linux/block/blk.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef BLK_INTERNAL_H
   3#define BLK_INTERNAL_H
   4
   5#include <linux/idr.h>
   6#include <linux/blk-mq.h>
   7#include "blk-mq.h"
   8
   9/* Amount of time in which a process may batch requests */
  10#define BLK_BATCH_TIME  (HZ/50UL)
  11
  12/* Number of requests a "batching" process may submit */
  13#define BLK_BATCH_REQ   32
  14
  15/* Max future timer expiry for timeouts */
  16#define BLK_MAX_TIMEOUT         (5 * HZ)
  17
  18#ifdef CONFIG_DEBUG_FS
  19extern struct dentry *blk_debugfs_root;
  20#endif
  21
  22struct blk_flush_queue {
  23        unsigned int            flush_queue_delayed:1;
  24        unsigned int            flush_pending_idx:1;
  25        unsigned int            flush_running_idx:1;
  26        unsigned long           flush_pending_since;
  27        struct list_head        flush_queue[2];
  28        struct list_head        flush_data_in_flight;
  29        struct request          *flush_rq;
  30
  31        /*
  32         * flush_rq shares tag with this rq, both can't be active
  33         * at the same time
  34         */
  35        struct request          *orig_rq;
  36        spinlock_t              mq_flush_lock;
  37};
  38
  39extern struct kmem_cache *blk_requestq_cachep;
  40extern struct kmem_cache *request_cachep;
  41extern struct kobj_type blk_queue_ktype;
  42extern struct ida blk_queue_ida;
  43
  44static inline struct blk_flush_queue *blk_get_flush_queue(
  45                struct request_queue *q, struct blk_mq_ctx *ctx)
  46{
  47        if (q->mq_ops)
  48                return blk_mq_map_queue(q, ctx->cpu)->fq;
  49        return q->fq;
  50}
  51
  52static inline void __blk_get_queue(struct request_queue *q)
  53{
  54        kobject_get(&q->kobj);
  55}
  56
  57struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
  58                int node, int cmd_size);
  59void blk_free_flush_queue(struct blk_flush_queue *q);
  60
  61int blk_init_rl(struct request_list *rl, struct request_queue *q,
  62                gfp_t gfp_mask);
  63void blk_exit_rl(struct request_queue *q, struct request_list *rl);
  64void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
  65                        struct bio *bio);
  66void blk_queue_bypass_start(struct request_queue *q);
  67void blk_queue_bypass_end(struct request_queue *q);
  68void __blk_queue_free_tags(struct request_queue *q);
  69void blk_freeze_queue(struct request_queue *q);
  70
  71static inline void blk_queue_enter_live(struct request_queue *q)
  72{
  73        /*
  74         * Given that running in generic_make_request() context
  75         * guarantees that a live reference against q_usage_counter has
  76         * been established, further references under that same context
  77         * need not check that the queue has been frozen (marked dead).
  78         */
  79        percpu_ref_get(&q->q_usage_counter);
  80}
  81
  82#ifdef CONFIG_BLK_DEV_INTEGRITY
  83void blk_flush_integrity(void);
  84bool __bio_integrity_endio(struct bio *);
  85static inline bool bio_integrity_endio(struct bio *bio)
  86{
  87        if (bio_integrity(bio))
  88                return __bio_integrity_endio(bio);
  89        return true;
  90}
  91#else
  92static inline void blk_flush_integrity(void)
  93{
  94}
  95static inline bool bio_integrity_endio(struct bio *bio)
  96{
  97        return true;
  98}
  99#endif
 100
 101void blk_timeout_work(struct work_struct *work);
 102unsigned long blk_rq_timeout(unsigned long timeout);
 103void blk_add_timer(struct request *req);
 104void blk_delete_timer(struct request *);
 105
 106
 107bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
 108                             struct bio *bio);
 109bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
 110                            struct bio *bio);
 111bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
 112                struct bio *bio);
 113bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
 114                            unsigned int *request_count,
 115                            struct request **same_queue_rq);
 116unsigned int blk_plug_queued_count(struct request_queue *q);
 117
 118void blk_account_io_start(struct request *req, bool new_io);
 119void blk_account_io_completion(struct request *req, unsigned int bytes);
 120void blk_account_io_done(struct request *req);
 121
 122/*
 123 * Internal atomic flags for request handling
 124 */
 125enum rq_atomic_flags {
 126        REQ_ATOM_COMPLETE = 0,
 127        REQ_ATOM_STARTED,
 128        REQ_ATOM_POLL_SLEPT,
 129};
 130
 131/*
 132 * EH timer and IO completion will both attempt to 'grab' the request, make
 133 * sure that only one of them succeeds
 134 */
 135static inline int blk_mark_rq_complete(struct request *rq)
 136{
 137        return test_and_set_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
 138}
 139
 140static inline void blk_clear_rq_complete(struct request *rq)
 141{
 142        clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
 143}
 144
 145/*
 146 * Internal elevator interface
 147 */
 148#define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
 149
 150void blk_insert_flush(struct request *rq);
 151
 152static inline struct request *__elv_next_request(struct request_queue *q)
 153{
 154        struct request *rq;
 155        struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
 156
 157        WARN_ON_ONCE(q->mq_ops);
 158
 159        while (1) {
 160                if (!list_empty(&q->queue_head)) {
 161                        rq = list_entry_rq(q->queue_head.next);
 162                        return rq;
 163                }
 164
 165                /*
 166                 * Flush request is running and flush request isn't queueable
 167                 * in the drive, we can hold the queue till flush request is
 168                 * finished. Even we don't do this, driver can't dispatch next
 169                 * requests and will requeue them. And this can improve
 170                 * throughput too. For example, we have request flush1, write1,
 171                 * flush 2. flush1 is dispatched, then queue is hold, write1
 172                 * isn't inserted to queue. After flush1 is finished, flush2
 173                 * will be dispatched. Since disk cache is already clean,
 174                 * flush2 will be finished very soon, so looks like flush2 is
 175                 * folded to flush1.
 176                 * Since the queue is hold, a flag is set to indicate the queue
 177                 * should be restarted later. Please see flush_end_io() for
 178                 * details.
 179                 */
 180                if (fq->flush_pending_idx != fq->flush_running_idx &&
 181                                !queue_flush_queueable(q)) {
 182                        fq->flush_queue_delayed = 1;
 183                        return NULL;
 184                }
 185                if (unlikely(blk_queue_bypass(q)) ||
 186                    !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
 187                        return NULL;
 188        }
 189}
 190
 191static inline void elv_activate_rq(struct request_queue *q, struct request *rq)
 192{
 193        struct elevator_queue *e = q->elevator;
 194
 195        if (e->type->ops.sq.elevator_activate_req_fn)
 196                e->type->ops.sq.elevator_activate_req_fn(q, rq);
 197}
 198
 199static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq)
 200{
 201        struct elevator_queue *e = q->elevator;
 202
 203        if (e->type->ops.sq.elevator_deactivate_req_fn)
 204                e->type->ops.sq.elevator_deactivate_req_fn(q, rq);
 205}
 206
 207struct hd_struct *__disk_get_part(struct gendisk *disk, int partno);
 208
 209#ifdef CONFIG_FAIL_IO_TIMEOUT
 210int blk_should_fake_timeout(struct request_queue *);
 211ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
 212ssize_t part_timeout_store(struct device *, struct device_attribute *,
 213                                const char *, size_t);
 214#else
 215static inline int blk_should_fake_timeout(struct request_queue *q)
 216{
 217        return 0;
 218}
 219#endif
 220
 221int ll_back_merge_fn(struct request_queue *q, struct request *req,
 222                     struct bio *bio);
 223int ll_front_merge_fn(struct request_queue *q, struct request *req, 
 224                      struct bio *bio);
 225struct request *attempt_back_merge(struct request_queue *q, struct request *rq);
 226struct request *attempt_front_merge(struct request_queue *q, struct request *rq);
 227int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
 228                                struct request *next);
 229void blk_recalc_rq_segments(struct request *rq);
 230void blk_rq_set_mixed_merge(struct request *rq);
 231bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
 232enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
 233
 234void blk_queue_congestion_threshold(struct request_queue *q);
 235
 236int blk_dev_init(void);
 237
 238
 239/*
 240 * Return the threshold (number of used requests) at which the queue is
 241 * considered to be congested.  It include a little hysteresis to keep the
 242 * context switch rate down.
 243 */
 244static inline int queue_congestion_on_threshold(struct request_queue *q)
 245{
 246        return q->nr_congestion_on;
 247}
 248
 249/*
 250 * The threshold at which a queue is considered to be uncongested
 251 */
 252static inline int queue_congestion_off_threshold(struct request_queue *q)
 253{
 254        return q->nr_congestion_off;
 255}
 256
 257extern int blk_update_nr_requests(struct request_queue *, unsigned int);
 258
 259/*
 260 * Contribute to IO statistics IFF:
 261 *
 262 *      a) it's attached to a gendisk, and
 263 *      b) the queue had IO stats enabled when this request was started, and
 264 *      c) it's a file system request
 265 */
 266static inline int blk_do_io_stat(struct request *rq)
 267{
 268        return rq->rq_disk &&
 269               (rq->rq_flags & RQF_IO_STAT) &&
 270                !blk_rq_is_passthrough(rq);
 271}
 272
 273static inline void req_set_nomerge(struct request_queue *q, struct request *req)
 274{
 275        req->cmd_flags |= REQ_NOMERGE;
 276        if (req == q->last_merge)
 277                q->last_merge = NULL;
 278}
 279
 280/*
 281 * Internal io_context interface
 282 */
 283void get_io_context(struct io_context *ioc);
 284struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
 285struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
 286                             gfp_t gfp_mask);
 287void ioc_clear_queue(struct request_queue *q);
 288
 289int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
 290
 291/**
 292 * rq_ioc - determine io_context for request allocation
 293 * @bio: request being allocated is for this bio (can be %NULL)
 294 *
 295 * Determine io_context to use for request allocation for @bio.  May return
 296 * %NULL if %current->io_context doesn't exist.
 297 */
 298static inline struct io_context *rq_ioc(struct bio *bio)
 299{
 300#ifdef CONFIG_BLK_CGROUP
 301        if (bio && bio->bi_ioc)
 302                return bio->bi_ioc;
 303#endif
 304        return current->io_context;
 305}
 306
 307/**
 308 * create_io_context - try to create task->io_context
 309 * @gfp_mask: allocation mask
 310 * @node: allocation node
 311 *
 312 * If %current->io_context is %NULL, allocate a new io_context and install
 313 * it.  Returns the current %current->io_context which may be %NULL if
 314 * allocation failed.
 315 *
 316 * Note that this function can't be called with IRQ disabled because
 317 * task_lock which protects %current->io_context is IRQ-unsafe.
 318 */
 319static inline struct io_context *create_io_context(gfp_t gfp_mask, int node)
 320{
 321        WARN_ON_ONCE(irqs_disabled());
 322        if (unlikely(!current->io_context))
 323                create_task_io_context(current, gfp_mask, node);
 324        return current->io_context;
 325}
 326
 327/*
 328 * Internal throttling interface
 329 */
 330#ifdef CONFIG_BLK_DEV_THROTTLING
 331extern void blk_throtl_drain(struct request_queue *q);
 332extern int blk_throtl_init(struct request_queue *q);
 333extern void blk_throtl_exit(struct request_queue *q);
 334extern void blk_throtl_register_queue(struct request_queue *q);
 335#else /* CONFIG_BLK_DEV_THROTTLING */
 336static inline void blk_throtl_drain(struct request_queue *q) { }
 337static inline int blk_throtl_init(struct request_queue *q) { return 0; }
 338static inline void blk_throtl_exit(struct request_queue *q) { }
 339static inline void blk_throtl_register_queue(struct request_queue *q) { }
 340#endif /* CONFIG_BLK_DEV_THROTTLING */
 341#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
 342extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page);
 343extern ssize_t blk_throtl_sample_time_store(struct request_queue *q,
 344        const char *page, size_t count);
 345extern void blk_throtl_bio_endio(struct bio *bio);
 346extern void blk_throtl_stat_add(struct request *rq, u64 time);
 347#else
 348static inline void blk_throtl_bio_endio(struct bio *bio) { }
 349static inline void blk_throtl_stat_add(struct request *rq, u64 time) { }
 350#endif
 351
 352#ifdef CONFIG_BOUNCE
 353extern int init_emergency_isa_pool(void);
 354extern void blk_queue_bounce(struct request_queue *q, struct bio **bio);
 355#else
 356static inline int init_emergency_isa_pool(void)
 357{
 358        return 0;
 359}
 360static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
 361{
 362}
 363#endif /* CONFIG_BOUNCE */
 364
 365#endif /* BLK_INTERNAL_H */
 366