711 * or 0 if not.
1712 * A event can only go on a limited PMC if it counts something
1713 * that a limited PMC can count, doesn't require interrupts, and
1714 * doesn't exclude any processor mode.
1715 */
1716static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1717                                 unsigned int flags)
1718{
1719        int n;
1720        u64 alt[MAX_EVENT_ALTERNATIVES];
1721
1722        if (event->attr.exclude_user
1723            || event->attr.exclude_kernel
1724            || event->attr.exclude_hv
1725            || event->attr.sample_period)
1726                return 0;
1727
1728        if (ppmu->limited_pmc_event(ev))
1729                return 1;
1730
1731        /*
1732         * The requested event_id isn't on a limited PMC already;
1733         * see if any alternative code goes on a limited PMC.
1734         */
1735        if (!ppmu->get_alternatives)
1736                return 0;
1737
1738        flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1739        n = ppmu->get_alternatives(ev, flags, alt);
1740
1741        return n > 0;
1742}
1743
1744/*
1745 * Find an alternative event_id that goes on a normal PMC, if possible,
1746 * and return the event_id code, or 0 if there is no such alternative.
1747 * (Note: event_id code 0 is "don't count" on all machines.)
1748 */
1749static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1750{
1751        u64 alt[MAX_EVENT_ALTERNATIVES];
1752        int n;
1753
1754        flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1755        n = ppmu->get_alternatives(ev, flags, alt);
1756        if (!n)
1757                return 0;
1758        return alt[0];
1759}
1760
1761/* Number of perf_events counting hardware events */
1762static atomic_t num_events;
1763/* Used to avoid races in calling reserve/release_pmc_hardware */
1764static DEFINE_MUTEX(pmc_reserve_mutex);
1765
1766/*
1767 * Release the PMU if this is the last perf_event.
1768 */
1769static void hw_perf_event_destroy(struct perf_event *event)
1770{
1771        if (!atomic_add_unless(&num_events, -1, 1)) {
1772                mutex_lock(&pmc_reserve_mutex);
1773                if (atomic_dec_return(&num_events) == 0)
1774                        release_pmc_hardware();
1775                mutex_unlock(&pmc_reserve_mutex);
1776        }
1777}
1778
1779/*
1780 * Translate a generic cache event_id config to a raw event_id code.
1781 */
1782static int hw_perf_cache_event(u64 config, u64 *eventp)
1783{
1784        unsigned long type, op, result;
1785        int ev;
1786
1787        if (!ppmu->cache_events)
1788                return -EINVAL;
1789
1790        /* unpack config */
1791        type = config & 0xff;
1792        op = (config >> 8) & 0xff;
1793        result = (config >> 16) & 0xff;
1794
1795        if (type >= PERF_COUNT_HW_CACHE_MAX ||
1796            op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1797            result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1798                return -EINVAL;
1799
1800        ev = (*ppmu->cache_events)[type][op][result];
1801        if (ev == 0)
1802                return -EOPNOTSUPP;
1803        if (ev == -1)
1804                return -EINVAL;
1805        *eventp = ev;
1806        return 0;
1807}
1808
1809static int power_pmu_event_init(struct perf_event *event)
1810{
1811        u64 ev;
1812        unsigned long flags;
1813        struct perf_event *ctrs[MAX_HWEVENTS];
1814        u64 events[MAX_HWEVENTS];
1815        unsigned int cflags[MAX_HWEVENTS];
1816        int n;
1817        int err;
1818        struct cpu_hw_events *cpuhw;
1819
1820        if (!ppmu)
1821                return -ENOENT;
1822
1823        if (has_branch_stack(event)) {
1824                /* PMU has BHRB enabled */
1825                if (!(ppmu->flags & PPMU_ARCH_207S))
1826                        return -EOPNOTSUPP;
1827        }
1828
1829        switch (event->attr.type) {
1830        case PERF_TYPE_HARDWARE:
1831                ev = event->attr.config;
1832                if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1833                        return -EOPNOTSUPP;
1834                ev = ppmu->generic_events[ev];
1835                break;
1836        case PERF_TYPE_HW_CACHE:
1837                err = hw_perf_cache_event(event->attr.config, &ev);
1838                if (err)
1839                        return err;
1840                break;
1841        case PERF_TYPE_RAW:
1842                ev = event->attr.config;
1843                break;
1844        default:
1845                return -ENOENT;
1846        }
1847
1848        event->hw.config_base = ev;
1849        event->hw.idx = 0;
1850
1851        /*
1852         * If we are not running on a hypervisor, force the
1853         * exclude_hv bit to 0 so that we don't care what
1854         * the user set it to.
1855         */
1856        if (!firmware_has_feature(FW_FEATURE_LPAR))
1857                event->attr.exclude_hv = 0;
1858
1859        /*
1860         * If this is a per-task event, then we can use
1861         * PM_RUN_* events interchangeably with their non RUN_*
1862         * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1863         * XXX we should check if the task is an idle task.
1864         */
1865        flags = 0;
1866        if (event->attach_state & PERF_ATTACH_TASK)
1867                flags |= PPMU_ONLY_COUNT_RUN;
1868
1869        /*
1870         * If this machine has limited events, check whether this
1871         * event_id could go on a limited event.
1872         */
1873        if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1874                if (can_go_on_limited_pmc(event, ev, flags)) {
1875                        flags |= PPMU_LIMITED_PMC_OK;
1876                } else if (ppmu->limited_pmc_event(ev)) {
1877                        /*
1878                         * The requested event_id is on a limited PMC,
1879                         * but we can't use a limited PMC; see if any
1880                         * alternative goes on a normal PMC.
1881                         */
1882                        ev = normal_pmc_alternative(ev, flags);
1883                        if (!ev)
1884                                return -EINVAL;
1885                }
1886        }
1887
1888        /* Extra checks for EBB */
1889        err = ebb_event_check(event);
1890        if (err)
1891                return err;
1892
1893        /*
1894         * If this is in a group, check if it can go on with all the
1895         * other hardware events in the group.  We assume the event
1896         * hasn't been linked into its leader's sibling list at this point.
1897         */
1898        n = 0;
1899        if (event->group_leader != event) {
1900                n = collect_events(event->group_leader, ppmu->n_counter - 1,
1901                                   ctrs, events, cflags);
1902                if (n < 0)
1903                        return -EINVAL;
1904        }
1905        events[n] = ev;
1906        ctrs[n] = event;
1907        cflags[n] = flags;
1908        if (check_excludes(ctrs, cflags, n, 1))
1909                return -EINVAL;
1910
1911        cpuhw = &get_cpu_var(cpu_hw_events);
1912        err = power_check_constraints(cpuhw, events, cflags, n + 1);
1913
1914        if (has_branch_stack(event)) {
1915                cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1916                                        event->attr.branch_sample_type);
1917
1918                if (cpuhw->bhrb_filter == -1) {
1919                        put_cpu_var(cpu_hw_events);
1920                        return -EOPNOTSUPP;
1921                }
1922        }
1923
1924        put_cpu_var(cpu_hw_events);
1925        if (err)
1926                return -EINVAL;
1927
1928        event->hw.config = events[n];
1929        event->hw.event_base = cflags[n];
1930        event->hw.last_period = event->hw.sample_period;
1931        local64_set(&event->hw.period_left, event->hw.last_period);
1932
1933        /*
1934         * For EBB events we just context switch the PMC value, we don't do any
1935         * of the sample_period logic. We use hw.prev_count for this.
1936         */
1937        if (is_ebb_event(event))
1938                local64_set(&event->hw.prev_count, 0);
1939
1940        /*
1941         * See if we need to reserve the PMU.
1942         * If no events are currently in use, then we have to take a
1943         * mutex to ensure that we don't race with another task doing
1944         * reserve_pmc_hardware or release_pmc_hardware.
1945         */
1946        err = 0;
1947        if (!atomic_inc_not_zero(&num_events)) {
1948                mutex_lock(&pmc_reserve_mutex);
1949                if (atomic_read(&num_events) == 0 &&
1950                    reserve_pmc_hardware(perf_event_interrupt))
1951                        err = -EBUSY;
1952                else
1953                        atomic_inc(&num_events);
1954                mutex_unlock(&pmc_reserve_mutex);
1955        }
1956        event->destroy = hw_perf_event_destroy;
1957
1958        return err;
1959}
1960
1961static int power_pmu_event_idx(struct perf_event *event)
1962{
1963        return event->hw.idx;
1964}
1965
1966ssize_t power_events_sysfs_show(struct device *dev,
1967                                struct device_attribute *attr, char *page)
1968{
1969        struct perf_pmu_events_attr *pmu_attr;
1970
1971        pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1972
1973        return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1974}
1975
1976static struct pmu power_pmu = {
1977        .pmu_enable     = power_pmu_enable,
1978        .pmu_disable    = power_pmu_disable,
1979        .event_init     = power_pmu_event_init,
1980        .add            = power_pmu_add,
1981        .del            = power_pmu_del,
1982        .start          = power_pmu_start,
1983        .stop           = power_pmu_stop,
1984        .read           = power_pmu_read,
1985        .start_txn      = power_pmu_start_txn,
1986        .cancel_txn     = power_pmu_cancel_txn,
1987        .commit_txn     = power_pmu_commit_txn,
1988        .event_idx      = power_pmu_event_idx,
1989        .sched_task     = power_pmu_sched_task,
1990};
1991
1992/*
1993 * A counter has overflowed; update its count and record
1994 * things if requested.  Note that interrupts are hard-disabled
1995 * here so there is no possibility of being interrupted.
1996 */
1997static void record_and_restart(struct perf_event *event, unsigned long val,
1998                               struct pt_regs *regs)
1999{
2000        u64 period = event->hw.sample_period;
2001        s64 prev, delta, left;
2002        int record = 0;
2003
2004        if (event->hw.state & PERF_HES_STOPPED) {
2005                write_pmc(event->hw.idx, 0);
2006                return;
2007        }
2008
2009        /* we don't have to worry about interrupts here */
2010        prev = local64_read(&event->hw.prev_count);
2011        delta = check_and_compute_delta(prev, val);
2012        local64_add(delta, &event->count);
2013
2014        /*
2015         * See if the total period for this event has expired,
2016         * and update for the next period.
2017         */
2018        val = 0;
2019        left = local64_read(&event->hw.period_left) - delta;
2020        if (delta == 0)
2021                left++;
2022        if (period) {
2023                if (left <= 0) {
2024                        left += period;
2025                        if (left <= 0)
2026                                left = period;
2027                        record = siar_valid(regs);
2028                        event->hw.last_period = event->hw.sample_period;
2029                }
2030                if (left < 0x80000000LL)
2031                        val = 0x80000000LL - left;
2032        }
2033
2034        write_pmc(event->hw.idx, val);
2035        local64_set(&event->hw.prev_count, val);
2036        local64_set(&event->hw.period_left, left);
2037        perf_event_update_userpage(event);
2038
2039        /*
2040         * Finally record data if requested.
2041         */
2042        if (record) {
2043                struct perf_sample_data data;
2044
2045                perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2046
2047                if (event->attr.sample_type &
2048                    (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2049                        perf_get_data_addr(regs, &data.addr);
2050
2051                if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2052                        struct cpu_hw_events *cpuhw;
2053                        cpuhw = this_cpu_ptr(&cpu_hw_events);
2054                        power_pmu_bhrb_read(cpuhw);
2055                        data.br_stack = &cpuhw->bhrb_stack;
2056                }
2057
2058                if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2059                                                ppmu->get_mem_data_src)
2060                        ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2061
2062                if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2063                                                ppmu->get_mem_weight)
2064                        ppmu->get_mem_weight(&data.weight);
2065
2066                if (perf_event_overflow(event, &data, regs))
2067                        power_pmu_stop(event, 0);
2068        }
2069}
2070
2071/*
2072 * Called from generic code to get the misc flags (i.e. processor mode)
2073 * for an event_id.
2074 */
2075unsigned long perf_misc_flags(struct pt_regs *regs)
2076{
2077        u32 flags = perf_get_misc_flags(regs);
2078
2079        if (flags)
2080                return flags;
2081        return user_mode(regs) ? PERF_RECORD_MISC_USER :
2082                PERF_RECORD_MISC_KERNEL;
2083}
2084
2085/*
2086 * Called from generic code to get the instruction pointer
2087 * for an event_id.
2088 */
2089unsigned long perf_instruction_pointer(struct pt_regs *regs)
2090{
2091        bool use_siar = regs_use_siar(regs);
2092
2093        if (use_siar && siar_valid(regs))
2094                return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2095        else if (use_siar)
2096                return 0;               // no valid instruction pointer
2097        else
2098                return regs->nip;
2099}
2100
2101static bool pmc_overflow_power7(unsigned long val)
2102{
2103        /*
2104         * Events on POWER7 can roll back if a speculative event doesn't
2105         * eventually complete. Unfortunately in some rare cases they will
2106         * raise a performance monitor exception. We need to catch this to
2107         * ensure we reset the PMC. In all cases the PMC will be 256 or less
2108         * cycles from overflow.
2109         *
2110         * We only do this if the first pass fails to find any overflowing
2111         * PMCs because a user might set a period of less than 256 and we
2112         * don't want to mistakenly reset them.
2113         */
2114        if ((0x80000000 - val) <= 256)
2115                return true;
2116
2117        return false;
2118}
2119
2120static bool pmc_overflow(unsigned long val)
2121{
2122        if ((int)val < 0)
2123                return true;
2124
2125        return false;
2126}
2127
2128/*
2129 * Performance monitor interrupt stuff
2130 */
2131static void perf_event_interrupt(struct pt_regs *regs)
2132{
2133        int i, j;
2134        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2135        struct perf_event *event;
2136        unsigned long val[8];
2137        int found, active;
2138        int nmi;
2139
2140        if (cpuhw->n_limited)
2141                freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2142                                        mfspr(SPRN_PMC6));
2143
2144        perf_read_regs(regs);
2145
2146        nmi = perf_intr_is_nmi(regs);
2147        if (nmi)
2148                nmi_enter();
2149        else
2150                irq_enter();
2151
2152        /* Read all the PMCs since we'll need them a bunch of times */
2153        for (i = 0; i < ppmu->n_counter; ++i)
2154                val[i] = read_pmc(i + 1);
2155
2156        /* Try to find what caused the IRQ */
2157        found = 0;
2158        for (i = 0; i < ppmu->n_counter; ++i) {
2159                if (!pmc_overflow(val[i]))
2160                        continue;
2161                if (is_limited_pmc(i + 1))
2162                        continue; /* these won't generate IRQs */
2163                /*
2164                 * We've found one that's overflowed.  For active
2165                 * counters we need to log this.  For inactive
2166                 * counters, we need to reset it anyway
2167                 */
2168                found = 1;
2169                active = 0;
2170                for (j = 0; j < cpuhw->n_events; ++j) {
2171                        event = cpuhw->event[j];
2172                        if (event->hw.idx == (i + 1)) {
2173                                active = 1;
2174                                record_and_restart(event, val[i], regs);
2175                                break;
2176                        }
2177                }
2178                if (!active)
2179                        /* reset non active counters that have overflowed */
2180                        write_pmc(i + 1, 0);
2181        }
2182        if (!found && pvr_version_is(PVR_POWER7)) {
2183                /* check active counters for special buggy p7 overflow */
2184                for (i = 0; i < cpuhw->n_events; ++i) {
2185                        event = cpuhw->event[i];
2186                        if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2187                                continue;
2188                        if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2189                                /* event has overflowed in a buggy way*/
2190                                found = 1;
2191                                record_and_restart(event,
2192                                                   val[event->hw.idx - 1],
2193                                                   regs);
2194                        }
2195                }
2196        }
2197        if (!found && !nmi && printk_ratelimit())
2198                printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2199
2200        /*
2201         * Reset MMCR0 to its normal value.  This will set PMXE and
2202         * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2203         * and thus allow interrupts to occur again.
2204         * XXX might want to use MSR.PM to keep the events frozen until
2205         * we get back out of this interrupt.
2206         */
2207        write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2208
2209        if (nmi)
2210                nmi_exit();
2211        else
2212                irq_exit();
2213}
2214
2215static int power_pmu_prepare_cpu(unsigned int cpu)
2216{
2217        struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2218
2219        if (ppmu) {
2220                memset(cpuhw, 0, sizeof(*cpuhw));
2221                cpuhw->mmcr[0] = MMCR0_FC;
2222        }
2223        return 0;
2224}
2225
2226int register_power_pmu(struct power_pmu *pmu)
2227{
2228        if (ppmu)
2229                return -EBUSY;          /* something's already registered */
2230
2231        ppmu = pmu;
2232        pr_info("%s performance monitor hardware support registered\n",
2233                pmu->name);
2234
2235        power_pmu.attr_groups = ppmu->attr_groups;
2236
2237#ifdef MSR_HV
2238        /*
2239         * Use FCHV to ignore kernel events if MSR.HV is set.
2240         */
2241        if (mfmsr() & MSR_HV)
2242                freeze_events_kernel = MMCR0_FCHV;
2243#endif /* CONFIG_PPC64 */
2244
2245        perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2246        cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2247                          power_pmu_prepare_cpu, NULL);
2248        return 0;
2249}
2250