linux/arch/x86/kernel/alternative.c
<<
>>
Prefs
   1#define pr_fmt(fmt) "SMP alternatives: " fmt
   2
   3#include <linux/module.h>
   4#include <linux/sched.h>
   5#include <linux/mutex.h>
   6#include <linux/list.h>
   7#include <linux/stringify.h>
   8#include <linux/mm.h>
   9#include <linux/vmalloc.h>
  10#include <linux/memory.h>
  11#include <linux/stop_machine.h>
  12#include <linux/slab.h>
  13#include <linux/kdebug.h>
  14#include <asm/text-patching.h>
  15#include <asm/alternative.h>
  16#include <asm/sections.h>
  17#include <asm/pgtable.h>
  18#include <asm/mce.h>
  19#include <asm/nmi.h>
  20#include <asm/cacheflush.h>
  21#include <asm/tlbflush.h>
  22#include <asm/io.h>
  23#include <asm/fixmap.h>
  24
  25int __read_mostly alternatives_patched;
  26
  27EXPORT_SYMBOL_GPL(alternatives_patched);
  28
  29#define MAX_PATCH_LEN (255-1)
  30
  31static int __initdata_or_module debug_alternative;
  32
  33static int __init debug_alt(char *str)
  34{
  35        debug_alternative = 1;
  36        return 1;
  37}
  38__setup("debug-alternative", debug_alt);
  39
  40static int noreplace_smp;
  41
  42static int __init setup_noreplace_smp(char *str)
  43{
  44        noreplace_smp = 1;
  45        return 1;
  46}
  47__setup("noreplace-smp", setup_noreplace_smp);
  48
  49#ifdef CONFIG_PARAVIRT
  50static int __initdata_or_module noreplace_paravirt = 0;
  51
  52static int __init setup_noreplace_paravirt(char *str)
  53{
  54        noreplace_paravirt = 1;
  55        return 1;
  56}
  57__setup("noreplace-paravirt", setup_noreplace_paravirt);
  58#endif
  59
  60#define DPRINTK(fmt, args...)                                           \
  61do {                                                                    \
  62        if (debug_alternative)                                          \
  63                printk(KERN_DEBUG "%s: " fmt "\n", __func__, ##args);   \
  64} while (0)
  65
  66#define DUMP_BYTES(buf, len, fmt, args...)                              \
  67do {                                                                    \
  68        if (unlikely(debug_alternative)) {                              \
  69                int j;                                                  \
  70                                                                        \
  71                if (!(len))                                             \
  72                        break;                                          \
  73                                                                        \
  74                printk(KERN_DEBUG fmt, ##args);                         \
  75                for (j = 0; j < (len) - 1; j++)                         \
  76                        printk(KERN_CONT "%02hhx ", buf[j]);            \
  77                printk(KERN_CONT "%02hhx\n", buf[j]);                   \
  78        }                                                               \
  79} while (0)
  80
  81/*
  82 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
  83 * that correspond to that nop. Getting from one nop to the next, we
  84 * add to the array the offset that is equal to the sum of all sizes of
  85 * nops preceding the one we are after.
  86 *
  87 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
  88 * nice symmetry of sizes of the previous nops.
  89 */
  90#if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
  91static const unsigned char intelnops[] =
  92{
  93        GENERIC_NOP1,
  94        GENERIC_NOP2,
  95        GENERIC_NOP3,
  96        GENERIC_NOP4,
  97        GENERIC_NOP5,
  98        GENERIC_NOP6,
  99        GENERIC_NOP7,
 100        GENERIC_NOP8,
 101        GENERIC_NOP5_ATOMIC
 102};
 103static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
 104{
 105        NULL,
 106        intelnops,
 107        intelnops + 1,
 108        intelnops + 1 + 2,
 109        intelnops + 1 + 2 + 3,
 110        intelnops + 1 + 2 + 3 + 4,
 111        intelnops + 1 + 2 + 3 + 4 + 5,
 112        intelnops + 1 + 2 + 3 + 4 + 5 + 6,
 113        intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 114        intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
 115};
 116#endif
 117
 118#ifdef K8_NOP1
 119static const unsigned char k8nops[] =
 120{
 121        K8_NOP1,
 122        K8_NOP2,
 123        K8_NOP3,
 124        K8_NOP4,
 125        K8_NOP5,
 126        K8_NOP6,
 127        K8_NOP7,
 128        K8_NOP8,
 129        K8_NOP5_ATOMIC
 130};
 131static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
 132{
 133        NULL,
 134        k8nops,
 135        k8nops + 1,
 136        k8nops + 1 + 2,
 137        k8nops + 1 + 2 + 3,
 138        k8nops + 1 + 2 + 3 + 4,
 139        k8nops + 1 + 2 + 3 + 4 + 5,
 140        k8nops + 1 + 2 + 3 + 4 + 5 + 6,
 141        k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 142        k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
 143};
 144#endif
 145
 146#if defined(K7_NOP1) && !defined(CONFIG_X86_64)
 147static const unsigned char k7nops[] =
 148{
 149        K7_NOP1,
 150        K7_NOP2,
 151        K7_NOP3,
 152        K7_NOP4,
 153        K7_NOP5,
 154        K7_NOP6,
 155        K7_NOP7,
 156        K7_NOP8,
 157        K7_NOP5_ATOMIC
 158};
 159static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
 160{
 161        NULL,
 162        k7nops,
 163        k7nops + 1,
 164        k7nops + 1 + 2,
 165        k7nops + 1 + 2 + 3,
 166        k7nops + 1 + 2 + 3 + 4,
 167        k7nops + 1 + 2 + 3 + 4 + 5,
 168        k7nops + 1 + 2 + 3 + 4 + 5 + 6,
 169        k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 170        k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
 171};
 172#endif
 173
 174#ifdef P6_NOP1
 175static const unsigned char p6nops[] =
 176{
 177        P6_NOP1,
 178        P6_NOP2,
 179        P6_NOP3,
 180        P6_NOP4,
 181        P6_NOP5,
 182        P6_NOP6,
 183        P6_NOP7,
 184        P6_NOP8,
 185        P6_NOP5_ATOMIC
 186};
 187static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
 188{
 189        NULL,
 190        p6nops,
 191        p6nops + 1,
 192        p6nops + 1 + 2,
 193        p6nops + 1 + 2 + 3,
 194        p6nops + 1 + 2 + 3 + 4,
 195        p6nops + 1 + 2 + 3 + 4 + 5,
 196        p6nops + 1 + 2 + 3 + 4 + 5 + 6,
 197        p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 198        p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
 199};
 200#endif
 201
 202/* Initialize these to a safe default */
 203#ifdef CONFIG_X86_64
 204const unsigned char * const *ideal_nops = p6_nops;
 205#else
 206const unsigned char * const *ideal_nops = intel_nops;
 207#endif
 208
 209void __init arch_init_ideal_nops(void)
 210{
 211        switch (boot_cpu_data.x86_vendor) {
 212        case X86_VENDOR_INTEL:
 213                /*
 214                 * Due to a decoder implementation quirk, some
 215                 * specific Intel CPUs actually perform better with
 216                 * the "k8_nops" than with the SDM-recommended NOPs.
 217                 */
 218                if (boot_cpu_data.x86 == 6 &&
 219                    boot_cpu_data.x86_model >= 0x0f &&
 220                    boot_cpu_data.x86_model != 0x1c &&
 221                    boot_cpu_data.x86_model != 0x26 &&
 222                    boot_cpu_data.x86_model != 0x27 &&
 223                    boot_cpu_data.x86_model < 0x30) {
 224                        ideal_nops = k8_nops;
 225                } else if (boot_cpu_has(X86_FEATURE_NOPL)) {
 226                           ideal_nops = p6_nops;
 227                } else {
 228#ifdef CONFIG_X86_64
 229                        ideal_nops = k8_nops;
 230#else
 231                        ideal_nops = intel_nops;
 232#endif
 233                }
 234                break;
 235
 236        case X86_VENDOR_AMD:
 237                if (boot_cpu_data.x86 > 0xf) {
 238                        ideal_nops = p6_nops;
 239                        return;
 240                }
 241
 242                /* fall through */
 243
 244        default:
 245#ifdef CONFIG_X86_64
 246                ideal_nops = k8_nops;
 247#else
 248                if (boot_cpu_has(X86_FEATURE_K8))
 249                        ideal_nops = k8_nops;
 250                else if (boot_cpu_has(X86_FEATURE_K7))
 251                        ideal_nops = k7_nops;
 252                else
 253                        ideal_nops = intel_nops;
 254#endif
 255        }
 256}
 257
 258/* Use this to add nops to a buffer, then text_poke the whole buffer. */
 259static void __init_or_module add_nops(void *insns, unsigned int len)
 260{
 261        while (len > 0) {
 262                unsigned int noplen = len;
 263                if (noplen > ASM_NOP_MAX)
 264                        noplen = ASM_NOP_MAX;
 265                memcpy(insns, ideal_nops[noplen], noplen);
 266                insns += noplen;
 267                len -= noplen;
 268        }
 269}
 270
 271extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
 272extern s32 __smp_locks[], __smp_locks_end[];
 273void *text_poke_early(void *addr, const void *opcode, size_t len);
 274
 275/*
 276 * Are we looking at a near JMP with a 1 or 4-byte displacement.
 277 */
 278static inline bool is_jmp(const u8 opcode)
 279{
 280        return opcode == 0xeb || opcode == 0xe9;
 281}
 282
 283static void __init_or_module
 284recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insnbuf)
 285{
 286        u8 *next_rip, *tgt_rip;
 287        s32 n_dspl, o_dspl;
 288        int repl_len;
 289
 290        if (a->replacementlen != 5)
 291                return;
 292
 293        o_dspl = *(s32 *)(insnbuf + 1);
 294
 295        /* next_rip of the replacement JMP */
 296        next_rip = repl_insn + a->replacementlen;
 297        /* target rip of the replacement JMP */
 298        tgt_rip  = next_rip + o_dspl;
 299        n_dspl = tgt_rip - orig_insn;
 300
 301        DPRINTK("target RIP: %p, new_displ: 0x%x", tgt_rip, n_dspl);
 302
 303        if (tgt_rip - orig_insn >= 0) {
 304                if (n_dspl - 2 <= 127)
 305                        goto two_byte_jmp;
 306                else
 307                        goto five_byte_jmp;
 308        /* negative offset */
 309        } else {
 310                if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
 311                        goto two_byte_jmp;
 312                else
 313                        goto five_byte_jmp;
 314        }
 315
 316two_byte_jmp:
 317        n_dspl -= 2;
 318
 319        insnbuf[0] = 0xeb;
 320        insnbuf[1] = (s8)n_dspl;
 321        add_nops(insnbuf + 2, 3);
 322
 323        repl_len = 2;
 324        goto done;
 325
 326five_byte_jmp:
 327        n_dspl -= 5;
 328
 329        insnbuf[0] = 0xe9;
 330        *(s32 *)&insnbuf[1] = n_dspl;
 331
 332        repl_len = 5;
 333
 334done:
 335
 336        DPRINTK("final displ: 0x%08x, JMP 0x%lx",
 337                n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
 338}
 339
 340/*
 341 * "noinline" to cause control flow change and thus invalidate I$ and
 342 * cause refetch after modification.
 343 */
 344static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
 345{
 346        unsigned long flags;
 347
 348        if (instr[0] != 0x90)
 349                return;
 350
 351        local_irq_save(flags);
 352        add_nops(instr + (a->instrlen - a->padlen), a->padlen);
 353        local_irq_restore(flags);
 354
 355        DUMP_BYTES(instr, a->instrlen, "%p: [%d:%d) optimized NOPs: ",
 356                   instr, a->instrlen - a->padlen, a->padlen);
 357}
 358
 359/*
 360 * Replace instructions with better alternatives for this CPU type. This runs
 361 * before SMP is initialized to avoid SMP problems with self modifying code.
 362 * This implies that asymmetric systems where APs have less capabilities than
 363 * the boot processor are not handled. Tough. Make sure you disable such
 364 * features by hand.
 365 *
 366 * Marked "noinline" to cause control flow change and thus insn cache
 367 * to refetch changed I$ lines.
 368 */
 369void __init_or_module noinline apply_alternatives(struct alt_instr *start,
 370                                                  struct alt_instr *end)
 371{
 372        struct alt_instr *a;
 373        u8 *instr, *replacement;
 374        u8 insnbuf[MAX_PATCH_LEN];
 375
 376        DPRINTK("alt table %p -> %p", start, end);
 377        /*
 378         * The scan order should be from start to end. A later scanned
 379         * alternative code can overwrite previously scanned alternative code.
 380         * Some kernel functions (e.g. memcpy, memset, etc) use this order to
 381         * patch code.
 382         *
 383         * So be careful if you want to change the scan order to any other
 384         * order.
 385         */
 386        for (a = start; a < end; a++) {
 387                int insnbuf_sz = 0;
 388
 389                instr = (u8 *)&a->instr_offset + a->instr_offset;
 390                replacement = (u8 *)&a->repl_offset + a->repl_offset;
 391                BUG_ON(a->instrlen > sizeof(insnbuf));
 392                BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
 393                if (!boot_cpu_has(a->cpuid)) {
 394                        if (a->padlen > 1)
 395                                optimize_nops(a, instr);
 396
 397                        continue;
 398                }
 399
 400                DPRINTK("feat: %d*32+%d, old: (%p, len: %d), repl: (%p, len: %d), pad: %d",
 401                        a->cpuid >> 5,
 402                        a->cpuid & 0x1f,
 403                        instr, a->instrlen,
 404                        replacement, a->replacementlen, a->padlen);
 405
 406                DUMP_BYTES(instr, a->instrlen, "%p: old_insn: ", instr);
 407                DUMP_BYTES(replacement, a->replacementlen, "%p: rpl_insn: ", replacement);
 408
 409                memcpy(insnbuf, replacement, a->replacementlen);
 410                insnbuf_sz = a->replacementlen;
 411
 412                /*
 413                 * 0xe8 is a relative jump; fix the offset.
 414                 *
 415                 * Instruction length is checked before the opcode to avoid
 416                 * accessing uninitialized bytes for zero-length replacements.
 417                 */
 418                if (a->replacementlen == 5 && *insnbuf == 0xe8) {
 419                        *(s32 *)(insnbuf + 1) += replacement - instr;
 420                        DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
 421                                *(s32 *)(insnbuf + 1),
 422                                (unsigned long)instr + *(s32 *)(insnbuf + 1) + 5);
 423                }
 424
 425                if (a->replacementlen && is_jmp(replacement[0]))
 426                        recompute_jump(a, instr, replacement, insnbuf);
 427
 428                if (a->instrlen > a->replacementlen) {
 429                        add_nops(insnbuf + a->replacementlen,
 430                                 a->instrlen - a->replacementlen);
 431                        insnbuf_sz += a->instrlen - a->replacementlen;
 432                }
 433                DUMP_BYTES(insnbuf, insnbuf_sz, "%p: final_insn: ", instr);
 434
 435                text_poke_early(instr, insnbuf, insnbuf_sz);
 436        }
 437}
 438
 439#ifdef CONFIG_SMP
 440static void alternatives_smp_lock(const s32 *start, const s32 *end,
 441                                  u8 *text, u8 *text_end)
 442{
 443        const s32 *poff;
 444
 445        mutex_lock(&text_mutex);
 446        for (poff = start; poff < end; poff++) {
 447                u8 *ptr = (u8 *)poff + *poff;
 448
 449                if (!*poff || ptr < text || ptr >= text_end)
 450                        continue;
 451                /* turn DS segment override prefix into lock prefix */
 452                if (*ptr == 0x3e)
 453                        text_poke(ptr, ((unsigned char []){0xf0}), 1);
 454        }
 455        mutex_unlock(&text_mutex);
 456}
 457
 458static void alternatives_smp_unlock(const s32 *start, const s32 *end,
 459                                    u8 *text, u8 *text_end)
 460{
 461        const s32 *poff;
 462
 463        mutex_lock(&text_mutex);
 464        for (poff = start; poff < end; poff++) {
 465                u8 *ptr = (u8 *)poff + *poff;
 466
 467                if (!*poff || ptr < text || ptr >= text_end)
 468                        continue;
 469                /* turn lock prefix into DS segment override prefix */
 470                if (*ptr == 0xf0)
 471                        text_poke(ptr, ((unsigned char []){0x3E}), 1);
 472        }
 473        mutex_unlock(&text_mutex);
 474}
 475
 476struct smp_alt_module {
 477        /* what is this ??? */
 478        struct module   *mod;
 479        char            *name;
 480
 481        /* ptrs to lock prefixes */
 482        const s32       *locks;
 483        const s32       *locks_end;
 484
 485        /* .text segment, needed to avoid patching init code ;) */
 486        u8              *text;
 487        u8              *text_end;
 488
 489        struct list_head next;
 490};
 491static LIST_HEAD(smp_alt_modules);
 492static DEFINE_MUTEX(smp_alt);
 493static bool uniproc_patched = false;    /* protected by smp_alt */
 494
 495void __init_or_module alternatives_smp_module_add(struct module *mod,
 496                                                  char *name,
 497                                                  void *locks, void *locks_end,
 498                                                  void *text,  void *text_end)
 499{
 500        struct smp_alt_module *smp;
 501
 502        mutex_lock(&smp_alt);
 503        if (!uniproc_patched)
 504                goto unlock;
 505
 506        if (num_possible_cpus() == 1)
 507                /* Don't bother remembering, we'll never have to undo it. */
 508                goto smp_unlock;
 509
 510        smp = kzalloc(sizeof(*smp), GFP_KERNEL);
 511        if (NULL == smp)
 512                /* we'll run the (safe but slow) SMP code then ... */
 513                goto unlock;
 514
 515        smp->mod        = mod;
 516        smp->name       = name;
 517        smp->locks      = locks;
 518        smp->locks_end  = locks_end;
 519        smp->text       = text;
 520        smp->text_end   = text_end;
 521        DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
 522                smp->locks, smp->locks_end,
 523                smp->text, smp->text_end, smp->name);
 524
 525        list_add_tail(&smp->next, &smp_alt_modules);
 526smp_unlock:
 527        alternatives_smp_unlock(locks, locks_end, text, text_end);
 528unlock:
 529        mutex_unlock(&smp_alt);
 530}
 531
 532void __init_or_module alternatives_smp_module_del(struct module *mod)
 533{
 534        struct smp_alt_module *item;
 535
 536        mutex_lock(&smp_alt);
 537        list_for_each_entry(item, &smp_alt_modules, next) {
 538                if (mod != item->mod)
 539                        continue;
 540                list_del(&item->next);
 541                kfree(item);
 542                break;
 543        }
 544        mutex_unlock(&smp_alt);
 545}
 546
 547void alternatives_enable_smp(void)
 548{
 549        struct smp_alt_module *mod;
 550
 551        /* Why bother if there are no other CPUs? */
 552        BUG_ON(num_possible_cpus() == 1);
 553
 554        mutex_lock(&smp_alt);
 555
 556        if (uniproc_patched) {
 557                pr_info("switching to SMP code\n");
 558                BUG_ON(num_online_cpus() != 1);
 559                clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
 560                clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
 561                list_for_each_entry(mod, &smp_alt_modules, next)
 562                        alternatives_smp_lock(mod->locks, mod->locks_end,
 563                                              mod->text, mod->text_end);
 564                uniproc_patched = false;
 565        }
 566        mutex_unlock(&smp_alt);
 567}
 568
 569/* Return 1 if the address range is reserved for smp-alternatives */
 570int alternatives_text_reserved(void *start, void *end)
 571{
 572        struct smp_alt_module *mod;
 573        const s32 *poff;
 574        u8 *text_start = start;
 575        u8 *text_end = end;
 576
 577        list_for_each_entry(mod, &smp_alt_modules, next) {
 578                if (mod->text > text_end || mod->text_end < text_start)
 579                        continue;
 580                for (poff = mod->locks; poff < mod->locks_end; poff++) {
 581                        const u8 *ptr = (const u8 *)poff + *poff;
 582
 583                        if (text_start <= ptr && text_end > ptr)
 584                                return 1;
 585                }
 586        }
 587
 588        return 0;
 589}
 590#endif /* CONFIG_SMP */
 591
 592#ifdef CONFIG_PARAVIRT
 593void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
 594                                     struct paravirt_patch_site *end)
 595{
 596        struct paravirt_patch_site *p;
 597        char insnbuf[MAX_PATCH_LEN];
 598
 599        if (noreplace_paravirt)
 600                return;
 601
 602        for (p = start; p < end; p++) {
 603                unsigned int used;
 604
 605                BUG_ON(p->len > MAX_PATCH_LEN);
 606                /* prep the buffer with the original instructions */
 607                memcpy(insnbuf, p->instr, p->len);
 608                used = pv_init_ops.patch(p->instrtype, p->clobbers, insnbuf,
 609                                         (unsigned long)p->instr, p->len);
 610
 611                BUG_ON(used > p->len);
 612
 613                /* Pad the rest with nops */
 614                add_nops(insnbuf + used, p->len - used);
 615                text_poke_early(p->instr, insnbuf, p->len);
 616        }
 617}
 618extern struct paravirt_patch_site __start_parainstructions[],
 619        __stop_parainstructions[];
 620#endif  /* CONFIG_PARAVIRT */
 621
 622void __init alternative_instructions(void)
 623{
 624        /* The patching is not fully atomic, so try to avoid local interruptions
 625           that might execute the to be patched code.
 626           Other CPUs are not running. */
 627        stop_nmi();
 628
 629        /*
 630         * Don't stop machine check exceptions while patching.
 631         * MCEs only happen when something got corrupted and in this
 632         * case we must do something about the corruption.
 633         * Ignoring it is worse than a unlikely patching race.
 634         * Also machine checks tend to be broadcast and if one CPU
 635         * goes into machine check the others follow quickly, so we don't
 636         * expect a machine check to cause undue problems during to code
 637         * patching.
 638         */
 639
 640        apply_alternatives(__alt_instructions, __alt_instructions_end);
 641
 642#ifdef CONFIG_SMP
 643        /* Patch to UP if other cpus not imminent. */
 644        if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
 645                uniproc_patched = true;
 646                alternatives_smp_module_add(NULL, "core kernel",
 647                                            __smp_locks, __smp_locks_end,
 648                                            _text, _etext);
 649        }
 650
 651        if (!uniproc_patched || num_possible_cpus() == 1)
 652                free_init_pages("SMP alternatives",
 653                                (unsigned long)__smp_locks,
 654                                (unsigned long)__smp_locks_end);
 655#endif
 656
 657        apply_paravirt(__parainstructions, __parainstructions_end);
 658
 659        restart_nmi();
 660        alternatives_patched = 1;
 661}
 662
 663/**
 664 * text_poke_early - Update instructions on a live kernel at boot time
 665 * @addr: address to modify
 666 * @opcode: source of the copy
 667 * @len: length to copy
 668 *
 669 * When you use this code to patch more than one byte of an instruction
 670 * you need to make sure that other CPUs cannot execute this code in parallel.
 671 * Also no thread must be currently preempted in the middle of these
 672 * instructions. And on the local CPU you need to be protected again NMI or MCE
 673 * handlers seeing an inconsistent instruction while you patch.
 674 */
 675void *__init_or_module text_poke_early(void *addr, const void *opcode,
 676                                              size_t len)
 677{
 678        unsigned long flags;
 679        local_irq_save(flags);
 680        memcpy(addr, opcode, len);
 681        local_irq_restore(flags);
 682        /* Could also do a CLFLUSH here to speed up CPU recovery; but
 683           that causes hangs on some VIA CPUs. */
 684        return addr;
 685}
 686
 687/**
 688 * text_poke - Update instructions on a live kernel
 689 * @addr: address to modify
 690 * @opcode: source of the copy
 691 * @len: length to copy
 692 *
 693 * Only atomic text poke/set should be allowed when not doing early patching.
 694 * It means the size must be writable atomically and the address must be aligned
 695 * in a way that permits an atomic write. It also makes sure we fit on a single
 696 * page.
 697 *
 698 * Note: Must be called under text_mutex.
 699 */
 700void *text_poke(void *addr, const void *opcode, size_t len)
 701{
 702        unsigned long flags;
 703        char *vaddr;
 704        struct page *pages[2];
 705        int i;
 706
 707        if (!core_kernel_text((unsigned long)addr)) {
 708                pages[0] = vmalloc_to_page(addr);
 709                pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
 710        } else {
 711                pages[0] = virt_to_page(addr);
 712                WARN_ON(!PageReserved(pages[0]));
 713                pages[1] = virt_to_page(addr + PAGE_SIZE);
 714        }
 715        BUG_ON(!pages[0]);
 716        local_irq_save(flags);
 717        set_fixmap(FIX_TEXT_POKE0, page_to_phys(pages[0]));
 718        if (pages[1])
 719                set_fixmap(FIX_TEXT_POKE1, page_to_phys(pages[1]));
 720        vaddr = (char *)fix_to_virt(FIX_TEXT_POKE0);
 721        memcpy(&vaddr[(unsigned long)addr & ~PAGE_MASK], opcode, len);
 722        clear_fixmap(FIX_TEXT_POKE0);
 723        if (pages[1])
 724                clear_fixmap(FIX_TEXT_POKE1);
 725        local_flush_tlb();
 726        sync_core();
 727        /* Could also do a CLFLUSH here to speed up CPU recovery; but
 728           that causes hangs on some VIA CPUs. */
 729        for (i = 0; i < len; i++)
 730                BUG_ON(((char *)addr)[i] != ((char *)opcode)[i]);
 731        local_irq_restore(flags);
 732        return addr;
 733}
 734
 735static void do_sync_core(void *info)
 736{
 737        sync_core();
 738}
 739
 740static bool bp_patching_in_progress;
 741static void *bp_int3_handler, *bp_int3_addr;
 742
 743int poke_int3_handler(struct pt_regs *regs)
 744{
 745        /*
 746         * Having observed our INT3 instruction, we now must observe
 747         * bp_patching_in_progress.
 748         *
 749         *      in_progress = TRUE              INT3
 750         *      WMB                             RMB
 751         *      write INT3                      if (in_progress)
 752         *
 753         * Idem for bp_int3_handler.
 754         */
 755        smp_rmb();
 756
 757        if (likely(!bp_patching_in_progress))
 758                return 0;
 759
 760        if (user_mode(regs) || regs->ip != (unsigned long)bp_int3_addr)
 761                return 0;
 762
 763        /* set up the specified breakpoint handler */
 764        regs->ip = (unsigned long) bp_int3_handler;
 765
 766        return 1;
 767
 768}
 769
 770/**
 771 * text_poke_bp() -- update instructions on live kernel on SMP
 772 * @addr:       address to patch
 773 * @opcode:     opcode of new instruction
 774 * @len:        length to copy
 775 * @handler:    address to jump to when the temporary breakpoint is hit
 776 *
 777 * Modify multi-byte instruction by using int3 breakpoint on SMP.
 778 * We completely avoid stop_machine() here, and achieve the
 779 * synchronization using int3 breakpoint.
 780 *
 781 * The way it is done:
 782 *      - add a int3 trap to the address that will be patched
 783 *      - sync cores
 784 *      - update all but the first byte of the patched range
 785 *      - sync cores
 786 *      - replace the first byte (int3) by the first byte of
 787 *        replacing opcode
 788 *      - sync cores
 789 *
 790 * Note: must be called under text_mutex.
 791 */
 792void *text_poke_bp(void *addr, const void *opcode, size_t len, void *handler)
 793{
 794        unsigned char int3 = 0xcc;
 795
 796        bp_int3_handler = handler;
 797        bp_int3_addr = (u8 *)addr + sizeof(int3);
 798        bp_patching_in_progress = true;
 799        /*
 800         * Corresponding read barrier in int3 notifier for making sure the
 801         * in_progress and handler are correctly ordered wrt. patching.
 802         */
 803        smp_wmb();
 804
 805        text_poke(addr, &int3, sizeof(int3));
 806
 807        on_each_cpu(do_sync_core, NULL, 1);
 808
 809        if (len - sizeof(int3) > 0) {
 810                /* patch all but the first byte */
 811                text_poke((char *)addr + sizeof(int3),
 812                          (const char *) opcode + sizeof(int3),
 813                          len - sizeof(int3));
 814                /*
 815                 * According to Intel, this core syncing is very likely
 816                 * not necessary and we'd be safe even without it. But
 817                 * better safe than sorry (plus there's not only Intel).
 818                 */
 819                on_each_cpu(do_sync_core, NULL, 1);
 820        }
 821
 822        /* patch the first byte */
 823        text_poke(addr, opcode, sizeof(int3));
 824
 825        on_each_cpu(do_sync_core, NULL, 1);
 826        /*
 827         * sync_core() implies an smp_mb() and orders this store against
 828         * the writing of the new instruction.
 829         */
 830        bp_patching_in_progress = false;
 831
 832        return addr;
 833}
 834
 835