linux/drivers/bus/arm-cci.c
<<
>>
Prefs
   1/*
   2 * CCI cache coherent interconnect driver
   3 *
   4 * Copyright (C) 2013 ARM Ltd.
   5 * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  12 * kind, whether express or implied; without even the implied warranty
  13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 */
  16
  17#include <linux/arm-cci.h>
  18#include <linux/io.h>
  19#include <linux/interrupt.h>
  20#include <linux/module.h>
  21#include <linux/of_address.h>
  22#include <linux/of_irq.h>
  23#include <linux/of_platform.h>
  24#include <linux/perf_event.h>
  25#include <linux/platform_device.h>
  26#include <linux/slab.h>
  27#include <linux/spinlock.h>
  28
  29#include <asm/cacheflush.h>
  30#include <asm/smp_plat.h>
  31
  32static void __iomem *cci_ctrl_base;
  33static unsigned long cci_ctrl_phys;
  34
  35#ifdef CONFIG_ARM_CCI400_PORT_CTRL
  36struct cci_nb_ports {
  37        unsigned int nb_ace;
  38        unsigned int nb_ace_lite;
  39};
  40
  41static const struct cci_nb_ports cci400_ports = {
  42        .nb_ace = 2,
  43        .nb_ace_lite = 3
  44};
  45
  46#define CCI400_PORTS_DATA       (&cci400_ports)
  47#else
  48#define CCI400_PORTS_DATA       (NULL)
  49#endif
  50
  51static const struct of_device_id arm_cci_matches[] = {
  52#ifdef CONFIG_ARM_CCI400_COMMON
  53        {.compatible = "arm,cci-400", .data = CCI400_PORTS_DATA },
  54#endif
  55#ifdef CONFIG_ARM_CCI5xx_PMU
  56        { .compatible = "arm,cci-500", },
  57        { .compatible = "arm,cci-550", },
  58#endif
  59        {},
  60};
  61
  62#ifdef CONFIG_ARM_CCI_PMU
  63
  64#define DRIVER_NAME             "ARM-CCI"
  65#define DRIVER_NAME_PMU         DRIVER_NAME " PMU"
  66
  67#define CCI_PMCR                0x0100
  68#define CCI_PID2                0x0fe8
  69
  70#define CCI_PMCR_CEN            0x00000001
  71#define CCI_PMCR_NCNT_MASK      0x0000f800
  72#define CCI_PMCR_NCNT_SHIFT     11
  73
  74#define CCI_PID2_REV_MASK       0xf0
  75#define CCI_PID2_REV_SHIFT      4
  76
  77#define CCI_PMU_EVT_SEL         0x000
  78#define CCI_PMU_CNTR            0x004
  79#define CCI_PMU_CNTR_CTRL       0x008
  80#define CCI_PMU_OVRFLW          0x00c
  81
  82#define CCI_PMU_OVRFLW_FLAG     1
  83
  84#define CCI_PMU_CNTR_SIZE(model)        ((model)->cntr_size)
  85#define CCI_PMU_CNTR_BASE(model, idx)   ((idx) * CCI_PMU_CNTR_SIZE(model))
  86#define CCI_PMU_CNTR_MASK               ((1ULL << 32) -1)
  87#define CCI_PMU_CNTR_LAST(cci_pmu)      (cci_pmu->num_cntrs - 1)
  88
  89#define CCI_PMU_MAX_HW_CNTRS(model) \
  90        ((model)->num_hw_cntrs + (model)->fixed_hw_cntrs)
  91
  92/* Types of interfaces that can generate events */
  93enum {
  94        CCI_IF_SLAVE,
  95        CCI_IF_MASTER,
  96#ifdef CONFIG_ARM_CCI5xx_PMU
  97        CCI_IF_GLOBAL,
  98#endif
  99        CCI_IF_MAX,
 100};
 101
 102struct event_range {
 103        u32 min;
 104        u32 max;
 105};
 106
 107struct cci_pmu_hw_events {
 108        struct perf_event **events;
 109        unsigned long *used_mask;
 110        raw_spinlock_t pmu_lock;
 111};
 112
 113struct cci_pmu;
 114/*
 115 * struct cci_pmu_model:
 116 * @fixed_hw_cntrs - Number of fixed event counters
 117 * @num_hw_cntrs - Maximum number of programmable event counters
 118 * @cntr_size - Size of an event counter mapping
 119 */
 120struct cci_pmu_model {
 121        char *name;
 122        u32 fixed_hw_cntrs;
 123        u32 num_hw_cntrs;
 124        u32 cntr_size;
 125        struct attribute **format_attrs;
 126        struct attribute **event_attrs;
 127        struct event_range event_ranges[CCI_IF_MAX];
 128        int (*validate_hw_event)(struct cci_pmu *, unsigned long);
 129        int (*get_event_idx)(struct cci_pmu *, struct cci_pmu_hw_events *, unsigned long);
 130        void (*write_counters)(struct cci_pmu *, unsigned long *);
 131};
 132
 133static struct cci_pmu_model cci_pmu_models[];
 134
 135struct cci_pmu {
 136        void __iomem *base;
 137        struct pmu pmu;
 138        int nr_irqs;
 139        int *irqs;
 140        unsigned long active_irqs;
 141        const struct cci_pmu_model *model;
 142        struct cci_pmu_hw_events hw_events;
 143        struct platform_device *plat_device;
 144        int num_cntrs;
 145        atomic_t active_events;
 146        struct mutex reserve_mutex;
 147        struct hlist_node node;
 148        cpumask_t cpus;
 149};
 150
 151#define to_cci_pmu(c)   (container_of(c, struct cci_pmu, pmu))
 152
 153enum cci_models {
 154#ifdef CONFIG_ARM_CCI400_PMU
 155        CCI400_R0,
 156        CCI400_R1,
 157#endif
 158#ifdef CONFIG_ARM_CCI5xx_PMU
 159        CCI500_R0,
 160        CCI550_R0,
 161#endif
 162        CCI_MODEL_MAX
 163};
 164
 165static void pmu_write_counters(struct cci_pmu *cci_pmu,
 166                                 unsigned long *mask);
 167static ssize_t cci_pmu_format_show(struct device *dev,
 168                        struct device_attribute *attr, char *buf);
 169static ssize_t cci_pmu_event_show(struct device *dev,
 170                        struct device_attribute *attr, char *buf);
 171
 172#define CCI_EXT_ATTR_ENTRY(_name, _func, _config)                               \
 173        &((struct dev_ext_attribute[]) {                                        \
 174                { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_config }        \
 175        })[0].attr.attr
 176
 177#define CCI_FORMAT_EXT_ATTR_ENTRY(_name, _config) \
 178        CCI_EXT_ATTR_ENTRY(_name, cci_pmu_format_show, (char *)_config)
 179#define CCI_EVENT_EXT_ATTR_ENTRY(_name, _config) \
 180        CCI_EXT_ATTR_ENTRY(_name, cci_pmu_event_show, (unsigned long)_config)
 181
 182/* CCI400 PMU Specific definitions */
 183
 184#ifdef CONFIG_ARM_CCI400_PMU
 185
 186/* Port ids */
 187#define CCI400_PORT_S0          0
 188#define CCI400_PORT_S1          1
 189#define CCI400_PORT_S2          2
 190#define CCI400_PORT_S3          3
 191#define CCI400_PORT_S4          4
 192#define CCI400_PORT_M0          5
 193#define CCI400_PORT_M1          6
 194#define CCI400_PORT_M2          7
 195
 196#define CCI400_R1_PX            5
 197
 198/*
 199 * Instead of an event id to monitor CCI cycles, a dedicated counter is
 200 * provided. Use 0xff to represent CCI cycles and hope that no future revisions
 201 * make use of this event in hardware.
 202 */
 203enum cci400_perf_events {
 204        CCI400_PMU_CYCLES = 0xff
 205};
 206
 207#define CCI400_PMU_CYCLE_CNTR_IDX       0
 208#define CCI400_PMU_CNTR0_IDX            1
 209
 210/*
 211 * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
 212 * ports and bits 4:0 are event codes. There are different event codes
 213 * associated with each port type.
 214 *
 215 * Additionally, the range of events associated with the port types changed
 216 * between Rev0 and Rev1.
 217 *
 218 * The constants below define the range of valid codes for each port type for
 219 * the different revisions and are used to validate the event to be monitored.
 220 */
 221
 222#define CCI400_PMU_EVENT_MASK           0xffUL
 223#define CCI400_PMU_EVENT_SOURCE_SHIFT   5
 224#define CCI400_PMU_EVENT_SOURCE_MASK    0x7
 225#define CCI400_PMU_EVENT_CODE_SHIFT     0
 226#define CCI400_PMU_EVENT_CODE_MASK      0x1f
 227#define CCI400_PMU_EVENT_SOURCE(event) \
 228        ((event >> CCI400_PMU_EVENT_SOURCE_SHIFT) & \
 229                        CCI400_PMU_EVENT_SOURCE_MASK)
 230#define CCI400_PMU_EVENT_CODE(event) \
 231        ((event >> CCI400_PMU_EVENT_CODE_SHIFT) & CCI400_PMU_EVENT_CODE_MASK)
 232
 233#define CCI400_R0_SLAVE_PORT_MIN_EV     0x00
 234#define CCI400_R0_SLAVE_PORT_MAX_EV     0x13
 235#define CCI400_R0_MASTER_PORT_MIN_EV    0x14
 236#define CCI400_R0_MASTER_PORT_MAX_EV    0x1a
 237
 238#define CCI400_R1_SLAVE_PORT_MIN_EV     0x00
 239#define CCI400_R1_SLAVE_PORT_MAX_EV     0x14
 240#define CCI400_R1_MASTER_PORT_MIN_EV    0x00
 241#define CCI400_R1_MASTER_PORT_MAX_EV    0x11
 242
 243#define CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(_name, _config) \
 244        CCI_EXT_ATTR_ENTRY(_name, cci400_pmu_cycle_event_show, \
 245                                        (unsigned long)_config)
 246
 247static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
 248                        struct device_attribute *attr, char *buf);
 249
 250static struct attribute *cci400_pmu_format_attrs[] = {
 251        CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
 252        CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-7"),
 253        NULL
 254};
 255
 256static struct attribute *cci400_r0_pmu_event_attrs[] = {
 257        /* Slave events */
 258        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
 259        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
 260        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
 261        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
 262        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
 263        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
 264        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
 265        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
 266        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
 267        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
 268        CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
 269        CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
 270        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
 271        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
 272        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
 273        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
 274        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
 275        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
 276        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
 277        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
 278        /* Master events */
 279        CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x14),
 280        CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_addr_hazard, 0x15),
 281        CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_id_hazard, 0x16),
 282        CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_tt_full, 0x17),
 283        CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x18),
 284        CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x19),
 285        CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_tt_full, 0x1A),
 286        /* Special event for cycles counter */
 287        CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
 288        NULL
 289};
 290
 291static struct attribute *cci400_r1_pmu_event_attrs[] = {
 292        /* Slave events */
 293        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
 294        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
 295        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
 296        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
 297        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
 298        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
 299        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
 300        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
 301        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
 302        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
 303        CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
 304        CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
 305        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
 306        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
 307        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
 308        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
 309        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
 310        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
 311        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
 312        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
 313        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_slave_id_hazard, 0x14),
 314        /* Master events */
 315        CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x0),
 316        CCI_EVENT_EXT_ATTR_ENTRY(mi_stall_cycle_addr_hazard, 0x1),
 317        CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_master_id_hazard, 0x2),
 318        CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_hi_prio_rtq_full, 0x3),
 319        CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x4),
 320        CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x5),
 321        CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_wtq_full, 0x6),
 322        CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_low_prio_rtq_full, 0x7),
 323        CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_mid_prio_rtq_full, 0x8),
 324        CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn0, 0x9),
 325        CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn1, 0xA),
 326        CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn2, 0xB),
 327        CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn3, 0xC),
 328        CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn0, 0xD),
 329        CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn1, 0xE),
 330        CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn2, 0xF),
 331        CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn3, 0x10),
 332        CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_unique_or_line_unique_addr_hazard, 0x11),
 333        /* Special event for cycles counter */
 334        CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
 335        NULL
 336};
 337
 338static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
 339                        struct device_attribute *attr, char *buf)
 340{
 341        struct dev_ext_attribute *eattr = container_of(attr,
 342                                struct dev_ext_attribute, attr);
 343        return snprintf(buf, PAGE_SIZE, "config=0x%lx\n", (unsigned long)eattr->var);
 344}
 345
 346static int cci400_get_event_idx(struct cci_pmu *cci_pmu,
 347                                struct cci_pmu_hw_events *hw,
 348                                unsigned long cci_event)
 349{
 350        int idx;
 351
 352        /* cycles event idx is fixed */
 353        if (cci_event == CCI400_PMU_CYCLES) {
 354                if (test_and_set_bit(CCI400_PMU_CYCLE_CNTR_IDX, hw->used_mask))
 355                        return -EAGAIN;
 356
 357                return CCI400_PMU_CYCLE_CNTR_IDX;
 358        }
 359
 360        for (idx = CCI400_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
 361                if (!test_and_set_bit(idx, hw->used_mask))
 362                        return idx;
 363
 364        /* No counters available */
 365        return -EAGAIN;
 366}
 367
 368static int cci400_validate_hw_event(struct cci_pmu *cci_pmu, unsigned long hw_event)
 369{
 370        u8 ev_source = CCI400_PMU_EVENT_SOURCE(hw_event);
 371        u8 ev_code = CCI400_PMU_EVENT_CODE(hw_event);
 372        int if_type;
 373
 374        if (hw_event & ~CCI400_PMU_EVENT_MASK)
 375                return -ENOENT;
 376
 377        if (hw_event == CCI400_PMU_CYCLES)
 378                return hw_event;
 379
 380        switch (ev_source) {
 381        case CCI400_PORT_S0:
 382        case CCI400_PORT_S1:
 383        case CCI400_PORT_S2:
 384        case CCI400_PORT_S3:
 385        case CCI400_PORT_S4:
 386                /* Slave Interface */
 387                if_type = CCI_IF_SLAVE;
 388                break;
 389        case CCI400_PORT_M0:
 390        case CCI400_PORT_M1:
 391        case CCI400_PORT_M2:
 392                /* Master Interface */
 393                if_type = CCI_IF_MASTER;
 394                break;
 395        default:
 396                return -ENOENT;
 397        }
 398
 399        if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
 400                ev_code <= cci_pmu->model->event_ranges[if_type].max)
 401                return hw_event;
 402
 403        return -ENOENT;
 404}
 405
 406static int probe_cci400_revision(void)
 407{
 408        int rev;
 409        rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
 410        rev >>= CCI_PID2_REV_SHIFT;
 411
 412        if (rev < CCI400_R1_PX)
 413                return CCI400_R0;
 414        else
 415                return CCI400_R1;
 416}
 417
 418static const struct cci_pmu_model *probe_cci_model(struct platform_device *pdev)
 419{
 420        if (platform_has_secure_cci_access())
 421                return &cci_pmu_models[probe_cci400_revision()];
 422        return NULL;
 423}
 424#else   /* !CONFIG_ARM_CCI400_PMU */
 425static inline struct cci_pmu_model *probe_cci_model(struct platform_device *pdev)
 426{
 427        return NULL;
 428}
 429#endif  /* CONFIG_ARM_CCI400_PMU */
 430
 431#ifdef CONFIG_ARM_CCI5xx_PMU
 432
 433/*
 434 * CCI5xx PMU event id is an 9-bit value made of two parts.
 435 *       bits [8:5] - Source for the event
 436 *       bits [4:0] - Event code (specific to type of interface)
 437 *
 438 *
 439 */
 440
 441/* Port ids */
 442#define CCI5xx_PORT_S0                  0x0
 443#define CCI5xx_PORT_S1                  0x1
 444#define CCI5xx_PORT_S2                  0x2
 445#define CCI5xx_PORT_S3                  0x3
 446#define CCI5xx_PORT_S4                  0x4
 447#define CCI5xx_PORT_S5                  0x5
 448#define CCI5xx_PORT_S6                  0x6
 449
 450#define CCI5xx_PORT_M0                  0x8
 451#define CCI5xx_PORT_M1                  0x9
 452#define CCI5xx_PORT_M2                  0xa
 453#define CCI5xx_PORT_M3                  0xb
 454#define CCI5xx_PORT_M4                  0xc
 455#define CCI5xx_PORT_M5                  0xd
 456#define CCI5xx_PORT_M6                  0xe
 457
 458#define CCI5xx_PORT_GLOBAL              0xf
 459
 460#define CCI5xx_PMU_EVENT_MASK           0x1ffUL
 461#define CCI5xx_PMU_EVENT_SOURCE_SHIFT   0x5
 462#define CCI5xx_PMU_EVENT_SOURCE_MASK    0xf
 463#define CCI5xx_PMU_EVENT_CODE_SHIFT     0x0
 464#define CCI5xx_PMU_EVENT_CODE_MASK      0x1f
 465
 466#define CCI5xx_PMU_EVENT_SOURCE(event)  \
 467        ((event >> CCI5xx_PMU_EVENT_SOURCE_SHIFT) & CCI5xx_PMU_EVENT_SOURCE_MASK)
 468#define CCI5xx_PMU_EVENT_CODE(event)    \
 469        ((event >> CCI5xx_PMU_EVENT_CODE_SHIFT) & CCI5xx_PMU_EVENT_CODE_MASK)
 470
 471#define CCI5xx_SLAVE_PORT_MIN_EV        0x00
 472#define CCI5xx_SLAVE_PORT_MAX_EV        0x1f
 473#define CCI5xx_MASTER_PORT_MIN_EV       0x00
 474#define CCI5xx_MASTER_PORT_MAX_EV       0x06
 475#define CCI5xx_GLOBAL_PORT_MIN_EV       0x00
 476#define CCI5xx_GLOBAL_PORT_MAX_EV       0x0f
 477
 478
 479#define CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(_name, _config) \
 480        CCI_EXT_ATTR_ENTRY(_name, cci5xx_pmu_global_event_show, \
 481                                        (unsigned long) _config)
 482
 483static ssize_t cci5xx_pmu_global_event_show(struct device *dev,
 484                                struct device_attribute *attr, char *buf);
 485
 486static struct attribute *cci5xx_pmu_format_attrs[] = {
 487        CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
 488        CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-8"),
 489        NULL,
 490};
 491
 492static struct attribute *cci5xx_pmu_event_attrs[] = {
 493        /* Slave events */
 494        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_arvalid, 0x0),
 495        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_dev, 0x1),
 496        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_nonshareable, 0x2),
 497        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_non_alloc, 0x3),
 498        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_alloc, 0x4),
 499        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_invalidate, 0x5),
 500        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maint, 0x6),
 501        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
 502        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rval, 0x8),
 503        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rlast_snoop, 0x9),
 504        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_awalid, 0xA),
 505        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_dev, 0xB),
 506        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_non_shareable, 0xC),
 507        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wb, 0xD),
 508        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wlu, 0xE),
 509        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wunique, 0xF),
 510        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_evict, 0x10),
 511        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_wrevict, 0x11),
 512        CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_beat, 0x12),
 513        CCI_EVENT_EXT_ATTR_ENTRY(si_srq_acvalid, 0x13),
 514        CCI_EVENT_EXT_ATTR_ENTRY(si_srq_read, 0x14),
 515        CCI_EVENT_EXT_ATTR_ENTRY(si_srq_clean, 0x15),
 516        CCI_EVENT_EXT_ATTR_ENTRY(si_srq_data_transfer_low, 0x16),
 517        CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_arvalid, 0x17),
 518        CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall, 0x18),
 519        CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall, 0x19),
 520        CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_stall, 0x1A),
 521        CCI_EVENT_EXT_ATTR_ENTRY(si_w_resp_stall, 0x1B),
 522        CCI_EVENT_EXT_ATTR_ENTRY(si_srq_stall, 0x1C),
 523        CCI_EVENT_EXT_ATTR_ENTRY(si_s_data_stall, 0x1D),
 524        CCI_EVENT_EXT_ATTR_ENTRY(si_rq_stall_ot_limit, 0x1E),
 525        CCI_EVENT_EXT_ATTR_ENTRY(si_r_stall_arbit, 0x1F),
 526
 527        /* Master events */
 528        CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_beat_any, 0x0),
 529        CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_beat_any, 0x1),
 530        CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall, 0x2),
 531        CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_stall, 0x3),
 532        CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall, 0x4),
 533        CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_stall, 0x5),
 534        CCI_EVENT_EXT_ATTR_ENTRY(mi_w_resp_stall, 0x6),
 535
 536        /* Global events */
 537        CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_0_1, 0x0),
 538        CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_2_3, 0x1),
 539        CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_4_5, 0x2),
 540        CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_6_7, 0x3),
 541        CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_0_1, 0x4),
 542        CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_2_3, 0x5),
 543        CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_4_5, 0x6),
 544        CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_6_7, 0x7),
 545        CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_back_invalidation, 0x8),
 546        CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_alloc_busy, 0x9),
 547        CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_tt_full, 0xA),
 548        CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_wrq, 0xB),
 549        CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_cd_hs, 0xC),
 550        CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_rq_stall_addr_hazard, 0xD),
 551        CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_stall_tt_full, 0xE),
 552        CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_tzmp1_prot, 0xF),
 553        NULL
 554};
 555
 556static ssize_t cci5xx_pmu_global_event_show(struct device *dev,
 557                                struct device_attribute *attr, char *buf)
 558{
 559        struct dev_ext_attribute *eattr = container_of(attr,
 560                                        struct dev_ext_attribute, attr);
 561        /* Global events have single fixed source code */
 562        return snprintf(buf, PAGE_SIZE, "event=0x%lx,source=0x%x\n",
 563                                (unsigned long)eattr->var, CCI5xx_PORT_GLOBAL);
 564}
 565
 566/*
 567 * CCI500 provides 8 independent event counters that can count
 568 * any of the events available.
 569 * CCI500 PMU event source ids
 570 *      0x0-0x6 - Slave interfaces
 571 *      0x8-0xD - Master interfaces
 572 *      0xf     - Global Events
 573 *      0x7,0xe - Reserved
 574 */
 575static int cci500_validate_hw_event(struct cci_pmu *cci_pmu,
 576                                        unsigned long hw_event)
 577{
 578        u32 ev_source = CCI5xx_PMU_EVENT_SOURCE(hw_event);
 579        u32 ev_code = CCI5xx_PMU_EVENT_CODE(hw_event);
 580        int if_type;
 581
 582        if (hw_event & ~CCI5xx_PMU_EVENT_MASK)
 583                return -ENOENT;
 584
 585        switch (ev_source) {
 586        case CCI5xx_PORT_S0:
 587        case CCI5xx_PORT_S1:
 588        case CCI5xx_PORT_S2:
 589        case CCI5xx_PORT_S3:
 590        case CCI5xx_PORT_S4:
 591        case CCI5xx_PORT_S5:
 592        case CCI5xx_PORT_S6:
 593                if_type = CCI_IF_SLAVE;
 594                break;
 595        case CCI5xx_PORT_M0:
 596        case CCI5xx_PORT_M1:
 597        case CCI5xx_PORT_M2:
 598        case CCI5xx_PORT_M3:
 599        case CCI5xx_PORT_M4:
 600        case CCI5xx_PORT_M5:
 601                if_type = CCI_IF_MASTER;
 602                break;
 603        case CCI5xx_PORT_GLOBAL:
 604                if_type = CCI_IF_GLOBAL;
 605                break;
 606        default:
 607                return -ENOENT;
 608        }
 609
 610        if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
 611                ev_code <= cci_pmu->model->event_ranges[if_type].max)
 612                return hw_event;
 613
 614        return -ENOENT;
 615}
 616
 617/*
 618 * CCI550 provides 8 independent event counters that can count
 619 * any of the events available.
 620 * CCI550 PMU event source ids
 621 *      0x0-0x6 - Slave interfaces
 622 *      0x8-0xe - Master interfaces
 623 *      0xf     - Global Events
 624 *      0x7     - Reserved
 625 */
 626static int cci550_validate_hw_event(struct cci_pmu *cci_pmu,
 627                                        unsigned long hw_event)
 628{
 629        u32 ev_source = CCI5xx_PMU_EVENT_SOURCE(hw_event);
 630        u32 ev_code = CCI5xx_PMU_EVENT_CODE(hw_event);
 631        int if_type;
 632
 633        if (hw_event & ~CCI5xx_PMU_EVENT_MASK)
 634                return -ENOENT;
 635
 636        switch (ev_source) {
 637        case CCI5xx_PORT_S0:
 638        case CCI5xx_PORT_S1:
 639        case CCI5xx_PORT_S2:
 640        case CCI5xx_PORT_S3:
 641        case CCI5xx_PORT_S4:
 642        case CCI5xx_PORT_S5:
 643        case CCI5xx_PORT_S6:
 644                if_type = CCI_IF_SLAVE;
 645                break;
 646        case CCI5xx_PORT_M0:
 647        case CCI5xx_PORT_M1:
 648        case CCI5xx_PORT_M2:
 649        case CCI5xx_PORT_M3:
 650        case CCI5xx_PORT_M4:
 651        case CCI5xx_PORT_M5:
 652        case CCI5xx_PORT_M6:
 653                if_type = CCI_IF_MASTER;
 654                break;
 655        case CCI5xx_PORT_GLOBAL:
 656                if_type = CCI_IF_GLOBAL;
 657                break;
 658        default:
 659                return -ENOENT;
 660        }
 661
 662        if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
 663                ev_code <= cci_pmu->model->event_ranges[if_type].max)
 664                return hw_event;
 665
 666        return -ENOENT;
 667}
 668
 669#endif  /* CONFIG_ARM_CCI5xx_PMU */
 670
 671/*
 672 * Program the CCI PMU counters which have PERF_HES_ARCH set
 673 * with the event period and mark them ready before we enable
 674 * PMU.
 675 */
 676static void cci_pmu_sync_counters(struct cci_pmu *cci_pmu)
 677{
 678        int i;
 679        struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events;
 680
 681        DECLARE_BITMAP(mask, cci_pmu->num_cntrs);
 682
 683        bitmap_zero(mask, cci_pmu->num_cntrs);
 684        for_each_set_bit(i, cci_pmu->hw_events.used_mask, cci_pmu->num_cntrs) {
 685                struct perf_event *event = cci_hw->events[i];
 686
 687                if (WARN_ON(!event))
 688                        continue;
 689
 690                /* Leave the events which are not counting */
 691                if (event->hw.state & PERF_HES_STOPPED)
 692                        continue;
 693                if (event->hw.state & PERF_HES_ARCH) {
 694                        set_bit(i, mask);
 695                        event->hw.state &= ~PERF_HES_ARCH;
 696                }
 697        }
 698
 699        pmu_write_counters(cci_pmu, mask);
 700}
 701
 702/* Should be called with cci_pmu->hw_events->pmu_lock held */
 703static void __cci_pmu_enable_nosync(struct cci_pmu *cci_pmu)
 704{
 705        u32 val;
 706
 707        /* Enable all the PMU counters. */
 708        val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
 709        writel(val, cci_ctrl_base + CCI_PMCR);
 710}
 711
 712/* Should be called with cci_pmu->hw_events->pmu_lock held */
 713static void __cci_pmu_enable_sync(struct cci_pmu *cci_pmu)
 714{
 715        cci_pmu_sync_counters(cci_pmu);
 716        __cci_pmu_enable_nosync(cci_pmu);
 717}
 718
 719/* Should be called with cci_pmu->hw_events->pmu_lock held */
 720static void __cci_pmu_disable(void)
 721{
 722        u32 val;
 723
 724        /* Disable all the PMU counters. */
 725        val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
 726        writel(val, cci_ctrl_base + CCI_PMCR);
 727}
 728
 729static ssize_t cci_pmu_format_show(struct device *dev,
 730                        struct device_attribute *attr, char *buf)
 731{
 732        struct dev_ext_attribute *eattr = container_of(attr,
 733                                struct dev_ext_attribute, attr);
 734        return snprintf(buf, PAGE_SIZE, "%s\n", (char *)eattr->var);
 735}
 736
 737static ssize_t cci_pmu_event_show(struct device *dev,
 738                        struct device_attribute *attr, char *buf)
 739{
 740        struct dev_ext_attribute *eattr = container_of(attr,
 741                                struct dev_ext_attribute, attr);
 742        /* source parameter is mandatory for normal PMU events */
 743        return snprintf(buf, PAGE_SIZE, "source=?,event=0x%lx\n",
 744                                         (unsigned long)eattr->var);
 745}
 746
 747static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx)
 748{
 749        return 0 <= idx && idx <= CCI_PMU_CNTR_LAST(cci_pmu);
 750}
 751
 752static u32 pmu_read_register(struct cci_pmu *cci_pmu, int idx, unsigned int offset)
 753{
 754        return readl_relaxed(cci_pmu->base +
 755                             CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
 756}
 757
 758static void pmu_write_register(struct cci_pmu *cci_pmu, u32 value,
 759                               int idx, unsigned int offset)
 760{
 761        writel_relaxed(value, cci_pmu->base +
 762                       CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
 763}
 764
 765static void pmu_disable_counter(struct cci_pmu *cci_pmu, int idx)
 766{
 767        pmu_write_register(cci_pmu, 0, idx, CCI_PMU_CNTR_CTRL);
 768}
 769
 770static void pmu_enable_counter(struct cci_pmu *cci_pmu, int idx)
 771{
 772        pmu_write_register(cci_pmu, 1, idx, CCI_PMU_CNTR_CTRL);
 773}
 774
 775static bool __maybe_unused
 776pmu_counter_is_enabled(struct cci_pmu *cci_pmu, int idx)
 777{
 778        return (pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR_CTRL) & 0x1) != 0;
 779}
 780
 781static void pmu_set_event(struct cci_pmu *cci_pmu, int idx, unsigned long event)
 782{
 783        pmu_write_register(cci_pmu, event, idx, CCI_PMU_EVT_SEL);
 784}
 785
 786/*
 787 * For all counters on the CCI-PMU, disable any 'enabled' counters,
 788 * saving the changed counters in the mask, so that we can restore
 789 * it later using pmu_restore_counters. The mask is private to the
 790 * caller. We cannot rely on the used_mask maintained by the CCI_PMU
 791 * as it only tells us if the counter is assigned to perf_event or not.
 792 * The state of the perf_event cannot be locked by the PMU layer, hence
 793 * we check the individual counter status (which can be locked by
 794 * cci_pm->hw_events->pmu_lock).
 795 *
 796 * @mask should be initialised to empty by the caller.
 797 */
 798static void __maybe_unused
 799pmu_save_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
 800{
 801        int i;
 802
 803        for (i = 0; i < cci_pmu->num_cntrs; i++) {
 804                if (pmu_counter_is_enabled(cci_pmu, i)) {
 805                        set_bit(i, mask);
 806                        pmu_disable_counter(cci_pmu, i);
 807                }
 808        }
 809}
 810
 811/*
 812 * Restore the status of the counters. Reversal of the pmu_save_counters().
 813 * For each counter set in the mask, enable the counter back.
 814 */
 815static void __maybe_unused
 816pmu_restore_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
 817{
 818        int i;
 819
 820        for_each_set_bit(i, mask, cci_pmu->num_cntrs)
 821                pmu_enable_counter(cci_pmu, i);
 822}
 823
 824/*
 825 * Returns the number of programmable counters actually implemented
 826 * by the cci
 827 */
 828static u32 pmu_get_max_counters(void)
 829{
 830        return (readl_relaxed(cci_ctrl_base + CCI_PMCR) &
 831                CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
 832}
 833
 834static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event)
 835{
 836        struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
 837        unsigned long cci_event = event->hw.config_base;
 838        int idx;
 839
 840        if (cci_pmu->model->get_event_idx)
 841                return cci_pmu->model->get_event_idx(cci_pmu, hw, cci_event);
 842
 843        /* Generic code to find an unused idx from the mask */
 844        for(idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++)
 845                if (!test_and_set_bit(idx, hw->used_mask))
 846                        return idx;
 847
 848        /* No counters available */
 849        return -EAGAIN;
 850}
 851
 852static int pmu_map_event(struct perf_event *event)
 853{
 854        struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
 855
 856        if (event->attr.type < PERF_TYPE_MAX ||
 857                        !cci_pmu->model->validate_hw_event)
 858                return -ENOENT;
 859
 860        return  cci_pmu->model->validate_hw_event(cci_pmu, event->attr.config);
 861}
 862
 863static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
 864{
 865        int i;
 866        struct platform_device *pmu_device = cci_pmu->plat_device;
 867
 868        if (unlikely(!pmu_device))
 869                return -ENODEV;
 870
 871        if (cci_pmu->nr_irqs < 1) {
 872                dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
 873                return -ENODEV;
 874        }
 875
 876        /*
 877         * Register all available CCI PMU interrupts. In the interrupt handler
 878         * we iterate over the counters checking for interrupt source (the
 879         * overflowing counter) and clear it.
 880         *
 881         * This should allow handling of non-unique interrupt for the counters.
 882         */
 883        for (i = 0; i < cci_pmu->nr_irqs; i++) {
 884                int err = request_irq(cci_pmu->irqs[i], handler, IRQF_SHARED,
 885                                "arm-cci-pmu", cci_pmu);
 886                if (err) {
 887                        dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
 888                                cci_pmu->irqs[i]);
 889                        return err;
 890                }
 891
 892                set_bit(i, &cci_pmu->active_irqs);
 893        }
 894
 895        return 0;
 896}
 897
 898static void pmu_free_irq(struct cci_pmu *cci_pmu)
 899{
 900        int i;
 901
 902        for (i = 0; i < cci_pmu->nr_irqs; i++) {
 903                if (!test_and_clear_bit(i, &cci_pmu->active_irqs))
 904                        continue;
 905
 906                free_irq(cci_pmu->irqs[i], cci_pmu);
 907        }
 908}
 909
 910static u32 pmu_read_counter(struct perf_event *event)
 911{
 912        struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
 913        struct hw_perf_event *hw_counter = &event->hw;
 914        int idx = hw_counter->idx;
 915        u32 value;
 916
 917        if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
 918                dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
 919                return 0;
 920        }
 921        value = pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR);
 922
 923        return value;
 924}
 925
 926static void pmu_write_counter(struct cci_pmu *cci_pmu, u32 value, int idx)
 927{
 928        pmu_write_register(cci_pmu, value, idx, CCI_PMU_CNTR);
 929}
 930
 931static void __pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
 932{
 933        int i;
 934        struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events;
 935
 936        for_each_set_bit(i, mask, cci_pmu->num_cntrs) {
 937                struct perf_event *event = cci_hw->events[i];
 938
 939                if (WARN_ON(!event))
 940                        continue;
 941                pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i);
 942        }
 943}
 944
 945static void pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
 946{
 947        if (cci_pmu->model->write_counters)
 948                cci_pmu->model->write_counters(cci_pmu, mask);
 949        else
 950                __pmu_write_counters(cci_pmu, mask);
 951}
 952
 953#ifdef CONFIG_ARM_CCI5xx_PMU
 954
 955/*
 956 * CCI-500/CCI-550 has advanced power saving policies, which could gate the
 957 * clocks to the PMU counters, which makes the writes to them ineffective.
 958 * The only way to write to those counters is when the global counters
 959 * are enabled and the particular counter is enabled.
 960 *
 961 * So we do the following :
 962 *
 963 * 1) Disable all the PMU counters, saving their current state
 964 * 2) Enable the global PMU profiling, now that all counters are
 965 *    disabled.
 966 *
 967 * For each counter to be programmed, repeat steps 3-7:
 968 *
 969 * 3) Write an invalid event code to the event control register for the
 970      counter, so that the counters are not modified.
 971 * 4) Enable the counter control for the counter.
 972 * 5) Set the counter value
 973 * 6) Disable the counter
 974 * 7) Restore the event in the target counter
 975 *
 976 * 8) Disable the global PMU.
 977 * 9) Restore the status of the rest of the counters.
 978 *
 979 * We choose an event which for CCI-5xx is guaranteed not to count.
 980 * We use the highest possible event code (0x1f) for the master interface 0.
 981 */
 982#define CCI5xx_INVALID_EVENT    ((CCI5xx_PORT_M0 << CCI5xx_PMU_EVENT_SOURCE_SHIFT) | \
 983                                 (CCI5xx_PMU_EVENT_CODE_MASK << CCI5xx_PMU_EVENT_CODE_SHIFT))
 984static void cci5xx_pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
 985{
 986        int i;
 987        DECLARE_BITMAP(saved_mask, cci_pmu->num_cntrs);
 988
 989        bitmap_zero(saved_mask, cci_pmu->num_cntrs);
 990        pmu_save_counters(cci_pmu, saved_mask);
 991
 992        /*
 993         * Now that all the counters are disabled, we can safely turn the PMU on,
 994         * without syncing the status of the counters
 995         */
 996        __cci_pmu_enable_nosync(cci_pmu);
 997
 998        for_each_set_bit(i, mask, cci_pmu->num_cntrs) {
 999                struct perf_event *event = cci_pmu->hw_events.events[i];
1000
1001                if (WARN_ON(!event))
1002                        continue;
1003
1004                pmu_set_event(cci_pmu, i, CCI5xx_INVALID_EVENT);
1005                pmu_enable_counter(cci_pmu, i);
1006                pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i);
1007                pmu_disable_counter(cci_pmu, i);
1008                pmu_set_event(cci_pmu, i, event->hw.config_base);
1009        }
1010
1011        __cci_pmu_disable();
1012
1013        pmu_restore_counters(cci_pmu, saved_mask);
1014}
1015
1016#endif  /* CONFIG_ARM_CCI5xx_PMU */
1017
1018static u64 pmu_event_update(struct perf_event *event)
1019{
1020        struct hw_perf_event *hwc = &event->hw;
1021        u64 delta, prev_raw_count, new_raw_count;
1022
1023        do {
1024                prev_raw_count = local64_read(&hwc->prev_count);
1025                new_raw_count = pmu_read_counter(event);
1026        } while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
1027                 new_raw_count) != prev_raw_count);
1028
1029        delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK;
1030
1031        local64_add(delta, &event->count);
1032
1033        return new_raw_count;
1034}
1035
1036static void pmu_read(struct perf_event *event)
1037{
1038        pmu_event_update(event);
1039}
1040
1041static void pmu_event_set_period(struct perf_event *event)
1042{
1043        struct hw_perf_event *hwc = &event->hw;
1044        /*
1045         * The CCI PMU counters have a period of 2^32. To account for the
1046         * possiblity of extreme interrupt latency we program for a period of
1047         * half that. Hopefully we can handle the interrupt before another 2^31
1048         * events occur and the counter overtakes its previous value.
1049         */
1050        u64 val = 1ULL << 31;
1051        local64_set(&hwc->prev_count, val);
1052
1053        /*
1054         * CCI PMU uses PERF_HES_ARCH to keep track of the counters, whose
1055         * values needs to be sync-ed with the s/w state before the PMU is
1056         * enabled.
1057         * Mark this counter for sync.
1058         */
1059        hwc->state |= PERF_HES_ARCH;
1060}
1061
1062static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
1063{
1064        unsigned long flags;
1065        struct cci_pmu *cci_pmu = dev;
1066        struct cci_pmu_hw_events *events = &cci_pmu->hw_events;
1067        int idx, handled = IRQ_NONE;
1068
1069        raw_spin_lock_irqsave(&events->pmu_lock, flags);
1070
1071        /* Disable the PMU while we walk through the counters */
1072        __cci_pmu_disable();
1073        /*
1074         * Iterate over counters and update the corresponding perf events.
1075         * This should work regardless of whether we have per-counter overflow
1076         * interrupt or a combined overflow interrupt.
1077         */
1078        for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
1079                struct perf_event *event = events->events[idx];
1080
1081                if (!event)
1082                        continue;
1083
1084                /* Did this counter overflow? */
1085                if (!(pmu_read_register(cci_pmu, idx, CCI_PMU_OVRFLW) &
1086                      CCI_PMU_OVRFLW_FLAG))
1087                        continue;
1088
1089                pmu_write_register(cci_pmu, CCI_PMU_OVRFLW_FLAG, idx,
1090                                                        CCI_PMU_OVRFLW);
1091
1092                pmu_event_update(event);
1093                pmu_event_set_period(event);
1094                handled = IRQ_HANDLED;
1095        }
1096
1097        /* Enable the PMU and sync possibly overflowed counters */
1098        __cci_pmu_enable_sync(cci_pmu);
1099        raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1100
1101        return IRQ_RETVAL(handled);
1102}
1103
1104static int cci_pmu_get_hw(struct cci_pmu *cci_pmu)
1105{
1106        int ret = pmu_request_irq(cci_pmu, pmu_handle_irq);
1107        if (ret) {
1108                pmu_free_irq(cci_pmu);
1109                return ret;
1110        }
1111        return 0;
1112}
1113
1114static void cci_pmu_put_hw(struct cci_pmu *cci_pmu)
1115{
1116        pmu_free_irq(cci_pmu);
1117}
1118
1119static void hw_perf_event_destroy(struct perf_event *event)
1120{
1121        struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1122        atomic_t *active_events = &cci_pmu->active_events;
1123        struct mutex *reserve_mutex = &cci_pmu->reserve_mutex;
1124
1125        if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) {
1126                cci_pmu_put_hw(cci_pmu);
1127                mutex_unlock(reserve_mutex);
1128        }
1129}
1130
1131static void cci_pmu_enable(struct pmu *pmu)
1132{
1133        struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1134        struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1135        int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_cntrs);
1136        unsigned long flags;
1137
1138        if (!enabled)
1139                return;
1140
1141        raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1142        __cci_pmu_enable_sync(cci_pmu);
1143        raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1144
1145}
1146
1147static void cci_pmu_disable(struct pmu *pmu)
1148{
1149        struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1150        struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1151        unsigned long flags;
1152
1153        raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1154        __cci_pmu_disable();
1155        raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1156}
1157
1158/*
1159 * Check if the idx represents a non-programmable counter.
1160 * All the fixed event counters are mapped before the programmable
1161 * counters.
1162 */
1163static bool pmu_fixed_hw_idx(struct cci_pmu *cci_pmu, int idx)
1164{
1165        return (idx >= 0) && (idx < cci_pmu->model->fixed_hw_cntrs);
1166}
1167
1168static void cci_pmu_start(struct perf_event *event, int pmu_flags)
1169{
1170        struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1171        struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1172        struct hw_perf_event *hwc = &event->hw;
1173        int idx = hwc->idx;
1174        unsigned long flags;
1175
1176        /*
1177         * To handle interrupt latency, we always reprogram the period
1178         * regardlesss of PERF_EF_RELOAD.
1179         */
1180        if (pmu_flags & PERF_EF_RELOAD)
1181                WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
1182
1183        hwc->state = 0;
1184
1185        if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
1186                dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
1187                return;
1188        }
1189
1190        raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1191
1192        /* Configure the counter unless you are counting a fixed event */
1193        if (!pmu_fixed_hw_idx(cci_pmu, idx))
1194                pmu_set_event(cci_pmu, idx, hwc->config_base);
1195
1196        pmu_event_set_period(event);
1197        pmu_enable_counter(cci_pmu, idx);
1198
1199        raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1200}
1201
1202static void cci_pmu_stop(struct perf_event *event, int pmu_flags)
1203{
1204        struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1205        struct hw_perf_event *hwc = &event->hw;
1206        int idx = hwc->idx;
1207
1208        if (hwc->state & PERF_HES_STOPPED)
1209                return;
1210
1211        if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
1212                dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
1213                return;
1214        }
1215
1216        /*
1217         * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
1218         * cci_pmu_start()
1219         */
1220        pmu_disable_counter(cci_pmu, idx);
1221        pmu_event_update(event);
1222        hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1223}
1224
1225static int cci_pmu_add(struct perf_event *event, int flags)
1226{
1227        struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1228        struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1229        struct hw_perf_event *hwc = &event->hw;
1230        int idx;
1231        int err = 0;
1232
1233        perf_pmu_disable(event->pmu);
1234
1235        /* If we don't have a space for the counter then finish early. */
1236        idx = pmu_get_event_idx(hw_events, event);
1237        if (idx < 0) {
1238                err = idx;
1239                goto out;
1240        }
1241
1242        event->hw.idx = idx;
1243        hw_events->events[idx] = event;
1244
1245        hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1246        if (flags & PERF_EF_START)
1247                cci_pmu_start(event, PERF_EF_RELOAD);
1248
1249        /* Propagate our changes to the userspace mapping. */
1250        perf_event_update_userpage(event);
1251
1252out:
1253        perf_pmu_enable(event->pmu);
1254        return err;
1255}
1256
1257static void cci_pmu_del(struct perf_event *event, int flags)
1258{
1259        struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1260        struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1261        struct hw_perf_event *hwc = &event->hw;
1262        int idx = hwc->idx;
1263
1264        cci_pmu_stop(event, PERF_EF_UPDATE);
1265        hw_events->events[idx] = NULL;
1266        clear_bit(idx, hw_events->used_mask);
1267
1268        perf_event_update_userpage(event);
1269}
1270
1271static int
1272validate_event(struct pmu *cci_pmu,
1273               struct cci_pmu_hw_events *hw_events,
1274               struct perf_event *event)
1275{
1276        if (is_software_event(event))
1277                return 1;
1278
1279        /*
1280         * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
1281         * core perf code won't check that the pmu->ctx == leader->ctx
1282         * until after pmu->event_init(event).
1283         */
1284        if (event->pmu != cci_pmu)
1285                return 0;
1286
1287        if (event->state < PERF_EVENT_STATE_OFF)
1288                return 1;
1289
1290        if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
1291                return 1;
1292
1293        return pmu_get_event_idx(hw_events, event) >= 0;
1294}
1295
1296static int
1297validate_group(struct perf_event *event)
1298{
1299        struct perf_event *sibling, *leader = event->group_leader;
1300        struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1301        unsigned long mask[BITS_TO_LONGS(cci_pmu->num_cntrs)];
1302        struct cci_pmu_hw_events fake_pmu = {
1303                /*
1304                 * Initialise the fake PMU. We only need to populate the
1305                 * used_mask for the purposes of validation.
1306                 */
1307                .used_mask = mask,
1308        };
1309        memset(mask, 0, BITS_TO_LONGS(cci_pmu->num_cntrs) * sizeof(unsigned long));
1310
1311        if (!validate_event(event->pmu, &fake_pmu, leader))
1312                return -EINVAL;
1313
1314        list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
1315                if (!validate_event(event->pmu, &fake_pmu, sibling))
1316                        return -EINVAL;
1317        }
1318
1319        if (!validate_event(event->pmu, &fake_pmu, event))
1320                return -EINVAL;
1321
1322        return 0;
1323}
1324
1325static int
1326__hw_perf_event_init(struct perf_event *event)
1327{
1328        struct hw_perf_event *hwc = &event->hw;
1329        int mapping;
1330
1331        mapping = pmu_map_event(event);
1332
1333        if (mapping < 0) {
1334                pr_debug("event %x:%llx not supported\n", event->attr.type,
1335                         event->attr.config);
1336                return mapping;
1337        }
1338
1339        /*
1340         * We don't assign an index until we actually place the event onto
1341         * hardware. Use -1 to signify that we haven't decided where to put it
1342         * yet.
1343         */
1344        hwc->idx                = -1;
1345        hwc->config_base        = 0;
1346        hwc->config             = 0;
1347        hwc->event_base         = 0;
1348
1349        /*
1350         * Store the event encoding into the config_base field.
1351         */
1352        hwc->config_base            |= (unsigned long)mapping;
1353
1354        /*
1355         * Limit the sample_period to half of the counter width. That way, the
1356         * new counter value is far less likely to overtake the previous one
1357         * unless you have some serious IRQ latency issues.
1358         */
1359        hwc->sample_period  = CCI_PMU_CNTR_MASK >> 1;
1360        hwc->last_period    = hwc->sample_period;
1361        local64_set(&hwc->period_left, hwc->sample_period);
1362
1363        if (event->group_leader != event) {
1364                if (validate_group(event) != 0)
1365                        return -EINVAL;
1366        }
1367
1368        return 0;
1369}
1370
1371static int cci_pmu_event_init(struct perf_event *event)
1372{
1373        struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1374        atomic_t *active_events = &cci_pmu->active_events;
1375        int err = 0;
1376        int cpu;
1377
1378        if (event->attr.type != event->pmu->type)
1379                return -ENOENT;
1380
1381        /* Shared by all CPUs, no meaningful state to sample */
1382        if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
1383                return -EOPNOTSUPP;
1384
1385        /* We have no filtering of any kind */
1386        if (event->attr.exclude_user    ||
1387            event->attr.exclude_kernel  ||
1388            event->attr.exclude_hv      ||
1389            event->attr.exclude_idle    ||
1390            event->attr.exclude_host    ||
1391            event->attr.exclude_guest)
1392                return -EINVAL;
1393
1394        /*
1395         * Following the example set by other "uncore" PMUs, we accept any CPU
1396         * and rewrite its affinity dynamically rather than having perf core
1397         * handle cpu == -1 and pid == -1 for this case.
1398         *
1399         * The perf core will pin online CPUs for the duration of this call and
1400         * the event being installed into its context, so the PMU's CPU can't
1401         * change under our feet.
1402         */
1403        cpu = cpumask_first(&cci_pmu->cpus);
1404        if (event->cpu < 0 || cpu < 0)
1405                return -EINVAL;
1406        event->cpu = cpu;
1407
1408        event->destroy = hw_perf_event_destroy;
1409        if (!atomic_inc_not_zero(active_events)) {
1410                mutex_lock(&cci_pmu->reserve_mutex);
1411                if (atomic_read(active_events) == 0)
1412                        err = cci_pmu_get_hw(cci_pmu);
1413                if (!err)
1414                        atomic_inc(active_events);
1415                mutex_unlock(&cci_pmu->reserve_mutex);
1416        }
1417        if (err)
1418                return err;
1419
1420        err = __hw_perf_event_init(event);
1421        if (err)
1422                hw_perf_event_destroy(event);
1423
1424        return err;
1425}
1426
1427static ssize_t pmu_cpumask_attr_show(struct device *dev,
1428                                     struct device_attribute *attr, char *buf)
1429{
1430        struct pmu *pmu = dev_get_drvdata(dev);
1431        struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1432
1433        int n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
1434                          cpumask_pr_args(&cci_pmu->cpus));
1435        buf[n++] = '\n';
1436        buf[n] = '\0';
1437        return n;
1438}
1439
1440static struct device_attribute pmu_cpumask_attr =
1441        __ATTR(cpumask, S_IRUGO, pmu_cpumask_attr_show, NULL);
1442
1443static struct attribute *pmu_attrs[] = {
1444        &pmu_cpumask_attr.attr,
1445        NULL,
1446};
1447
1448static struct attribute_group pmu_attr_group = {
1449        .attrs = pmu_attrs,
1450};
1451
1452static struct attribute_group pmu_format_attr_group = {
1453        .name = "format",
1454        .attrs = NULL,          /* Filled in cci_pmu_init_attrs */
1455};
1456
1457static struct attribute_group pmu_event_attr_group = {
1458        .name = "events",
1459        .attrs = NULL,          /* Filled in cci_pmu_init_attrs */
1460};
1461
1462static const struct attribute_group *pmu_attr_groups[] = {
1463        &pmu_attr_group,
1464        &pmu_format_attr_group,
1465        &pmu_event_attr_group,
1466        NULL
1467};
1468
1469static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
1470{
1471        const struct cci_pmu_model *model = cci_pmu->model;
1472        char *name = model->name;
1473        u32 num_cntrs;
1474
1475        pmu_event_attr_group.attrs = model->event_attrs;
1476        pmu_format_attr_group.attrs = model->format_attrs;
1477
1478        cci_pmu->pmu = (struct pmu) {
1479                .name           = cci_pmu->model->name,
1480                .task_ctx_nr    = perf_invalid_context,
1481                .pmu_enable     = cci_pmu_enable,
1482                .pmu_disable    = cci_pmu_disable,
1483                .event_init     = cci_pmu_event_init,
1484                .add            = cci_pmu_add,
1485                .del            = cci_pmu_del,
1486                .start          = cci_pmu_start,
1487                .stop           = cci_pmu_stop,
1488                .read           = pmu_read,
1489                .attr_groups    = pmu_attr_groups,
1490        };
1491
1492        cci_pmu->plat_device = pdev;
1493        num_cntrs = pmu_get_max_counters();
1494        if (num_cntrs > cci_pmu->model->num_hw_cntrs) {
1495                dev_warn(&pdev->dev,
1496                        "PMU implements more counters(%d) than supported by"
1497                        " the model(%d), truncated.",
1498                        num_cntrs, cci_pmu->model->num_hw_cntrs);
1499                num_cntrs = cci_pmu->model->num_hw_cntrs;
1500        }
1501        cci_pmu->num_cntrs = num_cntrs + cci_pmu->model->fixed_hw_cntrs;
1502
1503        return perf_pmu_register(&cci_pmu->pmu, name, -1);
1504}
1505
1506static int cci_pmu_offline_cpu(unsigned int cpu, struct hlist_node *node)
1507{
1508        struct cci_pmu *cci_pmu = hlist_entry_safe(node, struct cci_pmu, node);
1509        unsigned int target;
1510
1511        if (!cpumask_test_and_clear_cpu(cpu, &cci_pmu->cpus))
1512                return 0;
1513        target = cpumask_any_but(cpu_online_mask, cpu);
1514        if (target >= nr_cpu_ids)
1515                return 0;
1516        /*
1517         * TODO: migrate context once core races on event->ctx have
1518         * been fixed.
1519         */
1520        cpumask_set_cpu(target, &cci_pmu->cpus);
1521        return 0;
1522}
1523
1524static struct cci_pmu_model cci_pmu_models[] = {
1525#ifdef CONFIG_ARM_CCI400_PMU
1526        [CCI400_R0] = {
1527                .name = "CCI_400",
1528                .fixed_hw_cntrs = 1,    /* Cycle counter */
1529                .num_hw_cntrs = 4,
1530                .cntr_size = SZ_4K,
1531                .format_attrs = cci400_pmu_format_attrs,
1532                .event_attrs = cci400_r0_pmu_event_attrs,
1533                .event_ranges = {
1534                        [CCI_IF_SLAVE] = {
1535                                CCI400_R0_SLAVE_PORT_MIN_EV,
1536                                CCI400_R0_SLAVE_PORT_MAX_EV,
1537                        },
1538                        [CCI_IF_MASTER] = {
1539                                CCI400_R0_MASTER_PORT_MIN_EV,
1540                                CCI400_R0_MASTER_PORT_MAX_EV,
1541                        },
1542                },
1543                .validate_hw_event = cci400_validate_hw_event,
1544                .get_event_idx = cci400_get_event_idx,
1545        },
1546        [CCI400_R1] = {
1547                .name = "CCI_400_r1",
1548                .fixed_hw_cntrs = 1,    /* Cycle counter */
1549                .num_hw_cntrs = 4,
1550                .cntr_size = SZ_4K,
1551                .format_attrs = cci400_pmu_format_attrs,
1552                .event_attrs = cci400_r1_pmu_event_attrs,
1553                .event_ranges = {
1554                        [CCI_IF_SLAVE] = {
1555                                CCI400_R1_SLAVE_PORT_MIN_EV,
1556                                CCI400_R1_SLAVE_PORT_MAX_EV,
1557                        },
1558                        [CCI_IF_MASTER] = {
1559                                CCI400_R1_MASTER_PORT_MIN_EV,
1560                                CCI400_R1_MASTER_PORT_MAX_EV,
1561                        },
1562                },
1563                .validate_hw_event = cci400_validate_hw_event,
1564                .get_event_idx = cci400_get_event_idx,
1565        },
1566#endif
1567#ifdef CONFIG_ARM_CCI5xx_PMU
1568        [CCI500_R0] = {
1569                .name = "CCI_500",
1570                .fixed_hw_cntrs = 0,
1571                .num_hw_cntrs = 8,
1572                .cntr_size = SZ_64K,
1573                .format_attrs = cci5xx_pmu_format_attrs,
1574                .event_attrs = cci5xx_pmu_event_attrs,
1575                .event_ranges = {
1576                        [CCI_IF_SLAVE] = {
1577                                CCI5xx_SLAVE_PORT_MIN_EV,
1578                                CCI5xx_SLAVE_PORT_MAX_EV,
1579                        },
1580                        [CCI_IF_MASTER] = {
1581                                CCI5xx_MASTER_PORT_MIN_EV,
1582                                CCI5xx_MASTER_PORT_MAX_EV,
1583                        },
1584                        [CCI_IF_GLOBAL] = {
1585                                CCI5xx_GLOBAL_PORT_MIN_EV,
1586                                CCI5xx_GLOBAL_PORT_MAX_EV,
1587                        },
1588                },
1589                .validate_hw_event = cci500_validate_hw_event,
1590                .write_counters = cci5xx_pmu_write_counters,
1591        },
1592        [CCI550_R0] = {
1593                .name = "CCI_550",
1594                .fixed_hw_cntrs = 0,
1595                .num_hw_cntrs = 8,
1596                .cntr_size = SZ_64K,
1597                .format_attrs = cci5xx_pmu_format_attrs,
1598                .event_attrs = cci5xx_pmu_event_attrs,
1599                .event_ranges = {
1600                        [CCI_IF_SLAVE] = {
1601                                CCI5xx_SLAVE_PORT_MIN_EV,
1602                                CCI5xx_SLAVE_PORT_MAX_EV,
1603                        },
1604                        [CCI_IF_MASTER] = {
1605                                CCI5xx_MASTER_PORT_MIN_EV,
1606                                CCI5xx_MASTER_PORT_MAX_EV,
1607                        },
1608                        [CCI_IF_GLOBAL] = {
1609                                CCI5xx_GLOBAL_PORT_MIN_EV,
1610                                CCI5xx_GLOBAL_PORT_MAX_EV,
1611                        },
1612                },
1613                .validate_hw_event = cci550_validate_hw_event,
1614                .write_counters = cci5xx_pmu_write_counters,
1615        },
1616#endif
1617};
1618
1619static const struct of_device_id arm_cci_pmu_matches[] = {
1620#ifdef CONFIG_ARM_CCI400_PMU
1621        {
1622                .compatible = "arm,cci-400-pmu",
1623                .data   = NULL,
1624        },
1625        {
1626                .compatible = "arm,cci-400-pmu,r0",
1627                .data   = &cci_pmu_models[CCI400_R0],
1628        },
1629        {
1630                .compatible = "arm,cci-400-pmu,r1",
1631                .data   = &cci_pmu_models[CCI400_R1],
1632        },
1633#endif
1634#ifdef CONFIG_ARM_CCI5xx_PMU
1635        {
1636                .compatible = "arm,cci-500-pmu,r0",
1637                .data = &cci_pmu_models[CCI500_R0],
1638        },
1639        {
1640                .compatible = "arm,cci-550-pmu,r0",
1641                .data = &cci_pmu_models[CCI550_R0],
1642        },
1643#endif
1644        {},
1645};
1646
1647static inline const struct cci_pmu_model *get_cci_model(struct platform_device *pdev)
1648{
1649        const struct of_device_id *match = of_match_node(arm_cci_pmu_matches,
1650                                                        pdev->dev.of_node);
1651        if (!match)
1652                return NULL;
1653        if (match->data)
1654                return match->data;
1655
1656        dev_warn(&pdev->dev, "DEPRECATED compatible property,"
1657                         "requires secure access to CCI registers");
1658        return probe_cci_model(pdev);
1659}
1660
1661static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
1662{
1663        int i;
1664
1665        for (i = 0; i < nr_irqs; i++)
1666                if (irq == irqs[i])
1667                        return true;
1668
1669        return false;
1670}
1671
1672static struct cci_pmu *cci_pmu_alloc(struct platform_device *pdev)
1673{
1674        struct cci_pmu *cci_pmu;
1675        const struct cci_pmu_model *model;
1676
1677        /*
1678         * All allocations are devm_* hence we don't have to free
1679         * them explicitly on an error, as it would end up in driver
1680         * detach.
1681         */
1682        model = get_cci_model(pdev);
1683        if (!model) {
1684                dev_warn(&pdev->dev, "CCI PMU version not supported\n");
1685                return ERR_PTR(-ENODEV);
1686        }
1687
1688        cci_pmu = devm_kzalloc(&pdev->dev, sizeof(*cci_pmu), GFP_KERNEL);
1689        if (!cci_pmu)
1690                return ERR_PTR(-ENOMEM);
1691
1692        cci_pmu->model = model;
1693        cci_pmu->irqs = devm_kcalloc(&pdev->dev, CCI_PMU_MAX_HW_CNTRS(model),
1694                                        sizeof(*cci_pmu->irqs), GFP_KERNEL);
1695        if (!cci_pmu->irqs)
1696                return ERR_PTR(-ENOMEM);
1697        cci_pmu->hw_events.events = devm_kcalloc(&pdev->dev,
1698                                             CCI_PMU_MAX_HW_CNTRS(model),
1699                                             sizeof(*cci_pmu->hw_events.events),
1700                                             GFP_KERNEL);
1701        if (!cci_pmu->hw_events.events)
1702                return ERR_PTR(-ENOMEM);
1703        cci_pmu->hw_events.used_mask = devm_kcalloc(&pdev->dev,
1704                                                BITS_TO_LONGS(CCI_PMU_MAX_HW_CNTRS(model)),
1705                                                sizeof(*cci_pmu->hw_events.used_mask),
1706                                                GFP_KERNEL);
1707        if (!cci_pmu->hw_events.used_mask)
1708                return ERR_PTR(-ENOMEM);
1709
1710        return cci_pmu;
1711}
1712
1713
1714static int cci_pmu_probe(struct platform_device *pdev)
1715{
1716        struct resource *res;
1717        struct cci_pmu *cci_pmu;
1718        int i, ret, irq;
1719
1720        cci_pmu = cci_pmu_alloc(pdev);
1721        if (IS_ERR(cci_pmu))
1722                return PTR_ERR(cci_pmu);
1723
1724        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1725        cci_pmu->base = devm_ioremap_resource(&pdev->dev, res);
1726        if (IS_ERR(cci_pmu->base))
1727                return -ENOMEM;
1728
1729        /*
1730         * CCI PMU has one overflow interrupt per counter; but some may be tied
1731         * together to a common interrupt.
1732         */
1733        cci_pmu->nr_irqs = 0;
1734        for (i = 0; i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model); i++) {
1735                irq = platform_get_irq(pdev, i);
1736                if (irq < 0)
1737                        break;
1738
1739                if (is_duplicate_irq(irq, cci_pmu->irqs, cci_pmu->nr_irqs))
1740                        continue;
1741
1742                cci_pmu->irqs[cci_pmu->nr_irqs++] = irq;
1743        }
1744
1745        /*
1746         * Ensure that the device tree has as many interrupts as the number
1747         * of counters.
1748         */
1749        if (i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model)) {
1750                dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
1751                        i, CCI_PMU_MAX_HW_CNTRS(cci_pmu->model));
1752                return -EINVAL;
1753        }
1754
1755        raw_spin_lock_init(&cci_pmu->hw_events.pmu_lock);
1756        mutex_init(&cci_pmu->reserve_mutex);
1757        atomic_set(&cci_pmu->active_events, 0);
1758        cpumask_set_cpu(smp_processor_id(), &cci_pmu->cpus);
1759
1760        ret = cci_pmu_init(cci_pmu, pdev);
1761        if (ret)
1762                return ret;
1763
1764        cpuhp_state_add_instance_nocalls(CPUHP_AP_PERF_ARM_CCI_ONLINE,
1765                                         &cci_pmu->node);
1766        pr_info("ARM %s PMU driver probed", cci_pmu->model->name);
1767        return 0;
1768}
1769
1770static int cci_platform_probe(struct platform_device *pdev)
1771{
1772        if (!cci_probed())
1773                return -ENODEV;
1774
1775        return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
1776}
1777
1778static struct platform_driver cci_pmu_driver = {
1779        .driver = {
1780                   .name = DRIVER_NAME_PMU,
1781                   .of_match_table = arm_cci_pmu_matches,
1782                  },
1783        .probe = cci_pmu_probe,
1784};
1785
1786static struct platform_driver cci_platform_driver = {
1787        .driver = {
1788                   .name = DRIVER_NAME,
1789                   .of_match_table = arm_cci_matches,
1790                  },
1791        .probe = cci_platform_probe,
1792};
1793
1794static int __init cci_platform_init(void)
1795{
1796        int ret;
1797
1798        ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_CCI_ONLINE,
1799                                      "perf/arm/cci:online", NULL,
1800                                      cci_pmu_offline_cpu);
1801        if (ret)
1802                return ret;
1803
1804        ret = platform_driver_register(&cci_pmu_driver);
1805        if (ret)
1806                return ret;
1807
1808        return platform_driver_register(&cci_platform_driver);
1809}
1810
1811#else /* !CONFIG_ARM_CCI_PMU */
1812
1813static int __init cci_platform_init(void)
1814{
1815        return 0;
1816}
1817
1818#endif /* CONFIG_ARM_CCI_PMU */
1819
1820#ifdef CONFIG_ARM_CCI400_PORT_CTRL
1821
1822#define CCI_PORT_CTRL           0x0
1823#define CCI_CTRL_STATUS         0xc
1824
1825#define CCI_ENABLE_SNOOP_REQ    0x1
1826#define CCI_ENABLE_DVM_REQ      0x2
1827#define CCI_ENABLE_REQ          (CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)
1828
1829enum cci_ace_port_type {
1830        ACE_INVALID_PORT = 0x0,
1831        ACE_PORT,
1832        ACE_LITE_PORT,
1833};
1834
1835struct cci_ace_port {
1836        void __iomem *base;
1837        unsigned long phys;
1838        enum cci_ace_port_type type;
1839        struct device_node *dn;
1840};
1841
1842static struct cci_ace_port *ports;
1843static unsigned int nb_cci_ports;
1844
1845struct cpu_port {
1846        u64 mpidr;
1847        u32 port;
1848};
1849
1850/*
1851 * Use the port MSB as valid flag, shift can be made dynamic
1852 * by computing number of bits required for port indexes.
1853 * Code disabling CCI cpu ports runs with D-cache invalidated
1854 * and SCTLR bit clear so data accesses must be kept to a minimum
1855 * to improve performance; for now shift is left static to
1856 * avoid one more data access while disabling the CCI port.
1857 */
1858#define PORT_VALID_SHIFT        31
1859#define PORT_VALID              (0x1 << PORT_VALID_SHIFT)
1860
1861static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr)
1862{
1863        port->port = PORT_VALID | index;
1864        port->mpidr = mpidr;
1865}
1866
1867static inline bool cpu_port_is_valid(struct cpu_port *port)
1868{
1869        return !!(port->port & PORT_VALID);
1870}
1871
1872static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr)
1873{
1874        return port->mpidr == (mpidr & MPIDR_HWID_BITMASK);
1875}
1876
1877static struct cpu_port cpu_port[NR_CPUS];
1878
1879/**
1880 * __cci_ace_get_port - Function to retrieve the port index connected to
1881 *                      a cpu or device.
1882 *
1883 * @dn: device node of the device to look-up
1884 * @type: port type
1885 *
1886 * Return value:
1887 *      - CCI port index if success
1888 *      - -ENODEV if failure
1889 */
1890static int __cci_ace_get_port(struct device_node *dn, int type)
1891{
1892        int i;
1893        bool ace_match;
1894        struct device_node *cci_portn;
1895
1896        cci_portn = of_parse_phandle(dn, "cci-control-port", 0);
1897        for (i = 0; i < nb_cci_ports; i++) {
1898                ace_match = ports[i].type == type;
1899                if (ace_match && cci_portn == ports[i].dn)
1900                        return i;
1901        }
1902        return -ENODEV;
1903}
1904
1905int cci_ace_get_port(struct device_node *dn)
1906{
1907        return __cci_ace_get_port(dn, ACE_LITE_PORT);
1908}
1909EXPORT_SYMBOL_GPL(cci_ace_get_port);
1910
1911static void cci_ace_init_ports(void)
1912{
1913        int port, cpu;
1914        struct device_node *cpun;
1915
1916        /*
1917         * Port index look-up speeds up the function disabling ports by CPU,
1918         * since the logical to port index mapping is done once and does
1919         * not change after system boot.
1920         * The stashed index array is initialized for all possible CPUs
1921         * at probe time.
1922         */
1923        for_each_possible_cpu(cpu) {
1924                /* too early to use cpu->of_node */
1925                cpun = of_get_cpu_node(cpu, NULL);
1926
1927                if (WARN(!cpun, "Missing cpu device node\n"))
1928                        continue;
1929
1930                port = __cci_ace_get_port(cpun, ACE_PORT);
1931                if (port < 0)
1932                        continue;
1933
1934                init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu));
1935        }
1936
1937        for_each_possible_cpu(cpu) {
1938                WARN(!cpu_port_is_valid(&cpu_port[cpu]),
1939                        "CPU %u does not have an associated CCI port\n",
1940                        cpu);
1941        }
1942}
1943/*
1944 * Functions to enable/disable a CCI interconnect slave port
1945 *
1946 * They are called by low-level power management code to disable slave
1947 * interfaces snoops and DVM broadcast.
1948 * Since they may execute with cache data allocation disabled and
1949 * after the caches have been cleaned and invalidated the functions provide
1950 * no explicit locking since they may run with D-cache disabled, so normal
1951 * cacheable kernel locks based on ldrex/strex may not work.
1952 * Locking has to be provided by BSP implementations to ensure proper
1953 * operations.
1954 */
1955
1956/**
1957 * cci_port_control() - function to control a CCI port
1958 *
1959 * @port: index of the port to setup
1960 * @enable: if true enables the port, if false disables it
1961 */
1962static void notrace cci_port_control(unsigned int port, bool enable)
1963{
1964        void __iomem *base = ports[port].base;
1965
1966        writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL);
1967        /*
1968         * This function is called from power down procedures
1969         * and must not execute any instruction that might
1970         * cause the processor to be put in a quiescent state
1971         * (eg wfi). Hence, cpu_relax() can not be added to this
1972         * read loop to optimize power, since it might hide possibly
1973         * disruptive operations.
1974         */
1975        while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1)
1976                        ;
1977}
1978
1979/**
1980 * cci_disable_port_by_cpu() - function to disable a CCI port by CPU
1981 *                             reference
1982 *
1983 * @mpidr: mpidr of the CPU whose CCI port should be disabled
1984 *
1985 * Disabling a CCI port for a CPU implies disabling the CCI port
1986 * controlling that CPU cluster. Code disabling CPU CCI ports
1987 * must make sure that the CPU running the code is the last active CPU
1988 * in the cluster ie all other CPUs are quiescent in a low power state.
1989 *
1990 * Return:
1991 *      0 on success
1992 *      -ENODEV on port look-up failure
1993 */
1994int notrace cci_disable_port_by_cpu(u64 mpidr)
1995{
1996        int cpu;
1997        bool is_valid;
1998        for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1999                is_valid = cpu_port_is_valid(&cpu_port[cpu]);
2000                if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) {
2001                        cci_port_control(cpu_port[cpu].port, false);
2002                        return 0;
2003                }
2004        }
2005        return -ENODEV;
2006}
2007EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu);
2008
2009/**
2010 * cci_enable_port_for_self() - enable a CCI port for calling CPU
2011 *
2012 * Enabling a CCI port for the calling CPU implies enabling the CCI
2013 * port controlling that CPU's cluster. Caller must make sure that the
2014 * CPU running the code is the first active CPU in the cluster and all
2015 * other CPUs are quiescent in a low power state  or waiting for this CPU
2016 * to complete the CCI initialization.
2017 *
2018 * Because this is called when the MMU is still off and with no stack,
2019 * the code must be position independent and ideally rely on callee
2020 * clobbered registers only.  To achieve this we must code this function
2021 * entirely in assembler.
2022 *
2023 * On success this returns with the proper CCI port enabled.  In case of
2024 * any failure this never returns as the inability to enable the CCI is
2025 * fatal and there is no possible recovery at this stage.
2026 */
2027asmlinkage void __naked cci_enable_port_for_self(void)
2028{
2029        asm volatile ("\n"
2030"       .arch armv7-a\n"
2031"       mrc     p15, 0, r0, c0, c0, 5   @ get MPIDR value \n"
2032"       and     r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n"
2033"       adr     r1, 5f \n"
2034"       ldr     r2, [r1] \n"
2035"       add     r1, r1, r2              @ &cpu_port \n"
2036"       add     ip, r1, %[sizeof_cpu_port] \n"
2037
2038        /* Loop over the cpu_port array looking for a matching MPIDR */
2039"1:     ldr     r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
2040"       cmp     r2, r0                  @ compare MPIDR \n"
2041"       bne     2f \n"
2042
2043        /* Found a match, now test port validity */
2044"       ldr     r3, [r1, %[offsetof_cpu_port_port]] \n"
2045"       tst     r3, #"__stringify(PORT_VALID)" \n"
2046"       bne     3f \n"
2047
2048        /* no match, loop with the next cpu_port entry */
2049"2:     add     r1, r1, %[sizeof_struct_cpu_port] \n"
2050"       cmp     r1, ip                  @ done? \n"
2051"       blo     1b \n"
2052
2053        /* CCI port not found -- cheaply try to stall this CPU */
2054"cci_port_not_found: \n"
2055"       wfi \n"
2056"       wfe \n"
2057"       b       cci_port_not_found \n"
2058
2059        /* Use matched port index to look up the corresponding ports entry */
2060"3:     bic     r3, r3, #"__stringify(PORT_VALID)" \n"
2061"       adr     r0, 6f \n"
2062"       ldmia   r0, {r1, r2} \n"
2063"       sub     r1, r1, r0              @ virt - phys \n"
2064"       ldr     r0, [r0, r2]            @ *(&ports) \n"
2065"       mov     r2, %[sizeof_struct_ace_port] \n"
2066"       mla     r0, r2, r3, r0          @ &ports[index] \n"
2067"       sub     r0, r0, r1              @ virt_to_phys() \n"
2068
2069        /* Enable the CCI port */
2070"       ldr     r0, [r0, %[offsetof_port_phys]] \n"
2071"       mov     r3, %[cci_enable_req]\n"                   
2072"       str     r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n"
2073
2074        /* poll the status reg for completion */
2075"       adr     r1, 7f \n"
2076"       ldr     r0, [r1] \n"
2077"       ldr     r0, [r0, r1]            @ cci_ctrl_base \n"
2078"4:     ldr     r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n"
2079"       tst     r1, %[cci_control_status_bits] \n"                      
2080"       bne     4b \n"
2081
2082"       mov     r0, #0 \n"
2083"       bx      lr \n"
2084
2085"       .align  2 \n"
2086"5:     .word   cpu_port - . \n"
2087"6:     .word   . \n"
2088"       .word   ports - 6b \n"
2089"7:     .word   cci_ctrl_phys - . \n"
2090        : :
2091        [sizeof_cpu_port] "i" (sizeof(cpu_port)),
2092        [cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ),
2093        [cci_control_status_bits] "i" cpu_to_le32(1),
2094#ifndef __ARMEB__
2095        [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)),
2096#else
2097        [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4),
2098#endif
2099        [offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)),
2100        [sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)),
2101        [sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)),
2102        [offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) );
2103
2104        unreachable();
2105}
2106
2107/**
2108 * __cci_control_port_by_device() - function to control a CCI port by device
2109 *                                  reference
2110 *
2111 * @dn: device node pointer of the device whose CCI port should be
2112 *      controlled
2113 * @enable: if true enables the port, if false disables it
2114 *
2115 * Return:
2116 *      0 on success
2117 *      -ENODEV on port look-up failure
2118 */
2119int notrace __cci_control_port_by_device(struct device_node *dn, bool enable)
2120{
2121        int port;
2122
2123        if (!dn)
2124                return -ENODEV;
2125
2126        port = __cci_ace_get_port(dn, ACE_LITE_PORT);
2127        if (WARN_ONCE(port < 0, "node %pOF ACE lite port look-up failure\n",
2128                                dn))
2129                return -ENODEV;
2130        cci_port_control(port, enable);
2131        return 0;
2132}
2133EXPORT_SYMBOL_GPL(__cci_control_port_by_device);
2134
2135/**
2136 * __cci_control_port_by_index() - function to control a CCI port by port index
2137 *
2138 * @port: port index previously retrieved with cci_ace_get_port()
2139 * @enable: if true enables the port, if false disables it
2140 *
2141 * Return:
2142 *      0 on success
2143 *      -ENODEV on port index out of range
2144 *      -EPERM if operation carried out on an ACE PORT
2145 */
2146int notrace __cci_control_port_by_index(u32 port, bool enable)
2147{
2148        if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT)
2149                return -ENODEV;
2150        /*
2151         * CCI control for ports connected to CPUS is extremely fragile
2152         * and must be made to go through a specific and controlled
2153         * interface (ie cci_disable_port_by_cpu(); control by general purpose
2154         * indexing is therefore disabled for ACE ports.
2155         */
2156        if (ports[port].type == ACE_PORT)
2157                return -EPERM;
2158
2159        cci_port_control(port, enable);
2160        return 0;
2161}
2162EXPORT_SYMBOL_GPL(__cci_control_port_by_index);
2163
2164static const struct of_device_id arm_cci_ctrl_if_matches[] = {
2165        {.compatible = "arm,cci-400-ctrl-if", },
2166        {},
2167};
2168
2169static int cci_probe_ports(struct device_node *np)
2170{
2171        struct cci_nb_ports const *cci_config;
2172        int ret, i, nb_ace = 0, nb_ace_lite = 0;
2173        struct device_node *cp;
2174        struct resource res;
2175        const char *match_str;
2176        bool is_ace;
2177
2178
2179        cci_config = of_match_node(arm_cci_matches, np)->data;
2180        if (!cci_config)
2181                return -ENODEV;
2182
2183        nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite;
2184
2185        ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL);
2186        if (!ports)
2187                return -ENOMEM;
2188
2189        for_each_child_of_node(np, cp) {
2190                if (!of_match_node(arm_cci_ctrl_if_matches, cp))
2191                        continue;
2192
2193                if (!of_device_is_available(cp))
2194                        continue;
2195
2196                i = nb_ace + nb_ace_lite;
2197
2198                if (i >= nb_cci_ports)
2199                        break;
2200
2201                if (of_property_read_string(cp, "interface-type",
2202                                        &match_str)) {
2203                        WARN(1, "node %pOF missing interface-type property\n",
2204                                  cp);
2205                        continue;
2206                }
2207                is_ace = strcmp(match_str, "ace") == 0;
2208                if (!is_ace && strcmp(match_str, "ace-lite")) {
2209                        WARN(1, "node %pOF containing invalid interface-type property, skipping it\n",
2210                                        cp);
2211                        continue;
2212                }
2213
2214                ret = of_address_to_resource(cp, 0, &res);
2215                if (!ret) {
2216                        ports[i].base = ioremap(res.start, resource_size(&res));
2217                        ports[i].phys = res.start;
2218                }
2219                if (ret || !ports[i].base) {
2220                        WARN(1, "unable to ioremap CCI port %d\n", i);
2221                        continue;
2222                }
2223
2224                if (is_ace) {
2225                        if (WARN_ON(nb_ace >= cci_config->nb_ace))
2226                                continue;
2227                        ports[i].type = ACE_PORT;
2228                        ++nb_ace;
2229                } else {
2230                        if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite))
2231                                continue;
2232                        ports[i].type = ACE_LITE_PORT;
2233                        ++nb_ace_lite;
2234                }
2235                ports[i].dn = cp;
2236        }
2237
2238        /*
2239         * If there is no CCI port that is under kernel control
2240         * return early and report probe status.
2241         */
2242        if (!nb_ace && !nb_ace_lite)
2243                return -ENODEV;
2244
2245         /* initialize a stashed array of ACE ports to speed-up look-up */
2246        cci_ace_init_ports();
2247
2248        /*
2249         * Multi-cluster systems may need this data when non-coherent, during
2250         * cluster power-up/power-down. Make sure it reaches main memory.
2251         */
2252        sync_cache_w(&cci_ctrl_base);
2253        sync_cache_w(&cci_ctrl_phys);
2254        sync_cache_w(&ports);
2255        sync_cache_w(&cpu_port);
2256        __sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports);
2257        pr_info("ARM CCI driver probed\n");
2258
2259        return 0;
2260}
2261#else /* !CONFIG_ARM_CCI400_PORT_CTRL */
2262static inline int cci_probe_ports(struct device_node *np)
2263{
2264        return 0;
2265}
2266#endif /* CONFIG_ARM_CCI400_PORT_CTRL */
2267
2268static int cci_probe(void)
2269{
2270        int ret;
2271        struct device_node *np;
2272        struct resource res;
2273
2274        np = of_find_matching_node(NULL, arm_cci_matches);
2275        if(!np || !of_device_is_available(np))
2276                return -ENODEV;
2277
2278        ret = of_address_to_resource(np, 0, &res);
2279        if (!ret) {
2280                cci_ctrl_base = ioremap(res.start, resource_size(&res));
2281                cci_ctrl_phys = res.start;
2282        }
2283        if (ret || !cci_ctrl_base) {
2284                WARN(1, "unable to ioremap CCI ctrl\n");
2285                return -ENXIO;
2286        }
2287
2288        return cci_probe_ports(np);
2289}
2290
2291static int cci_init_status = -EAGAIN;
2292static DEFINE_MUTEX(cci_probing);
2293
2294static int cci_init(void)
2295{
2296        if (cci_init_status != -EAGAIN)
2297                return cci_init_status;
2298
2299        mutex_lock(&cci_probing);
2300        if (cci_init_status == -EAGAIN)
2301                cci_init_status = cci_probe();
2302        mutex_unlock(&cci_probing);
2303        return cci_init_status;
2304}
2305
2306/*
2307 * To sort out early init calls ordering a helper function is provided to
2308 * check if the CCI driver has beed initialized. Function check if the driver
2309 * has been initialized, if not it calls the init function that probes
2310 * the driver and updates the return value.
2311 */
2312bool cci_probed(void)
2313{
2314        return cci_init() == 0;
2315}
2316EXPORT_SYMBOL_GPL(cci_probed);
2317
2318early_initcall(cci_init);
2319core_initcall(cci_platform_init);
2320MODULE_LICENSE("GPL");
2321MODULE_DESCRIPTION("ARM CCI support");
2322