linux/drivers/cpufreq/cpufreq.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/cpufreq/cpufreq.c
   3 *
   4 *  Copyright (C) 2001 Russell King
   5 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
   6 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
   7 *
   8 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
   9 *      Added handling for CPU hotplug
  10 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
  11 *      Fix handling for CPU hotplug -- affected CPUs
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/cpu.h>
  21#include <linux/cpufreq.h>
  22#include <linux/delay.h>
  23#include <linux/device.h>
  24#include <linux/init.h>
  25#include <linux/kernel_stat.h>
  26#include <linux/module.h>
  27#include <linux/mutex.h>
  28#include <linux/slab.h>
  29#include <linux/suspend.h>
  30#include <linux/syscore_ops.h>
  31#include <linux/tick.h>
  32#include <trace/events/power.h>
  33
  34static LIST_HEAD(cpufreq_policy_list);
  35
  36static inline bool policy_is_inactive(struct cpufreq_policy *policy)
  37{
  38        return cpumask_empty(policy->cpus);
  39}
  40
  41/* Macros to iterate over CPU policies */
  42#define for_each_suitable_policy(__policy, __active)                     \
  43        list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
  44                if ((__active) == !policy_is_inactive(__policy))
  45
  46#define for_each_active_policy(__policy)                \
  47        for_each_suitable_policy(__policy, true)
  48#define for_each_inactive_policy(__policy)              \
  49        for_each_suitable_policy(__policy, false)
  50
  51#define for_each_policy(__policy)                       \
  52        list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
  53
  54/* Iterate over governors */
  55static LIST_HEAD(cpufreq_governor_list);
  56#define for_each_governor(__governor)                           \
  57        list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
  58
  59/**
  60 * The "cpufreq driver" - the arch- or hardware-dependent low
  61 * level driver of CPUFreq support, and its spinlock. This lock
  62 * also protects the cpufreq_cpu_data array.
  63 */
  64static struct cpufreq_driver *cpufreq_driver;
  65static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
  66static DEFINE_RWLOCK(cpufreq_driver_lock);
  67
  68/* Flag to suspend/resume CPUFreq governors */
  69static bool cpufreq_suspended;
  70
  71static inline bool has_target(void)
  72{
  73        return cpufreq_driver->target_index || cpufreq_driver->target;
  74}
  75
  76/* internal prototypes */
  77static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
  78static int cpufreq_init_governor(struct cpufreq_policy *policy);
  79static void cpufreq_exit_governor(struct cpufreq_policy *policy);
  80static int cpufreq_start_governor(struct cpufreq_policy *policy);
  81static void cpufreq_stop_governor(struct cpufreq_policy *policy);
  82static void cpufreq_governor_limits(struct cpufreq_policy *policy);
  83
  84/**
  85 * Two notifier lists: the "policy" list is involved in the
  86 * validation process for a new CPU frequency policy; the
  87 * "transition" list for kernel code that needs to handle
  88 * changes to devices when the CPU clock speed changes.
  89 * The mutex locks both lists.
  90 */
  91static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
  92static struct srcu_notifier_head cpufreq_transition_notifier_list;
  93
  94static bool init_cpufreq_transition_notifier_list_called;
  95static int __init init_cpufreq_transition_notifier_list(void)
  96{
  97        srcu_init_notifier_head(&cpufreq_transition_notifier_list);
  98        init_cpufreq_transition_notifier_list_called = true;
  99        return 0;
 100}
 101pure_initcall(init_cpufreq_transition_notifier_list);
 102
 103static int off __read_mostly;
 104static int cpufreq_disabled(void)
 105{
 106        return off;
 107}
 108void disable_cpufreq(void)
 109{
 110        off = 1;
 111}
 112static DEFINE_MUTEX(cpufreq_governor_mutex);
 113
 114bool have_governor_per_policy(void)
 115{
 116        return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
 117}
 118EXPORT_SYMBOL_GPL(have_governor_per_policy);
 119
 120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
 121{
 122        if (have_governor_per_policy())
 123                return &policy->kobj;
 124        else
 125                return cpufreq_global_kobject;
 126}
 127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
 128
 129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
 130{
 131        u64 idle_time;
 132        u64 cur_wall_time;
 133        u64 busy_time;
 134
 135        cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
 136
 137        busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
 138        busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
 139        busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
 140        busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
 141        busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
 142        busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
 143
 144        idle_time = cur_wall_time - busy_time;
 145        if (wall)
 146                *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
 147
 148        return div_u64(idle_time, NSEC_PER_USEC);
 149}
 150
 151u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
 152{
 153        u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
 154
 155        if (idle_time == -1ULL)
 156                return get_cpu_idle_time_jiffy(cpu, wall);
 157        else if (!io_busy)
 158                idle_time += get_cpu_iowait_time_us(cpu, wall);
 159
 160        return idle_time;
 161}
 162EXPORT_SYMBOL_GPL(get_cpu_idle_time);
 163
 164/*
 165 * This is a generic cpufreq init() routine which can be used by cpufreq
 166 * drivers of SMP systems. It will do following:
 167 * - validate & show freq table passed
 168 * - set policies transition latency
 169 * - policy->cpus with all possible CPUs
 170 */
 171int cpufreq_generic_init(struct cpufreq_policy *policy,
 172                struct cpufreq_frequency_table *table,
 173                unsigned int transition_latency)
 174{
 175        int ret;
 176
 177        ret = cpufreq_table_validate_and_show(policy, table);
 178        if (ret) {
 179                pr_err("%s: invalid frequency table: %d\n", __func__, ret);
 180                return ret;
 181        }
 182
 183        policy->cpuinfo.transition_latency = transition_latency;
 184
 185        /*
 186         * The driver only supports the SMP configuration where all processors
 187         * share the clock and voltage and clock.
 188         */
 189        cpumask_setall(policy->cpus);
 190
 191        return 0;
 192}
 193EXPORT_SYMBOL_GPL(cpufreq_generic_init);
 194
 195struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
 196{
 197        struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
 198
 199        return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
 200}
 201EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
 202
 203unsigned int cpufreq_generic_get(unsigned int cpu)
 204{
 205        struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
 206
 207        if (!policy || IS_ERR(policy->clk)) {
 208                pr_err("%s: No %s associated to cpu: %d\n",
 209                       __func__, policy ? "clk" : "policy", cpu);
 210                return 0;
 211        }
 212
 213        return clk_get_rate(policy->clk) / 1000;
 214}
 215EXPORT_SYMBOL_GPL(cpufreq_generic_get);
 216
 217/**
 218 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
 219 *
 220 * @cpu: cpu to find policy for.
 221 *
 222 * This returns policy for 'cpu', returns NULL if it doesn't exist.
 223 * It also increments the kobject reference count to mark it busy and so would
 224 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
 225 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
 226 * freed as that depends on the kobj count.
 227 *
 228 * Return: A valid policy on success, otherwise NULL on failure.
 229 */
 230struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
 231{
 232        struct cpufreq_policy *policy = NULL;
 233        unsigned long flags;
 234
 235        if (WARN_ON(cpu >= nr_cpu_ids))
 236                return NULL;
 237
 238        /* get the cpufreq driver */
 239        read_lock_irqsave(&cpufreq_driver_lock, flags);
 240
 241        if (cpufreq_driver) {
 242                /* get the CPU */
 243                policy = cpufreq_cpu_get_raw(cpu);
 244                if (policy)
 245                        kobject_get(&policy->kobj);
 246        }
 247
 248        read_unlock_irqrestore(&cpufreq_driver_lock, flags);
 249
 250        return policy;
 251}
 252EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
 253
 254/**
 255 * cpufreq_cpu_put: Decrements the usage count of a policy
 256 *
 257 * @policy: policy earlier returned by cpufreq_cpu_get().
 258 *
 259 * This decrements the kobject reference count incremented earlier by calling
 260 * cpufreq_cpu_get().
 261 */
 262void cpufreq_cpu_put(struct cpufreq_policy *policy)
 263{
 264        kobject_put(&policy->kobj);
 265}
 266EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
 267
 268/*********************************************************************
 269 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
 270 *********************************************************************/
 271
 272/**
 273 * adjust_jiffies - adjust the system "loops_per_jiffy"
 274 *
 275 * This function alters the system "loops_per_jiffy" for the clock
 276 * speed change. Note that loops_per_jiffy cannot be updated on SMP
 277 * systems as each CPU might be scaled differently. So, use the arch
 278 * per-CPU loops_per_jiffy value wherever possible.
 279 */
 280static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
 281{
 282#ifndef CONFIG_SMP
 283        static unsigned long l_p_j_ref;
 284        static unsigned int l_p_j_ref_freq;
 285
 286        if (ci->flags & CPUFREQ_CONST_LOOPS)
 287                return;
 288
 289        if (!l_p_j_ref_freq) {
 290                l_p_j_ref = loops_per_jiffy;
 291                l_p_j_ref_freq = ci->old;
 292                pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
 293                         l_p_j_ref, l_p_j_ref_freq);
 294        }
 295        if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
 296                loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
 297                                                                ci->new);
 298                pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
 299                         loops_per_jiffy, ci->new);
 300        }
 301#endif
 302}
 303
 304static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
 305                struct cpufreq_freqs *freqs, unsigned int state)
 306{
 307        BUG_ON(irqs_disabled());
 308
 309        if (cpufreq_disabled())
 310                return;
 311
 312        freqs->flags = cpufreq_driver->flags;
 313        pr_debug("notification %u of frequency transition to %u kHz\n",
 314                 state, freqs->new);
 315
 316        switch (state) {
 317
 318        case CPUFREQ_PRECHANGE:
 319                /* detect if the driver reported a value as "old frequency"
 320                 * which is not equal to what the cpufreq core thinks is
 321                 * "old frequency".
 322                 */
 323                if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
 324                        if ((policy) && (policy->cpu == freqs->cpu) &&
 325                            (policy->cur) && (policy->cur != freqs->old)) {
 326                                pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
 327                                         freqs->old, policy->cur);
 328                                freqs->old = policy->cur;
 329                        }
 330                }
 331                srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 332                                CPUFREQ_PRECHANGE, freqs);
 333                adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
 334                break;
 335
 336        case CPUFREQ_POSTCHANGE:
 337                adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
 338                pr_debug("FREQ: %lu - CPU: %lu\n",
 339                         (unsigned long)freqs->new, (unsigned long)freqs->cpu);
 340                trace_cpu_frequency(freqs->new, freqs->cpu);
 341                cpufreq_stats_record_transition(policy, freqs->new);
 342                srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
 343                                CPUFREQ_POSTCHANGE, freqs);
 344                if (likely(policy) && likely(policy->cpu == freqs->cpu))
 345                        policy->cur = freqs->new;
 346                break;
 347        }
 348}
 349
 350/**
 351 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
 352 * on frequency transition.
 353 *
 354 * This function calls the transition notifiers and the "adjust_jiffies"
 355 * function. It is called twice on all CPU frequency changes that have
 356 * external effects.
 357 */
 358static void cpufreq_notify_transition(struct cpufreq_policy *policy,
 359                struct cpufreq_freqs *freqs, unsigned int state)
 360{
 361        for_each_cpu(freqs->cpu, policy->cpus)
 362                __cpufreq_notify_transition(policy, freqs, state);
 363}
 364
 365/* Do post notifications when there are chances that transition has failed */
 366static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
 367                struct cpufreq_freqs *freqs, int transition_failed)
 368{
 369        cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 370        if (!transition_failed)
 371                return;
 372
 373        swap(freqs->old, freqs->new);
 374        cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 375        cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
 376}
 377
 378void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
 379                struct cpufreq_freqs *freqs)
 380{
 381
 382        /*
 383         * Catch double invocations of _begin() which lead to self-deadlock.
 384         * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
 385         * doesn't invoke _begin() on their behalf, and hence the chances of
 386         * double invocations are very low. Moreover, there are scenarios
 387         * where these checks can emit false-positive warnings in these
 388         * drivers; so we avoid that by skipping them altogether.
 389         */
 390        WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
 391                                && current == policy->transition_task);
 392
 393wait:
 394        wait_event(policy->transition_wait, !policy->transition_ongoing);
 395
 396        spin_lock(&policy->transition_lock);
 397
 398        if (unlikely(policy->transition_ongoing)) {
 399                spin_unlock(&policy->transition_lock);
 400                goto wait;
 401        }
 402
 403        policy->transition_ongoing = true;
 404        policy->transition_task = current;
 405
 406        spin_unlock(&policy->transition_lock);
 407
 408        cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
 409}
 410EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
 411
 412void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
 413                struct cpufreq_freqs *freqs, int transition_failed)
 414{
 415        if (unlikely(WARN_ON(!policy->transition_ongoing)))
 416                return;
 417
 418        cpufreq_notify_post_transition(policy, freqs, transition_failed);
 419
 420        policy->transition_ongoing = false;
 421        policy->transition_task = NULL;
 422
 423        wake_up(&policy->transition_wait);
 424}
 425EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
 426
 427/*
 428 * Fast frequency switching status count.  Positive means "enabled", negative
 429 * means "disabled" and 0 means "not decided yet".
 430 */
 431static int cpufreq_fast_switch_count;
 432static DEFINE_MUTEX(cpufreq_fast_switch_lock);
 433
 434static void cpufreq_list_transition_notifiers(void)
 435{
 436        struct notifier_block *nb;
 437
 438        pr_info("Registered transition notifiers:\n");
 439
 440        mutex_lock(&cpufreq_transition_notifier_list.mutex);
 441
 442        for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
 443                pr_info("%pF\n", nb->notifier_call);
 444
 445        mutex_unlock(&cpufreq_transition_notifier_list.mutex);
 446}
 447
 448/**
 449 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
 450 * @policy: cpufreq policy to enable fast frequency switching for.
 451 *
 452 * Try to enable fast frequency switching for @policy.
 453 *
 454 * The attempt will fail if there is at least one transition notifier registered
 455 * at this point, as fast frequency switching is quite fundamentally at odds
 456 * with transition notifiers.  Thus if successful, it will make registration of
 457 * transition notifiers fail going forward.
 458 */
 459void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
 460{
 461        lockdep_assert_held(&policy->rwsem);
 462
 463        if (!policy->fast_switch_possible)
 464                return;
 465
 466        mutex_lock(&cpufreq_fast_switch_lock);
 467        if (cpufreq_fast_switch_count >= 0) {
 468                cpufreq_fast_switch_count++;
 469                policy->fast_switch_enabled = true;
 470        } else {
 471                pr_warn("CPU%u: Fast frequency switching not enabled\n",
 472                        policy->cpu);
 473                cpufreq_list_transition_notifiers();
 474        }
 475        mutex_unlock(&cpufreq_fast_switch_lock);
 476}
 477EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
 478
 479/**
 480 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
 481 * @policy: cpufreq policy to disable fast frequency switching for.
 482 */
 483void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
 484{
 485        mutex_lock(&cpufreq_fast_switch_lock);
 486        if (policy->fast_switch_enabled) {
 487                policy->fast_switch_enabled = false;
 488                if (!WARN_ON(cpufreq_fast_switch_count <= 0))
 489                        cpufreq_fast_switch_count--;
 490        }
 491        mutex_unlock(&cpufreq_fast_switch_lock);
 492}
 493EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
 494
 495/**
 496 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
 497 * one.
 498 * @target_freq: target frequency to resolve.
 499 *
 500 * The target to driver frequency mapping is cached in the policy.
 501 *
 502 * Return: Lowest driver-supported frequency greater than or equal to the
 503 * given target_freq, subject to policy (min/max) and driver limitations.
 504 */
 505unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
 506                                         unsigned int target_freq)
 507{
 508        target_freq = clamp_val(target_freq, policy->min, policy->max);
 509        policy->cached_target_freq = target_freq;
 510
 511        if (cpufreq_driver->target_index) {
 512                int idx;
 513
 514                idx = cpufreq_frequency_table_target(policy, target_freq,
 515                                                     CPUFREQ_RELATION_L);
 516                policy->cached_resolved_idx = idx;
 517                return policy->freq_table[idx].frequency;
 518        }
 519
 520        if (cpufreq_driver->resolve_freq)
 521                return cpufreq_driver->resolve_freq(policy, target_freq);
 522
 523        return target_freq;
 524}
 525EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
 526
 527unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
 528{
 529        unsigned int latency;
 530
 531        if (policy->transition_delay_us)
 532                return policy->transition_delay_us;
 533
 534        latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
 535        if (latency) {
 536                /*
 537                 * For platforms that can change the frequency very fast (< 10
 538                 * us), the above formula gives a decent transition delay. But
 539                 * for platforms where transition_latency is in milliseconds, it
 540                 * ends up giving unrealistic values.
 541                 *
 542                 * Cap the default transition delay to 10 ms, which seems to be
 543                 * a reasonable amount of time after which we should reevaluate
 544                 * the frequency.
 545                 */
 546                return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
 547        }
 548
 549        return LATENCY_MULTIPLIER;
 550}
 551EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
 552
 553/*********************************************************************
 554 *                          SYSFS INTERFACE                          *
 555 *********************************************************************/
 556static ssize_t show_boost(struct kobject *kobj,
 557                                 struct attribute *attr, char *buf)
 558{
 559        return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
 560}
 561
 562static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
 563                                  const char *buf, size_t count)
 564{
 565        int ret, enable;
 566
 567        ret = sscanf(buf, "%d", &enable);
 568        if (ret != 1 || enable < 0 || enable > 1)
 569                return -EINVAL;
 570
 571        if (cpufreq_boost_trigger_state(enable)) {
 572                pr_err("%s: Cannot %s BOOST!\n",
 573                       __func__, enable ? "enable" : "disable");
 574                return -EINVAL;
 575        }
 576
 577        pr_debug("%s: cpufreq BOOST %s\n",
 578                 __func__, enable ? "enabled" : "disabled");
 579
 580        return count;
 581}
 582define_one_global_rw(boost);
 583
 584static struct cpufreq_governor *find_governor(const char *str_governor)
 585{
 586        struct cpufreq_governor *t;
 587
 588        for_each_governor(t)
 589                if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
 590                        return t;
 591
 592        return NULL;
 593}
 594
 595/**
 596 * cpufreq_parse_governor - parse a governor string
 597 */
 598static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
 599                                struct cpufreq_governor **governor)
 600{
 601        int err = -EINVAL;
 602
 603        if (cpufreq_driver->setpolicy) {
 604                if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
 605                        *policy = CPUFREQ_POLICY_PERFORMANCE;
 606                        err = 0;
 607                } else if (!strncasecmp(str_governor, "powersave",
 608                                                CPUFREQ_NAME_LEN)) {
 609                        *policy = CPUFREQ_POLICY_POWERSAVE;
 610                        err = 0;
 611                }
 612        } else {
 613                struct cpufreq_governor *t;
 614
 615                mutex_lock(&cpufreq_governor_mutex);
 616
 617                t = find_governor(str_governor);
 618
 619                if (t == NULL) {
 620                        int ret;
 621
 622                        mutex_unlock(&cpufreq_governor_mutex);
 623                        ret = request_module("cpufreq_%s", str_governor);
 624                        mutex_lock(&cpufreq_governor_mutex);
 625
 626                        if (ret == 0)
 627                                t = find_governor(str_governor);
 628                }
 629
 630                if (t != NULL) {
 631                        *governor = t;
 632                        err = 0;
 633                }
 634
 635                mutex_unlock(&cpufreq_governor_mutex);
 636        }
 637        return err;
 638}
 639
 640/**
 641 * cpufreq_per_cpu_attr_read() / show_##file_name() -
 642 * print out cpufreq information
 643 *
 644 * Write out information from cpufreq_driver->policy[cpu]; object must be
 645 * "unsigned int".
 646 */
 647
 648#define show_one(file_name, object)                     \
 649static ssize_t show_##file_name                         \
 650(struct cpufreq_policy *policy, char *buf)              \
 651{                                                       \
 652        return sprintf(buf, "%u\n", policy->object);    \
 653}
 654
 655show_one(cpuinfo_min_freq, cpuinfo.min_freq);
 656show_one(cpuinfo_max_freq, cpuinfo.max_freq);
 657show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
 658show_one(scaling_min_freq, min);
 659show_one(scaling_max_freq, max);
 660
 661__weak unsigned int arch_freq_get_on_cpu(int cpu)
 662{
 663        return 0;
 664}
 665
 666static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
 667{
 668        ssize_t ret;
 669        unsigned int freq;
 670
 671        freq = arch_freq_get_on_cpu(policy->cpu);
 672        if (freq)
 673                ret = sprintf(buf, "%u\n", freq);
 674        else if (cpufreq_driver && cpufreq_driver->setpolicy &&
 675                        cpufreq_driver->get)
 676                ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
 677        else
 678                ret = sprintf(buf, "%u\n", policy->cur);
 679        return ret;
 680}
 681
 682static int cpufreq_set_policy(struct cpufreq_policy *policy,
 683                                struct cpufreq_policy *new_policy);
 684
 685/**
 686 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
 687 */
 688#define store_one(file_name, object)                    \
 689static ssize_t store_##file_name                                        \
 690(struct cpufreq_policy *policy, const char *buf, size_t count)          \
 691{                                                                       \
 692        int ret, temp;                                                  \
 693        struct cpufreq_policy new_policy;                               \
 694                                                                        \
 695        memcpy(&new_policy, policy, sizeof(*policy));                   \
 696                                                                        \
 697        ret = sscanf(buf, "%u", &new_policy.object);                    \
 698        if (ret != 1)                                                   \
 699                return -EINVAL;                                         \
 700                                                                        \
 701        temp = new_policy.object;                                       \
 702        ret = cpufreq_set_policy(policy, &new_policy);          \
 703        if (!ret)                                                       \
 704                policy->user_policy.object = temp;                      \
 705                                                                        \
 706        return ret ? ret : count;                                       \
 707}
 708
 709store_one(scaling_min_freq, min);
 710store_one(scaling_max_freq, max);
 711
 712/**
 713 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
 714 */
 715static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
 716                                        char *buf)
 717{
 718        unsigned int cur_freq = __cpufreq_get(policy);
 719
 720        if (cur_freq)
 721                return sprintf(buf, "%u\n", cur_freq);
 722
 723        return sprintf(buf, "<unknown>\n");
 724}
 725
 726/**
 727 * show_scaling_governor - show the current policy for the specified CPU
 728 */
 729static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
 730{
 731        if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
 732                return sprintf(buf, "powersave\n");
 733        else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
 734                return sprintf(buf, "performance\n");
 735        else if (policy->governor)
 736                return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
 737                                policy->governor->name);
 738        return -EINVAL;
 739}
 740
 741/**
 742 * store_scaling_governor - store policy for the specified CPU
 743 */
 744static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
 745                                        const char *buf, size_t count)
 746{
 747        int ret;
 748        char    str_governor[16];
 749        struct cpufreq_policy new_policy;
 750
 751        memcpy(&new_policy, policy, sizeof(*policy));
 752
 753        ret = sscanf(buf, "%15s", str_governor);
 754        if (ret != 1)
 755                return -EINVAL;
 756
 757        if (cpufreq_parse_governor(str_governor, &new_policy.policy,
 758                                                &new_policy.governor))
 759                return -EINVAL;
 760
 761        ret = cpufreq_set_policy(policy, &new_policy);
 762        return ret ? ret : count;
 763}
 764
 765/**
 766 * show_scaling_driver - show the cpufreq driver currently loaded
 767 */
 768static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
 769{
 770        return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
 771}
 772
 773/**
 774 * show_scaling_available_governors - show the available CPUfreq governors
 775 */
 776static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
 777                                                char *buf)
 778{
 779        ssize_t i = 0;
 780        struct cpufreq_governor *t;
 781
 782        if (!has_target()) {
 783                i += sprintf(buf, "performance powersave");
 784                goto out;
 785        }
 786
 787        for_each_governor(t) {
 788                if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
 789                    - (CPUFREQ_NAME_LEN + 2)))
 790                        goto out;
 791                i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
 792        }
 793out:
 794        i += sprintf(&buf[i], "\n");
 795        return i;
 796}
 797
 798ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
 799{
 800        ssize_t i = 0;
 801        unsigned int cpu;
 802
 803        for_each_cpu(cpu, mask) {
 804                if (i)
 805                        i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
 806                i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
 807                if (i >= (PAGE_SIZE - 5))
 808                        break;
 809        }
 810        i += sprintf(&buf[i], "\n");
 811        return i;
 812}
 813EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
 814
 815/**
 816 * show_related_cpus - show the CPUs affected by each transition even if
 817 * hw coordination is in use
 818 */
 819static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
 820{
 821        return cpufreq_show_cpus(policy->related_cpus, buf);
 822}
 823
 824/**
 825 * show_affected_cpus - show the CPUs affected by each transition
 826 */
 827static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
 828{
 829        return cpufreq_show_cpus(policy->cpus, buf);
 830}
 831
 832static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
 833                                        const char *buf, size_t count)
 834{
 835        unsigned int freq = 0;
 836        unsigned int ret;
 837
 838        if (!policy->governor || !policy->governor->store_setspeed)
 839                return -EINVAL;
 840
 841        ret = sscanf(buf, "%u", &freq);
 842        if (ret != 1)
 843                return -EINVAL;
 844
 845        policy->governor->store_setspeed(policy, freq);
 846
 847        return count;
 848}
 849
 850static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
 851{
 852        if (!policy->governor || !policy->governor->show_setspeed)
 853                return sprintf(buf, "<unsupported>\n");
 854
 855        return policy->governor->show_setspeed(policy, buf);
 856}
 857
 858/**
 859 * show_bios_limit - show the current cpufreq HW/BIOS limitation
 860 */
 861static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
 862{
 863        unsigned int limit;
 864        int ret;
 865        if (cpufreq_driver->bios_limit) {
 866                ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
 867                if (!ret)
 868                        return sprintf(buf, "%u\n", limit);
 869        }
 870        return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
 871}
 872
 873cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
 874cpufreq_freq_attr_ro(cpuinfo_min_freq);
 875cpufreq_freq_attr_ro(cpuinfo_max_freq);
 876cpufreq_freq_attr_ro(cpuinfo_transition_latency);
 877cpufreq_freq_attr_ro(scaling_available_governors);
 878cpufreq_freq_attr_ro(scaling_driver);
 879cpufreq_freq_attr_ro(scaling_cur_freq);
 880cpufreq_freq_attr_ro(bios_limit);
 881cpufreq_freq_attr_ro(related_cpus);
 882cpufreq_freq_attr_ro(affected_cpus);
 883cpufreq_freq_attr_rw(scaling_min_freq);
 884cpufreq_freq_attr_rw(scaling_max_freq);
 885cpufreq_freq_attr_rw(scaling_governor);
 886cpufreq_freq_attr_rw(scaling_setspeed);
 887
 888static struct attribute *default_attrs[] = {
 889        &cpuinfo_min_freq.attr,
 890        &cpuinfo_max_freq.attr,
 891        &cpuinfo_transition_latency.attr,
 892        &scaling_min_freq.attr,
 893        &scaling_max_freq.attr,
 894        &affected_cpus.attr,
 895        &related_cpus.attr,
 896        &scaling_governor.attr,
 897        &scaling_driver.attr,
 898        &scaling_available_governors.attr,
 899        &scaling_setspeed.attr,
 900        NULL
 901};
 902
 903#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
 904#define to_attr(a) container_of(a, struct freq_attr, attr)
 905
 906static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
 907{
 908        struct cpufreq_policy *policy = to_policy(kobj);
 909        struct freq_attr *fattr = to_attr(attr);
 910        ssize_t ret;
 911
 912        down_read(&policy->rwsem);
 913        ret = fattr->show(policy, buf);
 914        up_read(&policy->rwsem);
 915
 916        return ret;
 917}
 918
 919static ssize_t store(struct kobject *kobj, struct attribute *attr,
 920                     const char *buf, size_t count)
 921{
 922        struct cpufreq_policy *policy = to_policy(kobj);
 923        struct freq_attr *fattr = to_attr(attr);
 924        ssize_t ret = -EINVAL;
 925
 926        cpus_read_lock();
 927
 928        if (cpu_online(policy->cpu)) {
 929                down_write(&policy->rwsem);
 930                ret = fattr->store(policy, buf, count);
 931                up_write(&policy->rwsem);
 932        }
 933
 934        cpus_read_unlock();
 935
 936        return ret;
 937}
 938
 939static void cpufreq_sysfs_release(struct kobject *kobj)
 940{
 941        struct cpufreq_policy *policy = to_policy(kobj);
 942        pr_debug("last reference is dropped\n");
 943        complete(&policy->kobj_unregister);
 944}
 945
 946static const struct sysfs_ops sysfs_ops = {
 947        .show   = show,
 948        .store  = store,
 949};
 950
 951static struct kobj_type ktype_cpufreq = {
 952        .sysfs_ops      = &sysfs_ops,
 953        .default_attrs  = default_attrs,
 954        .release        = cpufreq_sysfs_release,
 955};
 956
 957static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
 958{
 959        struct device *dev = get_cpu_device(cpu);
 960
 961        if (!dev)
 962                return;
 963
 964        if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
 965                return;
 966
 967        dev_dbg(dev, "%s: Adding symlink\n", __func__);
 968        if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
 969                dev_err(dev, "cpufreq symlink creation failed\n");
 970}
 971
 972static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
 973                                   struct device *dev)
 974{
 975        dev_dbg(dev, "%s: Removing symlink\n", __func__);
 976        sysfs_remove_link(&dev->kobj, "cpufreq");
 977}
 978
 979static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
 980{
 981        struct freq_attr **drv_attr;
 982        int ret = 0;
 983
 984        /* set up files for this cpu device */
 985        drv_attr = cpufreq_driver->attr;
 986        while (drv_attr && *drv_attr) {
 987                ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
 988                if (ret)
 989                        return ret;
 990                drv_attr++;
 991        }
 992        if (cpufreq_driver->get) {
 993                ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
 994                if (ret)
 995                        return ret;
 996        }
 997
 998        ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
 999        if (ret)
1000                return ret;
1001
1002        if (cpufreq_driver->bios_limit) {
1003                ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1004                if (ret)
1005                        return ret;
1006        }
1007
1008        return 0;
1009}
1010
1011__weak struct cpufreq_governor *cpufreq_default_governor(void)
1012{
1013        return NULL;
1014}
1015
1016static int cpufreq_init_policy(struct cpufreq_policy *policy)
1017{
1018        struct cpufreq_governor *gov = NULL;
1019        struct cpufreq_policy new_policy;
1020
1021        memcpy(&new_policy, policy, sizeof(*policy));
1022
1023        /* Update governor of new_policy to the governor used before hotplug */
1024        gov = find_governor(policy->last_governor);
1025        if (gov) {
1026                pr_debug("Restoring governor %s for cpu %d\n",
1027                                policy->governor->name, policy->cpu);
1028        } else {
1029                gov = cpufreq_default_governor();
1030                if (!gov)
1031                        return -ENODATA;
1032        }
1033
1034        new_policy.governor = gov;
1035
1036        /* Use the default policy if there is no last_policy. */
1037        if (cpufreq_driver->setpolicy) {
1038                if (policy->last_policy)
1039                        new_policy.policy = policy->last_policy;
1040                else
1041                        cpufreq_parse_governor(gov->name, &new_policy.policy,
1042                                               NULL);
1043        }
1044        /* set default policy */
1045        return cpufreq_set_policy(policy, &new_policy);
1046}
1047
1048static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1049{
1050        int ret = 0;
1051
1052        /* Has this CPU been taken care of already? */
1053        if (cpumask_test_cpu(cpu, policy->cpus))
1054                return 0;
1055
1056        down_write(&policy->rwsem);
1057        if (has_target())
1058                cpufreq_stop_governor(policy);
1059
1060        cpumask_set_cpu(cpu, policy->cpus);
1061
1062        if (has_target()) {
1063                ret = cpufreq_start_governor(policy);
1064                if (ret)
1065                        pr_err("%s: Failed to start governor\n", __func__);
1066        }
1067        up_write(&policy->rwsem);
1068        return ret;
1069}
1070
1071static void handle_update(struct work_struct *work)
1072{
1073        struct cpufreq_policy *policy =
1074                container_of(work, struct cpufreq_policy, update);
1075        unsigned int cpu = policy->cpu;
1076        pr_debug("handle_update for cpu %u called\n", cpu);
1077        cpufreq_update_policy(cpu);
1078}
1079
1080static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1081{
1082        struct cpufreq_policy *policy;
1083        int ret;
1084
1085        policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1086        if (!policy)
1087                return NULL;
1088
1089        if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1090                goto err_free_policy;
1091
1092        if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1093                goto err_free_cpumask;
1094
1095        if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1096                goto err_free_rcpumask;
1097
1098        ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1099                                   cpufreq_global_kobject, "policy%u", cpu);
1100        if (ret) {
1101                pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1102                goto err_free_real_cpus;
1103        }
1104
1105        INIT_LIST_HEAD(&policy->policy_list);
1106        init_rwsem(&policy->rwsem);
1107        spin_lock_init(&policy->transition_lock);
1108        init_waitqueue_head(&policy->transition_wait);
1109        init_completion(&policy->kobj_unregister);
1110        INIT_WORK(&policy->update, handle_update);
1111
1112        policy->cpu = cpu;
1113        return policy;
1114
1115err_free_real_cpus:
1116        free_cpumask_var(policy->real_cpus);
1117err_free_rcpumask:
1118        free_cpumask_var(policy->related_cpus);
1119err_free_cpumask:
1120        free_cpumask_var(policy->cpus);
1121err_free_policy:
1122        kfree(policy);
1123
1124        return NULL;
1125}
1126
1127static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1128{
1129        struct kobject *kobj;
1130        struct completion *cmp;
1131
1132        down_write(&policy->rwsem);
1133        cpufreq_stats_free_table(policy);
1134        kobj = &policy->kobj;
1135        cmp = &policy->kobj_unregister;
1136        up_write(&policy->rwsem);
1137        kobject_put(kobj);
1138
1139        /*
1140         * We need to make sure that the underlying kobj is
1141         * actually not referenced anymore by anybody before we
1142         * proceed with unloading.
1143         */
1144        pr_debug("waiting for dropping of refcount\n");
1145        wait_for_completion(cmp);
1146        pr_debug("wait complete\n");
1147}
1148
1149static void cpufreq_policy_free(struct cpufreq_policy *policy)
1150{
1151        unsigned long flags;
1152        int cpu;
1153
1154        /* Remove policy from list */
1155        write_lock_irqsave(&cpufreq_driver_lock, flags);
1156        list_del(&policy->policy_list);
1157
1158        for_each_cpu(cpu, policy->related_cpus)
1159                per_cpu(cpufreq_cpu_data, cpu) = NULL;
1160        write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1161
1162        cpufreq_policy_put_kobj(policy);
1163        free_cpumask_var(policy->real_cpus);
1164        free_cpumask_var(policy->related_cpus);
1165        free_cpumask_var(policy->cpus);
1166        kfree(policy);
1167}
1168
1169static int cpufreq_online(unsigned int cpu)
1170{
1171        struct cpufreq_policy *policy;
1172        bool new_policy;
1173        unsigned long flags;
1174        unsigned int j;
1175        int ret;
1176
1177        pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1178
1179        /* Check if this CPU already has a policy to manage it */
1180        policy = per_cpu(cpufreq_cpu_data, cpu);
1181        if (policy) {
1182                WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1183                if (!policy_is_inactive(policy))
1184                        return cpufreq_add_policy_cpu(policy, cpu);
1185
1186                /* This is the only online CPU for the policy.  Start over. */
1187                new_policy = false;
1188                down_write(&policy->rwsem);
1189                policy->cpu = cpu;
1190                policy->governor = NULL;
1191                up_write(&policy->rwsem);
1192        } else {
1193                new_policy = true;
1194                policy = cpufreq_policy_alloc(cpu);
1195                if (!policy)
1196                        return -ENOMEM;
1197        }
1198
1199        cpumask_copy(policy->cpus, cpumask_of(cpu));
1200
1201        /* call driver. From then on the cpufreq must be able
1202         * to accept all calls to ->verify and ->setpolicy for this CPU
1203         */
1204        ret = cpufreq_driver->init(policy);
1205        if (ret) {
1206                pr_debug("initialization failed\n");
1207                goto out_free_policy;
1208        }
1209
1210        down_write(&policy->rwsem);
1211
1212        if (new_policy) {
1213                /* related_cpus should at least include policy->cpus. */
1214                cpumask_copy(policy->related_cpus, policy->cpus);
1215        }
1216
1217        /*
1218         * affected cpus must always be the one, which are online. We aren't
1219         * managing offline cpus here.
1220         */
1221        cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1222
1223        if (new_policy) {
1224                policy->user_policy.min = policy->min;
1225                policy->user_policy.max = policy->max;
1226
1227                for_each_cpu(j, policy->related_cpus) {
1228                        per_cpu(cpufreq_cpu_data, j) = policy;
1229                        add_cpu_dev_symlink(policy, j);
1230                }
1231        } else {
1232                policy->min = policy->user_policy.min;
1233                policy->max = policy->user_policy.max;
1234        }
1235
1236        if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1237                policy->cur = cpufreq_driver->get(policy->cpu);
1238                if (!policy->cur) {
1239                        pr_err("%s: ->get() failed\n", __func__);
1240                        goto out_exit_policy;
1241                }
1242        }
1243
1244        /*
1245         * Sometimes boot loaders set CPU frequency to a value outside of
1246         * frequency table present with cpufreq core. In such cases CPU might be
1247         * unstable if it has to run on that frequency for long duration of time
1248         * and so its better to set it to a frequency which is specified in
1249         * freq-table. This also makes cpufreq stats inconsistent as
1250         * cpufreq-stats would fail to register because current frequency of CPU
1251         * isn't found in freq-table.
1252         *
1253         * Because we don't want this change to effect boot process badly, we go
1254         * for the next freq which is >= policy->cur ('cur' must be set by now,
1255         * otherwise we will end up setting freq to lowest of the table as 'cur'
1256         * is initialized to zero).
1257         *
1258         * We are passing target-freq as "policy->cur - 1" otherwise
1259         * __cpufreq_driver_target() would simply fail, as policy->cur will be
1260         * equal to target-freq.
1261         */
1262        if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1263            && has_target()) {
1264                /* Are we running at unknown frequency ? */
1265                ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1266                if (ret == -EINVAL) {
1267                        /* Warn user and fix it */
1268                        pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1269                                __func__, policy->cpu, policy->cur);
1270                        ret = __cpufreq_driver_target(policy, policy->cur - 1,
1271                                CPUFREQ_RELATION_L);
1272
1273                        /*
1274                         * Reaching here after boot in a few seconds may not
1275                         * mean that system will remain stable at "unknown"
1276                         * frequency for longer duration. Hence, a BUG_ON().
1277                         */
1278                        BUG_ON(ret);
1279                        pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1280                                __func__, policy->cpu, policy->cur);
1281                }
1282        }
1283
1284        if (new_policy) {
1285                ret = cpufreq_add_dev_interface(policy);
1286                if (ret)
1287                        goto out_exit_policy;
1288
1289                cpufreq_stats_create_table(policy);
1290
1291                write_lock_irqsave(&cpufreq_driver_lock, flags);
1292                list_add(&policy->policy_list, &cpufreq_policy_list);
1293                write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1294        }
1295
1296        ret = cpufreq_init_policy(policy);
1297        if (ret) {
1298                pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1299                       __func__, cpu, ret);
1300                /* cpufreq_policy_free() will notify based on this */
1301                new_policy = false;
1302                goto out_exit_policy;
1303        }
1304
1305        up_write(&policy->rwsem);
1306
1307        kobject_uevent(&policy->kobj, KOBJ_ADD);
1308
1309        /* Callback for handling stuff after policy is ready */
1310        if (cpufreq_driver->ready)
1311                cpufreq_driver->ready(policy);
1312
1313        pr_debug("initialization complete\n");
1314
1315        return 0;
1316
1317out_exit_policy:
1318        up_write(&policy->rwsem);
1319
1320        if (cpufreq_driver->exit)
1321                cpufreq_driver->exit(policy);
1322
1323        for_each_cpu(j, policy->real_cpus)
1324                remove_cpu_dev_symlink(policy, get_cpu_device(j));
1325
1326out_free_policy:
1327        cpufreq_policy_free(policy);
1328        return ret;
1329}
1330
1331/**
1332 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1333 * @dev: CPU device.
1334 * @sif: Subsystem interface structure pointer (not used)
1335 */
1336static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1337{
1338        struct cpufreq_policy *policy;
1339        unsigned cpu = dev->id;
1340        int ret;
1341
1342        dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1343
1344        if (cpu_online(cpu)) {
1345                ret = cpufreq_online(cpu);
1346                if (ret)
1347                        return ret;
1348        }
1349
1350        /* Create sysfs link on CPU registration */
1351        policy = per_cpu(cpufreq_cpu_data, cpu);
1352        if (policy)
1353                add_cpu_dev_symlink(policy, cpu);
1354
1355        return 0;
1356}
1357
1358static int cpufreq_offline(unsigned int cpu)
1359{
1360        struct cpufreq_policy *policy;
1361        int ret;
1362
1363        pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1364
1365        policy = cpufreq_cpu_get_raw(cpu);
1366        if (!policy) {
1367                pr_debug("%s: No cpu_data found\n", __func__);
1368                return 0;
1369        }
1370
1371        down_write(&policy->rwsem);
1372        if (has_target())
1373                cpufreq_stop_governor(policy);
1374
1375        cpumask_clear_cpu(cpu, policy->cpus);
1376
1377        if (policy_is_inactive(policy)) {
1378                if (has_target())
1379                        strncpy(policy->last_governor, policy->governor->name,
1380                                CPUFREQ_NAME_LEN);
1381                else
1382                        policy->last_policy = policy->policy;
1383        } else if (cpu == policy->cpu) {
1384                /* Nominate new CPU */
1385                policy->cpu = cpumask_any(policy->cpus);
1386        }
1387
1388        /* Start governor again for active policy */
1389        if (!policy_is_inactive(policy)) {
1390                if (has_target()) {
1391                        ret = cpufreq_start_governor(policy);
1392                        if (ret)
1393                                pr_err("%s: Failed to start governor\n", __func__);
1394                }
1395
1396                goto unlock;
1397        }
1398
1399        if (cpufreq_driver->stop_cpu)
1400                cpufreq_driver->stop_cpu(policy);
1401
1402        if (has_target())
1403                cpufreq_exit_governor(policy);
1404
1405        /*
1406         * Perform the ->exit() even during light-weight tear-down,
1407         * since this is a core component, and is essential for the
1408         * subsequent light-weight ->init() to succeed.
1409         */
1410        if (cpufreq_driver->exit) {
1411                cpufreq_driver->exit(policy);
1412                policy->freq_table = NULL;
1413        }
1414
1415unlock:
1416        up_write(&policy->rwsem);
1417        return 0;
1418}
1419
1420/**
1421 * cpufreq_remove_dev - remove a CPU device
1422 *
1423 * Removes the cpufreq interface for a CPU device.
1424 */
1425static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1426{
1427        unsigned int cpu = dev->id;
1428        struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1429
1430        if (!policy)
1431                return;
1432
1433        if (cpu_online(cpu))
1434                cpufreq_offline(cpu);
1435
1436        cpumask_clear_cpu(cpu, policy->real_cpus);
1437        remove_cpu_dev_symlink(policy, dev);
1438
1439        if (cpumask_empty(policy->real_cpus))
1440                cpufreq_policy_free(policy);
1441}
1442
1443/**
1444 *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1445 *      in deep trouble.
1446 *      @policy: policy managing CPUs
1447 *      @new_freq: CPU frequency the CPU actually runs at
1448 *
1449 *      We adjust to current frequency first, and need to clean up later.
1450 *      So either call to cpufreq_update_policy() or schedule handle_update()).
1451 */
1452static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1453                                unsigned int new_freq)
1454{
1455        struct cpufreq_freqs freqs;
1456
1457        pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1458                 policy->cur, new_freq);
1459
1460        freqs.old = policy->cur;
1461        freqs.new = new_freq;
1462
1463        cpufreq_freq_transition_begin(policy, &freqs);
1464        cpufreq_freq_transition_end(policy, &freqs, 0);
1465}
1466
1467/**
1468 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1469 * @cpu: CPU number
1470 *
1471 * This is the last known freq, without actually getting it from the driver.
1472 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1473 */
1474unsigned int cpufreq_quick_get(unsigned int cpu)
1475{
1476        struct cpufreq_policy *policy;
1477        unsigned int ret_freq = 0;
1478        unsigned long flags;
1479
1480        read_lock_irqsave(&cpufreq_driver_lock, flags);
1481
1482        if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1483                ret_freq = cpufreq_driver->get(cpu);
1484                read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1485                return ret_freq;
1486        }
1487
1488        read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1489
1490        policy = cpufreq_cpu_get(cpu);
1491        if (policy) {
1492                ret_freq = policy->cur;
1493                cpufreq_cpu_put(policy);
1494        }
1495
1496        return ret_freq;
1497}
1498EXPORT_SYMBOL(cpufreq_quick_get);
1499
1500/**
1501 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1502 * @cpu: CPU number
1503 *
1504 * Just return the max possible frequency for a given CPU.
1505 */
1506unsigned int cpufreq_quick_get_max(unsigned int cpu)
1507{
1508        struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1509        unsigned int ret_freq = 0;
1510
1511        if (policy) {
1512                ret_freq = policy->max;
1513                cpufreq_cpu_put(policy);
1514        }
1515
1516        return ret_freq;
1517}
1518EXPORT_SYMBOL(cpufreq_quick_get_max);
1519
1520static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1521{
1522        unsigned int ret_freq = 0;
1523
1524        if (!cpufreq_driver->get)
1525                return ret_freq;
1526
1527        ret_freq = cpufreq_driver->get(policy->cpu);
1528
1529        /*
1530         * Updating inactive policies is invalid, so avoid doing that.  Also
1531         * if fast frequency switching is used with the given policy, the check
1532         * against policy->cur is pointless, so skip it in that case too.
1533         */
1534        if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1535                return ret_freq;
1536
1537        if (ret_freq && policy->cur &&
1538                !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1539                /* verify no discrepancy between actual and
1540                                        saved value exists */
1541                if (unlikely(ret_freq != policy->cur)) {
1542                        cpufreq_out_of_sync(policy, ret_freq);
1543                        schedule_work(&policy->update);
1544                }
1545        }
1546
1547        return ret_freq;
1548}
1549
1550/**
1551 * cpufreq_get - get the current CPU frequency (in kHz)
1552 * @cpu: CPU number
1553 *
1554 * Get the CPU current (static) CPU frequency
1555 */
1556unsigned int cpufreq_get(unsigned int cpu)
1557{
1558        struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1559        unsigned int ret_freq = 0;
1560
1561        if (policy) {
1562                down_read(&policy->rwsem);
1563
1564                if (!policy_is_inactive(policy))
1565                        ret_freq = __cpufreq_get(policy);
1566
1567                up_read(&policy->rwsem);
1568
1569                cpufreq_cpu_put(policy);
1570        }
1571
1572        return ret_freq;
1573}
1574EXPORT_SYMBOL(cpufreq_get);
1575
1576static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1577{
1578        unsigned int new_freq;
1579
1580        new_freq = cpufreq_driver->get(policy->cpu);
1581        if (!new_freq)
1582                return 0;
1583
1584        if (!policy->cur) {
1585                pr_debug("cpufreq: Driver did not initialize current freq\n");
1586                policy->cur = new_freq;
1587        } else if (policy->cur != new_freq && has_target()) {
1588                cpufreq_out_of_sync(policy, new_freq);
1589        }
1590
1591        return new_freq;
1592}
1593
1594static struct subsys_interface cpufreq_interface = {
1595        .name           = "cpufreq",
1596        .subsys         = &cpu_subsys,
1597        .add_dev        = cpufreq_add_dev,
1598        .remove_dev     = cpufreq_remove_dev,
1599};
1600
1601/*
1602 * In case platform wants some specific frequency to be configured
1603 * during suspend..
1604 */
1605int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1606{
1607        int ret;
1608
1609        if (!policy->suspend_freq) {
1610                pr_debug("%s: suspend_freq not defined\n", __func__);
1611                return 0;
1612        }
1613
1614        pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1615                        policy->suspend_freq);
1616
1617        ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1618                        CPUFREQ_RELATION_H);
1619        if (ret)
1620                pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1621                                __func__, policy->suspend_freq, ret);
1622
1623        return ret;
1624}
1625EXPORT_SYMBOL(cpufreq_generic_suspend);
1626
1627/**
1628 * cpufreq_suspend() - Suspend CPUFreq governors
1629 *
1630 * Called during system wide Suspend/Hibernate cycles for suspending governors
1631 * as some platforms can't change frequency after this point in suspend cycle.
1632 * Because some of the devices (like: i2c, regulators, etc) they use for
1633 * changing frequency are suspended quickly after this point.
1634 */
1635void cpufreq_suspend(void)
1636{
1637        struct cpufreq_policy *policy;
1638
1639        if (!cpufreq_driver)
1640                return;
1641
1642        if (!has_target() && !cpufreq_driver->suspend)
1643                goto suspend;
1644
1645        pr_debug("%s: Suspending Governors\n", __func__);
1646
1647        for_each_active_policy(policy) {
1648                if (has_target()) {
1649                        down_write(&policy->rwsem);
1650                        cpufreq_stop_governor(policy);
1651                        up_write(&policy->rwsem);
1652                }
1653
1654                if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1655                        pr_err("%s: Failed to suspend driver: %p\n", __func__,
1656                                policy);
1657        }
1658
1659suspend:
1660        cpufreq_suspended = true;
1661}
1662
1663/**
1664 * cpufreq_resume() - Resume CPUFreq governors
1665 *
1666 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1667 * are suspended with cpufreq_suspend().
1668 */
1669void cpufreq_resume(void)
1670{
1671        struct cpufreq_policy *policy;
1672        int ret;
1673
1674        if (!cpufreq_driver)
1675                return;
1676
1677        cpufreq_suspended = false;
1678
1679        if (!has_target() && !cpufreq_driver->resume)
1680                return;
1681
1682        pr_debug("%s: Resuming Governors\n", __func__);
1683
1684        for_each_active_policy(policy) {
1685                if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1686                        pr_err("%s: Failed to resume driver: %p\n", __func__,
1687                                policy);
1688                } else if (has_target()) {
1689                        down_write(&policy->rwsem);
1690                        ret = cpufreq_start_governor(policy);
1691                        up_write(&policy->rwsem);
1692
1693                        if (ret)
1694                                pr_err("%s: Failed to start governor for policy: %p\n",
1695                                       __func__, policy);
1696                }
1697        }
1698}
1699
1700/**
1701 *      cpufreq_get_current_driver - return current driver's name
1702 *
1703 *      Return the name string of the currently loaded cpufreq driver
1704 *      or NULL, if none.
1705 */
1706const char *cpufreq_get_current_driver(void)
1707{
1708        if (cpufreq_driver)
1709                return cpufreq_driver->name;
1710
1711        return NULL;
1712}
1713EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1714
1715/**
1716 *      cpufreq_get_driver_data - return current driver data
1717 *
1718 *      Return the private data of the currently loaded cpufreq
1719 *      driver, or NULL if no cpufreq driver is loaded.
1720 */
1721void *cpufreq_get_driver_data(void)
1722{
1723        if (cpufreq_driver)
1724                return cpufreq_driver->driver_data;
1725
1726        return NULL;
1727}
1728EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1729
1730/*********************************************************************
1731 *                     NOTIFIER LISTS INTERFACE                      *
1732 *********************************************************************/
1733
1734/**
1735 *      cpufreq_register_notifier - register a driver with cpufreq
1736 *      @nb: notifier function to register
1737 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1738 *
1739 *      Add a driver to one of two lists: either a list of drivers that
1740 *      are notified about clock rate changes (once before and once after
1741 *      the transition), or a list of drivers that are notified about
1742 *      changes in cpufreq policy.
1743 *
1744 *      This function may sleep, and has the same return conditions as
1745 *      blocking_notifier_chain_register.
1746 */
1747int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1748{
1749        int ret;
1750
1751        if (cpufreq_disabled())
1752                return -EINVAL;
1753
1754        WARN_ON(!init_cpufreq_transition_notifier_list_called);
1755
1756        switch (list) {
1757        case CPUFREQ_TRANSITION_NOTIFIER:
1758                mutex_lock(&cpufreq_fast_switch_lock);
1759
1760                if (cpufreq_fast_switch_count > 0) {
1761                        mutex_unlock(&cpufreq_fast_switch_lock);
1762                        return -EBUSY;
1763                }
1764                ret = srcu_notifier_chain_register(
1765                                &cpufreq_transition_notifier_list, nb);
1766                if (!ret)
1767                        cpufreq_fast_switch_count--;
1768
1769                mutex_unlock(&cpufreq_fast_switch_lock);
1770                break;
1771        case CPUFREQ_POLICY_NOTIFIER:
1772                ret = blocking_notifier_chain_register(
1773                                &cpufreq_policy_notifier_list, nb);
1774                break;
1775        default:
1776                ret = -EINVAL;
1777        }
1778
1779        return ret;
1780}
1781EXPORT_SYMBOL(cpufreq_register_notifier);
1782
1783/**
1784 *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1785 *      @nb: notifier block to be unregistered
1786 *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1787 *
1788 *      Remove a driver from the CPU frequency notifier list.
1789 *
1790 *      This function may sleep, and has the same return conditions as
1791 *      blocking_notifier_chain_unregister.
1792 */
1793int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1794{
1795        int ret;
1796
1797        if (cpufreq_disabled())
1798                return -EINVAL;
1799
1800        switch (list) {
1801        case CPUFREQ_TRANSITION_NOTIFIER:
1802                mutex_lock(&cpufreq_fast_switch_lock);
1803
1804                ret = srcu_notifier_chain_unregister(
1805                                &cpufreq_transition_notifier_list, nb);
1806                if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1807                        cpufreq_fast_switch_count++;
1808
1809                mutex_unlock(&cpufreq_fast_switch_lock);
1810                break;
1811        case CPUFREQ_POLICY_NOTIFIER:
1812                ret = blocking_notifier_chain_unregister(
1813                                &cpufreq_policy_notifier_list, nb);
1814                break;
1815        default:
1816                ret = -EINVAL;
1817        }
1818
1819        return ret;
1820}
1821EXPORT_SYMBOL(cpufreq_unregister_notifier);
1822
1823
1824/*********************************************************************
1825 *                              GOVERNORS                            *
1826 *********************************************************************/
1827
1828/**
1829 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1830 * @policy: cpufreq policy to switch the frequency for.
1831 * @target_freq: New frequency to set (may be approximate).
1832 *
1833 * Carry out a fast frequency switch without sleeping.
1834 *
1835 * The driver's ->fast_switch() callback invoked by this function must be
1836 * suitable for being called from within RCU-sched read-side critical sections
1837 * and it is expected to select the minimum available frequency greater than or
1838 * equal to @target_freq (CPUFREQ_RELATION_L).
1839 *
1840 * This function must not be called if policy->fast_switch_enabled is unset.
1841 *
1842 * Governors calling this function must guarantee that it will never be invoked
1843 * twice in parallel for the same policy and that it will never be called in
1844 * parallel with either ->target() or ->target_index() for the same policy.
1845 *
1846 * Returns the actual frequency set for the CPU.
1847 *
1848 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1849 * error condition, the hardware configuration must be preserved.
1850 */
1851unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1852                                        unsigned int target_freq)
1853{
1854        target_freq = clamp_val(target_freq, policy->min, policy->max);
1855
1856        return cpufreq_driver->fast_switch(policy, target_freq);
1857}
1858EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1859
1860/* Must set freqs->new to intermediate frequency */
1861static int __target_intermediate(struct cpufreq_policy *policy,
1862                                 struct cpufreq_freqs *freqs, int index)
1863{
1864        int ret;
1865
1866        freqs->new = cpufreq_driver->get_intermediate(policy, index);
1867
1868        /* We don't need to switch to intermediate freq */
1869        if (!freqs->new)
1870                return 0;
1871
1872        pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1873                 __func__, policy->cpu, freqs->old, freqs->new);
1874
1875        cpufreq_freq_transition_begin(policy, freqs);
1876        ret = cpufreq_driver->target_intermediate(policy, index);
1877        cpufreq_freq_transition_end(policy, freqs, ret);
1878
1879        if (ret)
1880                pr_err("%s: Failed to change to intermediate frequency: %d\n",
1881                       __func__, ret);
1882
1883        return ret;
1884}
1885
1886static int __target_index(struct cpufreq_policy *policy, int index)
1887{
1888        struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1889        unsigned int intermediate_freq = 0;
1890        unsigned int newfreq = policy->freq_table[index].frequency;
1891        int retval = -EINVAL;
1892        bool notify;
1893
1894        if (newfreq == policy->cur)
1895                return 0;
1896
1897        notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1898        if (notify) {
1899                /* Handle switching to intermediate frequency */
1900                if (cpufreq_driver->get_intermediate) {
1901                        retval = __target_intermediate(policy, &freqs, index);
1902                        if (retval)
1903                                return retval;
1904
1905                        intermediate_freq = freqs.new;
1906                        /* Set old freq to intermediate */
1907                        if (intermediate_freq)
1908                                freqs.old = freqs.new;
1909                }
1910
1911                freqs.new = newfreq;
1912                pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1913                         __func__, policy->cpu, freqs.old, freqs.new);
1914
1915                cpufreq_freq_transition_begin(policy, &freqs);
1916        }
1917
1918        retval = cpufreq_driver->target_index(policy, index);
1919        if (retval)
1920                pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1921                       retval);
1922
1923        if (notify) {
1924                cpufreq_freq_transition_end(policy, &freqs, retval);
1925
1926                /*
1927                 * Failed after setting to intermediate freq? Driver should have
1928                 * reverted back to initial frequency and so should we. Check
1929                 * here for intermediate_freq instead of get_intermediate, in
1930                 * case we haven't switched to intermediate freq at all.
1931                 */
1932                if (unlikely(retval && intermediate_freq)) {
1933                        freqs.old = intermediate_freq;
1934                        freqs.new = policy->restore_freq;
1935                        cpufreq_freq_transition_begin(policy, &freqs);
1936                        cpufreq_freq_transition_end(policy, &freqs, 0);
1937                }
1938        }
1939
1940        return retval;
1941}
1942
1943int __cpufreq_driver_target(struct cpufreq_policy *policy,
1944                            unsigned int target_freq,
1945                            unsigned int relation)
1946{
1947        unsigned int old_target_freq = target_freq;
1948        int index;
1949
1950        if (cpufreq_disabled())
1951                return -ENODEV;
1952
1953        /* Make sure that target_freq is within supported range */
1954        target_freq = clamp_val(target_freq, policy->min, policy->max);
1955
1956        pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1957                 policy->cpu, target_freq, relation, old_target_freq);
1958
1959        /*
1960         * This might look like a redundant call as we are checking it again
1961         * after finding index. But it is left intentionally for cases where
1962         * exactly same freq is called again and so we can save on few function
1963         * calls.
1964         */
1965        if (target_freq == policy->cur)
1966                return 0;
1967
1968        /* Save last value to restore later on errors */
1969        policy->restore_freq = policy->cur;
1970
1971        if (cpufreq_driver->target)
1972                return cpufreq_driver->target(policy, target_freq, relation);
1973
1974        if (!cpufreq_driver->target_index)
1975                return -EINVAL;
1976
1977        index = cpufreq_frequency_table_target(policy, target_freq, relation);
1978
1979        return __target_index(policy, index);
1980}
1981EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1982
1983int cpufreq_driver_target(struct cpufreq_policy *policy,
1984                          unsigned int target_freq,
1985                          unsigned int relation)
1986{
1987        int ret = -EINVAL;
1988
1989        down_write(&policy->rwsem);
1990
1991        ret = __cpufreq_driver_target(policy, target_freq, relation);
1992
1993        up_write(&policy->rwsem);
1994
1995        return ret;
1996}
1997EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1998
1999__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2000{
2001        return NULL;
2002}
2003
2004static int cpufreq_init_governor(struct cpufreq_policy *policy)
2005{
2006        int ret;
2007
2008        /* Don't start any governor operations if we are entering suspend */
2009        if (cpufreq_suspended)
2010                return 0;
2011        /*
2012         * Governor might not be initiated here if ACPI _PPC changed
2013         * notification happened, so check it.
2014         */
2015        if (!policy->governor)
2016                return -EINVAL;
2017
2018        /* Platform doesn't want dynamic frequency switching ? */
2019        if (policy->governor->dynamic_switching &&
2020            cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2021                struct cpufreq_governor *gov = cpufreq_fallback_governor();
2022
2023                if (gov) {
2024                        pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2025                                policy->governor->name, gov->name);
2026                        policy->governor = gov;
2027                } else {
2028                        return -EINVAL;
2029                }
2030        }
2031
2032        if (!try_module_get(policy->governor->owner))
2033                return -EINVAL;
2034
2035        pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2036
2037        if (policy->governor->init) {
2038                ret = policy->governor->init(policy);
2039                if (ret) {
2040                        module_put(policy->governor->owner);
2041                        return ret;
2042                }
2043        }
2044
2045        return 0;
2046}
2047
2048static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2049{
2050        if (cpufreq_suspended || !policy->governor)
2051                return;
2052
2053        pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2054
2055        if (policy->governor->exit)
2056                policy->governor->exit(policy);
2057
2058        module_put(policy->governor->owner);
2059}
2060
2061static int cpufreq_start_governor(struct cpufreq_policy *policy)
2062{
2063        int ret;
2064
2065        if (cpufreq_suspended)
2066                return 0;
2067
2068        if (!policy->governor)
2069                return -EINVAL;
2070
2071        pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2072
2073        if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2074                cpufreq_update_current_freq(policy);
2075
2076        if (policy->governor->start) {
2077                ret = policy->governor->start(policy);
2078                if (ret)
2079                        return ret;
2080        }
2081
2082        if (policy->governor->limits)
2083                policy->governor->limits(policy);
2084
2085        return 0;
2086}
2087
2088static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2089{
2090        if (cpufreq_suspended || !policy->governor)
2091                return;
2092
2093        pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2094
2095        if (policy->governor->stop)
2096                policy->governor->stop(policy);
2097}
2098
2099static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2100{
2101        if (cpufreq_suspended || !policy->governor)
2102                return;
2103
2104        pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2105
2106        if (policy->governor->limits)
2107                policy->governor->limits(policy);
2108}
2109
2110int cpufreq_register_governor(struct cpufreq_governor *governor)
2111{
2112        int err;
2113
2114        if (!governor)
2115                return -EINVAL;
2116
2117        if (cpufreq_disabled())
2118                return -ENODEV;
2119
2120        mutex_lock(&cpufreq_governor_mutex);
2121
2122        err = -EBUSY;
2123        if (!find_governor(governor->name)) {
2124                err = 0;
2125                list_add(&governor->governor_list, &cpufreq_governor_list);
2126        }
2127
2128        mutex_unlock(&cpufreq_governor_mutex);
2129        return err;
2130}
2131EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2132
2133void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2134{
2135        struct cpufreq_policy *policy;
2136        unsigned long flags;
2137
2138        if (!governor)
2139                return;
2140
2141        if (cpufreq_disabled())
2142                return;
2143
2144        /* clear last_governor for all inactive policies */
2145        read_lock_irqsave(&cpufreq_driver_lock, flags);
2146        for_each_inactive_policy(policy) {
2147                if (!strcmp(policy->last_governor, governor->name)) {
2148                        policy->governor = NULL;
2149                        strcpy(policy->last_governor, "\0");
2150                }
2151        }
2152        read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2153
2154        mutex_lock(&cpufreq_governor_mutex);
2155        list_del(&governor->governor_list);
2156        mutex_unlock(&cpufreq_governor_mutex);
2157        return;
2158}
2159EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2160
2161
2162/*********************************************************************
2163 *                          POLICY INTERFACE                         *
2164 *********************************************************************/
2165
2166/**
2167 * cpufreq_get_policy - get the current cpufreq_policy
2168 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2169 *      is written
2170 *
2171 * Reads the current cpufreq policy.
2172 */
2173int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2174{
2175        struct cpufreq_policy *cpu_policy;
2176        if (!policy)
2177                return -EINVAL;
2178
2179        cpu_policy = cpufreq_cpu_get(cpu);
2180        if (!cpu_policy)
2181                return -EINVAL;
2182
2183        memcpy(policy, cpu_policy, sizeof(*policy));
2184
2185        cpufreq_cpu_put(cpu_policy);
2186        return 0;
2187}
2188EXPORT_SYMBOL(cpufreq_get_policy);
2189
2190/*
2191 * policy : current policy.
2192 * new_policy: policy to be set.
2193 */
2194static int cpufreq_set_policy(struct cpufreq_policy *policy,
2195                                struct cpufreq_policy *new_policy)
2196{
2197        struct cpufreq_governor *old_gov;
2198        int ret;
2199
2200        pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2201                 new_policy->cpu, new_policy->min, new_policy->max);
2202
2203        memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2204
2205        /*
2206        * This check works well when we store new min/max freq attributes,
2207        * because new_policy is a copy of policy with one field updated.
2208        */
2209        if (new_policy->min > new_policy->max)
2210                return -EINVAL;
2211
2212        /* verify the cpu speed can be set within this limit */
2213        ret = cpufreq_driver->verify(new_policy);
2214        if (ret)
2215                return ret;
2216
2217        /* adjust if necessary - all reasons */
2218        blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2219                        CPUFREQ_ADJUST, new_policy);
2220
2221        /*
2222         * verify the cpu speed can be set within this limit, which might be
2223         * different to the first one
2224         */
2225        ret = cpufreq_driver->verify(new_policy);
2226        if (ret)
2227                return ret;
2228
2229        /* notification of the new policy */
2230        blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2231                        CPUFREQ_NOTIFY, new_policy);
2232
2233        policy->min = new_policy->min;
2234        policy->max = new_policy->max;
2235
2236        policy->cached_target_freq = UINT_MAX;
2237
2238        pr_debug("new min and max freqs are %u - %u kHz\n",
2239                 policy->min, policy->max);
2240
2241        if (cpufreq_driver->setpolicy) {
2242                policy->policy = new_policy->policy;
2243                pr_debug("setting range\n");
2244                return cpufreq_driver->setpolicy(new_policy);
2245        }
2246
2247        if (new_policy->governor == policy->governor) {
2248                pr_debug("cpufreq: governor limits update\n");
2249                cpufreq_governor_limits(policy);
2250                return 0;
2251        }
2252
2253        pr_debug("governor switch\n");
2254
2255        /* save old, working values */
2256        old_gov = policy->governor;
2257        /* end old governor */
2258        if (old_gov) {
2259                cpufreq_stop_governor(policy);
2260                cpufreq_exit_governor(policy);
2261        }
2262
2263        /* start new governor */
2264        policy->governor = new_policy->governor;
2265        ret = cpufreq_init_governor(policy);
2266        if (!ret) {
2267                ret = cpufreq_start_governor(policy);
2268                if (!ret) {
2269                        pr_debug("cpufreq: governor change\n");
2270                        return 0;
2271                }
2272                cpufreq_exit_governor(policy);
2273        }
2274
2275        /* new governor failed, so re-start old one */
2276        pr_debug("starting governor %s failed\n", policy->governor->name);
2277        if (old_gov) {
2278                policy->governor = old_gov;
2279                if (cpufreq_init_governor(policy))
2280                        policy->governor = NULL;
2281                else
2282                        cpufreq_start_governor(policy);
2283        }
2284
2285        return ret;
2286}
2287
2288/**
2289 *      cpufreq_update_policy - re-evaluate an existing cpufreq policy
2290 *      @cpu: CPU which shall be re-evaluated
2291 *
2292 *      Useful for policy notifiers which have different necessities
2293 *      at different times.
2294 */
2295void cpufreq_update_policy(unsigned int cpu)
2296{
2297        struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2298        struct cpufreq_policy new_policy;
2299
2300        if (!policy)
2301                return;
2302
2303        down_write(&policy->rwsem);
2304
2305        if (policy_is_inactive(policy))
2306                goto unlock;
2307
2308        pr_debug("updating policy for CPU %u\n", cpu);
2309        memcpy(&new_policy, policy, sizeof(*policy));
2310        new_policy.min = policy->user_policy.min;
2311        new_policy.max = policy->user_policy.max;
2312
2313        /*
2314         * BIOS might change freq behind our back
2315         * -> ask driver for current freq and notify governors about a change
2316         */
2317        if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2318                if (cpufreq_suspended)
2319                        goto unlock;
2320
2321                new_policy.cur = cpufreq_update_current_freq(policy);
2322                if (WARN_ON(!new_policy.cur))
2323                        goto unlock;
2324        }
2325
2326        cpufreq_set_policy(policy, &new_policy);
2327
2328unlock:
2329        up_write(&policy->rwsem);
2330
2331        cpufreq_cpu_put(policy);
2332}
2333EXPORT_SYMBOL(cpufreq_update_policy);
2334
2335/*********************************************************************
2336 *               BOOST                                               *
2337 *********************************************************************/
2338static int cpufreq_boost_set_sw(int state)
2339{
2340        struct cpufreq_policy *policy;
2341        int ret = -EINVAL;
2342
2343        for_each_active_policy(policy) {
2344                if (!policy->freq_table)
2345                        continue;
2346
2347                ret = cpufreq_frequency_table_cpuinfo(policy,
2348                                                      policy->freq_table);
2349                if (ret) {
2350                        pr_err("%s: Policy frequency update failed\n",
2351                               __func__);
2352                        break;
2353                }
2354
2355                down_write(&policy->rwsem);
2356                policy->user_policy.max = policy->max;
2357                cpufreq_governor_limits(policy);
2358                up_write(&policy->rwsem);
2359        }
2360
2361        return ret;
2362}
2363
2364int cpufreq_boost_trigger_state(int state)
2365{
2366        unsigned long flags;
2367        int ret = 0;
2368
2369        if (cpufreq_driver->boost_enabled == state)
2370                return 0;
2371
2372        write_lock_irqsave(&cpufreq_driver_lock, flags);
2373        cpufreq_driver->boost_enabled = state;
2374        write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2375
2376        ret = cpufreq_driver->set_boost(state);
2377        if (ret) {
2378                write_lock_irqsave(&cpufreq_driver_lock, flags);
2379                cpufreq_driver->boost_enabled = !state;
2380                write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2381
2382                pr_err("%s: Cannot %s BOOST\n",
2383                       __func__, state ? "enable" : "disable");
2384        }
2385
2386        return ret;
2387}
2388
2389static bool cpufreq_boost_supported(void)
2390{
2391        return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2392}
2393
2394static int create_boost_sysfs_file(void)
2395{
2396        int ret;
2397
2398        ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2399        if (ret)
2400                pr_err("%s: cannot register global BOOST sysfs file\n",
2401                       __func__);
2402
2403        return ret;
2404}
2405
2406static void remove_boost_sysfs_file(void)
2407{
2408        if (cpufreq_boost_supported())
2409                sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2410}
2411
2412int cpufreq_enable_boost_support(void)
2413{
2414        if (!cpufreq_driver)
2415                return -EINVAL;
2416
2417        if (cpufreq_boost_supported())
2418                return 0;
2419
2420        cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2421
2422        /* This will get removed on driver unregister */
2423        return create_boost_sysfs_file();
2424}
2425EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2426
2427int cpufreq_boost_enabled(void)
2428{
2429        return cpufreq_driver->boost_enabled;
2430}
2431EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2432
2433/*********************************************************************
2434 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2435 *********************************************************************/
2436static enum cpuhp_state hp_online;
2437
2438static int cpuhp_cpufreq_online(unsigned int cpu)
2439{
2440        cpufreq_online(cpu);
2441
2442        return 0;
2443}
2444
2445static int cpuhp_cpufreq_offline(unsigned int cpu)
2446{
2447        cpufreq_offline(cpu);
2448
2449        return 0;
2450}
2451
2452/**
2453 * cpufreq_register_driver - register a CPU Frequency driver
2454 * @driver_data: A struct cpufreq_driver containing the values#
2455 * submitted by the CPU Frequency driver.
2456 *
2457 * Registers a CPU Frequency driver to this core code. This code
2458 * returns zero on success, -EEXIST when another driver got here first
2459 * (and isn't unregistered in the meantime).
2460 *
2461 */
2462int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2463{
2464        unsigned long flags;
2465        int ret;
2466
2467        if (cpufreq_disabled())
2468                return -ENODEV;
2469
2470        if (!driver_data || !driver_data->verify || !driver_data->init ||
2471            !(driver_data->setpolicy || driver_data->target_index ||
2472                    driver_data->target) ||
2473             (driver_data->setpolicy && (driver_data->target_index ||
2474                    driver_data->target)) ||
2475             (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2476                return -EINVAL;
2477
2478        pr_debug("trying to register driver %s\n", driver_data->name);
2479
2480        /* Protect against concurrent CPU online/offline. */
2481        cpus_read_lock();
2482
2483        write_lock_irqsave(&cpufreq_driver_lock, flags);
2484        if (cpufreq_driver) {
2485                write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2486                ret = -EEXIST;
2487                goto out;
2488        }
2489        cpufreq_driver = driver_data;
2490        write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2491
2492        if (driver_data->setpolicy)
2493                driver_data->flags |= CPUFREQ_CONST_LOOPS;
2494
2495        if (cpufreq_boost_supported()) {
2496                ret = create_boost_sysfs_file();
2497                if (ret)
2498                        goto err_null_driver;
2499        }
2500
2501        ret = subsys_interface_register(&cpufreq_interface);
2502        if (ret)
2503                goto err_boost_unreg;
2504
2505        if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2506            list_empty(&cpufreq_policy_list)) {
2507                /* if all ->init() calls failed, unregister */
2508                ret = -ENODEV;
2509                pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2510                         driver_data->name);
2511                goto err_if_unreg;
2512        }
2513
2514        ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2515                                                   "cpufreq:online",
2516                                                   cpuhp_cpufreq_online,
2517                                                   cpuhp_cpufreq_offline);
2518        if (ret < 0)
2519                goto err_if_unreg;
2520        hp_online = ret;
2521        ret = 0;
2522
2523        pr_debug("driver %s up and running\n", driver_data->name);
2524        goto out;
2525
2526err_if_unreg:
2527        subsys_interface_unregister(&cpufreq_interface);
2528err_boost_unreg:
2529        remove_boost_sysfs_file();
2530err_null_driver:
2531        write_lock_irqsave(&cpufreq_driver_lock, flags);
2532        cpufreq_driver = NULL;
2533        write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2534out:
2535        cpus_read_unlock();
2536        return ret;
2537}
2538EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2539
2540/**
2541 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2542 *
2543 * Unregister the current CPUFreq driver. Only call this if you have
2544 * the right to do so, i.e. if you have succeeded in initialising before!
2545 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2546 * currently not initialised.
2547 */
2548int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2549{
2550        unsigned long flags;
2551
2552        if (!cpufreq_driver || (driver != cpufreq_driver))
2553                return -EINVAL;
2554
2555        pr_debug("unregistering driver %s\n", driver->name);
2556
2557        /* Protect against concurrent cpu hotplug */
2558        cpus_read_lock();
2559        subsys_interface_unregister(&cpufreq_interface);
2560        remove_boost_sysfs_file();
2561        cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2562
2563        write_lock_irqsave(&cpufreq_driver_lock, flags);
2564
2565        cpufreq_driver = NULL;
2566
2567        write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2568        cpus_read_unlock();
2569
2570        return 0;
2571}
2572EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2573
2574/*
2575 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2576 * or mutexes when secondary CPUs are halted.
2577 */
2578static struct syscore_ops cpufreq_syscore_ops = {
2579        .shutdown = cpufreq_suspend,
2580};
2581
2582struct kobject *cpufreq_global_kobject;
2583EXPORT_SYMBOL(cpufreq_global_kobject);
2584
2585static int __init cpufreq_core_init(void)
2586{
2587        if (cpufreq_disabled())
2588                return -ENODEV;
2589
2590        cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2591        BUG_ON(!cpufreq_global_kobject);
2592
2593        register_syscore_ops(&cpufreq_syscore_ops);
2594
2595        return 0;
2596}
2597module_param(off, int, 0444);
2598core_initcall(cpufreq_core_init);
2599