linux/crypto/lrw.c
<<
>>
Prefs
   1/* LRW: as defined by Cyril Guyot in
   2 *      http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
   3 *
   4 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
   5 *
   6 * Based on ecb.c
   7 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
   8 *
   9 * This program is free software; you can redistribute it and/or modify it
  10 * under the terms of the GNU General Public License as published by the Free
  11 * Software Foundation; either version 2 of the License, or (at your option)
  12 * any later version.
  13 */
  14/* This implementation is checked against the test vectors in the above
  15 * document and by a test vector provided by Ken Buchanan at
  16 * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
  17 *
  18 * The test vectors are included in the testing module tcrypt.[ch] */
  19
  20#include <crypto/internal/skcipher.h>
  21#include <crypto/scatterwalk.h>
  22#include <linux/err.h>
  23#include <linux/init.h>
  24#include <linux/kernel.h>
  25#include <linux/module.h>
  26#include <linux/scatterlist.h>
  27#include <linux/slab.h>
  28
  29#include <crypto/b128ops.h>
  30#include <crypto/gf128mul.h>
  31#include <crypto/lrw.h>
  32
  33#define LRW_BUFFER_SIZE 128u
  34
  35struct priv {
  36        struct crypto_skcipher *child;
  37        struct lrw_table_ctx table;
  38};
  39
  40struct rctx {
  41        be128 buf[LRW_BUFFER_SIZE / sizeof(be128)];
  42
  43        be128 t;
  44
  45        be128 *ext;
  46
  47        struct scatterlist srcbuf[2];
  48        struct scatterlist dstbuf[2];
  49        struct scatterlist *src;
  50        struct scatterlist *dst;
  51
  52        unsigned int left;
  53
  54        struct skcipher_request subreq;
  55};
  56
  57static inline void setbit128_bbe(void *b, int bit)
  58{
  59        __set_bit(bit ^ (0x80 -
  60#ifdef __BIG_ENDIAN
  61                         BITS_PER_LONG
  62#else
  63                         BITS_PER_BYTE
  64#endif
  65                        ), b);
  66}
  67
  68int lrw_init_table(struct lrw_table_ctx *ctx, const u8 *tweak)
  69{
  70        be128 tmp = { 0 };
  71        int i;
  72
  73        if (ctx->table)
  74                gf128mul_free_64k(ctx->table);
  75
  76        /* initialize multiplication table for Key2 */
  77        ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
  78        if (!ctx->table)
  79                return -ENOMEM;
  80
  81        /* initialize optimization table */
  82        for (i = 0; i < 128; i++) {
  83                setbit128_bbe(&tmp, i);
  84                ctx->mulinc[i] = tmp;
  85                gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
  86        }
  87
  88        return 0;
  89}
  90EXPORT_SYMBOL_GPL(lrw_init_table);
  91
  92void lrw_free_table(struct lrw_table_ctx *ctx)
  93{
  94        if (ctx->table)
  95                gf128mul_free_64k(ctx->table);
  96}
  97EXPORT_SYMBOL_GPL(lrw_free_table);
  98
  99static int setkey(struct crypto_skcipher *parent, const u8 *key,
 100                  unsigned int keylen)
 101{
 102        struct priv *ctx = crypto_skcipher_ctx(parent);
 103        struct crypto_skcipher *child = ctx->child;
 104        int err, bsize = LRW_BLOCK_SIZE;
 105        const u8 *tweak = key + keylen - bsize;
 106
 107        crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
 108        crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
 109                                         CRYPTO_TFM_REQ_MASK);
 110        err = crypto_skcipher_setkey(child, key, keylen - bsize);
 111        crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
 112                                          CRYPTO_TFM_RES_MASK);
 113        if (err)
 114                return err;
 115
 116        return lrw_init_table(&ctx->table, tweak);
 117}
 118
 119static inline void inc(be128 *iv)
 120{
 121        be64_add_cpu(&iv->b, 1);
 122        if (!iv->b)
 123                be64_add_cpu(&iv->a, 1);
 124}
 125
 126/* this returns the number of consequative 1 bits starting
 127 * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
 128static inline int get_index128(be128 *block)
 129{
 130        int x;
 131        __be32 *p = (__be32 *) block;
 132
 133        for (p += 3, x = 0; x < 128; p--, x += 32) {
 134                u32 val = be32_to_cpup(p);
 135
 136                if (!~val)
 137                        continue;
 138
 139                return x + ffz(val);
 140        }
 141
 142        return x;
 143}
 144
 145static int post_crypt(struct skcipher_request *req)
 146{
 147        struct rctx *rctx = skcipher_request_ctx(req);
 148        be128 *buf = rctx->ext ?: rctx->buf;
 149        struct skcipher_request *subreq;
 150        const int bs = LRW_BLOCK_SIZE;
 151        struct skcipher_walk w;
 152        struct scatterlist *sg;
 153        unsigned offset;
 154        int err;
 155
 156        subreq = &rctx->subreq;
 157        err = skcipher_walk_virt(&w, subreq, false);
 158
 159        while (w.nbytes) {
 160                unsigned int avail = w.nbytes;
 161                be128 *wdst;
 162
 163                wdst = w.dst.virt.addr;
 164
 165                do {
 166                        be128_xor(wdst, buf++, wdst);
 167                        wdst++;
 168                } while ((avail -= bs) >= bs);
 169
 170                err = skcipher_walk_done(&w, avail);
 171        }
 172
 173        rctx->left -= subreq->cryptlen;
 174
 175        if (err || !rctx->left)
 176                goto out;
 177
 178        rctx->dst = rctx->dstbuf;
 179
 180        scatterwalk_done(&w.out, 0, 1);
 181        sg = w.out.sg;
 182        offset = w.out.offset;
 183
 184        if (rctx->dst != sg) {
 185                rctx->dst[0] = *sg;
 186                sg_unmark_end(rctx->dst);
 187                scatterwalk_crypto_chain(rctx->dst, sg_next(sg), 0, 2);
 188        }
 189        rctx->dst[0].length -= offset - sg->offset;
 190        rctx->dst[0].offset = offset;
 191
 192out:
 193        return err;
 194}
 195
 196static int pre_crypt(struct skcipher_request *req)
 197{
 198        struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 199        struct rctx *rctx = skcipher_request_ctx(req);
 200        struct priv *ctx = crypto_skcipher_ctx(tfm);
 201        be128 *buf = rctx->ext ?: rctx->buf;
 202        struct skcipher_request *subreq;
 203        const int bs = LRW_BLOCK_SIZE;
 204        struct skcipher_walk w;
 205        struct scatterlist *sg;
 206        unsigned cryptlen;
 207        unsigned offset;
 208        be128 *iv;
 209        bool more;
 210        int err;
 211
 212        subreq = &rctx->subreq;
 213        skcipher_request_set_tfm(subreq, tfm);
 214
 215        cryptlen = subreq->cryptlen;
 216        more = rctx->left > cryptlen;
 217        if (!more)
 218                cryptlen = rctx->left;
 219
 220        skcipher_request_set_crypt(subreq, rctx->src, rctx->dst,
 221                                   cryptlen, req->iv);
 222
 223        err = skcipher_walk_virt(&w, subreq, false);
 224        iv = w.iv;
 225
 226        while (w.nbytes) {
 227                unsigned int avail = w.nbytes;
 228                be128 *wsrc;
 229                be128 *wdst;
 230
 231                wsrc = w.src.virt.addr;
 232                wdst = w.dst.virt.addr;
 233
 234                do {
 235                        *buf++ = rctx->t;
 236                        be128_xor(wdst++, &rctx->t, wsrc++);
 237
 238                        /* T <- I*Key2, using the optimization
 239                         * discussed in the specification */
 240                        be128_xor(&rctx->t, &rctx->t,
 241                                  &ctx->table.mulinc[get_index128(iv)]);
 242                        inc(iv);
 243                } while ((avail -= bs) >= bs);
 244
 245                err = skcipher_walk_done(&w, avail);
 246        }
 247
 248        skcipher_request_set_tfm(subreq, ctx->child);
 249        skcipher_request_set_crypt(subreq, rctx->dst, rctx->dst,
 250                                   cryptlen, NULL);
 251
 252        if (err || !more)
 253                goto out;
 254
 255        rctx->src = rctx->srcbuf;
 256
 257        scatterwalk_done(&w.in, 0, 1);
 258        sg = w.in.sg;
 259        offset = w.in.offset;
 260
 261        if (rctx->src != sg) {
 262                rctx->src[0] = *sg;
 263                sg_unmark_end(rctx->src);
 264                scatterwalk_crypto_chain(rctx->src, sg_next(sg), 0, 2);
 265        }
 266        rctx->src[0].length -= offset - sg->offset;
 267        rctx->src[0].offset = offset;
 268
 269out:
 270        return err;
 271}
 272
 273static int init_crypt(struct skcipher_request *req, crypto_completion_t done)
 274{
 275        struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
 276        struct rctx *rctx = skcipher_request_ctx(req);
 277        struct skcipher_request *subreq;
 278        gfp_t gfp;
 279
 280        subreq = &rctx->subreq;
 281        skcipher_request_set_callback(subreq, req->base.flags, done, req);
 282
 283        gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
 284                                                           GFP_ATOMIC;
 285        rctx->ext = NULL;
 286
 287        subreq->cryptlen = LRW_BUFFER_SIZE;
 288        if (req->cryptlen > LRW_BUFFER_SIZE) {
 289                unsigned int n = min(req->cryptlen, (unsigned int)PAGE_SIZE);
 290
 291                rctx->ext = kmalloc(n, gfp);
 292                if (rctx->ext)
 293                        subreq->cryptlen = n;
 294        }
 295
 296        rctx->src = req->src;
 297        rctx->dst = req->dst;
 298        rctx->left = req->cryptlen;
 299
 300        /* calculate first value of T */
 301        memcpy(&rctx->t, req->iv, sizeof(rctx->t));
 302
 303        /* T <- I*Key2 */
 304        gf128mul_64k_bbe(&rctx->t, ctx->table.table);
 305
 306        return 0;
 307}
 308
 309static void exit_crypt(struct skcipher_request *req)
 310{
 311        struct rctx *rctx = skcipher_request_ctx(req);
 312
 313        rctx->left = 0;
 314
 315        if (rctx->ext)
 316                kfree(rctx->ext);
 317}
 318
 319static int do_encrypt(struct skcipher_request *req, int err)
 320{
 321        struct rctx *rctx = skcipher_request_ctx(req);
 322        struct skcipher_request *subreq;
 323
 324        subreq = &rctx->subreq;
 325
 326        while (!err && rctx->left) {
 327                err = pre_crypt(req) ?:
 328                      crypto_skcipher_encrypt(subreq) ?:
 329                      post_crypt(req);
 330
 331                if (err == -EINPROGRESS ||
 332                    (err == -EBUSY &&
 333                     req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
 334                        return err;
 335        }
 336
 337        exit_crypt(req);
 338        return err;
 339}
 340
 341static void encrypt_done(struct crypto_async_request *areq, int err)
 342{
 343        struct skcipher_request *req = areq->data;
 344        struct skcipher_request *subreq;
 345        struct rctx *rctx;
 346
 347        rctx = skcipher_request_ctx(req);
 348
 349        if (err == -EINPROGRESS) {
 350                if (rctx->left != req->cryptlen)
 351                        return;
 352                goto out;
 353        }
 354
 355        subreq = &rctx->subreq;
 356        subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
 357
 358        err = do_encrypt(req, err ?: post_crypt(req));
 359        if (rctx->left)
 360                return;
 361
 362out:
 363        skcipher_request_complete(req, err);
 364}
 365
 366static int encrypt(struct skcipher_request *req)
 367{
 368        return do_encrypt(req, init_crypt(req, encrypt_done));
 369}
 370
 371static int do_decrypt(struct skcipher_request *req, int err)
 372{
 373        struct rctx *rctx = skcipher_request_ctx(req);
 374        struct skcipher_request *subreq;
 375
 376        subreq = &rctx->subreq;
 377
 378        while (!err && rctx->left) {
 379                err = pre_crypt(req) ?:
 380                      crypto_skcipher_decrypt(subreq) ?:
 381                      post_crypt(req);
 382
 383                if (err == -EINPROGRESS ||
 384                    (err == -EBUSY &&
 385                     req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
 386                        return err;
 387        }
 388
 389        exit_crypt(req);
 390        return err;
 391}
 392
 393static void decrypt_done(struct crypto_async_request *areq, int err)
 394{
 395        struct skcipher_request *req = areq->data;
 396        struct skcipher_request *subreq;
 397        struct rctx *rctx;
 398
 399        rctx = skcipher_request_ctx(req);
 400
 401        if (err == -EINPROGRESS) {
 402                if (rctx->left != req->cryptlen)
 403                        return;
 404                goto out;
 405        }
 406
 407        subreq = &rctx->subreq;
 408        subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
 409
 410        err = do_decrypt(req, err ?: post_crypt(req));
 411        if (rctx->left)
 412                return;
 413
 414out:
 415        skcipher_request_complete(req, err);
 416}
 417
 418static int decrypt(struct skcipher_request *req)
 419{
 420        return do_decrypt(req, init_crypt(req, decrypt_done));
 421}
 422
 423int lrw_crypt(struct blkcipher_desc *desc, struct scatterlist *sdst,
 424              struct scatterlist *ssrc, unsigned int nbytes,
 425              struct lrw_crypt_req *req)
 426{
 427        const unsigned int bsize = LRW_BLOCK_SIZE;
 428        const unsigned int max_blks = req->tbuflen / bsize;
 429        struct lrw_table_ctx *ctx = req->table_ctx;
 430        struct blkcipher_walk walk;
 431        unsigned int nblocks;
 432        be128 *iv, *src, *dst, *t;
 433        be128 *t_buf = req->tbuf;
 434        int err, i;
 435
 436        BUG_ON(max_blks < 1);
 437
 438        blkcipher_walk_init(&walk, sdst, ssrc, nbytes);
 439
 440        err = blkcipher_walk_virt(desc, &walk);
 441        nbytes = walk.nbytes;
 442        if (!nbytes)
 443                return err;
 444
 445        nblocks = min(walk.nbytes / bsize, max_blks);
 446        src = (be128 *)walk.src.virt.addr;
 447        dst = (be128 *)walk.dst.virt.addr;
 448
 449        /* calculate first value of T */
 450        iv = (be128 *)walk.iv;
 451        t_buf[0] = *iv;
 452
 453        /* T <- I*Key2 */
 454        gf128mul_64k_bbe(&t_buf[0], ctx->table);
 455
 456        i = 0;
 457        goto first;
 458
 459        for (;;) {
 460                do {
 461                        for (i = 0; i < nblocks; i++) {
 462                                /* T <- I*Key2, using the optimization
 463                                 * discussed in the specification */
 464                                be128_xor(&t_buf[i], t,
 465                                                &ctx->mulinc[get_index128(iv)]);
 466                                inc(iv);
 467first:
 468                                t = &t_buf[i];
 469
 470                                /* PP <- T xor P */
 471                                be128_xor(dst + i, t, src + i);
 472                        }
 473
 474                        /* CC <- E(Key2,PP) */
 475                        req->crypt_fn(req->crypt_ctx, (u8 *)dst,
 476                                      nblocks * bsize);
 477
 478                        /* C <- T xor CC */
 479                        for (i = 0; i < nblocks; i++)
 480                                be128_xor(dst + i, dst + i, &t_buf[i]);
 481
 482                        src += nblocks;
 483                        dst += nblocks;
 484                        nbytes -= nblocks * bsize;
 485                        nblocks = min(nbytes / bsize, max_blks);
 486                } while (nblocks > 0);
 487
 488                err = blkcipher_walk_done(desc, &walk, nbytes);
 489                nbytes = walk.nbytes;
 490                if (!nbytes)
 491                        break;
 492
 493                nblocks = min(nbytes / bsize, max_blks);
 494                src = (be128 *)walk.src.virt.addr;
 495                dst = (be128 *)walk.dst.virt.addr;
 496        }
 497
 498        return err;
 499}
 500EXPORT_SYMBOL_GPL(lrw_crypt);
 501
 502static int init_tfm(struct crypto_skcipher *tfm)
 503{
 504        struct skcipher_instance *inst = skcipher_alg_instance(tfm);
 505        struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
 506        struct priv *ctx = crypto_skcipher_ctx(tfm);
 507        struct crypto_skcipher *cipher;
 508
 509        cipher = crypto_spawn_skcipher(spawn);
 510        if (IS_ERR(cipher))
 511                return PTR_ERR(cipher);
 512
 513        ctx->child = cipher;
 514
 515        crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
 516                                         sizeof(struct rctx));
 517
 518        return 0;
 519}
 520
 521static void exit_tfm(struct crypto_skcipher *tfm)
 522{
 523        struct priv *ctx = crypto_skcipher_ctx(tfm);
 524
 525        lrw_free_table(&ctx->table);
 526        crypto_free_skcipher(ctx->child);
 527}
 528
 529static void free(struct skcipher_instance *inst)
 530{
 531        crypto_drop_skcipher(skcipher_instance_ctx(inst));
 532        kfree(inst);
 533}
 534
 535static int create(struct crypto_template *tmpl, struct rtattr **tb)
 536{
 537        struct crypto_skcipher_spawn *spawn;
 538        struct skcipher_instance *inst;
 539        struct crypto_attr_type *algt;
 540        struct skcipher_alg *alg;
 541        const char *cipher_name;
 542        char ecb_name[CRYPTO_MAX_ALG_NAME];
 543        int err;
 544
 545        algt = crypto_get_attr_type(tb);
 546        if (IS_ERR(algt))
 547                return PTR_ERR(algt);
 548
 549        if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
 550                return -EINVAL;
 551
 552        cipher_name = crypto_attr_alg_name(tb[1]);
 553        if (IS_ERR(cipher_name))
 554                return PTR_ERR(cipher_name);
 555
 556        inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
 557        if (!inst)
 558                return -ENOMEM;
 559
 560        spawn = skcipher_instance_ctx(inst);
 561
 562        crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
 563        err = crypto_grab_skcipher(spawn, cipher_name, 0,
 564                                   crypto_requires_sync(algt->type,
 565                                                        algt->mask));
 566        if (err == -ENOENT) {
 567                err = -ENAMETOOLONG;
 568                if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
 569                             cipher_name) >= CRYPTO_MAX_ALG_NAME)
 570                        goto err_free_inst;
 571
 572                err = crypto_grab_skcipher(spawn, ecb_name, 0,
 573                                           crypto_requires_sync(algt->type,
 574                                                                algt->mask));
 575        }
 576
 577        if (err)
 578                goto err_free_inst;
 579
 580        alg = crypto_skcipher_spawn_alg(spawn);
 581
 582        err = -EINVAL;
 583        if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
 584                goto err_drop_spawn;
 585
 586        if (crypto_skcipher_alg_ivsize(alg))
 587                goto err_drop_spawn;
 588
 589        err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
 590                                  &alg->base);
 591        if (err)
 592                goto err_drop_spawn;
 593
 594        err = -EINVAL;
 595        cipher_name = alg->base.cra_name;
 596
 597        /* Alas we screwed up the naming so we have to mangle the
 598         * cipher name.
 599         */
 600        if (!strncmp(cipher_name, "ecb(", 4)) {
 601                unsigned len;
 602
 603                len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
 604                if (len < 2 || len >= sizeof(ecb_name))
 605                        goto err_drop_spawn;
 606
 607                if (ecb_name[len - 1] != ')')
 608                        goto err_drop_spawn;
 609
 610                ecb_name[len - 1] = 0;
 611
 612                if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
 613                             "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME)
 614                        return -ENAMETOOLONG;
 615        }
 616
 617        inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
 618        inst->alg.base.cra_priority = alg->base.cra_priority;
 619        inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
 620        inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
 621                                       (__alignof__(u64) - 1);
 622
 623        inst->alg.ivsize = LRW_BLOCK_SIZE;
 624        inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
 625                                LRW_BLOCK_SIZE;
 626        inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
 627                                LRW_BLOCK_SIZE;
 628
 629        inst->alg.base.cra_ctxsize = sizeof(struct priv);
 630
 631        inst->alg.init = init_tfm;
 632        inst->alg.exit = exit_tfm;
 633
 634        inst->alg.setkey = setkey;
 635        inst->alg.encrypt = encrypt;
 636        inst->alg.decrypt = decrypt;
 637
 638        inst->free = free;
 639
 640        err = skcipher_register_instance(tmpl, inst);
 641        if (err)
 642                goto err_drop_spawn;
 643
 644out:
 645        return err;
 646
 647err_drop_spawn:
 648        crypto_drop_skcipher(spawn);
 649err_free_inst:
 650        kfree(inst);
 651        goto out;
 652}
 653
 654static struct crypto_template crypto_tmpl = {
 655        .name = "lrw",
 656        .create = create,
 657        .module = THIS_MODULE,
 658};
 659
 660static int __init crypto_module_init(void)
 661{
 662        return crypto_register_template(&crypto_tmpl);
 663}
 664
 665static void __exit crypto_module_exit(void)
 666{
 667        crypto_unregister_template(&crypto_tmpl);
 668}
 669
 670module_init(crypto_module_init);
 671module_exit(crypto_module_exit);
 672
 673MODULE_LICENSE("GPL");
 674MODULE_DESCRIPTION("LRW block cipher mode");
 675MODULE_ALIAS_CRYPTO("lrw");
 676