linux/arch/s390/kernel/crash_dump.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * S390 kdump implementation
   4 *
   5 * Copyright IBM Corp. 2011
   6 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
   7 */
   8
   9#include <linux/crash_dump.h>
  10#include <asm/lowcore.h>
  11#include <linux/kernel.h>
  12#include <linux/init.h>
  13#include <linux/mm.h>
  14#include <linux/gfp.h>
  15#include <linux/slab.h>
  16#include <linux/bootmem.h>
  17#include <linux/elf.h>
  18#include <asm/asm-offsets.h>
  19#include <linux/memblock.h>
  20#include <asm/os_info.h>
  21#include <asm/elf.h>
  22#include <asm/ipl.h>
  23#include <asm/sclp.h>
  24
  25#define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
  26#define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
  27#define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
  28
  29static struct memblock_region oldmem_region;
  30
  31static struct memblock_type oldmem_type = {
  32        .cnt = 1,
  33        .max = 1,
  34        .total_size = 0,
  35        .regions = &oldmem_region,
  36        .name = "oldmem",
  37};
  38
  39struct save_area {
  40        struct list_head list;
  41        u64 psw[2];
  42        u64 ctrs[16];
  43        u64 gprs[16];
  44        u32 acrs[16];
  45        u64 fprs[16];
  46        u32 fpc;
  47        u32 prefix;
  48        u64 todpreg;
  49        u64 timer;
  50        u64 todcmp;
  51        u64 vxrs_low[16];
  52        __vector128 vxrs_high[16];
  53};
  54
  55static LIST_HEAD(dump_save_areas);
  56
  57/*
  58 * Allocate a save area
  59 */
  60struct save_area * __init save_area_alloc(bool is_boot_cpu)
  61{
  62        struct save_area *sa;
  63
  64        sa = (void *) memblock_alloc(sizeof(*sa), 8);
  65        if (is_boot_cpu)
  66                list_add(&sa->list, &dump_save_areas);
  67        else
  68                list_add_tail(&sa->list, &dump_save_areas);
  69        return sa;
  70}
  71
  72/*
  73 * Return the address of the save area for the boot CPU
  74 */
  75struct save_area * __init save_area_boot_cpu(void)
  76{
  77        return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
  78}
  79
  80/*
  81 * Copy CPU registers into the save area
  82 */
  83void __init save_area_add_regs(struct save_area *sa, void *regs)
  84{
  85        struct lowcore *lc;
  86
  87        lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
  88        memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
  89        memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
  90        memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
  91        memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
  92        memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
  93        memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
  94        memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
  95        memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
  96        memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
  97        memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
  98}
  99
 100/*
 101 * Copy vector registers into the save area
 102 */
 103void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
 104{
 105        int i;
 106
 107        /* Copy lower halves of vector registers 0-15 */
 108        for (i = 0; i < 16; i++)
 109                memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
 110        /* Copy vector registers 16-31 */
 111        memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
 112}
 113
 114/*
 115 * Return physical address for virtual address
 116 */
 117static inline void *load_real_addr(void *addr)
 118{
 119        unsigned long real_addr;
 120
 121        asm volatile(
 122                   "    lra     %0,0(%1)\n"
 123                   "    jz      0f\n"
 124                   "    la      %0,0\n"
 125                   "0:"
 126                   : "=a" (real_addr) : "a" (addr) : "cc");
 127        return (void *)real_addr;
 128}
 129
 130/*
 131 * Copy memory of the old, dumped system to a kernel space virtual address
 132 */
 133int copy_oldmem_kernel(void *dst, void *src, size_t count)
 134{
 135        unsigned long from, len;
 136        void *ra;
 137        int rc;
 138
 139        while (count) {
 140                from = __pa(src);
 141                if (!OLDMEM_BASE && from < sclp.hsa_size) {
 142                        /* Copy from zfcpdump HSA area */
 143                        len = min(count, sclp.hsa_size - from);
 144                        rc = memcpy_hsa_kernel(dst, from, len);
 145                        if (rc)
 146                                return rc;
 147                } else {
 148                        /* Check for swapped kdump oldmem areas */
 149                        if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
 150                                from -= OLDMEM_BASE;
 151                                len = min(count, OLDMEM_SIZE - from);
 152                        } else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
 153                                len = min(count, OLDMEM_SIZE - from);
 154                                from += OLDMEM_BASE;
 155                        } else {
 156                                len = count;
 157                        }
 158                        if (is_vmalloc_or_module_addr(dst)) {
 159                                ra = load_real_addr(dst);
 160                                len = min(PAGE_SIZE - offset_in_page(ra), len);
 161                        } else {
 162                                ra = dst;
 163                        }
 164                        if (memcpy_real(ra, (void *) from, len))
 165                                return -EFAULT;
 166                }
 167                dst += len;
 168                src += len;
 169                count -= len;
 170        }
 171        return 0;
 172}
 173
 174/*
 175 * Copy memory of the old, dumped system to a user space virtual address
 176 */
 177static int copy_oldmem_user(void __user *dst, void *src, size_t count)
 178{
 179        unsigned long from, len;
 180        int rc;
 181
 182        while (count) {
 183                from = __pa(src);
 184                if (!OLDMEM_BASE && from < sclp.hsa_size) {
 185                        /* Copy from zfcpdump HSA area */
 186                        len = min(count, sclp.hsa_size - from);
 187                        rc = memcpy_hsa_user(dst, from, len);
 188                        if (rc)
 189                                return rc;
 190                } else {
 191                        /* Check for swapped kdump oldmem areas */
 192                        if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
 193                                from -= OLDMEM_BASE;
 194                                len = min(count, OLDMEM_SIZE - from);
 195                        } else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
 196                                len = min(count, OLDMEM_SIZE - from);
 197                                from += OLDMEM_BASE;
 198                        } else {
 199                                len = count;
 200                        }
 201                        rc = copy_to_user_real(dst, (void *) from, count);
 202                        if (rc)
 203                                return rc;
 204                }
 205                dst += len;
 206                src += len;
 207                count -= len;
 208        }
 209        return 0;
 210}
 211
 212/*
 213 * Copy one page from "oldmem"
 214 */
 215ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
 216                         unsigned long offset, int userbuf)
 217{
 218        void *src;
 219        int rc;
 220
 221        if (!csize)
 222                return 0;
 223        src = (void *) (pfn << PAGE_SHIFT) + offset;
 224        if (userbuf)
 225                rc = copy_oldmem_user((void __force __user *) buf, src, csize);
 226        else
 227                rc = copy_oldmem_kernel((void *) buf, src, csize);
 228        return rc;
 229}
 230
 231/*
 232 * Remap "oldmem" for kdump
 233 *
 234 * For the kdump reserved memory this functions performs a swap operation:
 235 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
 236 */
 237static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
 238                                        unsigned long from, unsigned long pfn,
 239                                        unsigned long size, pgprot_t prot)
 240{
 241        unsigned long size_old;
 242        int rc;
 243
 244        if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
 245                size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
 246                rc = remap_pfn_range(vma, from,
 247                                     pfn + (OLDMEM_BASE >> PAGE_SHIFT),
 248                                     size_old, prot);
 249                if (rc || size == size_old)
 250                        return rc;
 251                size -= size_old;
 252                from += size_old;
 253                pfn += size_old >> PAGE_SHIFT;
 254        }
 255        return remap_pfn_range(vma, from, pfn, size, prot);
 256}
 257
 258/*
 259 * Remap "oldmem" for zfcpdump
 260 *
 261 * We only map available memory above HSA size. Memory below HSA size
 262 * is read on demand using the copy_oldmem_page() function.
 263 */
 264static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
 265                                           unsigned long from,
 266                                           unsigned long pfn,
 267                                           unsigned long size, pgprot_t prot)
 268{
 269        unsigned long hsa_end = sclp.hsa_size;
 270        unsigned long size_hsa;
 271
 272        if (pfn < hsa_end >> PAGE_SHIFT) {
 273                size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
 274                if (size == size_hsa)
 275                        return 0;
 276                size -= size_hsa;
 277                from += size_hsa;
 278                pfn += size_hsa >> PAGE_SHIFT;
 279        }
 280        return remap_pfn_range(vma, from, pfn, size, prot);
 281}
 282
 283/*
 284 * Remap "oldmem" for kdump or zfcpdump
 285 */
 286int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
 287                           unsigned long pfn, unsigned long size, pgprot_t prot)
 288{
 289        if (OLDMEM_BASE)
 290                return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
 291        else
 292                return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
 293                                                       prot);
 294}
 295
 296/*
 297 * Alloc memory and panic in case of ENOMEM
 298 */
 299static void *kzalloc_panic(int len)
 300{
 301        void *rc;
 302
 303        rc = kzalloc(len, GFP_KERNEL);
 304        if (!rc)
 305                panic("s390 kdump kzalloc (%d) failed", len);
 306        return rc;
 307}
 308
 309/*
 310 * Initialize ELF note
 311 */
 312static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
 313                          const char *name)
 314{
 315        Elf64_Nhdr *note;
 316        u64 len;
 317
 318        note = (Elf64_Nhdr *)buf;
 319        note->n_namesz = strlen(name) + 1;
 320        note->n_descsz = d_len;
 321        note->n_type = type;
 322        len = sizeof(Elf64_Nhdr);
 323
 324        memcpy(buf + len, name, note->n_namesz);
 325        len = roundup(len + note->n_namesz, 4);
 326
 327        memcpy(buf + len, desc, note->n_descsz);
 328        len = roundup(len + note->n_descsz, 4);
 329
 330        return PTR_ADD(buf, len);
 331}
 332
 333static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
 334{
 335        const char *note_name = "LINUX";
 336
 337        if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
 338                note_name = KEXEC_CORE_NOTE_NAME;
 339        return nt_init_name(buf, type, desc, d_len, note_name);
 340}
 341
 342/*
 343 * Fill ELF notes for one CPU with save area registers
 344 */
 345static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
 346{
 347        struct elf_prstatus nt_prstatus;
 348        elf_fpregset_t nt_fpregset;
 349
 350        /* Prepare prstatus note */
 351        memset(&nt_prstatus, 0, sizeof(nt_prstatus));
 352        memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
 353        memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
 354        memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
 355        nt_prstatus.pr_pid = cpu;
 356        /* Prepare fpregset (floating point) note */
 357        memset(&nt_fpregset, 0, sizeof(nt_fpregset));
 358        memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
 359        memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
 360        /* Create ELF notes for the CPU */
 361        ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
 362        ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
 363        ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
 364        ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
 365        ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
 366        ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
 367        ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
 368        if (MACHINE_HAS_VX) {
 369                ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
 370                              &sa->vxrs_high, sizeof(sa->vxrs_high));
 371                ptr = nt_init(ptr, NT_S390_VXRS_LOW,
 372                              &sa->vxrs_low, sizeof(sa->vxrs_low));
 373        }
 374        return ptr;
 375}
 376
 377/*
 378 * Initialize prpsinfo note (new kernel)
 379 */
 380static void *nt_prpsinfo(void *ptr)
 381{
 382        struct elf_prpsinfo prpsinfo;
 383
 384        memset(&prpsinfo, 0, sizeof(prpsinfo));
 385        prpsinfo.pr_sname = 'R';
 386        strcpy(prpsinfo.pr_fname, "vmlinux");
 387        return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
 388}
 389
 390/*
 391 * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
 392 */
 393static void *get_vmcoreinfo_old(unsigned long *size)
 394{
 395        char nt_name[11], *vmcoreinfo;
 396        Elf64_Nhdr note;
 397        void *addr;
 398
 399        if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
 400                return NULL;
 401        memset(nt_name, 0, sizeof(nt_name));
 402        if (copy_oldmem_kernel(&note, addr, sizeof(note)))
 403                return NULL;
 404        if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
 405                               sizeof(nt_name) - 1))
 406                return NULL;
 407        if (strcmp(nt_name, "VMCOREINFO") != 0)
 408                return NULL;
 409        vmcoreinfo = kzalloc_panic(note.n_descsz);
 410        if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz))
 411                return NULL;
 412        *size = note.n_descsz;
 413        return vmcoreinfo;
 414}
 415
 416/*
 417 * Initialize vmcoreinfo note (new kernel)
 418 */
 419static void *nt_vmcoreinfo(void *ptr)
 420{
 421        unsigned long size;
 422        void *vmcoreinfo;
 423
 424        vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
 425        if (!vmcoreinfo)
 426                vmcoreinfo = get_vmcoreinfo_old(&size);
 427        if (!vmcoreinfo)
 428                return ptr;
 429        return nt_init_name(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
 430}
 431
 432/*
 433 * Initialize final note (needed for /proc/vmcore code)
 434 */
 435static void *nt_final(void *ptr)
 436{
 437        Elf64_Nhdr *note;
 438
 439        note = (Elf64_Nhdr *) ptr;
 440        note->n_namesz = 0;
 441        note->n_descsz = 0;
 442        note->n_type = 0;
 443        return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
 444}
 445
 446/*
 447 * Initialize ELF header (new kernel)
 448 */
 449static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
 450{
 451        memset(ehdr, 0, sizeof(*ehdr));
 452        memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
 453        ehdr->e_ident[EI_CLASS] = ELFCLASS64;
 454        ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
 455        ehdr->e_ident[EI_VERSION] = EV_CURRENT;
 456        memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
 457        ehdr->e_type = ET_CORE;
 458        ehdr->e_machine = EM_S390;
 459        ehdr->e_version = EV_CURRENT;
 460        ehdr->e_phoff = sizeof(Elf64_Ehdr);
 461        ehdr->e_ehsize = sizeof(Elf64_Ehdr);
 462        ehdr->e_phentsize = sizeof(Elf64_Phdr);
 463        ehdr->e_phnum = mem_chunk_cnt + 1;
 464        return ehdr + 1;
 465}
 466
 467/*
 468 * Return CPU count for ELF header (new kernel)
 469 */
 470static int get_cpu_cnt(void)
 471{
 472        struct save_area *sa;
 473        int cpus = 0;
 474
 475        list_for_each_entry(sa, &dump_save_areas, list)
 476                if (sa->prefix != 0)
 477                        cpus++;
 478        return cpus;
 479}
 480
 481/*
 482 * Return memory chunk count for ELF header (new kernel)
 483 */
 484static int get_mem_chunk_cnt(void)
 485{
 486        int cnt = 0;
 487        u64 idx;
 488
 489        for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
 490                           MEMBLOCK_NONE, NULL, NULL, NULL)
 491                cnt++;
 492        return cnt;
 493}
 494
 495/*
 496 * Initialize ELF loads (new kernel)
 497 */
 498static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
 499{
 500        phys_addr_t start, end;
 501        u64 idx;
 502
 503        for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
 504                           MEMBLOCK_NONE, &start, &end, NULL) {
 505                phdr->p_filesz = end - start;
 506                phdr->p_type = PT_LOAD;
 507                phdr->p_offset = start;
 508                phdr->p_vaddr = start;
 509                phdr->p_paddr = start;
 510                phdr->p_memsz = end - start;
 511                phdr->p_flags = PF_R | PF_W | PF_X;
 512                phdr->p_align = PAGE_SIZE;
 513                phdr++;
 514        }
 515}
 516
 517/*
 518 * Initialize notes (new kernel)
 519 */
 520static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
 521{
 522        struct save_area *sa;
 523        void *ptr_start = ptr;
 524        int cpu;
 525
 526        ptr = nt_prpsinfo(ptr);
 527
 528        cpu = 1;
 529        list_for_each_entry(sa, &dump_save_areas, list)
 530                if (sa->prefix != 0)
 531                        ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
 532        ptr = nt_vmcoreinfo(ptr);
 533        ptr = nt_final(ptr);
 534        memset(phdr, 0, sizeof(*phdr));
 535        phdr->p_type = PT_NOTE;
 536        phdr->p_offset = notes_offset;
 537        phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
 538        phdr->p_memsz = phdr->p_filesz;
 539        return ptr;
 540}
 541
 542/*
 543 * Create ELF core header (new kernel)
 544 */
 545int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
 546{
 547        Elf64_Phdr *phdr_notes, *phdr_loads;
 548        int mem_chunk_cnt;
 549        void *ptr, *hdr;
 550        u32 alloc_size;
 551        u64 hdr_off;
 552
 553        /* If we are not in kdump or zfcpdump mode return */
 554        if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
 555                return 0;
 556        /* If we cannot get HSA size for zfcpdump return error */
 557        if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
 558                return -ENODEV;
 559
 560        /* For kdump, exclude previous crashkernel memory */
 561        if (OLDMEM_BASE) {
 562                oldmem_region.base = OLDMEM_BASE;
 563                oldmem_region.size = OLDMEM_SIZE;
 564                oldmem_type.total_size = OLDMEM_SIZE;
 565        }
 566
 567        mem_chunk_cnt = get_mem_chunk_cnt();
 568
 569        alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
 570                mem_chunk_cnt * sizeof(Elf64_Phdr);
 571        hdr = kzalloc_panic(alloc_size);
 572        /* Init elf header */
 573        ptr = ehdr_init(hdr, mem_chunk_cnt);
 574        /* Init program headers */
 575        phdr_notes = ptr;
 576        ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
 577        phdr_loads = ptr;
 578        ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
 579        /* Init notes */
 580        hdr_off = PTR_DIFF(ptr, hdr);
 581        ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
 582        /* Init loads */
 583        hdr_off = PTR_DIFF(ptr, hdr);
 584        loads_init(phdr_loads, hdr_off);
 585        *addr = (unsigned long long) hdr;
 586        *size = (unsigned long long) hdr_off;
 587        BUG_ON(elfcorehdr_size > alloc_size);
 588        return 0;
 589}
 590
 591/*
 592 * Free ELF core header (new kernel)
 593 */
 594void elfcorehdr_free(unsigned long long addr)
 595{
 596        kfree((void *)(unsigned long)addr);
 597}
 598
 599/*
 600 * Read from ELF header
 601 */
 602ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
 603{
 604        void *src = (void *)(unsigned long)*ppos;
 605
 606        memcpy(buf, src, count);
 607        *ppos += count;
 608        return count;
 609}
 610
 611/*
 612 * Read from ELF notes data
 613 */
 614ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
 615{
 616        void *src = (void *)(unsigned long)*ppos;
 617
 618        memcpy(buf, src, count);
 619        *ppos += count;
 620        return count;
 621}
 622