linux/arch/sparc/kernel/process_64.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*  arch/sparc64/kernel/process.c
   3 *
   4 *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
   5 *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
   6 *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
   7 */
   8
   9/*
  10 * This file handles the architecture-dependent parts of process handling..
  11 */
  12
  13#include <stdarg.h>
  14
  15#include <linux/errno.h>
  16#include <linux/export.h>
  17#include <linux/sched.h>
  18#include <linux/sched/debug.h>
  19#include <linux/sched/task.h>
  20#include <linux/sched/task_stack.h>
  21#include <linux/kernel.h>
  22#include <linux/mm.h>
  23#include <linux/fs.h>
  24#include <linux/smp.h>
  25#include <linux/stddef.h>
  26#include <linux/ptrace.h>
  27#include <linux/slab.h>
  28#include <linux/user.h>
  29#include <linux/delay.h>
  30#include <linux/compat.h>
  31#include <linux/tick.h>
  32#include <linux/init.h>
  33#include <linux/cpu.h>
  34#include <linux/perf_event.h>
  35#include <linux/elfcore.h>
  36#include <linux/sysrq.h>
  37#include <linux/nmi.h>
  38#include <linux/context_tracking.h>
  39
  40#include <linux/uaccess.h>
  41#include <asm/page.h>
  42#include <asm/pgalloc.h>
  43#include <asm/pgtable.h>
  44#include <asm/processor.h>
  45#include <asm/pstate.h>
  46#include <asm/elf.h>
  47#include <asm/fpumacro.h>
  48#include <asm/head.h>
  49#include <asm/cpudata.h>
  50#include <asm/mmu_context.h>
  51#include <asm/unistd.h>
  52#include <asm/hypervisor.h>
  53#include <asm/syscalls.h>
  54#include <asm/irq_regs.h>
  55#include <asm/smp.h>
  56#include <asm/pcr.h>
  57
  58#include "kstack.h"
  59
  60/* Idle loop support on sparc64. */
  61void arch_cpu_idle(void)
  62{
  63        if (tlb_type != hypervisor) {
  64                touch_nmi_watchdog();
  65                local_irq_enable();
  66        } else {
  67                unsigned long pstate;
  68
  69                local_irq_enable();
  70
  71                /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
  72                 * the cpu sleep hypervisor call.
  73                 */
  74                __asm__ __volatile__(
  75                        "rdpr %%pstate, %0\n\t"
  76                        "andn %0, %1, %0\n\t"
  77                        "wrpr %0, %%g0, %%pstate"
  78                        : "=&r" (pstate)
  79                        : "i" (PSTATE_IE));
  80
  81                if (!need_resched() && !cpu_is_offline(smp_processor_id())) {
  82                        sun4v_cpu_yield();
  83                        /* If resumed by cpu_poke then we need to explicitly
  84                         * call scheduler_ipi().
  85                         */
  86                        scheduler_poke();
  87                }
  88
  89                /* Re-enable interrupts. */
  90                __asm__ __volatile__(
  91                        "rdpr %%pstate, %0\n\t"
  92                        "or %0, %1, %0\n\t"
  93                        "wrpr %0, %%g0, %%pstate"
  94                        : "=&r" (pstate)
  95                        : "i" (PSTATE_IE));
  96        }
  97}
  98
  99#ifdef CONFIG_HOTPLUG_CPU
 100void arch_cpu_idle_dead(void)
 101{
 102        sched_preempt_enable_no_resched();
 103        cpu_play_dead();
 104}
 105#endif
 106
 107#ifdef CONFIG_COMPAT
 108static void show_regwindow32(struct pt_regs *regs)
 109{
 110        struct reg_window32 __user *rw;
 111        struct reg_window32 r_w;
 112        mm_segment_t old_fs;
 113        
 114        __asm__ __volatile__ ("flushw");
 115        rw = compat_ptr((unsigned int)regs->u_regs[14]);
 116        old_fs = get_fs();
 117        set_fs (USER_DS);
 118        if (copy_from_user (&r_w, rw, sizeof(r_w))) {
 119                set_fs (old_fs);
 120                return;
 121        }
 122
 123        set_fs (old_fs);                        
 124        printk("l0: %08x l1: %08x l2: %08x l3: %08x "
 125               "l4: %08x l5: %08x l6: %08x l7: %08x\n",
 126               r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
 127               r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
 128        printk("i0: %08x i1: %08x i2: %08x i3: %08x "
 129               "i4: %08x i5: %08x i6: %08x i7: %08x\n",
 130               r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
 131               r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
 132}
 133#else
 134#define show_regwindow32(regs)  do { } while (0)
 135#endif
 136
 137static void show_regwindow(struct pt_regs *regs)
 138{
 139        struct reg_window __user *rw;
 140        struct reg_window *rwk;
 141        struct reg_window r_w;
 142        mm_segment_t old_fs;
 143
 144        if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
 145                __asm__ __volatile__ ("flushw");
 146                rw = (struct reg_window __user *)
 147                        (regs->u_regs[14] + STACK_BIAS);
 148                rwk = (struct reg_window *)
 149                        (regs->u_regs[14] + STACK_BIAS);
 150                if (!(regs->tstate & TSTATE_PRIV)) {
 151                        old_fs = get_fs();
 152                        set_fs (USER_DS);
 153                        if (copy_from_user (&r_w, rw, sizeof(r_w))) {
 154                                set_fs (old_fs);
 155                                return;
 156                        }
 157                        rwk = &r_w;
 158                        set_fs (old_fs);                        
 159                }
 160        } else {
 161                show_regwindow32(regs);
 162                return;
 163        }
 164        printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
 165               rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
 166        printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
 167               rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
 168        printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
 169               rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
 170        printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
 171               rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
 172        if (regs->tstate & TSTATE_PRIV)
 173                printk("I7: <%pS>\n", (void *) rwk->ins[7]);
 174}
 175
 176void show_regs(struct pt_regs *regs)
 177{
 178        show_regs_print_info(KERN_DEFAULT);
 179
 180        printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
 181               regs->tpc, regs->tnpc, regs->y, print_tainted());
 182        printk("TPC: <%pS>\n", (void *) regs->tpc);
 183        printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
 184               regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
 185               regs->u_regs[3]);
 186        printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
 187               regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
 188               regs->u_regs[7]);
 189        printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
 190               regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
 191               regs->u_regs[11]);
 192        printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
 193               regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
 194               regs->u_regs[15]);
 195        printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
 196        show_regwindow(regs);
 197        show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
 198}
 199
 200union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
 201static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
 202
 203static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
 204                              int this_cpu)
 205{
 206        struct global_reg_snapshot *rp;
 207
 208        flushw_all();
 209
 210        rp = &global_cpu_snapshot[this_cpu].reg;
 211
 212        rp->tstate = regs->tstate;
 213        rp->tpc = regs->tpc;
 214        rp->tnpc = regs->tnpc;
 215        rp->o7 = regs->u_regs[UREG_I7];
 216
 217        if (regs->tstate & TSTATE_PRIV) {
 218                struct reg_window *rw;
 219
 220                rw = (struct reg_window *)
 221                        (regs->u_regs[UREG_FP] + STACK_BIAS);
 222                if (kstack_valid(tp, (unsigned long) rw)) {
 223                        rp->i7 = rw->ins[7];
 224                        rw = (struct reg_window *)
 225                                (rw->ins[6] + STACK_BIAS);
 226                        if (kstack_valid(tp, (unsigned long) rw))
 227                                rp->rpc = rw->ins[7];
 228                }
 229        } else {
 230                rp->i7 = 0;
 231                rp->rpc = 0;
 232        }
 233        rp->thread = tp;
 234}
 235
 236/* In order to avoid hangs we do not try to synchronize with the
 237 * global register dump client cpus.  The last store they make is to
 238 * the thread pointer, so do a short poll waiting for that to become
 239 * non-NULL.
 240 */
 241static void __global_reg_poll(struct global_reg_snapshot *gp)
 242{
 243        int limit = 0;
 244
 245        while (!gp->thread && ++limit < 100) {
 246                barrier();
 247                udelay(1);
 248        }
 249}
 250
 251void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
 252{
 253        struct thread_info *tp = current_thread_info();
 254        struct pt_regs *regs = get_irq_regs();
 255        unsigned long flags;
 256        int this_cpu, cpu;
 257
 258        if (!regs)
 259                regs = tp->kregs;
 260
 261        spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
 262
 263        this_cpu = raw_smp_processor_id();
 264
 265        memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
 266
 267        if (cpumask_test_cpu(this_cpu, mask) && !exclude_self)
 268                __global_reg_self(tp, regs, this_cpu);
 269
 270        smp_fetch_global_regs();
 271
 272        for_each_cpu(cpu, mask) {
 273                struct global_reg_snapshot *gp;
 274
 275                if (exclude_self && cpu == this_cpu)
 276                        continue;
 277
 278                gp = &global_cpu_snapshot[cpu].reg;
 279
 280                __global_reg_poll(gp);
 281
 282                tp = gp->thread;
 283                printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
 284                       (cpu == this_cpu ? '*' : ' '), cpu,
 285                       gp->tstate, gp->tpc, gp->tnpc,
 286                       ((tp && tp->task) ? tp->task->comm : "NULL"),
 287                       ((tp && tp->task) ? tp->task->pid : -1));
 288
 289                if (gp->tstate & TSTATE_PRIV) {
 290                        printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
 291                               (void *) gp->tpc,
 292                               (void *) gp->o7,
 293                               (void *) gp->i7,
 294                               (void *) gp->rpc);
 295                } else {
 296                        printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
 297                               gp->tpc, gp->o7, gp->i7, gp->rpc);
 298                }
 299
 300                touch_nmi_watchdog();
 301        }
 302
 303        memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
 304
 305        spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
 306}
 307
 308#ifdef CONFIG_MAGIC_SYSRQ
 309
 310static void sysrq_handle_globreg(int key)
 311{
 312        trigger_all_cpu_backtrace();
 313}
 314
 315static struct sysrq_key_op sparc_globalreg_op = {
 316        .handler        = sysrq_handle_globreg,
 317        .help_msg       = "global-regs(y)",
 318        .action_msg     = "Show Global CPU Regs",
 319};
 320
 321static void __global_pmu_self(int this_cpu)
 322{
 323        struct global_pmu_snapshot *pp;
 324        int i, num;
 325
 326        if (!pcr_ops)
 327                return;
 328
 329        pp = &global_cpu_snapshot[this_cpu].pmu;
 330
 331        num = 1;
 332        if (tlb_type == hypervisor &&
 333            sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
 334                num = 4;
 335
 336        for (i = 0; i < num; i++) {
 337                pp->pcr[i] = pcr_ops->read_pcr(i);
 338                pp->pic[i] = pcr_ops->read_pic(i);
 339        }
 340}
 341
 342static void __global_pmu_poll(struct global_pmu_snapshot *pp)
 343{
 344        int limit = 0;
 345
 346        while (!pp->pcr[0] && ++limit < 100) {
 347                barrier();
 348                udelay(1);
 349        }
 350}
 351
 352static void pmu_snapshot_all_cpus(void)
 353{
 354        unsigned long flags;
 355        int this_cpu, cpu;
 356
 357        spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
 358
 359        memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
 360
 361        this_cpu = raw_smp_processor_id();
 362
 363        __global_pmu_self(this_cpu);
 364
 365        smp_fetch_global_pmu();
 366
 367        for_each_online_cpu(cpu) {
 368                struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
 369
 370                __global_pmu_poll(pp);
 371
 372                printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
 373                       (cpu == this_cpu ? '*' : ' '), cpu,
 374                       pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
 375                       pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
 376
 377                touch_nmi_watchdog();
 378        }
 379
 380        memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
 381
 382        spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
 383}
 384
 385static void sysrq_handle_globpmu(int key)
 386{
 387        pmu_snapshot_all_cpus();
 388}
 389
 390static struct sysrq_key_op sparc_globalpmu_op = {
 391        .handler        = sysrq_handle_globpmu,
 392        .help_msg       = "global-pmu(x)",
 393        .action_msg     = "Show Global PMU Regs",
 394};
 395
 396static int __init sparc_sysrq_init(void)
 397{
 398        int ret = register_sysrq_key('y', &sparc_globalreg_op);
 399
 400        if (!ret)
 401                ret = register_sysrq_key('x', &sparc_globalpmu_op);
 402        return ret;
 403}
 404
 405core_initcall(sparc_sysrq_init);
 406
 407#endif
 408
 409/* Free current thread data structures etc.. */
 410void exit_thread(struct task_struct *tsk)
 411{
 412        struct thread_info *t = task_thread_info(tsk);
 413
 414        if (t->utraps) {
 415                if (t->utraps[0] < 2)
 416                        kfree (t->utraps);
 417                else
 418                        t->utraps[0]--;
 419        }
 420}
 421
 422void flush_thread(void)
 423{
 424        struct thread_info *t = current_thread_info();
 425        struct mm_struct *mm;
 426
 427        mm = t->task->mm;
 428        if (mm)
 429                tsb_context_switch(mm);
 430
 431        set_thread_wsaved(0);
 432
 433        /* Clear FPU register state. */
 434        t->fpsaved[0] = 0;
 435}
 436
 437/* It's a bit more tricky when 64-bit tasks are involved... */
 438static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
 439{
 440        bool stack_64bit = test_thread_64bit_stack(psp);
 441        unsigned long fp, distance, rval;
 442
 443        if (stack_64bit) {
 444                csp += STACK_BIAS;
 445                psp += STACK_BIAS;
 446                __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
 447                fp += STACK_BIAS;
 448                if (test_thread_flag(TIF_32BIT))
 449                        fp &= 0xffffffff;
 450        } else
 451                __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
 452
 453        /* Now align the stack as this is mandatory in the Sparc ABI
 454         * due to how register windows work.  This hides the
 455         * restriction from thread libraries etc.
 456         */
 457        csp &= ~15UL;
 458
 459        distance = fp - psp;
 460        rval = (csp - distance);
 461        if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
 462                rval = 0;
 463        else if (!stack_64bit) {
 464                if (put_user(((u32)csp),
 465                             &(((struct reg_window32 __user *)rval)->ins[6])))
 466                        rval = 0;
 467        } else {
 468                if (put_user(((u64)csp - STACK_BIAS),
 469                             &(((struct reg_window __user *)rval)->ins[6])))
 470                        rval = 0;
 471                else
 472                        rval = rval - STACK_BIAS;
 473        }
 474
 475        return rval;
 476}
 477
 478/* Standard stuff. */
 479static inline void shift_window_buffer(int first_win, int last_win,
 480                                       struct thread_info *t)
 481{
 482        int i;
 483
 484        for (i = first_win; i < last_win; i++) {
 485                t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
 486                memcpy(&t->reg_window[i], &t->reg_window[i+1],
 487                       sizeof(struct reg_window));
 488        }
 489}
 490
 491void synchronize_user_stack(void)
 492{
 493        struct thread_info *t = current_thread_info();
 494        unsigned long window;
 495
 496        flush_user_windows();
 497        if ((window = get_thread_wsaved()) != 0) {
 498                window -= 1;
 499                do {
 500                        struct reg_window *rwin = &t->reg_window[window];
 501                        int winsize = sizeof(struct reg_window);
 502                        unsigned long sp;
 503
 504                        sp = t->rwbuf_stkptrs[window];
 505
 506                        if (test_thread_64bit_stack(sp))
 507                                sp += STACK_BIAS;
 508                        else
 509                                winsize = sizeof(struct reg_window32);
 510
 511                        if (!copy_to_user((char __user *)sp, rwin, winsize)) {
 512                                shift_window_buffer(window, get_thread_wsaved() - 1, t);
 513                                set_thread_wsaved(get_thread_wsaved() - 1);
 514                        }
 515                } while (window--);
 516        }
 517}
 518
 519static void stack_unaligned(unsigned long sp)
 520{
 521        siginfo_t info;
 522
 523        info.si_signo = SIGBUS;
 524        info.si_errno = 0;
 525        info.si_code = BUS_ADRALN;
 526        info.si_addr = (void __user *) sp;
 527        info.si_trapno = 0;
 528        force_sig_info(SIGBUS, &info, current);
 529}
 530
 531void fault_in_user_windows(void)
 532{
 533        struct thread_info *t = current_thread_info();
 534        unsigned long window;
 535
 536        flush_user_windows();
 537        window = get_thread_wsaved();
 538
 539        if (likely(window != 0)) {
 540                window -= 1;
 541                do {
 542                        struct reg_window *rwin = &t->reg_window[window];
 543                        int winsize = sizeof(struct reg_window);
 544                        unsigned long sp;
 545
 546                        sp = t->rwbuf_stkptrs[window];
 547
 548                        if (test_thread_64bit_stack(sp))
 549                                sp += STACK_BIAS;
 550                        else
 551                                winsize = sizeof(struct reg_window32);
 552
 553                        if (unlikely(sp & 0x7UL))
 554                                stack_unaligned(sp);
 555
 556                        if (unlikely(copy_to_user((char __user *)sp,
 557                                                  rwin, winsize)))
 558                                goto barf;
 559                } while (window--);
 560        }
 561        set_thread_wsaved(0);
 562        return;
 563
 564barf:
 565        set_thread_wsaved(window + 1);
 566        user_exit();
 567        do_exit(SIGILL);
 568}
 569
 570asmlinkage long sparc_do_fork(unsigned long clone_flags,
 571                              unsigned long stack_start,
 572                              struct pt_regs *regs,
 573                              unsigned long stack_size)
 574{
 575        int __user *parent_tid_ptr, *child_tid_ptr;
 576        unsigned long orig_i1 = regs->u_regs[UREG_I1];
 577        long ret;
 578
 579#ifdef CONFIG_COMPAT
 580        if (test_thread_flag(TIF_32BIT)) {
 581                parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
 582                child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
 583        } else
 584#endif
 585        {
 586                parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
 587                child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
 588        }
 589
 590        ret = do_fork(clone_flags, stack_start, stack_size,
 591                      parent_tid_ptr, child_tid_ptr);
 592
 593        /* If we get an error and potentially restart the system
 594         * call, we're screwed because copy_thread() clobbered
 595         * the parent's %o1.  So detect that case and restore it
 596         * here.
 597         */
 598        if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
 599                regs->u_regs[UREG_I1] = orig_i1;
 600
 601        return ret;
 602}
 603
 604/* Copy a Sparc thread.  The fork() return value conventions
 605 * under SunOS are nothing short of bletcherous:
 606 * Parent -->  %o0 == childs  pid, %o1 == 0
 607 * Child  -->  %o0 == parents pid, %o1 == 1
 608 */
 609int copy_thread(unsigned long clone_flags, unsigned long sp,
 610                unsigned long arg, struct task_struct *p)
 611{
 612        struct thread_info *t = task_thread_info(p);
 613        struct pt_regs *regs = current_pt_regs();
 614        struct sparc_stackf *parent_sf;
 615        unsigned long child_stack_sz;
 616        char *child_trap_frame;
 617
 618        /* Calculate offset to stack_frame & pt_regs */
 619        child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
 620        child_trap_frame = (task_stack_page(p) +
 621                            (THREAD_SIZE - child_stack_sz));
 622
 623        t->new_child = 1;
 624        t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
 625        t->kregs = (struct pt_regs *) (child_trap_frame +
 626                                       sizeof(struct sparc_stackf));
 627        t->fpsaved[0] = 0;
 628
 629        if (unlikely(p->flags & PF_KTHREAD)) {
 630                memset(child_trap_frame, 0, child_stack_sz);
 631                __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
 632                        (current_pt_regs()->tstate + 1) & TSTATE_CWP;
 633                t->current_ds = ASI_P;
 634                t->kregs->u_regs[UREG_G1] = sp; /* function */
 635                t->kregs->u_regs[UREG_G2] = arg;
 636                return 0;
 637        }
 638
 639        parent_sf = ((struct sparc_stackf *) regs) - 1;
 640        memcpy(child_trap_frame, parent_sf, child_stack_sz);
 641        if (t->flags & _TIF_32BIT) {
 642                sp &= 0x00000000ffffffffUL;
 643                regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
 644        }
 645        t->kregs->u_regs[UREG_FP] = sp;
 646        __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
 647                (regs->tstate + 1) & TSTATE_CWP;
 648        t->current_ds = ASI_AIUS;
 649        if (sp != regs->u_regs[UREG_FP]) {
 650                unsigned long csp;
 651
 652                csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
 653                if (!csp)
 654                        return -EFAULT;
 655                t->kregs->u_regs[UREG_FP] = csp;
 656        }
 657        if (t->utraps)
 658                t->utraps[0]++;
 659
 660        /* Set the return value for the child. */
 661        t->kregs->u_regs[UREG_I0] = current->pid;
 662        t->kregs->u_regs[UREG_I1] = 1;
 663
 664        /* Set the second return value for the parent. */
 665        regs->u_regs[UREG_I1] = 0;
 666
 667        if (clone_flags & CLONE_SETTLS)
 668                t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
 669
 670        return 0;
 671}
 672
 673typedef struct {
 674        union {
 675                unsigned int    pr_regs[32];
 676                unsigned long   pr_dregs[16];
 677        } pr_fr;
 678        unsigned int __unused;
 679        unsigned int    pr_fsr;
 680        unsigned char   pr_qcnt;
 681        unsigned char   pr_q_entrysize;
 682        unsigned char   pr_en;
 683        unsigned int    pr_q[64];
 684} elf_fpregset_t32;
 685
 686/*
 687 * fill in the fpu structure for a core dump.
 688 */
 689int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
 690{
 691        unsigned long *kfpregs = current_thread_info()->fpregs;
 692        unsigned long fprs = current_thread_info()->fpsaved[0];
 693
 694        if (test_thread_flag(TIF_32BIT)) {
 695                elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
 696
 697                if (fprs & FPRS_DL)
 698                        memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
 699                               sizeof(unsigned int) * 32);
 700                else
 701                        memset(&fpregs32->pr_fr.pr_regs[0], 0,
 702                               sizeof(unsigned int) * 32);
 703                fpregs32->pr_qcnt = 0;
 704                fpregs32->pr_q_entrysize = 8;
 705                memset(&fpregs32->pr_q[0], 0,
 706                       (sizeof(unsigned int) * 64));
 707                if (fprs & FPRS_FEF) {
 708                        fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
 709                        fpregs32->pr_en = 1;
 710                } else {
 711                        fpregs32->pr_fsr = 0;
 712                        fpregs32->pr_en = 0;
 713                }
 714        } else {
 715                if(fprs & FPRS_DL)
 716                        memcpy(&fpregs->pr_regs[0], kfpregs,
 717                               sizeof(unsigned int) * 32);
 718                else
 719                        memset(&fpregs->pr_regs[0], 0,
 720                               sizeof(unsigned int) * 32);
 721                if(fprs & FPRS_DU)
 722                        memcpy(&fpregs->pr_regs[16], kfpregs+16,
 723                               sizeof(unsigned int) * 32);
 724                else
 725                        memset(&fpregs->pr_regs[16], 0,
 726                               sizeof(unsigned int) * 32);
 727                if(fprs & FPRS_FEF) {
 728                        fpregs->pr_fsr = current_thread_info()->xfsr[0];
 729                        fpregs->pr_gsr = current_thread_info()->gsr[0];
 730                } else {
 731                        fpregs->pr_fsr = fpregs->pr_gsr = 0;
 732                }
 733                fpregs->pr_fprs = fprs;
 734        }
 735        return 1;
 736}
 737EXPORT_SYMBOL(dump_fpu);
 738
 739unsigned long get_wchan(struct task_struct *task)
 740{
 741        unsigned long pc, fp, bias = 0;
 742        struct thread_info *tp;
 743        struct reg_window *rw;
 744        unsigned long ret = 0;
 745        int count = 0; 
 746
 747        if (!task || task == current ||
 748            task->state == TASK_RUNNING)
 749                goto out;
 750
 751        tp = task_thread_info(task);
 752        bias = STACK_BIAS;
 753        fp = task_thread_info(task)->ksp + bias;
 754
 755        do {
 756                if (!kstack_valid(tp, fp))
 757                        break;
 758                rw = (struct reg_window *) fp;
 759                pc = rw->ins[7];
 760                if (!in_sched_functions(pc)) {
 761                        ret = pc;
 762                        goto out;
 763                }
 764                fp = rw->ins[6] + bias;
 765        } while (++count < 16);
 766
 767out:
 768        return ret;
 769}
 770