linux/arch/powerpc/sysdev/xive/common.c
<<
>>
Prefs
   1/*
   2 * Copyright 2016,2017 IBM Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public License
   6 * as published by the Free Software Foundation; either version
   7 * 2 of the License, or (at your option) any later version.
   8 */
   9
  10#define pr_fmt(fmt) "xive: " fmt
  11
  12#include <linux/types.h>
  13#include <linux/threads.h>
  14#include <linux/kernel.h>
  15#include <linux/irq.h>
  16#include <linux/debugfs.h>
  17#include <linux/smp.h>
  18#include <linux/interrupt.h>
  19#include <linux/seq_file.h>
  20#include <linux/init.h>
  21#include <linux/cpu.h>
  22#include <linux/of.h>
  23#include <linux/slab.h>
  24#include <linux/spinlock.h>
  25#include <linux/msi.h>
  26
  27#include <asm/prom.h>
  28#include <asm/io.h>
  29#include <asm/smp.h>
  30#include <asm/machdep.h>
  31#include <asm/irq.h>
  32#include <asm/errno.h>
  33#include <asm/xive.h>
  34#include <asm/xive-regs.h>
  35#include <asm/xmon.h>
  36
  37#include "xive-internal.h"
  38
  39#undef DEBUG_FLUSH
  40#undef DEBUG_ALL
  41
  42#ifdef DEBUG_ALL
  43#define DBG_VERBOSE(fmt, ...)   pr_devel("cpu %d - " fmt, \
  44                                         smp_processor_id(), ## __VA_ARGS__)
  45#else
  46#define DBG_VERBOSE(fmt...)     do { } while(0)
  47#endif
  48
  49bool __xive_enabled;
  50EXPORT_SYMBOL_GPL(__xive_enabled);
  51bool xive_cmdline_disabled;
  52
  53/* We use only one priority for now */
  54static u8 xive_irq_priority;
  55
  56/* TIMA exported to KVM */
  57void __iomem *xive_tima;
  58EXPORT_SYMBOL_GPL(xive_tima);
  59u32 xive_tima_offset;
  60
  61/* Backend ops */
  62static const struct xive_ops *xive_ops;
  63
  64/* Our global interrupt domain */
  65static struct irq_domain *xive_irq_domain;
  66
  67#ifdef CONFIG_SMP
  68/* The IPIs all use the same logical irq number */
  69static u32 xive_ipi_irq;
  70#endif
  71
  72/* Xive state for each CPU */
  73static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
  74
  75/*
  76 * A "disabled" interrupt should never fire, to catch problems
  77 * we set its logical number to this
  78 */
  79#define XIVE_BAD_IRQ            0x7fffffff
  80#define XIVE_MAX_IRQ            (XIVE_BAD_IRQ - 1)
  81
  82/* An invalid CPU target */
  83#define XIVE_INVALID_TARGET     (-1)
  84
  85/*
  86 * Read the next entry in a queue, return its content if it's valid
  87 * or 0 if there is no new entry.
  88 *
  89 * The queue pointer is moved forward unless "just_peek" is set
  90 */
  91static u32 xive_read_eq(struct xive_q *q, bool just_peek)
  92{
  93        u32 cur;
  94
  95        if (!q->qpage)
  96                return 0;
  97        cur = be32_to_cpup(q->qpage + q->idx);
  98
  99        /* Check valid bit (31) vs current toggle polarity */
 100        if ((cur >> 31) == q->toggle)
 101                return 0;
 102
 103        /* If consuming from the queue ... */
 104        if (!just_peek) {
 105                /* Next entry */
 106                q->idx = (q->idx + 1) & q->msk;
 107
 108                /* Wrap around: flip valid toggle */
 109                if (q->idx == 0)
 110                        q->toggle ^= 1;
 111        }
 112        /* Mask out the valid bit (31) */
 113        return cur & 0x7fffffff;
 114}
 115
 116/*
 117 * Scans all the queue that may have interrupts in them
 118 * (based on "pending_prio") in priority order until an
 119 * interrupt is found or all the queues are empty.
 120 *
 121 * Then updates the CPPR (Current Processor Priority
 122 * Register) based on the most favored interrupt found
 123 * (0xff if none) and return what was found (0 if none).
 124 *
 125 * If just_peek is set, return the most favored pending
 126 * interrupt if any but don't update the queue pointers.
 127 *
 128 * Note: This function can operate generically on any number
 129 * of queues (up to 8). The current implementation of the XIVE
 130 * driver only uses a single queue however.
 131 *
 132 * Note2: This will also "flush" "the pending_count" of a queue
 133 * into the "count" when that queue is observed to be empty.
 134 * This is used to keep track of the amount of interrupts
 135 * targetting a queue. When an interrupt is moved away from
 136 * a queue, we only decrement that queue count once the queue
 137 * has been observed empty to avoid races.
 138 */
 139static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
 140{
 141        u32 irq = 0;
 142        u8 prio;
 143
 144        /* Find highest pending priority */
 145        while (xc->pending_prio != 0) {
 146                struct xive_q *q;
 147
 148                prio = ffs(xc->pending_prio) - 1;
 149                DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
 150
 151                /* Try to fetch */
 152                irq = xive_read_eq(&xc->queue[prio], just_peek);
 153
 154                /* Found something ? That's it */
 155                if (irq)
 156                        break;
 157
 158                /* Clear pending bits */
 159                xc->pending_prio &= ~(1 << prio);
 160
 161                /*
 162                 * Check if the queue count needs adjusting due to
 163                 * interrupts being moved away. See description of
 164                 * xive_dec_target_count()
 165                 */
 166                q = &xc->queue[prio];
 167                if (atomic_read(&q->pending_count)) {
 168                        int p = atomic_xchg(&q->pending_count, 0);
 169                        if (p) {
 170                                WARN_ON(p > atomic_read(&q->count));
 171                                atomic_sub(p, &q->count);
 172                        }
 173                }
 174        }
 175
 176        /* If nothing was found, set CPPR to 0xff */
 177        if (irq == 0)
 178                prio = 0xff;
 179
 180        /* Update HW CPPR to match if necessary */
 181        if (prio != xc->cppr) {
 182                DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
 183                xc->cppr = prio;
 184                out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
 185        }
 186
 187        return irq;
 188}
 189
 190/*
 191 * This is used to perform the magic loads from an ESB
 192 * described in xive.h
 193 */
 194static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
 195{
 196        u64 val;
 197
 198        /* Handle HW errata */
 199        if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
 200                offset |= offset << 4;
 201
 202        if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
 203                val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
 204        else
 205                val = in_be64(xd->eoi_mmio + offset);
 206
 207        return (u8)val;
 208}
 209
 210static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
 211{
 212        /* Handle HW errata */
 213        if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
 214                offset |= offset << 4;
 215
 216        if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
 217                xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
 218        else
 219                out_be64(xd->eoi_mmio + offset, data);
 220}
 221
 222#ifdef CONFIG_XMON
 223static notrace void xive_dump_eq(const char *name, struct xive_q *q)
 224{
 225        u32 i0, i1, idx;
 226
 227        if (!q->qpage)
 228                return;
 229        idx = q->idx;
 230        i0 = be32_to_cpup(q->qpage + idx);
 231        idx = (idx + 1) & q->msk;
 232        i1 = be32_to_cpup(q->qpage + idx);
 233        xmon_printf("  %s Q T=%d %08x %08x ...\n", name,
 234                    q->toggle, i0, i1);
 235}
 236
 237notrace void xmon_xive_do_dump(int cpu)
 238{
 239        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 240
 241        xmon_printf("XIVE state for CPU %d:\n", cpu);
 242        xmon_printf("  pp=%02x cppr=%02x\n", xc->pending_prio, xc->cppr);
 243        xive_dump_eq("IRQ", &xc->queue[xive_irq_priority]);
 244#ifdef CONFIG_SMP
 245        {
 246                u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
 247                xmon_printf("  IPI state: %x:%c%c\n", xc->hw_ipi,
 248                        val & XIVE_ESB_VAL_P ? 'P' : 'p',
 249                        val & XIVE_ESB_VAL_P ? 'Q' : 'q');
 250        }
 251#endif
 252}
 253#endif /* CONFIG_XMON */
 254
 255static unsigned int xive_get_irq(void)
 256{
 257        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
 258        u32 irq;
 259
 260        /*
 261         * This can be called either as a result of a HW interrupt or
 262         * as a "replay" because EOI decided there was still something
 263         * in one of the queues.
 264         *
 265         * First we perform an ACK cycle in order to update our mask
 266         * of pending priorities. This will also have the effect of
 267         * updating the CPPR to the most favored pending interrupts.
 268         *
 269         * In the future, if we have a way to differenciate a first
 270         * entry (on HW interrupt) from a replay triggered by EOI,
 271         * we could skip this on replays unless we soft-mask tells us
 272         * that a new HW interrupt occurred.
 273         */
 274        xive_ops->update_pending(xc);
 275
 276        DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
 277
 278        /* Scan our queue(s) for interrupts */
 279        irq = xive_scan_interrupts(xc, false);
 280
 281        DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
 282            irq, xc->pending_prio);
 283
 284        /* Return pending interrupt if any */
 285        if (irq == XIVE_BAD_IRQ)
 286                return 0;
 287        return irq;
 288}
 289
 290/*
 291 * After EOI'ing an interrupt, we need to re-check the queue
 292 * to see if another interrupt is pending since multiple
 293 * interrupts can coalesce into a single notification to the
 294 * CPU.
 295 *
 296 * If we find that there is indeed more in there, we call
 297 * force_external_irq_replay() to make Linux synthetize an
 298 * external interrupt on the next call to local_irq_restore().
 299 */
 300static void xive_do_queue_eoi(struct xive_cpu *xc)
 301{
 302        if (xive_scan_interrupts(xc, true) != 0) {
 303                DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
 304                force_external_irq_replay();
 305        }
 306}
 307
 308/*
 309 * EOI an interrupt at the source. There are several methods
 310 * to do this depending on the HW version and source type
 311 */
 312void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
 313{
 314        /* If the XIVE supports the new "store EOI facility, use it */
 315        if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
 316                xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
 317        else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
 318                /*
 319                 * The FW told us to call it. This happens for some
 320                 * interrupt sources that need additional HW whacking
 321                 * beyond the ESB manipulation. For example LPC interrupts
 322                 * on P9 DD1.0 need a latch to be clared in the LPC bridge
 323                 * itself. The Firmware will take care of it.
 324                 */
 325                if (WARN_ON_ONCE(!xive_ops->eoi))
 326                        return;
 327                xive_ops->eoi(hw_irq);
 328        } else {
 329                u8 eoi_val;
 330
 331                /*
 332                 * Otherwise for EOI, we use the special MMIO that does
 333                 * a clear of both P and Q and returns the old Q,
 334                 * except for LSIs where we use the "EOI cycle" special
 335                 * load.
 336                 *
 337                 * This allows us to then do a re-trigger if Q was set
 338                 * rather than synthesizing an interrupt in software
 339                 *
 340                 * For LSIs, using the HW EOI cycle works around a problem
 341                 * on P9 DD1 PHBs where the other ESB accesses don't work
 342                 * properly.
 343                 */
 344                if (xd->flags & XIVE_IRQ_FLAG_LSI)
 345                        xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
 346                else {
 347                        eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
 348                        DBG_VERBOSE("eoi_val=%x\n", eoi_val);
 349
 350                        /* Re-trigger if needed */
 351                        if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
 352                                out_be64(xd->trig_mmio, 0);
 353                }
 354        }
 355}
 356
 357/* irq_chip eoi callback */
 358static void xive_irq_eoi(struct irq_data *d)
 359{
 360        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 361        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
 362
 363        DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
 364                    d->irq, irqd_to_hwirq(d), xc->pending_prio);
 365
 366        /*
 367         * EOI the source if it hasn't been disabled and hasn't
 368         * been passed-through to a KVM guest
 369         */
 370        if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d))
 371                xive_do_source_eoi(irqd_to_hwirq(d), xd);
 372
 373        /*
 374         * Clear saved_p to indicate that it's no longer occupying
 375         * a queue slot on the target queue
 376         */
 377        xd->saved_p = false;
 378
 379        /* Check for more work in the queue */
 380        xive_do_queue_eoi(xc);
 381}
 382
 383/*
 384 * Helper used to mask and unmask an interrupt source. This
 385 * is only called for normal interrupts that do not require
 386 * masking/unmasking via firmware.
 387 */
 388static void xive_do_source_set_mask(struct xive_irq_data *xd,
 389                                    bool mask)
 390{
 391        u64 val;
 392
 393        /*
 394         * If the interrupt had P set, it may be in a queue.
 395         *
 396         * We need to make sure we don't re-enable it until it
 397         * has been fetched from that queue and EOId. We keep
 398         * a copy of that P state and use it to restore the
 399         * ESB accordingly on unmask.
 400         */
 401        if (mask) {
 402                val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
 403                xd->saved_p = !!(val & XIVE_ESB_VAL_P);
 404        } else if (xd->saved_p)
 405                xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
 406        else
 407                xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
 408}
 409
 410/*
 411 * Try to chose "cpu" as a new interrupt target. Increments
 412 * the queue accounting for that target if it's not already
 413 * full.
 414 */
 415static bool xive_try_pick_target(int cpu)
 416{
 417        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 418        struct xive_q *q = &xc->queue[xive_irq_priority];
 419        int max;
 420
 421        /*
 422         * Calculate max number of interrupts in that queue.
 423         *
 424         * We leave a gap of 1 just in case...
 425         */
 426        max = (q->msk + 1) - 1;
 427        return !!atomic_add_unless(&q->count, 1, max);
 428}
 429
 430/*
 431 * Un-account an interrupt for a target CPU. We don't directly
 432 * decrement q->count since the interrupt might still be present
 433 * in the queue.
 434 *
 435 * Instead increment a separate counter "pending_count" which
 436 * will be substracted from "count" later when that CPU observes
 437 * the queue to be empty.
 438 */
 439static void xive_dec_target_count(int cpu)
 440{
 441        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 442        struct xive_q *q = &xc->queue[xive_irq_priority];
 443
 444        if (unlikely(WARN_ON(cpu < 0 || !xc))) {
 445                pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
 446                return;
 447        }
 448
 449        /*
 450         * We increment the "pending count" which will be used
 451         * to decrement the target queue count whenever it's next
 452         * processed and found empty. This ensure that we don't
 453         * decrement while we still have the interrupt there
 454         * occupying a slot.
 455         */
 456        atomic_inc(&q->pending_count);
 457}
 458
 459/* Find a tentative CPU target in a CPU mask */
 460static int xive_find_target_in_mask(const struct cpumask *mask,
 461                                    unsigned int fuzz)
 462{
 463        int cpu, first, num, i;
 464
 465        /* Pick up a starting point CPU in the mask based on  fuzz */
 466        num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
 467        first = fuzz % num;
 468
 469        /* Locate it */
 470        cpu = cpumask_first(mask);
 471        for (i = 0; i < first && cpu < nr_cpu_ids; i++)
 472                cpu = cpumask_next(cpu, mask);
 473
 474        /* Sanity check */
 475        if (WARN_ON(cpu >= nr_cpu_ids))
 476                cpu = cpumask_first(cpu_online_mask);
 477
 478        /* Remember first one to handle wrap-around */
 479        first = cpu;
 480
 481        /*
 482         * Now go through the entire mask until we find a valid
 483         * target.
 484         */
 485        for (;;) {
 486                /*
 487                 * We re-check online as the fallback case passes us
 488                 * an untested affinity mask
 489                 */
 490                if (cpu_online(cpu) && xive_try_pick_target(cpu))
 491                        return cpu;
 492                cpu = cpumask_next(cpu, mask);
 493                if (cpu == first)
 494                        break;
 495                /* Wrap around */
 496                if (cpu >= nr_cpu_ids)
 497                        cpu = cpumask_first(mask);
 498        }
 499        return -1;
 500}
 501
 502/*
 503 * Pick a target CPU for an interrupt. This is done at
 504 * startup or if the affinity is changed in a way that
 505 * invalidates the current target.
 506 */
 507static int xive_pick_irq_target(struct irq_data *d,
 508                                const struct cpumask *affinity)
 509{
 510        static unsigned int fuzz;
 511        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 512        cpumask_var_t mask;
 513        int cpu = -1;
 514
 515        /*
 516         * If we have chip IDs, first we try to build a mask of
 517         * CPUs matching the CPU and find a target in there
 518         */
 519        if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
 520                zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
 521                /* Build a mask of matching chip IDs */
 522                for_each_cpu_and(cpu, affinity, cpu_online_mask) {
 523                        struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 524                        if (xc->chip_id == xd->src_chip)
 525                                cpumask_set_cpu(cpu, mask);
 526                }
 527                /* Try to find a target */
 528                if (cpumask_empty(mask))
 529                        cpu = -1;
 530                else
 531                        cpu = xive_find_target_in_mask(mask, fuzz++);
 532                free_cpumask_var(mask);
 533                if (cpu >= 0)
 534                        return cpu;
 535                fuzz--;
 536        }
 537
 538        /* No chip IDs, fallback to using the affinity mask */
 539        return xive_find_target_in_mask(affinity, fuzz++);
 540}
 541
 542static unsigned int xive_irq_startup(struct irq_data *d)
 543{
 544        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 545        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 546        int target, rc;
 547
 548        pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
 549                 d->irq, hw_irq, d);
 550
 551#ifdef CONFIG_PCI_MSI
 552        /*
 553         * The generic MSI code returns with the interrupt disabled on the
 554         * card, using the MSI mask bits. Firmware doesn't appear to unmask
 555         * at that level, so we do it here by hand.
 556         */
 557        if (irq_data_get_msi_desc(d))
 558                pci_msi_unmask_irq(d);
 559#endif
 560
 561        /* Pick a target */
 562        target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
 563        if (target == XIVE_INVALID_TARGET) {
 564                /* Try again breaking affinity */
 565                target = xive_pick_irq_target(d, cpu_online_mask);
 566                if (target == XIVE_INVALID_TARGET)
 567                        return -ENXIO;
 568                pr_warn("irq %d started with broken affinity\n", d->irq);
 569        }
 570
 571        /* Sanity check */
 572        if (WARN_ON(target == XIVE_INVALID_TARGET ||
 573                    target >= nr_cpu_ids))
 574                target = smp_processor_id();
 575
 576        xd->target = target;
 577
 578        /*
 579         * Configure the logical number to be the Linux IRQ number
 580         * and set the target queue
 581         */
 582        rc = xive_ops->configure_irq(hw_irq,
 583                                     get_hard_smp_processor_id(target),
 584                                     xive_irq_priority, d->irq);
 585        if (rc)
 586                return rc;
 587
 588        /* Unmask the ESB */
 589        xive_do_source_set_mask(xd, false);
 590
 591        return 0;
 592}
 593
 594static void xive_irq_shutdown(struct irq_data *d)
 595{
 596        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 597        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 598
 599        pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
 600                 d->irq, hw_irq, d);
 601
 602        if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
 603                return;
 604
 605        /* Mask the interrupt at the source */
 606        xive_do_source_set_mask(xd, true);
 607
 608        /*
 609         * The above may have set saved_p. We clear it otherwise it
 610         * will prevent re-enabling later on. It is ok to forget the
 611         * fact that the interrupt might be in a queue because we are
 612         * accounting that already in xive_dec_target_count() and will
 613         * be re-routing it to a new queue with proper accounting when
 614         * it's started up again
 615         */
 616        xd->saved_p = false;
 617
 618        /*
 619         * Mask the interrupt in HW in the IVT/EAS and set the number
 620         * to be the "bad" IRQ number
 621         */
 622        xive_ops->configure_irq(hw_irq,
 623                                get_hard_smp_processor_id(xd->target),
 624                                0xff, XIVE_BAD_IRQ);
 625
 626        xive_dec_target_count(xd->target);
 627        xd->target = XIVE_INVALID_TARGET;
 628}
 629
 630static void xive_irq_unmask(struct irq_data *d)
 631{
 632        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 633
 634        pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
 635
 636        /*
 637         * This is a workaround for PCI LSI problems on P9, for
 638         * these, we call FW to set the mask. The problems might
 639         * be fixed by P9 DD2.0, if that is the case, firmware
 640         * will no longer set that flag.
 641         */
 642        if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
 643                unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 644                xive_ops->configure_irq(hw_irq,
 645                                        get_hard_smp_processor_id(xd->target),
 646                                        xive_irq_priority, d->irq);
 647                return;
 648        }
 649
 650        xive_do_source_set_mask(xd, false);
 651}
 652
 653static void xive_irq_mask(struct irq_data *d)
 654{
 655        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 656
 657        pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
 658
 659        /*
 660         * This is a workaround for PCI LSI problems on P9, for
 661         * these, we call OPAL to set the mask. The problems might
 662         * be fixed by P9 DD2.0, if that is the case, firmware
 663         * will no longer set that flag.
 664         */
 665        if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
 666                unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 667                xive_ops->configure_irq(hw_irq,
 668                                        get_hard_smp_processor_id(xd->target),
 669                                        0xff, d->irq);
 670                return;
 671        }
 672
 673        xive_do_source_set_mask(xd, true);
 674}
 675
 676static int xive_irq_set_affinity(struct irq_data *d,
 677                                 const struct cpumask *cpumask,
 678                                 bool force)
 679{
 680        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 681        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 682        u32 target, old_target;
 683        int rc = 0;
 684
 685        pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
 686
 687        /* Is this valid ? */
 688        if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
 689                return -EINVAL;
 690
 691        /* Don't do anything if the interrupt isn't started */
 692        if (!irqd_is_started(d))
 693                return IRQ_SET_MASK_OK;
 694
 695        /*
 696         * If existing target is already in the new mask, and is
 697         * online then do nothing.
 698         */
 699        if (xd->target != XIVE_INVALID_TARGET &&
 700            cpu_online(xd->target) &&
 701            cpumask_test_cpu(xd->target, cpumask))
 702                return IRQ_SET_MASK_OK;
 703
 704        /* Pick a new target */
 705        target = xive_pick_irq_target(d, cpumask);
 706
 707        /* No target found */
 708        if (target == XIVE_INVALID_TARGET)
 709                return -ENXIO;
 710
 711        /* Sanity check */
 712        if (WARN_ON(target >= nr_cpu_ids))
 713                target = smp_processor_id();
 714
 715        old_target = xd->target;
 716
 717        /*
 718         * Only configure the irq if it's not currently passed-through to
 719         * a KVM guest
 720         */
 721        if (!irqd_is_forwarded_to_vcpu(d))
 722                rc = xive_ops->configure_irq(hw_irq,
 723                                             get_hard_smp_processor_id(target),
 724                                             xive_irq_priority, d->irq);
 725        if (rc < 0) {
 726                pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
 727                return rc;
 728        }
 729
 730        pr_devel("  target: 0x%x\n", target);
 731        xd->target = target;
 732
 733        /* Give up previous target */
 734        if (old_target != XIVE_INVALID_TARGET)
 735            xive_dec_target_count(old_target);
 736
 737        return IRQ_SET_MASK_OK;
 738}
 739
 740static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
 741{
 742        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 743
 744        /*
 745         * We only support these. This has really no effect other than setting
 746         * the corresponding descriptor bits mind you but those will in turn
 747         * affect the resend function when re-enabling an edge interrupt.
 748         *
 749         * Set set the default to edge as explained in map().
 750         */
 751        if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
 752                flow_type = IRQ_TYPE_EDGE_RISING;
 753
 754        if (flow_type != IRQ_TYPE_EDGE_RISING &&
 755            flow_type != IRQ_TYPE_LEVEL_LOW)
 756                return -EINVAL;
 757
 758        irqd_set_trigger_type(d, flow_type);
 759
 760        /*
 761         * Double check it matches what the FW thinks
 762         *
 763         * NOTE: We don't know yet if the PAPR interface will provide
 764         * the LSI vs MSI information apart from the device-tree so
 765         * this check might have to move into an optional backend call
 766         * that is specific to the native backend
 767         */
 768        if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
 769            !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
 770                pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
 771                        d->irq, (u32)irqd_to_hwirq(d),
 772                        (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
 773                        (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
 774        }
 775
 776        return IRQ_SET_MASK_OK_NOCOPY;
 777}
 778
 779static int xive_irq_retrigger(struct irq_data *d)
 780{
 781        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 782
 783        /* This should be only for MSIs */
 784        if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
 785                return 0;
 786
 787        /*
 788         * To perform a retrigger, we first set the PQ bits to
 789         * 11, then perform an EOI.
 790         */
 791        xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
 792
 793        /*
 794         * Note: We pass "0" to the hw_irq argument in order to
 795         * avoid calling into the backend EOI code which we don't
 796         * want to do in the case of a re-trigger. Backends typically
 797         * only do EOI for LSIs anyway.
 798         */
 799        xive_do_source_eoi(0, xd);
 800
 801        return 1;
 802}
 803
 804static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
 805{
 806        struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 807        unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 808        int rc;
 809        u8 pq;
 810
 811        /*
 812         * We only support this on interrupts that do not require
 813         * firmware calls for masking and unmasking
 814         */
 815        if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
 816                return -EIO;
 817
 818        /*
 819         * This is called by KVM with state non-NULL for enabling
 820         * pass-through or NULL for disabling it
 821         */
 822        if (state) {
 823                irqd_set_forwarded_to_vcpu(d);
 824
 825                /* Set it to PQ=10 state to prevent further sends */
 826                pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
 827
 828                /* No target ? nothing to do */
 829                if (xd->target == XIVE_INVALID_TARGET) {
 830                        /*
 831                         * An untargetted interrupt should have been
 832                         * also masked at the source
 833                         */
 834                        WARN_ON(pq & 2);
 835
 836                        return 0;
 837                }
 838
 839                /*
 840                 * If P was set, adjust state to PQ=11 to indicate
 841                 * that a resend is needed for the interrupt to reach
 842                 * the guest. Also remember the value of P.
 843                 *
 844                 * This also tells us that it's in flight to a host queue
 845                 * or has already been fetched but hasn't been EOIed yet
 846                 * by the host. This it's potentially using up a host
 847                 * queue slot. This is important to know because as long
 848                 * as this is the case, we must not hard-unmask it when
 849                 * "returning" that interrupt to the host.
 850                 *
 851                 * This saved_p is cleared by the host EOI, when we know
 852                 * for sure the queue slot is no longer in use.
 853                 */
 854                if (pq & 2) {
 855                        pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
 856                        xd->saved_p = true;
 857
 858                        /*
 859                         * Sync the XIVE source HW to ensure the interrupt
 860                         * has gone through the EAS before we change its
 861                         * target to the guest. That should guarantee us
 862                         * that we *will* eventually get an EOI for it on
 863                         * the host. Otherwise there would be a small window
 864                         * for P to be seen here but the interrupt going
 865                         * to the guest queue.
 866                         */
 867                        if (xive_ops->sync_source)
 868                                xive_ops->sync_source(hw_irq);
 869                } else
 870                        xd->saved_p = false;
 871        } else {
 872                irqd_clr_forwarded_to_vcpu(d);
 873
 874                /* No host target ? hard mask and return */
 875                if (xd->target == XIVE_INVALID_TARGET) {
 876                        xive_do_source_set_mask(xd, true);
 877                        return 0;
 878                }
 879
 880                /*
 881                 * Sync the XIVE source HW to ensure the interrupt
 882                 * has gone through the EAS before we change its
 883                 * target to the host.
 884                 */
 885                if (xive_ops->sync_source)
 886                        xive_ops->sync_source(hw_irq);
 887
 888                /*
 889                 * By convention we are called with the interrupt in
 890                 * a PQ=10 or PQ=11 state, ie, it won't fire and will
 891                 * have latched in Q whether there's a pending HW
 892                 * interrupt or not.
 893                 *
 894                 * First reconfigure the target.
 895                 */
 896                rc = xive_ops->configure_irq(hw_irq,
 897                                             get_hard_smp_processor_id(xd->target),
 898                                             xive_irq_priority, d->irq);
 899                if (rc)
 900                        return rc;
 901
 902                /*
 903                 * Then if saved_p is not set, effectively re-enable the
 904                 * interrupt with an EOI. If it is set, we know there is
 905                 * still a message in a host queue somewhere that will be
 906                 * EOId eventually.
 907                 *
 908                 * Note: We don't check irqd_irq_disabled(). Effectively,
 909                 * we *will* let the irq get through even if masked if the
 910                 * HW is still firing it in order to deal with the whole
 911                 * saved_p business properly. If the interrupt triggers
 912                 * while masked, the generic code will re-mask it anyway.
 913                 */
 914                if (!xd->saved_p)
 915                        xive_do_source_eoi(hw_irq, xd);
 916
 917        }
 918        return 0;
 919}
 920
 921static struct irq_chip xive_irq_chip = {
 922        .name = "XIVE-IRQ",
 923        .irq_startup = xive_irq_startup,
 924        .irq_shutdown = xive_irq_shutdown,
 925        .irq_eoi = xive_irq_eoi,
 926        .irq_mask = xive_irq_mask,
 927        .irq_unmask = xive_irq_unmask,
 928        .irq_set_affinity = xive_irq_set_affinity,
 929        .irq_set_type = xive_irq_set_type,
 930        .irq_retrigger = xive_irq_retrigger,
 931        .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
 932};
 933
 934bool is_xive_irq(struct irq_chip *chip)
 935{
 936        return chip == &xive_irq_chip;
 937}
 938EXPORT_SYMBOL_GPL(is_xive_irq);
 939
 940void xive_cleanup_irq_data(struct xive_irq_data *xd)
 941{
 942        if (xd->eoi_mmio) {
 943                iounmap(xd->eoi_mmio);
 944                if (xd->eoi_mmio == xd->trig_mmio)
 945                        xd->trig_mmio = NULL;
 946                xd->eoi_mmio = NULL;
 947        }
 948        if (xd->trig_mmio) {
 949                iounmap(xd->trig_mmio);
 950                xd->trig_mmio = NULL;
 951        }
 952}
 953EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
 954
 955static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
 956{
 957        struct xive_irq_data *xd;
 958        int rc;
 959
 960        xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
 961        if (!xd)
 962                return -ENOMEM;
 963        rc = xive_ops->populate_irq_data(hw, xd);
 964        if (rc) {
 965                kfree(xd);
 966                return rc;
 967        }
 968        xd->target = XIVE_INVALID_TARGET;
 969        irq_set_handler_data(virq, xd);
 970
 971        return 0;
 972}
 973
 974static void xive_irq_free_data(unsigned int virq)
 975{
 976        struct xive_irq_data *xd = irq_get_handler_data(virq);
 977
 978        if (!xd)
 979                return;
 980        irq_set_handler_data(virq, NULL);
 981        xive_cleanup_irq_data(xd);
 982        kfree(xd);
 983}
 984
 985#ifdef CONFIG_SMP
 986
 987static void xive_cause_ipi(int cpu)
 988{
 989        struct xive_cpu *xc;
 990        struct xive_irq_data *xd;
 991
 992        xc = per_cpu(xive_cpu, cpu);
 993
 994        DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
 995                    smp_processor_id(), cpu, xc->hw_ipi);
 996
 997        xd = &xc->ipi_data;
 998        if (WARN_ON(!xd->trig_mmio))
 999                return;
1000        out_be64(xd->trig_mmio, 0);
1001}
1002
1003static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1004{
1005        return smp_ipi_demux();
1006}
1007
1008static void xive_ipi_eoi(struct irq_data *d)
1009{
1010        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1011
1012        DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1013                    d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1014
1015        /* Handle possible race with unplug and drop stale IPIs */
1016        if (!xc)
1017                return;
1018        xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
1019        xive_do_queue_eoi(xc);
1020}
1021
1022static void xive_ipi_do_nothing(struct irq_data *d)
1023{
1024        /*
1025         * Nothing to do, we never mask/unmask IPIs, but the callback
1026         * has to exist for the struct irq_chip.
1027         */
1028}
1029
1030static struct irq_chip xive_ipi_chip = {
1031        .name = "XIVE-IPI",
1032        .irq_eoi = xive_ipi_eoi,
1033        .irq_mask = xive_ipi_do_nothing,
1034        .irq_unmask = xive_ipi_do_nothing,
1035};
1036
1037static void __init xive_request_ipi(void)
1038{
1039        unsigned int virq;
1040
1041        /*
1042         * Initialization failed, move on, we might manage to
1043         * reach the point where we display our errors before
1044         * the system falls appart
1045         */
1046        if (!xive_irq_domain)
1047                return;
1048
1049        /* Initialize it */
1050        virq = irq_create_mapping(xive_irq_domain, 0);
1051        xive_ipi_irq = virq;
1052
1053        WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1054                            IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1055}
1056
1057static int xive_setup_cpu_ipi(unsigned int cpu)
1058{
1059        struct xive_cpu *xc;
1060        int rc;
1061
1062        pr_debug("Setting up IPI for CPU %d\n", cpu);
1063
1064        xc = per_cpu(xive_cpu, cpu);
1065
1066        /* Check if we are already setup */
1067        if (xc->hw_ipi != 0)
1068                return 0;
1069
1070        /* Grab an IPI from the backend, this will populate xc->hw_ipi */
1071        if (xive_ops->get_ipi(cpu, xc))
1072                return -EIO;
1073
1074        /*
1075         * Populate the IRQ data in the xive_cpu structure and
1076         * configure the HW / enable the IPIs.
1077         */
1078        rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1079        if (rc) {
1080                pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1081                return -EIO;
1082        }
1083        rc = xive_ops->configure_irq(xc->hw_ipi,
1084                                     get_hard_smp_processor_id(cpu),
1085                                     xive_irq_priority, xive_ipi_irq);
1086        if (rc) {
1087                pr_err("Failed to map IPI CPU %d\n", cpu);
1088                return -EIO;
1089        }
1090        pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1091            xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1092
1093        /* Unmask it */
1094        xive_do_source_set_mask(&xc->ipi_data, false);
1095
1096        return 0;
1097}
1098
1099static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1100{
1101        /* Disable the IPI and free the IRQ data */
1102
1103        /* Already cleaned up ? */
1104        if (xc->hw_ipi == 0)
1105                return;
1106
1107        /* Mask the IPI */
1108        xive_do_source_set_mask(&xc->ipi_data, true);
1109
1110        /*
1111         * Note: We don't call xive_cleanup_irq_data() to free
1112         * the mappings as this is called from an IPI on kexec
1113         * which is not a safe environment to call iounmap()
1114         */
1115
1116        /* Deconfigure/mask in the backend */
1117        xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1118                                0xff, xive_ipi_irq);
1119
1120        /* Free the IPIs in the backend */
1121        xive_ops->put_ipi(cpu, xc);
1122}
1123
1124void __init xive_smp_probe(void)
1125{
1126        smp_ops->cause_ipi = xive_cause_ipi;
1127
1128        /* Register the IPI */
1129        xive_request_ipi();
1130
1131        /* Allocate and setup IPI for the boot CPU */
1132        xive_setup_cpu_ipi(smp_processor_id());
1133}
1134
1135#endif /* CONFIG_SMP */
1136
1137static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1138                               irq_hw_number_t hw)
1139{
1140        int rc;
1141
1142        /*
1143         * Mark interrupts as edge sensitive by default so that resend
1144         * actually works. Will fix that up below if needed.
1145         */
1146        irq_clear_status_flags(virq, IRQ_LEVEL);
1147
1148#ifdef CONFIG_SMP
1149        /* IPIs are special and come up with HW number 0 */
1150        if (hw == 0) {
1151                /*
1152                 * IPIs are marked per-cpu. We use separate HW interrupts under
1153                 * the hood but associated with the same "linux" interrupt
1154                 */
1155                irq_set_chip_and_handler(virq, &xive_ipi_chip,
1156                                         handle_percpu_irq);
1157                return 0;
1158        }
1159#endif
1160
1161        rc = xive_irq_alloc_data(virq, hw);
1162        if (rc)
1163                return rc;
1164
1165        irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1166
1167        return 0;
1168}
1169
1170static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1171{
1172        struct irq_data *data = irq_get_irq_data(virq);
1173        unsigned int hw_irq;
1174
1175        /* XXX Assign BAD number */
1176        if (!data)
1177                return;
1178        hw_irq = (unsigned int)irqd_to_hwirq(data);
1179        if (hw_irq)
1180                xive_irq_free_data(virq);
1181}
1182
1183static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1184                                 const u32 *intspec, unsigned int intsize,
1185                                 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1186
1187{
1188        *out_hwirq = intspec[0];
1189
1190        /*
1191         * If intsize is at least 2, we look for the type in the second cell,
1192         * we assume the LSB indicates a level interrupt.
1193         */
1194        if (intsize > 1) {
1195                if (intspec[1] & 1)
1196                        *out_flags = IRQ_TYPE_LEVEL_LOW;
1197                else
1198                        *out_flags = IRQ_TYPE_EDGE_RISING;
1199        } else
1200                *out_flags = IRQ_TYPE_LEVEL_LOW;
1201
1202        return 0;
1203}
1204
1205static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1206                                 enum irq_domain_bus_token bus_token)
1207{
1208        return xive_ops->match(node);
1209}
1210
1211static const struct irq_domain_ops xive_irq_domain_ops = {
1212        .match = xive_irq_domain_match,
1213        .map = xive_irq_domain_map,
1214        .unmap = xive_irq_domain_unmap,
1215        .xlate = xive_irq_domain_xlate,
1216};
1217
1218static void __init xive_init_host(void)
1219{
1220        xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1221                                               &xive_irq_domain_ops, NULL);
1222        if (WARN_ON(xive_irq_domain == NULL))
1223                return;
1224        irq_set_default_host(xive_irq_domain);
1225}
1226
1227static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1228{
1229        if (xc->queue[xive_irq_priority].qpage)
1230                xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1231}
1232
1233static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1234{
1235        int rc = 0;
1236
1237        /* We setup 1 queues for now with a 64k page */
1238        if (!xc->queue[xive_irq_priority].qpage)
1239                rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1240
1241        return rc;
1242}
1243
1244static int xive_prepare_cpu(unsigned int cpu)
1245{
1246        struct xive_cpu *xc;
1247
1248        xc = per_cpu(xive_cpu, cpu);
1249        if (!xc) {
1250                struct device_node *np;
1251
1252                xc = kzalloc_node(sizeof(struct xive_cpu),
1253                                  GFP_KERNEL, cpu_to_node(cpu));
1254                if (!xc)
1255                        return -ENOMEM;
1256                np = of_get_cpu_node(cpu, NULL);
1257                if (np)
1258                        xc->chip_id = of_get_ibm_chip_id(np);
1259                of_node_put(np);
1260
1261                per_cpu(xive_cpu, cpu) = xc;
1262        }
1263
1264        /* Setup EQs if not already */
1265        return xive_setup_cpu_queues(cpu, xc);
1266}
1267
1268static void xive_setup_cpu(void)
1269{
1270        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1271
1272        /* Debug: Dump the TM state */
1273        pr_devel("CPU %d [HW 0x%02x] VT=%02x\n",
1274            smp_processor_id(), hard_smp_processor_id(),
1275            in_8(xive_tima + xive_tima_offset + TM_WORD2));
1276
1277        /* The backend might have additional things to do */
1278        if (xive_ops->setup_cpu)
1279                xive_ops->setup_cpu(smp_processor_id(), xc);
1280
1281        /* Set CPPR to 0xff to enable flow of interrupts */
1282        xc->cppr = 0xff;
1283        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1284}
1285
1286#ifdef CONFIG_SMP
1287void xive_smp_setup_cpu(void)
1288{
1289        pr_devel("SMP setup CPU %d\n", smp_processor_id());
1290
1291        /* This will have already been done on the boot CPU */
1292        if (smp_processor_id() != boot_cpuid)
1293                xive_setup_cpu();
1294
1295}
1296
1297int xive_smp_prepare_cpu(unsigned int cpu)
1298{
1299        int rc;
1300
1301        /* Allocate per-CPU data and queues */
1302        rc = xive_prepare_cpu(cpu);
1303        if (rc)
1304                return rc;
1305
1306        /* Allocate and setup IPI for the new CPU */
1307        return xive_setup_cpu_ipi(cpu);
1308}
1309
1310#ifdef CONFIG_HOTPLUG_CPU
1311static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1312{
1313        u32 irq;
1314
1315        /* We assume local irqs are disabled */
1316        WARN_ON(!irqs_disabled());
1317
1318        /* Check what's already in the CPU queue */
1319        while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1320                /*
1321                 * We need to re-route that interrupt to its new destination.
1322                 * First get and lock the descriptor
1323                 */
1324                struct irq_desc *desc = irq_to_desc(irq);
1325                struct irq_data *d = irq_desc_get_irq_data(desc);
1326                struct xive_irq_data *xd;
1327                unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1328
1329                /*
1330                 * Ignore anything that isn't a XIVE irq and ignore
1331                 * IPIs, so can just be dropped.
1332                 */
1333                if (d->domain != xive_irq_domain || hw_irq == 0)
1334                        continue;
1335
1336                /*
1337                 * The IRQ should have already been re-routed, it's just a
1338                 * stale in the old queue, so re-trigger it in order to make
1339                 * it reach is new destination.
1340                 */
1341#ifdef DEBUG_FLUSH
1342                pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1343                        cpu, irq);
1344#endif
1345                raw_spin_lock(&desc->lock);
1346                xd = irq_desc_get_handler_data(desc);
1347
1348                /*
1349                 * For LSIs, we EOI, this will cause a resend if it's
1350                 * still asserted. Otherwise do an MSI retrigger.
1351                 */
1352                if (xd->flags & XIVE_IRQ_FLAG_LSI)
1353                        xive_do_source_eoi(irqd_to_hwirq(d), xd);
1354                else
1355                        xive_irq_retrigger(d);
1356
1357                raw_spin_unlock(&desc->lock);
1358        }
1359}
1360
1361void xive_smp_disable_cpu(void)
1362{
1363        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1364        unsigned int cpu = smp_processor_id();
1365
1366        /* Migrate interrupts away from the CPU */
1367        irq_migrate_all_off_this_cpu();
1368
1369        /* Set CPPR to 0 to disable flow of interrupts */
1370        xc->cppr = 0;
1371        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1372
1373        /* Flush everything still in the queue */
1374        xive_flush_cpu_queue(cpu, xc);
1375
1376        /* Re-enable CPPR  */
1377        xc->cppr = 0xff;
1378        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1379}
1380
1381void xive_flush_interrupt(void)
1382{
1383        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1384        unsigned int cpu = smp_processor_id();
1385
1386        /* Called if an interrupt occurs while the CPU is hot unplugged */
1387        xive_flush_cpu_queue(cpu, xc);
1388}
1389
1390#endif /* CONFIG_HOTPLUG_CPU */
1391
1392#endif /* CONFIG_SMP */
1393
1394void xive_teardown_cpu(void)
1395{
1396        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1397        unsigned int cpu = smp_processor_id();
1398
1399        /* Set CPPR to 0 to disable flow of interrupts */
1400        xc->cppr = 0;
1401        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1402
1403        if (xive_ops->teardown_cpu)
1404                xive_ops->teardown_cpu(cpu, xc);
1405
1406#ifdef CONFIG_SMP
1407        /* Get rid of IPI */
1408        xive_cleanup_cpu_ipi(cpu, xc);
1409#endif
1410
1411        /* Disable and free the queues */
1412        xive_cleanup_cpu_queues(cpu, xc);
1413}
1414
1415void xive_kexec_teardown_cpu(int secondary)
1416{
1417        struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1418        unsigned int cpu = smp_processor_id();
1419
1420        /* Set CPPR to 0 to disable flow of interrupts */
1421        xc->cppr = 0;
1422        out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1423
1424        /* Backend cleanup if any */
1425        if (xive_ops->teardown_cpu)
1426                xive_ops->teardown_cpu(cpu, xc);
1427
1428#ifdef CONFIG_SMP
1429        /* Get rid of IPI */
1430        xive_cleanup_cpu_ipi(cpu, xc);
1431#endif
1432
1433        /* Disable and free the queues */
1434        xive_cleanup_cpu_queues(cpu, xc);
1435}
1436
1437void xive_shutdown(void)
1438{
1439        xive_ops->shutdown();
1440}
1441
1442bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1443                           u8 max_prio)
1444{
1445        xive_tima = area;
1446        xive_tima_offset = offset;
1447        xive_ops = ops;
1448        xive_irq_priority = max_prio;
1449
1450        ppc_md.get_irq = xive_get_irq;
1451        __xive_enabled = true;
1452
1453        pr_devel("Initializing host..\n");
1454        xive_init_host();
1455
1456        pr_devel("Initializing boot CPU..\n");
1457
1458        /* Allocate per-CPU data and queues */
1459        xive_prepare_cpu(smp_processor_id());
1460
1461        /* Get ready for interrupts */
1462        xive_setup_cpu();
1463
1464        pr_info("Interrupt handling initialized with %s backend\n",
1465                xive_ops->name);
1466        pr_info("Using priority %d for all interrupts\n", max_prio);
1467
1468        return true;
1469}
1470
1471__be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1472{
1473        unsigned int alloc_order;
1474        struct page *pages;
1475        __be32 *qpage;
1476
1477        alloc_order = xive_alloc_order(queue_shift);
1478        pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1479        if (!pages)
1480                return ERR_PTR(-ENOMEM);
1481        qpage = (__be32 *)page_address(pages);
1482        memset(qpage, 0, 1 << queue_shift);
1483
1484        return qpage;
1485}
1486
1487static int __init xive_off(char *arg)
1488{
1489        xive_cmdline_disabled = true;
1490        return 0;
1491}
1492__setup("xive=off", xive_off);
1493