linux/drivers/acpi/osl.c
<<
>>
Prefs
   1/*
   2 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   3 *
   4 *  Copyright (C) 2000       Andrew Henroid
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (c) 2008 Intel Corporation
   8 *   Author: Matthew Wilcox <willy@linux.intel.com>
   9 *
  10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2 of the License, or
  15 *  (at your option) any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  23 *
  24 */
  25
  26#include <linux/module.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/mm.h>
  30#include <linux/highmem.h>
  31#include <linux/pci.h>
  32#include <linux/interrupt.h>
  33#include <linux/kmod.h>
  34#include <linux/delay.h>
  35#include <linux/workqueue.h>
  36#include <linux/nmi.h>
  37#include <linux/acpi.h>
  38#include <linux/efi.h>
  39#include <linux/ioport.h>
  40#include <linux/list.h>
  41#include <linux/jiffies.h>
  42#include <linux/semaphore.h>
  43
  44#include <asm/io.h>
  45#include <linux/uaccess.h>
  46#include <linux/io-64-nonatomic-lo-hi.h>
  47
  48#include "internal.h"
  49
  50#define _COMPONENT              ACPI_OS_SERVICES
  51ACPI_MODULE_NAME("osl");
  52
  53struct acpi_os_dpc {
  54        acpi_osd_exec_callback function;
  55        void *context;
  56        struct work_struct work;
  57};
  58
  59#ifdef ENABLE_DEBUGGER
  60#include <linux/kdb.h>
  61
  62/* stuff for debugger support */
  63int acpi_in_debugger;
  64EXPORT_SYMBOL(acpi_in_debugger);
  65#endif                          /*ENABLE_DEBUGGER */
  66
  67static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  68                                      u32 pm1b_ctrl);
  69static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
  70                                      u32 val_b);
  71
  72static acpi_osd_handler acpi_irq_handler;
  73static void *acpi_irq_context;
  74static struct workqueue_struct *kacpid_wq;
  75static struct workqueue_struct *kacpi_notify_wq;
  76static struct workqueue_struct *kacpi_hotplug_wq;
  77static bool acpi_os_initialized;
  78unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
  79bool acpi_permanent_mmap = false;
  80
  81/*
  82 * This list of permanent mappings is for memory that may be accessed from
  83 * interrupt context, where we can't do the ioremap().
  84 */
  85struct acpi_ioremap {
  86        struct list_head list;
  87        void __iomem *virt;
  88        acpi_physical_address phys;
  89        acpi_size size;
  90        unsigned long refcount;
  91};
  92
  93static LIST_HEAD(acpi_ioremaps);
  94static DEFINE_MUTEX(acpi_ioremap_lock);
  95
  96static void __init acpi_request_region (struct acpi_generic_address *gas,
  97        unsigned int length, char *desc)
  98{
  99        u64 addr;
 100
 101        /* Handle possible alignment issues */
 102        memcpy(&addr, &gas->address, sizeof(addr));
 103        if (!addr || !length)
 104                return;
 105
 106        /* Resources are never freed */
 107        if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
 108                request_region(addr, length, desc);
 109        else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 110                request_mem_region(addr, length, desc);
 111}
 112
 113static int __init acpi_reserve_resources(void)
 114{
 115        acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 116                "ACPI PM1a_EVT_BLK");
 117
 118        acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 119                "ACPI PM1b_EVT_BLK");
 120
 121        acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 122                "ACPI PM1a_CNT_BLK");
 123
 124        acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 125                "ACPI PM1b_CNT_BLK");
 126
 127        if (acpi_gbl_FADT.pm_timer_length == 4)
 128                acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 129
 130        acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 131                "ACPI PM2_CNT_BLK");
 132
 133        /* Length of GPE blocks must be a non-negative multiple of 2 */
 134
 135        if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 136                acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 137                               acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 138
 139        if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 140                acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 141                               acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 142
 143        return 0;
 144}
 145fs_initcall_sync(acpi_reserve_resources);
 146
 147void acpi_os_printf(const char *fmt, ...)
 148{
 149        va_list args;
 150        va_start(args, fmt);
 151        acpi_os_vprintf(fmt, args);
 152        va_end(args);
 153}
 154EXPORT_SYMBOL(acpi_os_printf);
 155
 156void acpi_os_vprintf(const char *fmt, va_list args)
 157{
 158        static char buffer[512];
 159
 160        vsprintf(buffer, fmt, args);
 161
 162#ifdef ENABLE_DEBUGGER
 163        if (acpi_in_debugger) {
 164                kdb_printf("%s", buffer);
 165        } else {
 166                if (printk_get_level(buffer))
 167                        printk("%s", buffer);
 168                else
 169                        printk(KERN_CONT "%s", buffer);
 170        }
 171#else
 172        if (acpi_debugger_write_log(buffer) < 0) {
 173                if (printk_get_level(buffer))
 174                        printk("%s", buffer);
 175                else
 176                        printk(KERN_CONT "%s", buffer);
 177        }
 178#endif
 179}
 180
 181#ifdef CONFIG_KEXEC
 182static unsigned long acpi_rsdp;
 183static int __init setup_acpi_rsdp(char *arg)
 184{
 185        return kstrtoul(arg, 16, &acpi_rsdp);
 186}
 187early_param("acpi_rsdp", setup_acpi_rsdp);
 188#endif
 189
 190acpi_physical_address __init acpi_os_get_root_pointer(void)
 191{
 192        acpi_physical_address pa = 0;
 193
 194#ifdef CONFIG_KEXEC
 195        if (acpi_rsdp)
 196                return acpi_rsdp;
 197#endif
 198
 199        if (efi_enabled(EFI_CONFIG_TABLES)) {
 200                if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 201                        return efi.acpi20;
 202                if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 203                        return efi.acpi;
 204                pr_err(PREFIX "System description tables not found\n");
 205        } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
 206                acpi_find_root_pointer(&pa);
 207        }
 208
 209        return pa;
 210}
 211
 212/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 213static struct acpi_ioremap *
 214acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 215{
 216        struct acpi_ioremap *map;
 217
 218        list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 219                if (map->phys <= phys &&
 220                    phys + size <= map->phys + map->size)
 221                        return map;
 222
 223        return NULL;
 224}
 225
 226/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 227static void __iomem *
 228acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 229{
 230        struct acpi_ioremap *map;
 231
 232        map = acpi_map_lookup(phys, size);
 233        if (map)
 234                return map->virt + (phys - map->phys);
 235
 236        return NULL;
 237}
 238
 239void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 240{
 241        struct acpi_ioremap *map;
 242        void __iomem *virt = NULL;
 243
 244        mutex_lock(&acpi_ioremap_lock);
 245        map = acpi_map_lookup(phys, size);
 246        if (map) {
 247                virt = map->virt + (phys - map->phys);
 248                map->refcount++;
 249        }
 250        mutex_unlock(&acpi_ioremap_lock);
 251        return virt;
 252}
 253EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 254
 255/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 256static struct acpi_ioremap *
 257acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 258{
 259        struct acpi_ioremap *map;
 260
 261        list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 262                if (map->virt <= virt &&
 263                    virt + size <= map->virt + map->size)
 264                        return map;
 265
 266        return NULL;
 267}
 268
 269#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
 270/* ioremap will take care of cache attributes */
 271#define should_use_kmap(pfn)   0
 272#else
 273#define should_use_kmap(pfn)   page_is_ram(pfn)
 274#endif
 275
 276static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 277{
 278        unsigned long pfn;
 279
 280        pfn = pg_off >> PAGE_SHIFT;
 281        if (should_use_kmap(pfn)) {
 282                if (pg_sz > PAGE_SIZE)
 283                        return NULL;
 284                return (void __iomem __force *)kmap(pfn_to_page(pfn));
 285        } else
 286                return acpi_os_ioremap(pg_off, pg_sz);
 287}
 288
 289static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 290{
 291        unsigned long pfn;
 292
 293        pfn = pg_off >> PAGE_SHIFT;
 294        if (should_use_kmap(pfn))
 295                kunmap(pfn_to_page(pfn));
 296        else
 297                iounmap(vaddr);
 298}
 299
 300/**
 301 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
 302 * @phys: Start of the physical address range to map.
 303 * @size: Size of the physical address range to map.
 304 *
 305 * Look up the given physical address range in the list of existing ACPI memory
 306 * mappings.  If found, get a reference to it and return a pointer to it (its
 307 * virtual address).  If not found, map it, add it to that list and return a
 308 * pointer to it.
 309 *
 310 * During early init (when acpi_permanent_mmap has not been set yet) this
 311 * routine simply calls __acpi_map_table() to get the job done.
 312 */
 313void __iomem *__ref
 314acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
 315{
 316        struct acpi_ioremap *map;
 317        void __iomem *virt;
 318        acpi_physical_address pg_off;
 319        acpi_size pg_sz;
 320
 321        if (phys > ULONG_MAX) {
 322                printk(KERN_ERR PREFIX "Cannot map memory that high\n");
 323                return NULL;
 324        }
 325
 326        if (!acpi_permanent_mmap)
 327                return __acpi_map_table((unsigned long)phys, size);
 328
 329        mutex_lock(&acpi_ioremap_lock);
 330        /* Check if there's a suitable mapping already. */
 331        map = acpi_map_lookup(phys, size);
 332        if (map) {
 333                map->refcount++;
 334                goto out;
 335        }
 336
 337        map = kzalloc(sizeof(*map), GFP_KERNEL);
 338        if (!map) {
 339                mutex_unlock(&acpi_ioremap_lock);
 340                return NULL;
 341        }
 342
 343        pg_off = round_down(phys, PAGE_SIZE);
 344        pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 345        virt = acpi_map(pg_off, pg_sz);
 346        if (!virt) {
 347                mutex_unlock(&acpi_ioremap_lock);
 348                kfree(map);
 349                return NULL;
 350        }
 351
 352        INIT_LIST_HEAD(&map->list);
 353        map->virt = virt;
 354        map->phys = pg_off;
 355        map->size = pg_sz;
 356        map->refcount = 1;
 357
 358        list_add_tail_rcu(&map->list, &acpi_ioremaps);
 359
 360out:
 361        mutex_unlock(&acpi_ioremap_lock);
 362        return map->virt + (phys - map->phys);
 363}
 364EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
 365
 366void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 367{
 368        return (void *)acpi_os_map_iomem(phys, size);
 369}
 370EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 371
 372static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 373{
 374        if (!--map->refcount)
 375                list_del_rcu(&map->list);
 376}
 377
 378static void acpi_os_map_cleanup(struct acpi_ioremap *map)
 379{
 380        if (!map->refcount) {
 381                synchronize_rcu_expedited();
 382                acpi_unmap(map->phys, map->virt);
 383                kfree(map);
 384        }
 385}
 386
 387/**
 388 * acpi_os_unmap_iomem - Drop a memory mapping reference.
 389 * @virt: Start of the address range to drop a reference to.
 390 * @size: Size of the address range to drop a reference to.
 391 *
 392 * Look up the given virtual address range in the list of existing ACPI memory
 393 * mappings, drop a reference to it and unmap it if there are no more active
 394 * references to it.
 395 *
 396 * During early init (when acpi_permanent_mmap has not been set yet) this
 397 * routine simply calls __acpi_unmap_table() to get the job done.  Since
 398 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
 399 * here.
 400 */
 401void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
 402{
 403        struct acpi_ioremap *map;
 404
 405        if (!acpi_permanent_mmap) {
 406                __acpi_unmap_table(virt, size);
 407                return;
 408        }
 409
 410        mutex_lock(&acpi_ioremap_lock);
 411        map = acpi_map_lookup_virt(virt, size);
 412        if (!map) {
 413                mutex_unlock(&acpi_ioremap_lock);
 414                WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
 415                return;
 416        }
 417        acpi_os_drop_map_ref(map);
 418        mutex_unlock(&acpi_ioremap_lock);
 419
 420        acpi_os_map_cleanup(map);
 421}
 422EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
 423
 424void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
 425{
 426        return acpi_os_unmap_iomem((void __iomem *)virt, size);
 427}
 428EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 429
 430int acpi_os_map_generic_address(struct acpi_generic_address *gas)
 431{
 432        u64 addr;
 433        void __iomem *virt;
 434
 435        if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 436                return 0;
 437
 438        /* Handle possible alignment issues */
 439        memcpy(&addr, &gas->address, sizeof(addr));
 440        if (!addr || !gas->bit_width)
 441                return -EINVAL;
 442
 443        virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
 444        if (!virt)
 445                return -EIO;
 446
 447        return 0;
 448}
 449EXPORT_SYMBOL(acpi_os_map_generic_address);
 450
 451void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 452{
 453        u64 addr;
 454        struct acpi_ioremap *map;
 455
 456        if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 457                return;
 458
 459        /* Handle possible alignment issues */
 460        memcpy(&addr, &gas->address, sizeof(addr));
 461        if (!addr || !gas->bit_width)
 462                return;
 463
 464        mutex_lock(&acpi_ioremap_lock);
 465        map = acpi_map_lookup(addr, gas->bit_width / 8);
 466        if (!map) {
 467                mutex_unlock(&acpi_ioremap_lock);
 468                return;
 469        }
 470        acpi_os_drop_map_ref(map);
 471        mutex_unlock(&acpi_ioremap_lock);
 472
 473        acpi_os_map_cleanup(map);
 474}
 475EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 476
 477#ifdef ACPI_FUTURE_USAGE
 478acpi_status
 479acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
 480{
 481        if (!phys || !virt)
 482                return AE_BAD_PARAMETER;
 483
 484        *phys = virt_to_phys(virt);
 485
 486        return AE_OK;
 487}
 488#endif
 489
 490#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
 491static bool acpi_rev_override;
 492
 493int __init acpi_rev_override_setup(char *str)
 494{
 495        acpi_rev_override = true;
 496        return 1;
 497}
 498__setup("acpi_rev_override", acpi_rev_override_setup);
 499#else
 500#define acpi_rev_override       false
 501#endif
 502
 503#define ACPI_MAX_OVERRIDE_LEN 100
 504
 505static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 506
 507acpi_status
 508acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 509                            acpi_string *new_val)
 510{
 511        if (!init_val || !new_val)
 512                return AE_BAD_PARAMETER;
 513
 514        *new_val = NULL;
 515        if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 516                printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
 517                       acpi_os_name);
 518                *new_val = acpi_os_name;
 519        }
 520
 521        if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
 522                printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
 523                *new_val = (char *)5;
 524        }
 525
 526        return AE_OK;
 527}
 528
 529static irqreturn_t acpi_irq(int irq, void *dev_id)
 530{
 531        u32 handled;
 532
 533        handled = (*acpi_irq_handler) (acpi_irq_context);
 534
 535        if (handled) {
 536                acpi_irq_handled++;
 537                return IRQ_HANDLED;
 538        } else {
 539                acpi_irq_not_handled++;
 540                return IRQ_NONE;
 541        }
 542}
 543
 544acpi_status
 545acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 546                                  void *context)
 547{
 548        unsigned int irq;
 549
 550        acpi_irq_stats_init();
 551
 552        /*
 553         * ACPI interrupts different from the SCI in our copy of the FADT are
 554         * not supported.
 555         */
 556        if (gsi != acpi_gbl_FADT.sci_interrupt)
 557                return AE_BAD_PARAMETER;
 558
 559        if (acpi_irq_handler)
 560                return AE_ALREADY_ACQUIRED;
 561
 562        if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 563                printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
 564                       gsi);
 565                return AE_OK;
 566        }
 567
 568        acpi_irq_handler = handler;
 569        acpi_irq_context = context;
 570        if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
 571                printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
 572                acpi_irq_handler = NULL;
 573                return AE_NOT_ACQUIRED;
 574        }
 575        acpi_sci_irq = irq;
 576
 577        return AE_OK;
 578}
 579
 580acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
 581{
 582        if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
 583                return AE_BAD_PARAMETER;
 584
 585        free_irq(acpi_sci_irq, acpi_irq);
 586        acpi_irq_handler = NULL;
 587        acpi_sci_irq = INVALID_ACPI_IRQ;
 588
 589        return AE_OK;
 590}
 591
 592/*
 593 * Running in interpreter thread context, safe to sleep
 594 */
 595
 596void acpi_os_sleep(u64 ms)
 597{
 598        msleep(ms);
 599}
 600
 601void acpi_os_stall(u32 us)
 602{
 603        while (us) {
 604                u32 delay = 1000;
 605
 606                if (delay > us)
 607                        delay = us;
 608                udelay(delay);
 609                touch_nmi_watchdog();
 610                us -= delay;
 611        }
 612}
 613
 614/*
 615 * Support ACPI 3.0 AML Timer operand
 616 * Returns 64-bit free-running, monotonically increasing timer
 617 * with 100ns granularity
 618 */
 619u64 acpi_os_get_timer(void)
 620{
 621        u64 time_ns = ktime_to_ns(ktime_get());
 622        do_div(time_ns, 100);
 623        return time_ns;
 624}
 625
 626acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
 627{
 628        u32 dummy;
 629
 630        if (!value)
 631                value = &dummy;
 632
 633        *value = 0;
 634        if (width <= 8) {
 635                *(u8 *) value = inb(port);
 636        } else if (width <= 16) {
 637                *(u16 *) value = inw(port);
 638        } else if (width <= 32) {
 639                *(u32 *) value = inl(port);
 640        } else {
 641                BUG();
 642        }
 643
 644        return AE_OK;
 645}
 646
 647EXPORT_SYMBOL(acpi_os_read_port);
 648
 649acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 650{
 651        if (width <= 8) {
 652                outb(value, port);
 653        } else if (width <= 16) {
 654                outw(value, port);
 655        } else if (width <= 32) {
 656                outl(value, port);
 657        } else {
 658                BUG();
 659        }
 660
 661        return AE_OK;
 662}
 663
 664EXPORT_SYMBOL(acpi_os_write_port);
 665
 666acpi_status
 667acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
 668{
 669        void __iomem *virt_addr;
 670        unsigned int size = width / 8;
 671        bool unmap = false;
 672        u64 dummy;
 673
 674        rcu_read_lock();
 675        virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 676        if (!virt_addr) {
 677                rcu_read_unlock();
 678                virt_addr = acpi_os_ioremap(phys_addr, size);
 679                if (!virt_addr)
 680                        return AE_BAD_ADDRESS;
 681                unmap = true;
 682        }
 683
 684        if (!value)
 685                value = &dummy;
 686
 687        switch (width) {
 688        case 8:
 689                *(u8 *) value = readb(virt_addr);
 690                break;
 691        case 16:
 692                *(u16 *) value = readw(virt_addr);
 693                break;
 694        case 32:
 695                *(u32 *) value = readl(virt_addr);
 696                break;
 697        case 64:
 698                *(u64 *) value = readq(virt_addr);
 699                break;
 700        default:
 701                BUG();
 702        }
 703
 704        if (unmap)
 705                iounmap(virt_addr);
 706        else
 707                rcu_read_unlock();
 708
 709        return AE_OK;
 710}
 711
 712acpi_status
 713acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
 714{
 715        void __iomem *virt_addr;
 716        unsigned int size = width / 8;
 717        bool unmap = false;
 718
 719        rcu_read_lock();
 720        virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 721        if (!virt_addr) {
 722                rcu_read_unlock();
 723                virt_addr = acpi_os_ioremap(phys_addr, size);
 724                if (!virt_addr)
 725                        return AE_BAD_ADDRESS;
 726                unmap = true;
 727        }
 728
 729        switch (width) {
 730        case 8:
 731                writeb(value, virt_addr);
 732                break;
 733        case 16:
 734                writew(value, virt_addr);
 735                break;
 736        case 32:
 737                writel(value, virt_addr);
 738                break;
 739        case 64:
 740                writeq(value, virt_addr);
 741                break;
 742        default:
 743                BUG();
 744        }
 745
 746        if (unmap)
 747                iounmap(virt_addr);
 748        else
 749                rcu_read_unlock();
 750
 751        return AE_OK;
 752}
 753
 754acpi_status
 755acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 756                               u64 *value, u32 width)
 757{
 758        int result, size;
 759        u32 value32;
 760
 761        if (!value)
 762                return AE_BAD_PARAMETER;
 763
 764        switch (width) {
 765        case 8:
 766                size = 1;
 767                break;
 768        case 16:
 769                size = 2;
 770                break;
 771        case 32:
 772                size = 4;
 773                break;
 774        default:
 775                return AE_ERROR;
 776        }
 777
 778        result = raw_pci_read(pci_id->segment, pci_id->bus,
 779                                PCI_DEVFN(pci_id->device, pci_id->function),
 780                                reg, size, &value32);
 781        *value = value32;
 782
 783        return (result ? AE_ERROR : AE_OK);
 784}
 785
 786acpi_status
 787acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 788                                u64 value, u32 width)
 789{
 790        int result, size;
 791
 792        switch (width) {
 793        case 8:
 794                size = 1;
 795                break;
 796        case 16:
 797                size = 2;
 798                break;
 799        case 32:
 800                size = 4;
 801                break;
 802        default:
 803                return AE_ERROR;
 804        }
 805
 806        result = raw_pci_write(pci_id->segment, pci_id->bus,
 807                                PCI_DEVFN(pci_id->device, pci_id->function),
 808                                reg, size, value);
 809
 810        return (result ? AE_ERROR : AE_OK);
 811}
 812
 813static void acpi_os_execute_deferred(struct work_struct *work)
 814{
 815        struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 816
 817        dpc->function(dpc->context);
 818        kfree(dpc);
 819}
 820
 821#ifdef CONFIG_ACPI_DEBUGGER
 822static struct acpi_debugger acpi_debugger;
 823static bool acpi_debugger_initialized;
 824
 825int acpi_register_debugger(struct module *owner,
 826                           const struct acpi_debugger_ops *ops)
 827{
 828        int ret = 0;
 829
 830        mutex_lock(&acpi_debugger.lock);
 831        if (acpi_debugger.ops) {
 832                ret = -EBUSY;
 833                goto err_lock;
 834        }
 835
 836        acpi_debugger.owner = owner;
 837        acpi_debugger.ops = ops;
 838
 839err_lock:
 840        mutex_unlock(&acpi_debugger.lock);
 841        return ret;
 842}
 843EXPORT_SYMBOL(acpi_register_debugger);
 844
 845void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
 846{
 847        mutex_lock(&acpi_debugger.lock);
 848        if (ops == acpi_debugger.ops) {
 849                acpi_debugger.ops = NULL;
 850                acpi_debugger.owner = NULL;
 851        }
 852        mutex_unlock(&acpi_debugger.lock);
 853}
 854EXPORT_SYMBOL(acpi_unregister_debugger);
 855
 856int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
 857{
 858        int ret;
 859        int (*func)(acpi_osd_exec_callback, void *);
 860        struct module *owner;
 861
 862        if (!acpi_debugger_initialized)
 863                return -ENODEV;
 864        mutex_lock(&acpi_debugger.lock);
 865        if (!acpi_debugger.ops) {
 866                ret = -ENODEV;
 867                goto err_lock;
 868        }
 869        if (!try_module_get(acpi_debugger.owner)) {
 870                ret = -ENODEV;
 871                goto err_lock;
 872        }
 873        func = acpi_debugger.ops->create_thread;
 874        owner = acpi_debugger.owner;
 875        mutex_unlock(&acpi_debugger.lock);
 876
 877        ret = func(function, context);
 878
 879        mutex_lock(&acpi_debugger.lock);
 880        module_put(owner);
 881err_lock:
 882        mutex_unlock(&acpi_debugger.lock);
 883        return ret;
 884}
 885
 886ssize_t acpi_debugger_write_log(const char *msg)
 887{
 888        ssize_t ret;
 889        ssize_t (*func)(const char *);
 890        struct module *owner;
 891
 892        if (!acpi_debugger_initialized)
 893                return -ENODEV;
 894        mutex_lock(&acpi_debugger.lock);
 895        if (!acpi_debugger.ops) {
 896                ret = -ENODEV;
 897                goto err_lock;
 898        }
 899        if (!try_module_get(acpi_debugger.owner)) {
 900                ret = -ENODEV;
 901                goto err_lock;
 902        }
 903        func = acpi_debugger.ops->write_log;
 904        owner = acpi_debugger.owner;
 905        mutex_unlock(&acpi_debugger.lock);
 906
 907        ret = func(msg);
 908
 909        mutex_lock(&acpi_debugger.lock);
 910        module_put(owner);
 911err_lock:
 912        mutex_unlock(&acpi_debugger.lock);
 913        return ret;
 914}
 915
 916ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
 917{
 918        ssize_t ret;
 919        ssize_t (*func)(char *, size_t);
 920        struct module *owner;
 921
 922        if (!acpi_debugger_initialized)
 923                return -ENODEV;
 924        mutex_lock(&acpi_debugger.lock);
 925        if (!acpi_debugger.ops) {
 926                ret = -ENODEV;
 927                goto err_lock;
 928        }
 929        if (!try_module_get(acpi_debugger.owner)) {
 930                ret = -ENODEV;
 931                goto err_lock;
 932        }
 933        func = acpi_debugger.ops->read_cmd;
 934        owner = acpi_debugger.owner;
 935        mutex_unlock(&acpi_debugger.lock);
 936
 937        ret = func(buffer, buffer_length);
 938
 939        mutex_lock(&acpi_debugger.lock);
 940        module_put(owner);
 941err_lock:
 942        mutex_unlock(&acpi_debugger.lock);
 943        return ret;
 944}
 945
 946int acpi_debugger_wait_command_ready(void)
 947{
 948        int ret;
 949        int (*func)(bool, char *, size_t);
 950        struct module *owner;
 951
 952        if (!acpi_debugger_initialized)
 953                return -ENODEV;
 954        mutex_lock(&acpi_debugger.lock);
 955        if (!acpi_debugger.ops) {
 956                ret = -ENODEV;
 957                goto err_lock;
 958        }
 959        if (!try_module_get(acpi_debugger.owner)) {
 960                ret = -ENODEV;
 961                goto err_lock;
 962        }
 963        func = acpi_debugger.ops->wait_command_ready;
 964        owner = acpi_debugger.owner;
 965        mutex_unlock(&acpi_debugger.lock);
 966
 967        ret = func(acpi_gbl_method_executing,
 968                   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
 969
 970        mutex_lock(&acpi_debugger.lock);
 971        module_put(owner);
 972err_lock:
 973        mutex_unlock(&acpi_debugger.lock);
 974        return ret;
 975}
 976
 977int acpi_debugger_notify_command_complete(void)
 978{
 979        int ret;
 980        int (*func)(void);
 981        struct module *owner;
 982
 983        if (!acpi_debugger_initialized)
 984                return -ENODEV;
 985        mutex_lock(&acpi_debugger.lock);
 986        if (!acpi_debugger.ops) {
 987                ret = -ENODEV;
 988                goto err_lock;
 989        }
 990        if (!try_module_get(acpi_debugger.owner)) {
 991                ret = -ENODEV;
 992                goto err_lock;
 993        }
 994        func = acpi_debugger.ops->notify_command_complete;
 995        owner = acpi_debugger.owner;
 996        mutex_unlock(&acpi_debugger.lock);
 997
 998        ret = func();
 999
1000        mutex_lock(&acpi_debugger.lock);
1001        module_put(owner);
1002err_lock:
1003        mutex_unlock(&acpi_debugger.lock);
1004        return ret;
1005}
1006
1007int __init acpi_debugger_init(void)
1008{
1009        mutex_init(&acpi_debugger.lock);
1010        acpi_debugger_initialized = true;
1011        return 0;
1012}
1013#endif
1014
1015/*******************************************************************************
1016 *
1017 * FUNCTION:    acpi_os_execute
1018 *
1019 * PARAMETERS:  Type               - Type of the callback
1020 *              Function           - Function to be executed
1021 *              Context            - Function parameters
1022 *
1023 * RETURN:      Status
1024 *
1025 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1026 *              immediately executes function on a separate thread.
1027 *
1028 ******************************************************************************/
1029
1030acpi_status acpi_os_execute(acpi_execute_type type,
1031                            acpi_osd_exec_callback function, void *context)
1032{
1033        acpi_status status = AE_OK;
1034        struct acpi_os_dpc *dpc;
1035        struct workqueue_struct *queue;
1036        int ret;
1037        ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1038                          "Scheduling function [%p(%p)] for deferred execution.\n",
1039                          function, context));
1040
1041        if (type == OSL_DEBUGGER_MAIN_THREAD) {
1042                ret = acpi_debugger_create_thread(function, context);
1043                if (ret) {
1044                        pr_err("Call to kthread_create() failed.\n");
1045                        status = AE_ERROR;
1046                }
1047                goto out_thread;
1048        }
1049
1050        /*
1051         * Allocate/initialize DPC structure.  Note that this memory will be
1052         * freed by the callee.  The kernel handles the work_struct list  in a
1053         * way that allows us to also free its memory inside the callee.
1054         * Because we may want to schedule several tasks with different
1055         * parameters we can't use the approach some kernel code uses of
1056         * having a static work_struct.
1057         */
1058
1059        dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1060        if (!dpc)
1061                return AE_NO_MEMORY;
1062
1063        dpc->function = function;
1064        dpc->context = context;
1065
1066        /*
1067         * To prevent lockdep from complaining unnecessarily, make sure that
1068         * there is a different static lockdep key for each workqueue by using
1069         * INIT_WORK() for each of them separately.
1070         */
1071        if (type == OSL_NOTIFY_HANDLER) {
1072                queue = kacpi_notify_wq;
1073                INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1074        } else if (type == OSL_GPE_HANDLER) {
1075                queue = kacpid_wq;
1076                INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1077        } else {
1078                pr_err("Unsupported os_execute type %d.\n", type);
1079                status = AE_ERROR;
1080        }
1081
1082        if (ACPI_FAILURE(status))
1083                goto err_workqueue;
1084
1085        /*
1086         * On some machines, a software-initiated SMI causes corruption unless
1087         * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1088         * typically it's done in GPE-related methods that are run via
1089         * workqueues, so we can avoid the known corruption cases by always
1090         * queueing on CPU 0.
1091         */
1092        ret = queue_work_on(0, queue, &dpc->work);
1093        if (!ret) {
1094                printk(KERN_ERR PREFIX
1095                          "Call to queue_work() failed.\n");
1096                status = AE_ERROR;
1097        }
1098err_workqueue:
1099        if (ACPI_FAILURE(status))
1100                kfree(dpc);
1101out_thread:
1102        return status;
1103}
1104EXPORT_SYMBOL(acpi_os_execute);
1105
1106void acpi_os_wait_events_complete(void)
1107{
1108        /*
1109         * Make sure the GPE handler or the fixed event handler is not used
1110         * on another CPU after removal.
1111         */
1112        if (acpi_sci_irq_valid())
1113                synchronize_hardirq(acpi_sci_irq);
1114        flush_workqueue(kacpid_wq);
1115        flush_workqueue(kacpi_notify_wq);
1116}
1117
1118struct acpi_hp_work {
1119        struct work_struct work;
1120        struct acpi_device *adev;
1121        u32 src;
1122};
1123
1124static void acpi_hotplug_work_fn(struct work_struct *work)
1125{
1126        struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1127
1128        acpi_os_wait_events_complete();
1129        acpi_device_hotplug(hpw->adev, hpw->src);
1130        kfree(hpw);
1131}
1132
1133acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1134{
1135        struct acpi_hp_work *hpw;
1136
1137        ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1138                  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1139                  adev, src));
1140
1141        hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1142        if (!hpw)
1143                return AE_NO_MEMORY;
1144
1145        INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1146        hpw->adev = adev;
1147        hpw->src = src;
1148        /*
1149         * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1150         * the hotplug code may call driver .remove() functions, which may
1151         * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1152         * these workqueues.
1153         */
1154        if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1155                kfree(hpw);
1156                return AE_ERROR;
1157        }
1158        return AE_OK;
1159}
1160
1161bool acpi_queue_hotplug_work(struct work_struct *work)
1162{
1163        return queue_work(kacpi_hotplug_wq, work);
1164}
1165
1166acpi_status
1167acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1168{
1169        struct semaphore *sem = NULL;
1170
1171        sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1172        if (!sem)
1173                return AE_NO_MEMORY;
1174
1175        sema_init(sem, initial_units);
1176
1177        *handle = (acpi_handle *) sem;
1178
1179        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1180                          *handle, initial_units));
1181
1182        return AE_OK;
1183}
1184
1185/*
1186 * TODO: A better way to delete semaphores?  Linux doesn't have a
1187 * 'delete_semaphore()' function -- may result in an invalid
1188 * pointer dereference for non-synchronized consumers.  Should
1189 * we at least check for blocked threads and signal/cancel them?
1190 */
1191
1192acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1193{
1194        struct semaphore *sem = (struct semaphore *)handle;
1195
1196        if (!sem)
1197                return AE_BAD_PARAMETER;
1198
1199        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1200
1201        BUG_ON(!list_empty(&sem->wait_list));
1202        kfree(sem);
1203        sem = NULL;
1204
1205        return AE_OK;
1206}
1207
1208/*
1209 * TODO: Support for units > 1?
1210 */
1211acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1212{
1213        acpi_status status = AE_OK;
1214        struct semaphore *sem = (struct semaphore *)handle;
1215        long jiffies;
1216        int ret = 0;
1217
1218        if (!acpi_os_initialized)
1219                return AE_OK;
1220
1221        if (!sem || (units < 1))
1222                return AE_BAD_PARAMETER;
1223
1224        if (units > 1)
1225                return AE_SUPPORT;
1226
1227        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1228                          handle, units, timeout));
1229
1230        if (timeout == ACPI_WAIT_FOREVER)
1231                jiffies = MAX_SCHEDULE_TIMEOUT;
1232        else
1233                jiffies = msecs_to_jiffies(timeout);
1234
1235        ret = down_timeout(sem, jiffies);
1236        if (ret)
1237                status = AE_TIME;
1238
1239        if (ACPI_FAILURE(status)) {
1240                ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1241                                  "Failed to acquire semaphore[%p|%d|%d], %s",
1242                                  handle, units, timeout,
1243                                  acpi_format_exception(status)));
1244        } else {
1245                ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1246                                  "Acquired semaphore[%p|%d|%d]", handle,
1247                                  units, timeout));
1248        }
1249
1250        return status;
1251}
1252
1253/*
1254 * TODO: Support for units > 1?
1255 */
1256acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1257{
1258        struct semaphore *sem = (struct semaphore *)handle;
1259
1260        if (!acpi_os_initialized)
1261                return AE_OK;
1262
1263        if (!sem || (units < 1))
1264                return AE_BAD_PARAMETER;
1265
1266        if (units > 1)
1267                return AE_SUPPORT;
1268
1269        ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1270                          units));
1271
1272        up(sem);
1273
1274        return AE_OK;
1275}
1276
1277acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1278{
1279#ifdef ENABLE_DEBUGGER
1280        if (acpi_in_debugger) {
1281                u32 chars;
1282
1283                kdb_read(buffer, buffer_length);
1284
1285                /* remove the CR kdb includes */
1286                chars = strlen(buffer) - 1;
1287                buffer[chars] = '\0';
1288        }
1289#else
1290        int ret;
1291
1292        ret = acpi_debugger_read_cmd(buffer, buffer_length);
1293        if (ret < 0)
1294                return AE_ERROR;
1295        if (bytes_read)
1296                *bytes_read = ret;
1297#endif
1298
1299        return AE_OK;
1300}
1301EXPORT_SYMBOL(acpi_os_get_line);
1302
1303acpi_status acpi_os_wait_command_ready(void)
1304{
1305        int ret;
1306
1307        ret = acpi_debugger_wait_command_ready();
1308        if (ret < 0)
1309                return AE_ERROR;
1310        return AE_OK;
1311}
1312
1313acpi_status acpi_os_notify_command_complete(void)
1314{
1315        int ret;
1316
1317        ret = acpi_debugger_notify_command_complete();
1318        if (ret < 0)
1319                return AE_ERROR;
1320        return AE_OK;
1321}
1322
1323acpi_status acpi_os_signal(u32 function, void *info)
1324{
1325        switch (function) {
1326        case ACPI_SIGNAL_FATAL:
1327                printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1328                break;
1329        case ACPI_SIGNAL_BREAKPOINT:
1330                /*
1331                 * AML Breakpoint
1332                 * ACPI spec. says to treat it as a NOP unless
1333                 * you are debugging.  So if/when we integrate
1334                 * AML debugger into the kernel debugger its
1335                 * hook will go here.  But until then it is
1336                 * not useful to print anything on breakpoints.
1337                 */
1338                break;
1339        default:
1340                break;
1341        }
1342
1343        return AE_OK;
1344}
1345
1346static int __init acpi_os_name_setup(char *str)
1347{
1348        char *p = acpi_os_name;
1349        int count = ACPI_MAX_OVERRIDE_LEN - 1;
1350
1351        if (!str || !*str)
1352                return 0;
1353
1354        for (; count-- && *str; str++) {
1355                if (isalnum(*str) || *str == ' ' || *str == ':')
1356                        *p++ = *str;
1357                else if (*str == '\'' || *str == '"')
1358                        continue;
1359                else
1360                        break;
1361        }
1362        *p = 0;
1363
1364        return 1;
1365
1366}
1367
1368__setup("acpi_os_name=", acpi_os_name_setup);
1369
1370/*
1371 * Disable the auto-serialization of named objects creation methods.
1372 *
1373 * This feature is enabled by default.  It marks the AML control methods
1374 * that contain the opcodes to create named objects as "Serialized".
1375 */
1376static int __init acpi_no_auto_serialize_setup(char *str)
1377{
1378        acpi_gbl_auto_serialize_methods = FALSE;
1379        pr_info("ACPI: auto-serialization disabled\n");
1380
1381        return 1;
1382}
1383
1384__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1385
1386/* Check of resource interference between native drivers and ACPI
1387 * OperationRegions (SystemIO and System Memory only).
1388 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1389 * in arbitrary AML code and can interfere with legacy drivers.
1390 * acpi_enforce_resources= can be set to:
1391 *
1392 *   - strict (default) (2)
1393 *     -> further driver trying to access the resources will not load
1394 *   - lax              (1)
1395 *     -> further driver trying to access the resources will load, but you
1396 *     get a system message that something might go wrong...
1397 *
1398 *   - no               (0)
1399 *     -> ACPI Operation Region resources will not be registered
1400 *
1401 */
1402#define ENFORCE_RESOURCES_STRICT 2
1403#define ENFORCE_RESOURCES_LAX    1
1404#define ENFORCE_RESOURCES_NO     0
1405
1406static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1407
1408static int __init acpi_enforce_resources_setup(char *str)
1409{
1410        if (str == NULL || *str == '\0')
1411                return 0;
1412
1413        if (!strcmp("strict", str))
1414                acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1415        else if (!strcmp("lax", str))
1416                acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1417        else if (!strcmp("no", str))
1418                acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1419
1420        return 1;
1421}
1422
1423__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1424
1425/* Check for resource conflicts between ACPI OperationRegions and native
1426 * drivers */
1427int acpi_check_resource_conflict(const struct resource *res)
1428{
1429        acpi_adr_space_type space_id;
1430        acpi_size length;
1431        u8 warn = 0;
1432        int clash = 0;
1433
1434        if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1435                return 0;
1436        if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1437                return 0;
1438
1439        if (res->flags & IORESOURCE_IO)
1440                space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1441        else
1442                space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1443
1444        length = resource_size(res);
1445        if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1446                warn = 1;
1447        clash = acpi_check_address_range(space_id, res->start, length, warn);
1448
1449        if (clash) {
1450                if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1451                        if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1452                                printk(KERN_NOTICE "ACPI: This conflict may"
1453                                       " cause random problems and system"
1454                                       " instability\n");
1455                        printk(KERN_INFO "ACPI: If an ACPI driver is available"
1456                               " for this device, you should use it instead of"
1457                               " the native driver\n");
1458                }
1459                if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1460                        return -EBUSY;
1461        }
1462        return 0;
1463}
1464EXPORT_SYMBOL(acpi_check_resource_conflict);
1465
1466int acpi_check_region(resource_size_t start, resource_size_t n,
1467                      const char *name)
1468{
1469        struct resource res = {
1470                .start = start,
1471                .end   = start + n - 1,
1472                .name  = name,
1473                .flags = IORESOURCE_IO,
1474        };
1475
1476        return acpi_check_resource_conflict(&res);
1477}
1478EXPORT_SYMBOL(acpi_check_region);
1479
1480/*
1481 * Let drivers know whether the resource checks are effective
1482 */
1483int acpi_resources_are_enforced(void)
1484{
1485        return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1486}
1487EXPORT_SYMBOL(acpi_resources_are_enforced);
1488
1489/*
1490 * Deallocate the memory for a spinlock.
1491 */
1492void acpi_os_delete_lock(acpi_spinlock handle)
1493{
1494        ACPI_FREE(handle);
1495}
1496
1497/*
1498 * Acquire a spinlock.
1499 *
1500 * handle is a pointer to the spinlock_t.
1501 */
1502
1503acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1504{
1505        acpi_cpu_flags flags;
1506        spin_lock_irqsave(lockp, flags);
1507        return flags;
1508}
1509
1510/*
1511 * Release a spinlock. See above.
1512 */
1513
1514void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1515{
1516        spin_unlock_irqrestore(lockp, flags);
1517}
1518
1519#ifndef ACPI_USE_LOCAL_CACHE
1520
1521/*******************************************************************************
1522 *
1523 * FUNCTION:    acpi_os_create_cache
1524 *
1525 * PARAMETERS:  name      - Ascii name for the cache
1526 *              size      - Size of each cached object
1527 *              depth     - Maximum depth of the cache (in objects) <ignored>
1528 *              cache     - Where the new cache object is returned
1529 *
1530 * RETURN:      status
1531 *
1532 * DESCRIPTION: Create a cache object
1533 *
1534 ******************************************************************************/
1535
1536acpi_status
1537acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1538{
1539        *cache = kmem_cache_create(name, size, 0, 0, NULL);
1540        if (*cache == NULL)
1541                return AE_ERROR;
1542        else
1543                return AE_OK;
1544}
1545
1546/*******************************************************************************
1547 *
1548 * FUNCTION:    acpi_os_purge_cache
1549 *
1550 * PARAMETERS:  Cache           - Handle to cache object
1551 *
1552 * RETURN:      Status
1553 *
1554 * DESCRIPTION: Free all objects within the requested cache.
1555 *
1556 ******************************************************************************/
1557
1558acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1559{
1560        kmem_cache_shrink(cache);
1561        return (AE_OK);
1562}
1563
1564/*******************************************************************************
1565 *
1566 * FUNCTION:    acpi_os_delete_cache
1567 *
1568 * PARAMETERS:  Cache           - Handle to cache object
1569 *
1570 * RETURN:      Status
1571 *
1572 * DESCRIPTION: Free all objects within the requested cache and delete the
1573 *              cache object.
1574 *
1575 ******************************************************************************/
1576
1577acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1578{
1579        kmem_cache_destroy(cache);
1580        return (AE_OK);
1581}
1582
1583/*******************************************************************************
1584 *
1585 * FUNCTION:    acpi_os_release_object
1586 *
1587 * PARAMETERS:  Cache       - Handle to cache object
1588 *              Object      - The object to be released
1589 *
1590 * RETURN:      None
1591 *
1592 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1593 *              the object is deleted.
1594 *
1595 ******************************************************************************/
1596
1597acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1598{
1599        kmem_cache_free(cache, object);
1600        return (AE_OK);
1601}
1602#endif
1603
1604static int __init acpi_no_static_ssdt_setup(char *s)
1605{
1606        acpi_gbl_disable_ssdt_table_install = TRUE;
1607        pr_info("ACPI: static SSDT installation disabled\n");
1608
1609        return 0;
1610}
1611
1612early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1613
1614static int __init acpi_disable_return_repair(char *s)
1615{
1616        printk(KERN_NOTICE PREFIX
1617               "ACPI: Predefined validation mechanism disabled\n");
1618        acpi_gbl_disable_auto_repair = TRUE;
1619
1620        return 1;
1621}
1622
1623__setup("acpica_no_return_repair", acpi_disable_return_repair);
1624
1625acpi_status __init acpi_os_initialize(void)
1626{
1627        acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1628        acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1629        acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1630        acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1631        if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1632                /*
1633                 * Use acpi_os_map_generic_address to pre-map the reset
1634                 * register if it's in system memory.
1635                 */
1636                int rv;
1637
1638                rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1639                pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1640        }
1641        acpi_os_initialized = true;
1642
1643        return AE_OK;
1644}
1645
1646acpi_status __init acpi_os_initialize1(void)
1647{
1648        kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1649        kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1650        kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1651        BUG_ON(!kacpid_wq);
1652        BUG_ON(!kacpi_notify_wq);
1653        BUG_ON(!kacpi_hotplug_wq);
1654        acpi_osi_init();
1655        return AE_OK;
1656}
1657
1658acpi_status acpi_os_terminate(void)
1659{
1660        if (acpi_irq_handler) {
1661                acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1662                                                 acpi_irq_handler);
1663        }
1664
1665        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1666        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1667        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1668        acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1669        if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1670                acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1671
1672        destroy_workqueue(kacpid_wq);
1673        destroy_workqueue(kacpi_notify_wq);
1674        destroy_workqueue(kacpi_hotplug_wq);
1675
1676        return AE_OK;
1677}
1678
1679acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1680                                  u32 pm1b_control)
1681{
1682        int rc = 0;
1683        if (__acpi_os_prepare_sleep)
1684                rc = __acpi_os_prepare_sleep(sleep_state,
1685                                             pm1a_control, pm1b_control);
1686        if (rc < 0)
1687                return AE_ERROR;
1688        else if (rc > 0)
1689                return AE_CTRL_TERMINATE;
1690
1691        return AE_OK;
1692}
1693
1694void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1695                               u32 pm1a_ctrl, u32 pm1b_ctrl))
1696{
1697        __acpi_os_prepare_sleep = func;
1698}
1699
1700#if (ACPI_REDUCED_HARDWARE)
1701acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1702                                  u32 val_b)
1703{
1704        int rc = 0;
1705        if (__acpi_os_prepare_extended_sleep)
1706                rc = __acpi_os_prepare_extended_sleep(sleep_state,
1707                                             val_a, val_b);
1708        if (rc < 0)
1709                return AE_ERROR;
1710        else if (rc > 0)
1711                return AE_CTRL_TERMINATE;
1712
1713        return AE_OK;
1714}
1715#else
1716acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1717                                  u32 val_b)
1718{
1719        return AE_OK;
1720}
1721#endif
1722
1723void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1724                               u32 val_a, u32 val_b))
1725{
1726        __acpi_os_prepare_extended_sleep = func;
1727}
1728
1729acpi_status acpi_os_enter_sleep(u8 sleep_state,
1730                                u32 reg_a_value, u32 reg_b_value)
1731{
1732        acpi_status status;
1733
1734        if (acpi_gbl_reduced_hardware)
1735                status = acpi_os_prepare_extended_sleep(sleep_state,
1736                                                        reg_a_value,
1737                                                        reg_b_value);
1738        else
1739                status = acpi_os_prepare_sleep(sleep_state,
1740                                               reg_a_value, reg_b_value);
1741        return status;
1742}
1743