linux/arch/x86/mm/pat_rbtree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Handle caching attributes in page tables (PAT)
   4 *
   5 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
   6 *          Suresh B Siddha <suresh.b.siddha@intel.com>
   7 *
   8 * Interval tree (augmented rbtree) used to store the PAT memory type
   9 * reservations.
  10 */
  11
  12#include <linux/seq_file.h>
  13#include <linux/debugfs.h>
  14#include <linux/kernel.h>
  15#include <linux/rbtree_augmented.h>
  16#include <linux/sched.h>
  17#include <linux/gfp.h>
  18
  19#include <asm/pgtable.h>
  20#include <asm/pat.h>
  21
  22#include "pat_internal.h"
  23
  24/*
  25 * The memtype tree keeps track of memory type for specific
  26 * physical memory areas. Without proper tracking, conflicting memory
  27 * types in different mappings can cause CPU cache corruption.
  28 *
  29 * The tree is an interval tree (augmented rbtree) with tree ordered
  30 * on starting address. Tree can contain multiple entries for
  31 * different regions which overlap. All the aliases have the same
  32 * cache attributes of course.
  33 *
  34 * memtype_lock protects the rbtree.
  35 */
  36
  37static struct rb_root memtype_rbroot = RB_ROOT;
  38
  39static int is_node_overlap(struct memtype *node, u64 start, u64 end)
  40{
  41        if (node->start >= end || node->end <= start)
  42                return 0;
  43
  44        return 1;
  45}
  46
  47static u64 get_subtree_max_end(struct rb_node *node)
  48{
  49        u64 ret = 0;
  50        if (node) {
  51                struct memtype *data = rb_entry(node, struct memtype, rb);
  52                ret = data->subtree_max_end;
  53        }
  54        return ret;
  55}
  56
  57static u64 compute_subtree_max_end(struct memtype *data)
  58{
  59        u64 max_end = data->end, child_max_end;
  60
  61        child_max_end = get_subtree_max_end(data->rb.rb_right);
  62        if (child_max_end > max_end)
  63                max_end = child_max_end;
  64
  65        child_max_end = get_subtree_max_end(data->rb.rb_left);
  66        if (child_max_end > max_end)
  67                max_end = child_max_end;
  68
  69        return max_end;
  70}
  71
  72RB_DECLARE_CALLBACKS(static, memtype_rb_augment_cb, struct memtype, rb,
  73                     u64, subtree_max_end, compute_subtree_max_end)
  74
  75/* Find the first (lowest start addr) overlapping range from rb tree */
  76static struct memtype *memtype_rb_lowest_match(struct rb_root *root,
  77                                u64 start, u64 end)
  78{
  79        struct rb_node *node = root->rb_node;
  80        struct memtype *last_lower = NULL;
  81
  82        while (node) {
  83                struct memtype *data = rb_entry(node, struct memtype, rb);
  84
  85                if (get_subtree_max_end(node->rb_left) > start) {
  86                        /* Lowest overlap if any must be on left side */
  87                        node = node->rb_left;
  88                } else if (is_node_overlap(data, start, end)) {
  89                        last_lower = data;
  90                        break;
  91                } else if (start >= data->start) {
  92                        /* Lowest overlap if any must be on right side */
  93                        node = node->rb_right;
  94                } else {
  95                        break;
  96                }
  97        }
  98        return last_lower; /* Returns NULL if there is no overlap */
  99}
 100
 101enum {
 102        MEMTYPE_EXACT_MATCH     = 0,
 103        MEMTYPE_END_MATCH       = 1
 104};
 105
 106static struct memtype *memtype_rb_match(struct rb_root *root,
 107                                u64 start, u64 end, int match_type)
 108{
 109        struct memtype *match;
 110
 111        match = memtype_rb_lowest_match(root, start, end);
 112        while (match != NULL && match->start < end) {
 113                struct rb_node *node;
 114
 115                if ((match_type == MEMTYPE_EXACT_MATCH) &&
 116                    (match->start == start) && (match->end == end))
 117                        return match;
 118
 119                if ((match_type == MEMTYPE_END_MATCH) &&
 120                    (match->start < start) && (match->end == end))
 121                        return match;
 122
 123                node = rb_next(&match->rb);
 124                if (node)
 125                        match = rb_entry(node, struct memtype, rb);
 126                else
 127                        match = NULL;
 128        }
 129
 130        return NULL; /* Returns NULL if there is no match */
 131}
 132
 133static int memtype_rb_check_conflict(struct rb_root *root,
 134                                u64 start, u64 end,
 135                                enum page_cache_mode reqtype,
 136                                enum page_cache_mode *newtype)
 137{
 138        struct rb_node *node;
 139        struct memtype *match;
 140        enum page_cache_mode found_type = reqtype;
 141
 142        match = memtype_rb_lowest_match(&memtype_rbroot, start, end);
 143        if (match == NULL)
 144                goto success;
 145
 146        if (match->type != found_type && newtype == NULL)
 147                goto failure;
 148
 149        dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end);
 150        found_type = match->type;
 151
 152        node = rb_next(&match->rb);
 153        while (node) {
 154                match = rb_entry(node, struct memtype, rb);
 155
 156                if (match->start >= end) /* Checked all possible matches */
 157                        goto success;
 158
 159                if (is_node_overlap(match, start, end) &&
 160                    match->type != found_type) {
 161                        goto failure;
 162                }
 163
 164                node = rb_next(&match->rb);
 165        }
 166success:
 167        if (newtype)
 168                *newtype = found_type;
 169
 170        return 0;
 171
 172failure:
 173        pr_info("x86/PAT: %s:%d conflicting memory types %Lx-%Lx %s<->%s\n",
 174                current->comm, current->pid, start, end,
 175                cattr_name(found_type), cattr_name(match->type));
 176        return -EBUSY;
 177}
 178
 179static void memtype_rb_insert(struct rb_root *root, struct memtype *newdata)
 180{
 181        struct rb_node **node = &(root->rb_node);
 182        struct rb_node *parent = NULL;
 183
 184        while (*node) {
 185                struct memtype *data = rb_entry(*node, struct memtype, rb);
 186
 187                parent = *node;
 188                if (data->subtree_max_end < newdata->end)
 189                        data->subtree_max_end = newdata->end;
 190                if (newdata->start <= data->start)
 191                        node = &((*node)->rb_left);
 192                else if (newdata->start > data->start)
 193                        node = &((*node)->rb_right);
 194        }
 195
 196        newdata->subtree_max_end = newdata->end;
 197        rb_link_node(&newdata->rb, parent, node);
 198        rb_insert_augmented(&newdata->rb, root, &memtype_rb_augment_cb);
 199}
 200
 201int rbt_memtype_check_insert(struct memtype *new,
 202                             enum page_cache_mode *ret_type)
 203{
 204        int err = 0;
 205
 206        err = memtype_rb_check_conflict(&memtype_rbroot, new->start, new->end,
 207                                                new->type, ret_type);
 208
 209        if (!err) {
 210                if (ret_type)
 211                        new->type = *ret_type;
 212
 213                new->subtree_max_end = new->end;
 214                memtype_rb_insert(&memtype_rbroot, new);
 215        }
 216        return err;
 217}
 218
 219struct memtype *rbt_memtype_erase(u64 start, u64 end)
 220{
 221        struct memtype *data;
 222
 223        /*
 224         * Since the memtype_rbroot tree allows overlapping ranges,
 225         * rbt_memtype_erase() checks with EXACT_MATCH first, i.e. free
 226         * a whole node for the munmap case.  If no such entry is found,
 227         * it then checks with END_MATCH, i.e. shrink the size of a node
 228         * from the end for the mremap case.
 229         */
 230        data = memtype_rb_match(&memtype_rbroot, start, end,
 231                                MEMTYPE_EXACT_MATCH);
 232        if (!data) {
 233                data = memtype_rb_match(&memtype_rbroot, start, end,
 234                                        MEMTYPE_END_MATCH);
 235                if (!data)
 236                        return ERR_PTR(-EINVAL);
 237        }
 238
 239        if (data->start == start) {
 240                /* munmap: erase this node */
 241                rb_erase_augmented(&data->rb, &memtype_rbroot,
 242                                        &memtype_rb_augment_cb);
 243        } else {
 244                /* mremap: update the end value of this node */
 245                rb_erase_augmented(&data->rb, &memtype_rbroot,
 246                                        &memtype_rb_augment_cb);
 247                data->end = start;
 248                data->subtree_max_end = data->end;
 249                memtype_rb_insert(&memtype_rbroot, data);
 250                return NULL;
 251        }
 252
 253        return data;
 254}
 255
 256struct memtype *rbt_memtype_lookup(u64 addr)
 257{
 258        return memtype_rb_lowest_match(&memtype_rbroot, addr, addr + PAGE_SIZE);
 259}
 260
 261#if defined(CONFIG_DEBUG_FS)
 262int rbt_memtype_copy_nth_element(struct memtype *out, loff_t pos)
 263{
 264        struct rb_node *node;
 265        int i = 1;
 266
 267        node = rb_first(&memtype_rbroot);
 268        while (node && pos != i) {
 269                node = rb_next(node);
 270                i++;
 271        }
 272
 273        if (node) { /* pos == i */
 274                struct memtype *this = rb_entry(node, struct memtype, rb);
 275                *out = *this;
 276                return 0;
 277        } else {
 278                return 1;
 279        }
 280}
 281#endif
 282