linux/drivers/cpufreq/intel_pstate.c
<<
>>
Prefs
   1/*
   2 * intel_pstate.c: Native P state management for Intel processors
   3 *
   4 * (C) Copyright 2012 Intel Corporation
   5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; version 2
  10 * of the License.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/kernel.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/module.h>
  18#include <linux/ktime.h>
  19#include <linux/hrtimer.h>
  20#include <linux/tick.h>
  21#include <linux/slab.h>
  22#include <linux/sched/cpufreq.h>
  23#include <linux/list.h>
  24#include <linux/cpu.h>
  25#include <linux/cpufreq.h>
  26#include <linux/sysfs.h>
  27#include <linux/types.h>
  28#include <linux/fs.h>
  29#include <linux/debugfs.h>
  30#include <linux/acpi.h>
  31#include <linux/vmalloc.h>
  32#include <trace/events/power.h>
  33
  34#include <asm/div64.h>
  35#include <asm/msr.h>
  36#include <asm/cpu_device_id.h>
  37#include <asm/cpufeature.h>
  38#include <asm/intel-family.h>
  39
  40#define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
  41
  42#define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
  43#define INTEL_CPUFREQ_TRANSITION_DELAY          500
  44
  45#ifdef CONFIG_ACPI
  46#include <acpi/processor.h>
  47#include <acpi/cppc_acpi.h>
  48#endif
  49
  50#define FRAC_BITS 8
  51#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
  52#define fp_toint(X) ((X) >> FRAC_BITS)
  53
  54#define EXT_BITS 6
  55#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
  56#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
  57#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
  58
  59static inline int32_t mul_fp(int32_t x, int32_t y)
  60{
  61        return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
  62}
  63
  64static inline int32_t div_fp(s64 x, s64 y)
  65{
  66        return div64_s64((int64_t)x << FRAC_BITS, y);
  67}
  68
  69static inline int ceiling_fp(int32_t x)
  70{
  71        int mask, ret;
  72
  73        ret = fp_toint(x);
  74        mask = (1 << FRAC_BITS) - 1;
  75        if (x & mask)
  76                ret += 1;
  77        return ret;
  78}
  79
  80static inline int32_t percent_fp(int percent)
  81{
  82        return div_fp(percent, 100);
  83}
  84
  85static inline u64 mul_ext_fp(u64 x, u64 y)
  86{
  87        return (x * y) >> EXT_FRAC_BITS;
  88}
  89
  90static inline u64 div_ext_fp(u64 x, u64 y)
  91{
  92        return div64_u64(x << EXT_FRAC_BITS, y);
  93}
  94
  95static inline int32_t percent_ext_fp(int percent)
  96{
  97        return div_ext_fp(percent, 100);
  98}
  99
 100/**
 101 * struct sample -      Store performance sample
 102 * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
 103 *                      performance during last sample period
 104 * @busy_scaled:        Scaled busy value which is used to calculate next
 105 *                      P state. This can be different than core_avg_perf
 106 *                      to account for cpu idle period
 107 * @aperf:              Difference of actual performance frequency clock count
 108 *                      read from APERF MSR between last and current sample
 109 * @mperf:              Difference of maximum performance frequency clock count
 110 *                      read from MPERF MSR between last and current sample
 111 * @tsc:                Difference of time stamp counter between last and
 112 *                      current sample
 113 * @time:               Current time from scheduler
 114 *
 115 * This structure is used in the cpudata structure to store performance sample
 116 * data for choosing next P State.
 117 */
 118struct sample {
 119        int32_t core_avg_perf;
 120        int32_t busy_scaled;
 121        u64 aperf;
 122        u64 mperf;
 123        u64 tsc;
 124        u64 time;
 125};
 126
 127/**
 128 * struct pstate_data - Store P state data
 129 * @current_pstate:     Current requested P state
 130 * @min_pstate:         Min P state possible for this platform
 131 * @max_pstate:         Max P state possible for this platform
 132 * @max_pstate_physical:This is physical Max P state for a processor
 133 *                      This can be higher than the max_pstate which can
 134 *                      be limited by platform thermal design power limits
 135 * @scaling:            Scaling factor to  convert frequency to cpufreq
 136 *                      frequency units
 137 * @turbo_pstate:       Max Turbo P state possible for this platform
 138 * @max_freq:           @max_pstate frequency in cpufreq units
 139 * @turbo_freq:         @turbo_pstate frequency in cpufreq units
 140 *
 141 * Stores the per cpu model P state limits and current P state.
 142 */
 143struct pstate_data {
 144        int     current_pstate;
 145        int     min_pstate;
 146        int     max_pstate;
 147        int     max_pstate_physical;
 148        int     scaling;
 149        int     turbo_pstate;
 150        unsigned int max_freq;
 151        unsigned int turbo_freq;
 152};
 153
 154/**
 155 * struct vid_data -    Stores voltage information data
 156 * @min:                VID data for this platform corresponding to
 157 *                      the lowest P state
 158 * @max:                VID data corresponding to the highest P State.
 159 * @turbo:              VID data for turbo P state
 160 * @ratio:              Ratio of (vid max - vid min) /
 161 *                      (max P state - Min P State)
 162 *
 163 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 164 * This data is used in Atom platforms, where in addition to target P state,
 165 * the voltage data needs to be specified to select next P State.
 166 */
 167struct vid_data {
 168        int min;
 169        int max;
 170        int turbo;
 171        int32_t ratio;
 172};
 173
 174/**
 175 * struct global_params - Global parameters, mostly tunable via sysfs.
 176 * @no_turbo:           Whether or not to use turbo P-states.
 177 * @turbo_disabled:     Whethet or not turbo P-states are available at all,
 178 *                      based on the MSR_IA32_MISC_ENABLE value and whether or
 179 *                      not the maximum reported turbo P-state is different from
 180 *                      the maximum reported non-turbo one.
 181 * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
 182 *                      P-state capacity.
 183 * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
 184 *                      P-state capacity.
 185 */
 186struct global_params {
 187        bool no_turbo;
 188        bool turbo_disabled;
 189        int max_perf_pct;
 190        int min_perf_pct;
 191};
 192
 193/**
 194 * struct cpudata -     Per CPU instance data storage
 195 * @cpu:                CPU number for this instance data
 196 * @policy:             CPUFreq policy value
 197 * @update_util:        CPUFreq utility callback information
 198 * @update_util_set:    CPUFreq utility callback is set
 199 * @iowait_boost:       iowait-related boost fraction
 200 * @last_update:        Time of the last update.
 201 * @pstate:             Stores P state limits for this CPU
 202 * @vid:                Stores VID limits for this CPU
 203 * @last_sample_time:   Last Sample time
 204 * @aperf_mperf_shift:  Number of clock cycles after aperf, merf is incremented
 205 *                      This shift is a multiplier to mperf delta to
 206 *                      calculate CPU busy.
 207 * @prev_aperf:         Last APERF value read from APERF MSR
 208 * @prev_mperf:         Last MPERF value read from MPERF MSR
 209 * @prev_tsc:           Last timestamp counter (TSC) value
 210 * @prev_cummulative_iowait: IO Wait time difference from last and
 211 *                      current sample
 212 * @sample:             Storage for storing last Sample data
 213 * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
 214 * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
 215 * @acpi_perf_data:     Stores ACPI perf information read from _PSS
 216 * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
 217 * @epp_powersave:      Last saved HWP energy performance preference
 218 *                      (EPP) or energy performance bias (EPB),
 219 *                      when policy switched to performance
 220 * @epp_policy:         Last saved policy used to set EPP/EPB
 221 * @epp_default:        Power on default HWP energy performance
 222 *                      preference/bias
 223 * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
 224 *                      operation
 225 *
 226 * This structure stores per CPU instance data for all CPUs.
 227 */
 228struct cpudata {
 229        int cpu;
 230
 231        unsigned int policy;
 232        struct update_util_data update_util;
 233        bool   update_util_set;
 234
 235        struct pstate_data pstate;
 236        struct vid_data vid;
 237
 238        u64     last_update;
 239        u64     last_sample_time;
 240        u64     aperf_mperf_shift;
 241        u64     prev_aperf;
 242        u64     prev_mperf;
 243        u64     prev_tsc;
 244        u64     prev_cummulative_iowait;
 245        struct sample sample;
 246        int32_t min_perf_ratio;
 247        int32_t max_perf_ratio;
 248#ifdef CONFIG_ACPI
 249        struct acpi_processor_performance acpi_perf_data;
 250        bool valid_pss_table;
 251#endif
 252        unsigned int iowait_boost;
 253        s16 epp_powersave;
 254        s16 epp_policy;
 255        s16 epp_default;
 256        s16 epp_saved;
 257};
 258
 259static struct cpudata **all_cpu_data;
 260
 261/**
 262 * struct pstate_funcs - Per CPU model specific callbacks
 263 * @get_max:            Callback to get maximum non turbo effective P state
 264 * @get_max_physical:   Callback to get maximum non turbo physical P state
 265 * @get_min:            Callback to get minimum P state
 266 * @get_turbo:          Callback to get turbo P state
 267 * @get_scaling:        Callback to get frequency scaling factor
 268 * @get_val:            Callback to convert P state to actual MSR write value
 269 * @get_vid:            Callback to get VID data for Atom platforms
 270 *
 271 * Core and Atom CPU models have different way to get P State limits. This
 272 * structure is used to store those callbacks.
 273 */
 274struct pstate_funcs {
 275        int (*get_max)(void);
 276        int (*get_max_physical)(void);
 277        int (*get_min)(void);
 278        int (*get_turbo)(void);
 279        int (*get_scaling)(void);
 280        int (*get_aperf_mperf_shift)(void);
 281        u64 (*get_val)(struct cpudata*, int pstate);
 282        void (*get_vid)(struct cpudata *);
 283};
 284
 285static struct pstate_funcs pstate_funcs __read_mostly;
 286
 287static int hwp_active __read_mostly;
 288static bool per_cpu_limits __read_mostly;
 289
 290static struct cpufreq_driver *intel_pstate_driver __read_mostly;
 291
 292#ifdef CONFIG_ACPI
 293static bool acpi_ppc;
 294#endif
 295
 296static struct global_params global;
 297
 298static DEFINE_MUTEX(intel_pstate_driver_lock);
 299static DEFINE_MUTEX(intel_pstate_limits_lock);
 300
 301#ifdef CONFIG_ACPI
 302
 303static bool intel_pstate_get_ppc_enable_status(void)
 304{
 305        if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
 306            acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
 307                return true;
 308
 309        return acpi_ppc;
 310}
 311
 312#ifdef CONFIG_ACPI_CPPC_LIB
 313
 314/* The work item is needed to avoid CPU hotplug locking issues */
 315static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
 316{
 317        sched_set_itmt_support();
 318}
 319
 320static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
 321
 322static void intel_pstate_set_itmt_prio(int cpu)
 323{
 324        struct cppc_perf_caps cppc_perf;
 325        static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
 326        int ret;
 327
 328        ret = cppc_get_perf_caps(cpu, &cppc_perf);
 329        if (ret)
 330                return;
 331
 332        /*
 333         * The priorities can be set regardless of whether or not
 334         * sched_set_itmt_support(true) has been called and it is valid to
 335         * update them at any time after it has been called.
 336         */
 337        sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
 338
 339        if (max_highest_perf <= min_highest_perf) {
 340                if (cppc_perf.highest_perf > max_highest_perf)
 341                        max_highest_perf = cppc_perf.highest_perf;
 342
 343                if (cppc_perf.highest_perf < min_highest_perf)
 344                        min_highest_perf = cppc_perf.highest_perf;
 345
 346                if (max_highest_perf > min_highest_perf) {
 347                        /*
 348                         * This code can be run during CPU online under the
 349                         * CPU hotplug locks, so sched_set_itmt_support()
 350                         * cannot be called from here.  Queue up a work item
 351                         * to invoke it.
 352                         */
 353                        schedule_work(&sched_itmt_work);
 354                }
 355        }
 356}
 357#else
 358static void intel_pstate_set_itmt_prio(int cpu)
 359{
 360}
 361#endif
 362
 363static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 364{
 365        struct cpudata *cpu;
 366        int ret;
 367        int i;
 368
 369        if (hwp_active) {
 370                intel_pstate_set_itmt_prio(policy->cpu);
 371                return;
 372        }
 373
 374        if (!intel_pstate_get_ppc_enable_status())
 375                return;
 376
 377        cpu = all_cpu_data[policy->cpu];
 378
 379        ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
 380                                                  policy->cpu);
 381        if (ret)
 382                return;
 383
 384        /*
 385         * Check if the control value in _PSS is for PERF_CTL MSR, which should
 386         * guarantee that the states returned by it map to the states in our
 387         * list directly.
 388         */
 389        if (cpu->acpi_perf_data.control_register.space_id !=
 390                                                ACPI_ADR_SPACE_FIXED_HARDWARE)
 391                goto err;
 392
 393        /*
 394         * If there is only one entry _PSS, simply ignore _PSS and continue as
 395         * usual without taking _PSS into account
 396         */
 397        if (cpu->acpi_perf_data.state_count < 2)
 398                goto err;
 399
 400        pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
 401        for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
 402                pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
 403                         (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
 404                         (u32) cpu->acpi_perf_data.states[i].core_frequency,
 405                         (u32) cpu->acpi_perf_data.states[i].power,
 406                         (u32) cpu->acpi_perf_data.states[i].control);
 407        }
 408
 409        /*
 410         * The _PSS table doesn't contain whole turbo frequency range.
 411         * This just contains +1 MHZ above the max non turbo frequency,
 412         * with control value corresponding to max turbo ratio. But
 413         * when cpufreq set policy is called, it will call with this
 414         * max frequency, which will cause a reduced performance as
 415         * this driver uses real max turbo frequency as the max
 416         * frequency. So correct this frequency in _PSS table to
 417         * correct max turbo frequency based on the turbo state.
 418         * Also need to convert to MHz as _PSS freq is in MHz.
 419         */
 420        if (!global.turbo_disabled)
 421                cpu->acpi_perf_data.states[0].core_frequency =
 422                                        policy->cpuinfo.max_freq / 1000;
 423        cpu->valid_pss_table = true;
 424        pr_debug("_PPC limits will be enforced\n");
 425
 426        return;
 427
 428 err:
 429        cpu->valid_pss_table = false;
 430        acpi_processor_unregister_performance(policy->cpu);
 431}
 432
 433static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 434{
 435        struct cpudata *cpu;
 436
 437        cpu = all_cpu_data[policy->cpu];
 438        if (!cpu->valid_pss_table)
 439                return;
 440
 441        acpi_processor_unregister_performance(policy->cpu);
 442}
 443#else
 444static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 445{
 446}
 447
 448static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 449{
 450}
 451#endif
 452
 453static inline void update_turbo_state(void)
 454{
 455        u64 misc_en;
 456        struct cpudata *cpu;
 457
 458        cpu = all_cpu_data[0];
 459        rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
 460        global.turbo_disabled =
 461                (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
 462                 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
 463}
 464
 465static int min_perf_pct_min(void)
 466{
 467        struct cpudata *cpu = all_cpu_data[0];
 468        int turbo_pstate = cpu->pstate.turbo_pstate;
 469
 470        return turbo_pstate ?
 471                (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
 472}
 473
 474static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
 475{
 476        u64 epb;
 477        int ret;
 478
 479        if (!static_cpu_has(X86_FEATURE_EPB))
 480                return -ENXIO;
 481
 482        ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 483        if (ret)
 484                return (s16)ret;
 485
 486        return (s16)(epb & 0x0f);
 487}
 488
 489static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
 490{
 491        s16 epp;
 492
 493        if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
 494                /*
 495                 * When hwp_req_data is 0, means that caller didn't read
 496                 * MSR_HWP_REQUEST, so need to read and get EPP.
 497                 */
 498                if (!hwp_req_data) {
 499                        epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
 500                                            &hwp_req_data);
 501                        if (epp)
 502                                return epp;
 503                }
 504                epp = (hwp_req_data >> 24) & 0xff;
 505        } else {
 506                /* When there is no EPP present, HWP uses EPB settings */
 507                epp = intel_pstate_get_epb(cpu_data);
 508        }
 509
 510        return epp;
 511}
 512
 513static int intel_pstate_set_epb(int cpu, s16 pref)
 514{
 515        u64 epb;
 516        int ret;
 517
 518        if (!static_cpu_has(X86_FEATURE_EPB))
 519                return -ENXIO;
 520
 521        ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 522        if (ret)
 523                return ret;
 524
 525        epb = (epb & ~0x0f) | pref;
 526        wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
 527
 528        return 0;
 529}
 530
 531/*
 532 * EPP/EPB display strings corresponding to EPP index in the
 533 * energy_perf_strings[]
 534 *      index           String
 535 *-------------------------------------
 536 *      0               default
 537 *      1               performance
 538 *      2               balance_performance
 539 *      3               balance_power
 540 *      4               power
 541 */
 542static const char * const energy_perf_strings[] = {
 543        "default",
 544        "performance",
 545        "balance_performance",
 546        "balance_power",
 547        "power",
 548        NULL
 549};
 550static const unsigned int epp_values[] = {
 551        HWP_EPP_PERFORMANCE,
 552        HWP_EPP_BALANCE_PERFORMANCE,
 553        HWP_EPP_BALANCE_POWERSAVE,
 554        HWP_EPP_POWERSAVE
 555};
 556
 557static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
 558{
 559        s16 epp;
 560        int index = -EINVAL;
 561
 562        epp = intel_pstate_get_epp(cpu_data, 0);
 563        if (epp < 0)
 564                return epp;
 565
 566        if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
 567                if (epp == HWP_EPP_PERFORMANCE)
 568                        return 1;
 569                if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
 570                        return 2;
 571                if (epp <= HWP_EPP_BALANCE_POWERSAVE)
 572                        return 3;
 573                else
 574                        return 4;
 575        } else if (static_cpu_has(X86_FEATURE_EPB)) {
 576                /*
 577                 * Range:
 578                 *      0x00-0x03       :       Performance
 579                 *      0x04-0x07       :       Balance performance
 580                 *      0x08-0x0B       :       Balance power
 581                 *      0x0C-0x0F       :       Power
 582                 * The EPB is a 4 bit value, but our ranges restrict the
 583                 * value which can be set. Here only using top two bits
 584                 * effectively.
 585                 */
 586                index = (epp >> 2) + 1;
 587        }
 588
 589        return index;
 590}
 591
 592static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
 593                                              int pref_index)
 594{
 595        int epp = -EINVAL;
 596        int ret;
 597
 598        if (!pref_index)
 599                epp = cpu_data->epp_default;
 600
 601        mutex_lock(&intel_pstate_limits_lock);
 602
 603        if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
 604                u64 value;
 605
 606                ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
 607                if (ret)
 608                        goto return_pref;
 609
 610                value &= ~GENMASK_ULL(31, 24);
 611
 612                if (epp == -EINVAL)
 613                        epp = epp_values[pref_index - 1];
 614
 615                value |= (u64)epp << 24;
 616                ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
 617        } else {
 618                if (epp == -EINVAL)
 619                        epp = (pref_index - 1) << 2;
 620                ret = intel_pstate_set_epb(cpu_data->cpu, epp);
 621        }
 622return_pref:
 623        mutex_unlock(&intel_pstate_limits_lock);
 624
 625        return ret;
 626}
 627
 628static ssize_t show_energy_performance_available_preferences(
 629                                struct cpufreq_policy *policy, char *buf)
 630{
 631        int i = 0;
 632        int ret = 0;
 633
 634        while (energy_perf_strings[i] != NULL)
 635                ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
 636
 637        ret += sprintf(&buf[ret], "\n");
 638
 639        return ret;
 640}
 641
 642cpufreq_freq_attr_ro(energy_performance_available_preferences);
 643
 644static ssize_t store_energy_performance_preference(
 645                struct cpufreq_policy *policy, const char *buf, size_t count)
 646{
 647        struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 648        char str_preference[21];
 649        int ret, i = 0;
 650
 651        ret = sscanf(buf, "%20s", str_preference);
 652        if (ret != 1)
 653                return -EINVAL;
 654
 655        while (energy_perf_strings[i] != NULL) {
 656                if (!strcmp(str_preference, energy_perf_strings[i])) {
 657                        intel_pstate_set_energy_pref_index(cpu_data, i);
 658                        return count;
 659                }
 660                ++i;
 661        }
 662
 663        return -EINVAL;
 664}
 665
 666static ssize_t show_energy_performance_preference(
 667                                struct cpufreq_policy *policy, char *buf)
 668{
 669        struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 670        int preference;
 671
 672        preference = intel_pstate_get_energy_pref_index(cpu_data);
 673        if (preference < 0)
 674                return preference;
 675
 676        return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
 677}
 678
 679cpufreq_freq_attr_rw(energy_performance_preference);
 680
 681static struct freq_attr *hwp_cpufreq_attrs[] = {
 682        &energy_performance_preference,
 683        &energy_performance_available_preferences,
 684        NULL,
 685};
 686
 687static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
 688                                     int *current_max)
 689{
 690        u64 cap;
 691
 692        rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
 693        if (global.no_turbo)
 694                *current_max = HWP_GUARANTEED_PERF(cap);
 695        else
 696                *current_max = HWP_HIGHEST_PERF(cap);
 697
 698        *phy_max = HWP_HIGHEST_PERF(cap);
 699}
 700
 701static void intel_pstate_hwp_set(unsigned int cpu)
 702{
 703        struct cpudata *cpu_data = all_cpu_data[cpu];
 704        int max, min;
 705        u64 value;
 706        s16 epp;
 707
 708        max = cpu_data->max_perf_ratio;
 709        min = cpu_data->min_perf_ratio;
 710
 711        if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
 712                min = max;
 713
 714        rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
 715
 716        value &= ~HWP_MIN_PERF(~0L);
 717        value |= HWP_MIN_PERF(min);
 718
 719        value &= ~HWP_MAX_PERF(~0L);
 720        value |= HWP_MAX_PERF(max);
 721
 722        if (cpu_data->epp_policy == cpu_data->policy)
 723                goto skip_epp;
 724
 725        cpu_data->epp_policy = cpu_data->policy;
 726
 727        if (cpu_data->epp_saved >= 0) {
 728                epp = cpu_data->epp_saved;
 729                cpu_data->epp_saved = -EINVAL;
 730                goto update_epp;
 731        }
 732
 733        if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
 734                epp = intel_pstate_get_epp(cpu_data, value);
 735                cpu_data->epp_powersave = epp;
 736                /* If EPP read was failed, then don't try to write */
 737                if (epp < 0)
 738                        goto skip_epp;
 739
 740                epp = 0;
 741        } else {
 742                /* skip setting EPP, when saved value is invalid */
 743                if (cpu_data->epp_powersave < 0)
 744                        goto skip_epp;
 745
 746                /*
 747                 * No need to restore EPP when it is not zero. This
 748                 * means:
 749                 *  - Policy is not changed
 750                 *  - user has manually changed
 751                 *  - Error reading EPB
 752                 */
 753                epp = intel_pstate_get_epp(cpu_data, value);
 754                if (epp)
 755                        goto skip_epp;
 756
 757                epp = cpu_data->epp_powersave;
 758        }
 759update_epp:
 760        if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
 761                value &= ~GENMASK_ULL(31, 24);
 762                value |= (u64)epp << 24;
 763        } else {
 764                intel_pstate_set_epb(cpu, epp);
 765        }
 766skip_epp:
 767        wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
 768}
 769
 770static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
 771{
 772        struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 773
 774        if (!hwp_active)
 775                return 0;
 776
 777        cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
 778
 779        return 0;
 780}
 781
 782static int intel_pstate_resume(struct cpufreq_policy *policy)
 783{
 784        if (!hwp_active)
 785                return 0;
 786
 787        mutex_lock(&intel_pstate_limits_lock);
 788
 789        all_cpu_data[policy->cpu]->epp_policy = 0;
 790        intel_pstate_hwp_set(policy->cpu);
 791
 792        mutex_unlock(&intel_pstate_limits_lock);
 793
 794        return 0;
 795}
 796
 797static void intel_pstate_update_policies(void)
 798{
 799        int cpu;
 800
 801        for_each_possible_cpu(cpu)
 802                cpufreq_update_policy(cpu);
 803}
 804
 805/************************** sysfs begin ************************/
 806#define show_one(file_name, object)                                     \
 807        static ssize_t show_##file_name                                 \
 808        (struct kobject *kobj, struct attribute *attr, char *buf)       \
 809        {                                                               \
 810                return sprintf(buf, "%u\n", global.object);             \
 811        }
 812
 813static ssize_t intel_pstate_show_status(char *buf);
 814static int intel_pstate_update_status(const char *buf, size_t size);
 815
 816static ssize_t show_status(struct kobject *kobj,
 817                           struct attribute *attr, char *buf)
 818{
 819        ssize_t ret;
 820
 821        mutex_lock(&intel_pstate_driver_lock);
 822        ret = intel_pstate_show_status(buf);
 823        mutex_unlock(&intel_pstate_driver_lock);
 824
 825        return ret;
 826}
 827
 828static ssize_t store_status(struct kobject *a, struct attribute *b,
 829                            const char *buf, size_t count)
 830{
 831        char *p = memchr(buf, '\n', count);
 832        int ret;
 833
 834        mutex_lock(&intel_pstate_driver_lock);
 835        ret = intel_pstate_update_status(buf, p ? p - buf : count);
 836        mutex_unlock(&intel_pstate_driver_lock);
 837
 838        return ret < 0 ? ret : count;
 839}
 840
 841static ssize_t show_turbo_pct(struct kobject *kobj,
 842                                struct attribute *attr, char *buf)
 843{
 844        struct cpudata *cpu;
 845        int total, no_turbo, turbo_pct;
 846        uint32_t turbo_fp;
 847
 848        mutex_lock(&intel_pstate_driver_lock);
 849
 850        if (!intel_pstate_driver) {
 851                mutex_unlock(&intel_pstate_driver_lock);
 852                return -EAGAIN;
 853        }
 854
 855        cpu = all_cpu_data[0];
 856
 857        total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
 858        no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
 859        turbo_fp = div_fp(no_turbo, total);
 860        turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
 861
 862        mutex_unlock(&intel_pstate_driver_lock);
 863
 864        return sprintf(buf, "%u\n", turbo_pct);
 865}
 866
 867static ssize_t show_num_pstates(struct kobject *kobj,
 868                                struct attribute *attr, char *buf)
 869{
 870        struct cpudata *cpu;
 871        int total;
 872
 873        mutex_lock(&intel_pstate_driver_lock);
 874
 875        if (!intel_pstate_driver) {
 876                mutex_unlock(&intel_pstate_driver_lock);
 877                return -EAGAIN;
 878        }
 879
 880        cpu = all_cpu_data[0];
 881        total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
 882
 883        mutex_unlock(&intel_pstate_driver_lock);
 884
 885        return sprintf(buf, "%u\n", total);
 886}
 887
 888static ssize_t show_no_turbo(struct kobject *kobj,
 889                             struct attribute *attr, char *buf)
 890{
 891        ssize_t ret;
 892
 893        mutex_lock(&intel_pstate_driver_lock);
 894
 895        if (!intel_pstate_driver) {
 896                mutex_unlock(&intel_pstate_driver_lock);
 897                return -EAGAIN;
 898        }
 899
 900        update_turbo_state();
 901        if (global.turbo_disabled)
 902                ret = sprintf(buf, "%u\n", global.turbo_disabled);
 903        else
 904                ret = sprintf(buf, "%u\n", global.no_turbo);
 905
 906        mutex_unlock(&intel_pstate_driver_lock);
 907
 908        return ret;
 909}
 910
 911static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
 912                              const char *buf, size_t count)
 913{
 914        unsigned int input;
 915        int ret;
 916
 917        ret = sscanf(buf, "%u", &input);
 918        if (ret != 1)
 919                return -EINVAL;
 920
 921        mutex_lock(&intel_pstate_driver_lock);
 922
 923        if (!intel_pstate_driver) {
 924                mutex_unlock(&intel_pstate_driver_lock);
 925                return -EAGAIN;
 926        }
 927
 928        mutex_lock(&intel_pstate_limits_lock);
 929
 930        update_turbo_state();
 931        if (global.turbo_disabled) {
 932                pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
 933                mutex_unlock(&intel_pstate_limits_lock);
 934                mutex_unlock(&intel_pstate_driver_lock);
 935                return -EPERM;
 936        }
 937
 938        global.no_turbo = clamp_t(int, input, 0, 1);
 939
 940        if (global.no_turbo) {
 941                struct cpudata *cpu = all_cpu_data[0];
 942                int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
 943
 944                /* Squash the global minimum into the permitted range. */
 945                if (global.min_perf_pct > pct)
 946                        global.min_perf_pct = pct;
 947        }
 948
 949        mutex_unlock(&intel_pstate_limits_lock);
 950
 951        intel_pstate_update_policies();
 952
 953        mutex_unlock(&intel_pstate_driver_lock);
 954
 955        return count;
 956}
 957
 958static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
 959                                  const char *buf, size_t count)
 960{
 961        unsigned int input;
 962        int ret;
 963
 964        ret = sscanf(buf, "%u", &input);
 965        if (ret != 1)
 966                return -EINVAL;
 967
 968        mutex_lock(&intel_pstate_driver_lock);
 969
 970        if (!intel_pstate_driver) {
 971                mutex_unlock(&intel_pstate_driver_lock);
 972                return -EAGAIN;
 973        }
 974
 975        mutex_lock(&intel_pstate_limits_lock);
 976
 977        global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
 978
 979        mutex_unlock(&intel_pstate_limits_lock);
 980
 981        intel_pstate_update_policies();
 982
 983        mutex_unlock(&intel_pstate_driver_lock);
 984
 985        return count;
 986}
 987
 988static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
 989                                  const char *buf, size_t count)
 990{
 991        unsigned int input;
 992        int ret;
 993
 994        ret = sscanf(buf, "%u", &input);
 995        if (ret != 1)
 996                return -EINVAL;
 997
 998        mutex_lock(&intel_pstate_driver_lock);
 999
1000        if (!intel_pstate_driver) {
1001                mutex_unlock(&intel_pstate_driver_lock);
1002                return -EAGAIN;
1003        }
1004
1005        mutex_lock(&intel_pstate_limits_lock);
1006
1007        global.min_perf_pct = clamp_t(int, input,
1008                                      min_perf_pct_min(), global.max_perf_pct);
1009
1010        mutex_unlock(&intel_pstate_limits_lock);
1011
1012        intel_pstate_update_policies();
1013
1014        mutex_unlock(&intel_pstate_driver_lock);
1015
1016        return count;
1017}
1018
1019show_one(max_perf_pct, max_perf_pct);
1020show_one(min_perf_pct, min_perf_pct);
1021
1022define_one_global_rw(status);
1023define_one_global_rw(no_turbo);
1024define_one_global_rw(max_perf_pct);
1025define_one_global_rw(min_perf_pct);
1026define_one_global_ro(turbo_pct);
1027define_one_global_ro(num_pstates);
1028
1029static struct attribute *intel_pstate_attributes[] = {
1030        &status.attr,
1031        &no_turbo.attr,
1032        &turbo_pct.attr,
1033        &num_pstates.attr,
1034        NULL
1035};
1036
1037static const struct attribute_group intel_pstate_attr_group = {
1038        .attrs = intel_pstate_attributes,
1039};
1040
1041static void __init intel_pstate_sysfs_expose_params(void)
1042{
1043        struct kobject *intel_pstate_kobject;
1044        int rc;
1045
1046        intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1047                                                &cpu_subsys.dev_root->kobj);
1048        if (WARN_ON(!intel_pstate_kobject))
1049                return;
1050
1051        rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1052        if (WARN_ON(rc))
1053                return;
1054
1055        /*
1056         * If per cpu limits are enforced there are no global limits, so
1057         * return without creating max/min_perf_pct attributes
1058         */
1059        if (per_cpu_limits)
1060                return;
1061
1062        rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1063        WARN_ON(rc);
1064
1065        rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1066        WARN_ON(rc);
1067
1068}
1069/************************** sysfs end ************************/
1070
1071static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1072{
1073        /* First disable HWP notification interrupt as we don't process them */
1074        if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1075                wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1076
1077        wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1078        cpudata->epp_policy = 0;
1079        if (cpudata->epp_default == -EINVAL)
1080                cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1081}
1082
1083#define MSR_IA32_POWER_CTL_BIT_EE       19
1084
1085/* Disable energy efficiency optimization */
1086static void intel_pstate_disable_ee(int cpu)
1087{
1088        u64 power_ctl;
1089        int ret;
1090
1091        ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1092        if (ret)
1093                return;
1094
1095        if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1096                pr_info("Disabling energy efficiency optimization\n");
1097                power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1098                wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1099        }
1100}
1101
1102static int atom_get_min_pstate(void)
1103{
1104        u64 value;
1105
1106        rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1107        return (value >> 8) & 0x7F;
1108}
1109
1110static int atom_get_max_pstate(void)
1111{
1112        u64 value;
1113
1114        rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1115        return (value >> 16) & 0x7F;
1116}
1117
1118static int atom_get_turbo_pstate(void)
1119{
1120        u64 value;
1121
1122        rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1123        return value & 0x7F;
1124}
1125
1126static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1127{
1128        u64 val;
1129        int32_t vid_fp;
1130        u32 vid;
1131
1132        val = (u64)pstate << 8;
1133        if (global.no_turbo && !global.turbo_disabled)
1134                val |= (u64)1 << 32;
1135
1136        vid_fp = cpudata->vid.min + mul_fp(
1137                int_tofp(pstate - cpudata->pstate.min_pstate),
1138                cpudata->vid.ratio);
1139
1140        vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1141        vid = ceiling_fp(vid_fp);
1142
1143        if (pstate > cpudata->pstate.max_pstate)
1144                vid = cpudata->vid.turbo;
1145
1146        return val | vid;
1147}
1148
1149static int silvermont_get_scaling(void)
1150{
1151        u64 value;
1152        int i;
1153        /* Defined in Table 35-6 from SDM (Sept 2015) */
1154        static int silvermont_freq_table[] = {
1155                83300, 100000, 133300, 116700, 80000};
1156
1157        rdmsrl(MSR_FSB_FREQ, value);
1158        i = value & 0x7;
1159        WARN_ON(i > 4);
1160
1161        return silvermont_freq_table[i];
1162}
1163
1164static int airmont_get_scaling(void)
1165{
1166        u64 value;
1167        int i;
1168        /* Defined in Table 35-10 from SDM (Sept 2015) */
1169        static int airmont_freq_table[] = {
1170                83300, 100000, 133300, 116700, 80000,
1171                93300, 90000, 88900, 87500};
1172
1173        rdmsrl(MSR_FSB_FREQ, value);
1174        i = value & 0xF;
1175        WARN_ON(i > 8);
1176
1177        return airmont_freq_table[i];
1178}
1179
1180static void atom_get_vid(struct cpudata *cpudata)
1181{
1182        u64 value;
1183
1184        rdmsrl(MSR_ATOM_CORE_VIDS, value);
1185        cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1186        cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1187        cpudata->vid.ratio = div_fp(
1188                cpudata->vid.max - cpudata->vid.min,
1189                int_tofp(cpudata->pstate.max_pstate -
1190                        cpudata->pstate.min_pstate));
1191
1192        rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1193        cpudata->vid.turbo = value & 0x7f;
1194}
1195
1196static int core_get_min_pstate(void)
1197{
1198        u64 value;
1199
1200        rdmsrl(MSR_PLATFORM_INFO, value);
1201        return (value >> 40) & 0xFF;
1202}
1203
1204static int core_get_max_pstate_physical(void)
1205{
1206        u64 value;
1207
1208        rdmsrl(MSR_PLATFORM_INFO, value);
1209        return (value >> 8) & 0xFF;
1210}
1211
1212static int core_get_tdp_ratio(u64 plat_info)
1213{
1214        /* Check how many TDP levels present */
1215        if (plat_info & 0x600000000) {
1216                u64 tdp_ctrl;
1217                u64 tdp_ratio;
1218                int tdp_msr;
1219                int err;
1220
1221                /* Get the TDP level (0, 1, 2) to get ratios */
1222                err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1223                if (err)
1224                        return err;
1225
1226                /* TDP MSR are continuous starting at 0x648 */
1227                tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1228                err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1229                if (err)
1230                        return err;
1231
1232                /* For level 1 and 2, bits[23:16] contain the ratio */
1233                if (tdp_ctrl & 0x03)
1234                        tdp_ratio >>= 16;
1235
1236                tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1237                pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1238
1239                return (int)tdp_ratio;
1240        }
1241
1242        return -ENXIO;
1243}
1244
1245static int core_get_max_pstate(void)
1246{
1247        u64 tar;
1248        u64 plat_info;
1249        int max_pstate;
1250        int tdp_ratio;
1251        int err;
1252
1253        rdmsrl(MSR_PLATFORM_INFO, plat_info);
1254        max_pstate = (plat_info >> 8) & 0xFF;
1255
1256        tdp_ratio = core_get_tdp_ratio(plat_info);
1257        if (tdp_ratio <= 0)
1258                return max_pstate;
1259
1260        if (hwp_active) {
1261                /* Turbo activation ratio is not used on HWP platforms */
1262                return tdp_ratio;
1263        }
1264
1265        err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1266        if (!err) {
1267                int tar_levels;
1268
1269                /* Do some sanity checking for safety */
1270                tar_levels = tar & 0xff;
1271                if (tdp_ratio - 1 == tar_levels) {
1272                        max_pstate = tar_levels;
1273                        pr_debug("max_pstate=TAC %x\n", max_pstate);
1274                }
1275        }
1276
1277        return max_pstate;
1278}
1279
1280static int core_get_turbo_pstate(void)
1281{
1282        u64 value;
1283        int nont, ret;
1284
1285        rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1286        nont = core_get_max_pstate();
1287        ret = (value) & 255;
1288        if (ret <= nont)
1289                ret = nont;
1290        return ret;
1291}
1292
1293static inline int core_get_scaling(void)
1294{
1295        return 100000;
1296}
1297
1298static u64 core_get_val(struct cpudata *cpudata, int pstate)
1299{
1300        u64 val;
1301
1302        val = (u64)pstate << 8;
1303        if (global.no_turbo && !global.turbo_disabled)
1304                val |= (u64)1 << 32;
1305
1306        return val;
1307}
1308
1309static int knl_get_aperf_mperf_shift(void)
1310{
1311        return 10;
1312}
1313
1314static int knl_get_turbo_pstate(void)
1315{
1316        u64 value;
1317        int nont, ret;
1318
1319        rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1320        nont = core_get_max_pstate();
1321        ret = (((value) >> 8) & 0xFF);
1322        if (ret <= nont)
1323                ret = nont;
1324        return ret;
1325}
1326
1327static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1328{
1329        return global.no_turbo || global.turbo_disabled ?
1330                        cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1331}
1332
1333static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1334{
1335        trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1336        cpu->pstate.current_pstate = pstate;
1337        /*
1338         * Generally, there is no guarantee that this code will always run on
1339         * the CPU being updated, so force the register update to run on the
1340         * right CPU.
1341         */
1342        wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1343                      pstate_funcs.get_val(cpu, pstate));
1344}
1345
1346static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1347{
1348        intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1349}
1350
1351static void intel_pstate_max_within_limits(struct cpudata *cpu)
1352{
1353        int pstate;
1354
1355        update_turbo_state();
1356        pstate = intel_pstate_get_base_pstate(cpu);
1357        pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1358        intel_pstate_set_pstate(cpu, pstate);
1359}
1360
1361static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1362{
1363        cpu->pstate.min_pstate = pstate_funcs.get_min();
1364        cpu->pstate.max_pstate = pstate_funcs.get_max();
1365        cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1366        cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1367        cpu->pstate.scaling = pstate_funcs.get_scaling();
1368        cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1369        cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1370
1371        if (pstate_funcs.get_aperf_mperf_shift)
1372                cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1373
1374        if (pstate_funcs.get_vid)
1375                pstate_funcs.get_vid(cpu);
1376
1377        intel_pstate_set_min_pstate(cpu);
1378}
1379
1380static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1381{
1382        struct sample *sample = &cpu->sample;
1383
1384        sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1385}
1386
1387static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1388{
1389        u64 aperf, mperf;
1390        unsigned long flags;
1391        u64 tsc;
1392
1393        local_irq_save(flags);
1394        rdmsrl(MSR_IA32_APERF, aperf);
1395        rdmsrl(MSR_IA32_MPERF, mperf);
1396        tsc = rdtsc();
1397        if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1398                local_irq_restore(flags);
1399                return false;
1400        }
1401        local_irq_restore(flags);
1402
1403        cpu->last_sample_time = cpu->sample.time;
1404        cpu->sample.time = time;
1405        cpu->sample.aperf = aperf;
1406        cpu->sample.mperf = mperf;
1407        cpu->sample.tsc =  tsc;
1408        cpu->sample.aperf -= cpu->prev_aperf;
1409        cpu->sample.mperf -= cpu->prev_mperf;
1410        cpu->sample.tsc -= cpu->prev_tsc;
1411
1412        cpu->prev_aperf = aperf;
1413        cpu->prev_mperf = mperf;
1414        cpu->prev_tsc = tsc;
1415        /*
1416         * First time this function is invoked in a given cycle, all of the
1417         * previous sample data fields are equal to zero or stale and they must
1418         * be populated with meaningful numbers for things to work, so assume
1419         * that sample.time will always be reset before setting the utilization
1420         * update hook and make the caller skip the sample then.
1421         */
1422        if (cpu->last_sample_time) {
1423                intel_pstate_calc_avg_perf(cpu);
1424                return true;
1425        }
1426        return false;
1427}
1428
1429static inline int32_t get_avg_frequency(struct cpudata *cpu)
1430{
1431        return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1432}
1433
1434static inline int32_t get_avg_pstate(struct cpudata *cpu)
1435{
1436        return mul_ext_fp(cpu->pstate.max_pstate_physical,
1437                          cpu->sample.core_avg_perf);
1438}
1439
1440static inline int32_t get_target_pstate(struct cpudata *cpu)
1441{
1442        struct sample *sample = &cpu->sample;
1443        int32_t busy_frac, boost;
1444        int target, avg_pstate;
1445
1446        busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1447                           sample->tsc);
1448
1449        boost = cpu->iowait_boost;
1450        cpu->iowait_boost >>= 1;
1451
1452        if (busy_frac < boost)
1453                busy_frac = boost;
1454
1455        sample->busy_scaled = busy_frac * 100;
1456
1457        target = global.no_turbo || global.turbo_disabled ?
1458                        cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1459        target += target >> 2;
1460        target = mul_fp(target, busy_frac);
1461        if (target < cpu->pstate.min_pstate)
1462                target = cpu->pstate.min_pstate;
1463
1464        /*
1465         * If the average P-state during the previous cycle was higher than the
1466         * current target, add 50% of the difference to the target to reduce
1467         * possible performance oscillations and offset possible performance
1468         * loss related to moving the workload from one CPU to another within
1469         * a package/module.
1470         */
1471        avg_pstate = get_avg_pstate(cpu);
1472        if (avg_pstate > target)
1473                target += (avg_pstate - target) >> 1;
1474
1475        return target;
1476}
1477
1478static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1479{
1480        int max_pstate = intel_pstate_get_base_pstate(cpu);
1481        int min_pstate;
1482
1483        min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1484        max_pstate = max(min_pstate, cpu->max_perf_ratio);
1485        return clamp_t(int, pstate, min_pstate, max_pstate);
1486}
1487
1488static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1489{
1490        if (pstate == cpu->pstate.current_pstate)
1491                return;
1492
1493        cpu->pstate.current_pstate = pstate;
1494        wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1495}
1496
1497static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1498{
1499        int from = cpu->pstate.current_pstate;
1500        struct sample *sample;
1501        int target_pstate;
1502
1503        update_turbo_state();
1504
1505        target_pstate = get_target_pstate(cpu);
1506        target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1507        trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1508        intel_pstate_update_pstate(cpu, target_pstate);
1509
1510        sample = &cpu->sample;
1511        trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1512                fp_toint(sample->busy_scaled),
1513                from,
1514                cpu->pstate.current_pstate,
1515                sample->mperf,
1516                sample->aperf,
1517                sample->tsc,
1518                get_avg_frequency(cpu),
1519                fp_toint(cpu->iowait_boost * 100));
1520}
1521
1522static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1523                                     unsigned int flags)
1524{
1525        struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1526        u64 delta_ns;
1527
1528        /* Don't allow remote callbacks */
1529        if (smp_processor_id() != cpu->cpu)
1530                return;
1531
1532        if (flags & SCHED_CPUFREQ_IOWAIT) {
1533                cpu->iowait_boost = int_tofp(1);
1534                cpu->last_update = time;
1535                /*
1536                 * The last time the busy was 100% so P-state was max anyway
1537                 * so avoid overhead of computation.
1538                 */
1539                if (fp_toint(cpu->sample.busy_scaled) == 100)
1540                        return;
1541
1542                goto set_pstate;
1543        } else if (cpu->iowait_boost) {
1544                /* Clear iowait_boost if the CPU may have been idle. */
1545                delta_ns = time - cpu->last_update;
1546                if (delta_ns > TICK_NSEC)
1547                        cpu->iowait_boost = 0;
1548        }
1549        cpu->last_update = time;
1550        delta_ns = time - cpu->sample.time;
1551        if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1552                return;
1553
1554set_pstate:
1555        if (intel_pstate_sample(cpu, time))
1556                intel_pstate_adjust_pstate(cpu);
1557}
1558
1559static struct pstate_funcs core_funcs = {
1560        .get_max = core_get_max_pstate,
1561        .get_max_physical = core_get_max_pstate_physical,
1562        .get_min = core_get_min_pstate,
1563        .get_turbo = core_get_turbo_pstate,
1564        .get_scaling = core_get_scaling,
1565        .get_val = core_get_val,
1566};
1567
1568static const struct pstate_funcs silvermont_funcs = {
1569        .get_max = atom_get_max_pstate,
1570        .get_max_physical = atom_get_max_pstate,
1571        .get_min = atom_get_min_pstate,
1572        .get_turbo = atom_get_turbo_pstate,
1573        .get_val = atom_get_val,
1574        .get_scaling = silvermont_get_scaling,
1575        .get_vid = atom_get_vid,
1576};
1577
1578static const struct pstate_funcs airmont_funcs = {
1579        .get_max = atom_get_max_pstate,
1580        .get_max_physical = atom_get_max_pstate,
1581        .get_min = atom_get_min_pstate,
1582        .get_turbo = atom_get_turbo_pstate,
1583        .get_val = atom_get_val,
1584        .get_scaling = airmont_get_scaling,
1585        .get_vid = atom_get_vid,
1586};
1587
1588static const struct pstate_funcs knl_funcs = {
1589        .get_max = core_get_max_pstate,
1590        .get_max_physical = core_get_max_pstate_physical,
1591        .get_min = core_get_min_pstate,
1592        .get_turbo = knl_get_turbo_pstate,
1593        .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1594        .get_scaling = core_get_scaling,
1595        .get_val = core_get_val,
1596};
1597
1598static const struct pstate_funcs bxt_funcs = {
1599        .get_max = core_get_max_pstate,
1600        .get_max_physical = core_get_max_pstate_physical,
1601        .get_min = core_get_min_pstate,
1602        .get_turbo = core_get_turbo_pstate,
1603        .get_scaling = core_get_scaling,
1604        .get_val = core_get_val,
1605};
1606
1607#define ICPU(model, policy) \
1608        { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1609                        (unsigned long)&policy }
1610
1611static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1612        ICPU(INTEL_FAM6_SANDYBRIDGE,            core_funcs),
1613        ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_funcs),
1614        ICPU(INTEL_FAM6_ATOM_SILVERMONT1,       silvermont_funcs),
1615        ICPU(INTEL_FAM6_IVYBRIDGE,              core_funcs),
1616        ICPU(INTEL_FAM6_HASWELL_CORE,           core_funcs),
1617        ICPU(INTEL_FAM6_BROADWELL_CORE,         core_funcs),
1618        ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_funcs),
1619        ICPU(INTEL_FAM6_HASWELL_X,              core_funcs),
1620        ICPU(INTEL_FAM6_HASWELL_ULT,            core_funcs),
1621        ICPU(INTEL_FAM6_HASWELL_GT3E,           core_funcs),
1622        ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_funcs),
1623        ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_funcs),
1624        ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_funcs),
1625        ICPU(INTEL_FAM6_BROADWELL_X,            core_funcs),
1626        ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_funcs),
1627        ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_funcs),
1628        ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_funcs),
1629        ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_funcs),
1630        ICPU(INTEL_FAM6_ATOM_GOLDMONT,          bxt_funcs),
1631        ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       bxt_funcs),
1632        {}
1633};
1634MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1635
1636static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1637        ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1638        ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1639        ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1640        {}
1641};
1642
1643static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1644        ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1645        {}
1646};
1647
1648static int intel_pstate_init_cpu(unsigned int cpunum)
1649{
1650        struct cpudata *cpu;
1651
1652        cpu = all_cpu_data[cpunum];
1653
1654        if (!cpu) {
1655                cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1656                if (!cpu)
1657                        return -ENOMEM;
1658
1659                all_cpu_data[cpunum] = cpu;
1660
1661                cpu->epp_default = -EINVAL;
1662                cpu->epp_powersave = -EINVAL;
1663                cpu->epp_saved = -EINVAL;
1664        }
1665
1666        cpu = all_cpu_data[cpunum];
1667
1668        cpu->cpu = cpunum;
1669
1670        if (hwp_active) {
1671                const struct x86_cpu_id *id;
1672
1673                id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1674                if (id)
1675                        intel_pstate_disable_ee(cpunum);
1676
1677                intel_pstate_hwp_enable(cpu);
1678        }
1679
1680        intel_pstate_get_cpu_pstates(cpu);
1681
1682        pr_debug("controlling: cpu %d\n", cpunum);
1683
1684        return 0;
1685}
1686
1687static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1688{
1689        struct cpudata *cpu = all_cpu_data[cpu_num];
1690
1691        if (hwp_active)
1692                return;
1693
1694        if (cpu->update_util_set)
1695                return;
1696
1697        /* Prevent intel_pstate_update_util() from using stale data. */
1698        cpu->sample.time = 0;
1699        cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1700                                     intel_pstate_update_util);
1701        cpu->update_util_set = true;
1702}
1703
1704static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1705{
1706        struct cpudata *cpu_data = all_cpu_data[cpu];
1707
1708        if (!cpu_data->update_util_set)
1709                return;
1710
1711        cpufreq_remove_update_util_hook(cpu);
1712        cpu_data->update_util_set = false;
1713        synchronize_sched();
1714}
1715
1716static int intel_pstate_get_max_freq(struct cpudata *cpu)
1717{
1718        return global.turbo_disabled || global.no_turbo ?
1719                        cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1720}
1721
1722static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1723                                            struct cpudata *cpu)
1724{
1725        int max_freq = intel_pstate_get_max_freq(cpu);
1726        int32_t max_policy_perf, min_policy_perf;
1727        int max_state, turbo_max;
1728
1729        /*
1730         * HWP needs some special consideration, because on BDX the
1731         * HWP_REQUEST uses abstract value to represent performance
1732         * rather than pure ratios.
1733         */
1734        if (hwp_active) {
1735                intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1736        } else {
1737                max_state = intel_pstate_get_base_pstate(cpu);
1738                turbo_max = cpu->pstate.turbo_pstate;
1739        }
1740
1741        max_policy_perf = max_state * policy->max / max_freq;
1742        if (policy->max == policy->min) {
1743                min_policy_perf = max_policy_perf;
1744        } else {
1745                min_policy_perf = max_state * policy->min / max_freq;
1746                min_policy_perf = clamp_t(int32_t, min_policy_perf,
1747                                          0, max_policy_perf);
1748        }
1749
1750        pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1751                 policy->cpu, max_state,
1752                 min_policy_perf, max_policy_perf);
1753
1754        /* Normalize user input to [min_perf, max_perf] */
1755        if (per_cpu_limits) {
1756                cpu->min_perf_ratio = min_policy_perf;
1757                cpu->max_perf_ratio = max_policy_perf;
1758        } else {
1759                int32_t global_min, global_max;
1760
1761                /* Global limits are in percent of the maximum turbo P-state. */
1762                global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1763                global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1764                global_min = clamp_t(int32_t, global_min, 0, global_max);
1765
1766                pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1767                         global_min, global_max);
1768
1769                cpu->min_perf_ratio = max(min_policy_perf, global_min);
1770                cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1771                cpu->max_perf_ratio = min(max_policy_perf, global_max);
1772                cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1773
1774                /* Make sure min_perf <= max_perf */
1775                cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1776                                          cpu->max_perf_ratio);
1777
1778        }
1779        pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
1780                 cpu->max_perf_ratio,
1781                 cpu->min_perf_ratio);
1782}
1783
1784static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1785{
1786        struct cpudata *cpu;
1787
1788        if (!policy->cpuinfo.max_freq)
1789                return -ENODEV;
1790
1791        pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1792                 policy->cpuinfo.max_freq, policy->max);
1793
1794        cpu = all_cpu_data[policy->cpu];
1795        cpu->policy = policy->policy;
1796
1797        mutex_lock(&intel_pstate_limits_lock);
1798
1799        intel_pstate_update_perf_limits(policy, cpu);
1800
1801        if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1802                /*
1803                 * NOHZ_FULL CPUs need this as the governor callback may not
1804                 * be invoked on them.
1805                 */
1806                intel_pstate_clear_update_util_hook(policy->cpu);
1807                intel_pstate_max_within_limits(cpu);
1808        } else {
1809                intel_pstate_set_update_util_hook(policy->cpu);
1810        }
1811
1812        if (hwp_active)
1813                intel_pstate_hwp_set(policy->cpu);
1814
1815        mutex_unlock(&intel_pstate_limits_lock);
1816
1817        return 0;
1818}
1819
1820static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
1821                                         struct cpudata *cpu)
1822{
1823        if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1824            policy->max < policy->cpuinfo.max_freq &&
1825            policy->max > cpu->pstate.max_freq) {
1826                pr_debug("policy->max > max non turbo frequency\n");
1827                policy->max = policy->cpuinfo.max_freq;
1828        }
1829}
1830
1831static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1832{
1833        struct cpudata *cpu = all_cpu_data[policy->cpu];
1834
1835        update_turbo_state();
1836        cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1837                                     intel_pstate_get_max_freq(cpu));
1838
1839        if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1840            policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1841                return -EINVAL;
1842
1843        intel_pstate_adjust_policy_max(policy, cpu);
1844
1845        return 0;
1846}
1847
1848static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1849{
1850        intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
1851}
1852
1853static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1854{
1855        pr_debug("CPU %d exiting\n", policy->cpu);
1856
1857        intel_pstate_clear_update_util_hook(policy->cpu);
1858        if (hwp_active)
1859                intel_pstate_hwp_save_state(policy);
1860        else
1861                intel_cpufreq_stop_cpu(policy);
1862}
1863
1864static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1865{
1866        intel_pstate_exit_perf_limits(policy);
1867
1868        policy->fast_switch_possible = false;
1869
1870        return 0;
1871}
1872
1873static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
1874{
1875        struct cpudata *cpu;
1876        int rc;
1877
1878        rc = intel_pstate_init_cpu(policy->cpu);
1879        if (rc)
1880                return rc;
1881
1882        cpu = all_cpu_data[policy->cpu];
1883
1884        cpu->max_perf_ratio = 0xFF;
1885        cpu->min_perf_ratio = 0;
1886
1887        policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1888        policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1889
1890        /* cpuinfo and default policy values */
1891        policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1892        update_turbo_state();
1893        policy->cpuinfo.max_freq = global.turbo_disabled ?
1894                        cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1895        policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1896
1897        intel_pstate_init_acpi_perf_limits(policy);
1898
1899        policy->fast_switch_possible = true;
1900
1901        return 0;
1902}
1903
1904static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1905{
1906        int ret = __intel_pstate_cpu_init(policy);
1907
1908        if (ret)
1909                return ret;
1910
1911        if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
1912                policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1913        else
1914                policy->policy = CPUFREQ_POLICY_POWERSAVE;
1915
1916        return 0;
1917}
1918
1919static struct cpufreq_driver intel_pstate = {
1920        .flags          = CPUFREQ_CONST_LOOPS,
1921        .verify         = intel_pstate_verify_policy,
1922        .setpolicy      = intel_pstate_set_policy,
1923        .suspend        = intel_pstate_hwp_save_state,
1924        .resume         = intel_pstate_resume,
1925        .init           = intel_pstate_cpu_init,
1926        .exit           = intel_pstate_cpu_exit,
1927        .stop_cpu       = intel_pstate_stop_cpu,
1928        .name           = "intel_pstate",
1929};
1930
1931static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
1932{
1933        struct cpudata *cpu = all_cpu_data[policy->cpu];
1934
1935        update_turbo_state();
1936        cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1937                                     intel_pstate_get_max_freq(cpu));
1938
1939        intel_pstate_adjust_policy_max(policy, cpu);
1940
1941        intel_pstate_update_perf_limits(policy, cpu);
1942
1943        return 0;
1944}
1945
1946static int intel_cpufreq_target(struct cpufreq_policy *policy,
1947                                unsigned int target_freq,
1948                                unsigned int relation)
1949{
1950        struct cpudata *cpu = all_cpu_data[policy->cpu];
1951        struct cpufreq_freqs freqs;
1952        int target_pstate;
1953
1954        update_turbo_state();
1955
1956        freqs.old = policy->cur;
1957        freqs.new = target_freq;
1958
1959        cpufreq_freq_transition_begin(policy, &freqs);
1960        switch (relation) {
1961        case CPUFREQ_RELATION_L:
1962                target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
1963                break;
1964        case CPUFREQ_RELATION_H:
1965                target_pstate = freqs.new / cpu->pstate.scaling;
1966                break;
1967        default:
1968                target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
1969                break;
1970        }
1971        target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1972        if (target_pstate != cpu->pstate.current_pstate) {
1973                cpu->pstate.current_pstate = target_pstate;
1974                wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
1975                              pstate_funcs.get_val(cpu, target_pstate));
1976        }
1977        freqs.new = target_pstate * cpu->pstate.scaling;
1978        cpufreq_freq_transition_end(policy, &freqs, false);
1979
1980        return 0;
1981}
1982
1983static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
1984                                              unsigned int target_freq)
1985{
1986        struct cpudata *cpu = all_cpu_data[policy->cpu];
1987        int target_pstate;
1988
1989        update_turbo_state();
1990
1991        target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
1992        target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1993        intel_pstate_update_pstate(cpu, target_pstate);
1994        return target_pstate * cpu->pstate.scaling;
1995}
1996
1997static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
1998{
1999        int ret = __intel_pstate_cpu_init(policy);
2000
2001        if (ret)
2002                return ret;
2003
2004        policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2005        policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2006        /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2007        policy->cur = policy->cpuinfo.min_freq;
2008
2009        return 0;
2010}
2011
2012static struct cpufreq_driver intel_cpufreq = {
2013        .flags          = CPUFREQ_CONST_LOOPS,
2014        .verify         = intel_cpufreq_verify_policy,
2015        .target         = intel_cpufreq_target,
2016        .fast_switch    = intel_cpufreq_fast_switch,
2017        .init           = intel_cpufreq_cpu_init,
2018        .exit           = intel_pstate_cpu_exit,
2019        .stop_cpu       = intel_cpufreq_stop_cpu,
2020        .name           = "intel_cpufreq",
2021};
2022
2023static struct cpufreq_driver *default_driver = &intel_pstate;
2024
2025static void intel_pstate_driver_cleanup(void)
2026{
2027        unsigned int cpu;
2028
2029        get_online_cpus();
2030        for_each_online_cpu(cpu) {
2031                if (all_cpu_data[cpu]) {
2032                        if (intel_pstate_driver == &intel_pstate)
2033                                intel_pstate_clear_update_util_hook(cpu);
2034
2035                        kfree(all_cpu_data[cpu]);
2036                        all_cpu_data[cpu] = NULL;
2037                }
2038        }
2039        put_online_cpus();
2040        intel_pstate_driver = NULL;
2041}
2042
2043static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2044{
2045        int ret;
2046
2047        memset(&global, 0, sizeof(global));
2048        global.max_perf_pct = 100;
2049
2050        intel_pstate_driver = driver;
2051        ret = cpufreq_register_driver(intel_pstate_driver);
2052        if (ret) {
2053                intel_pstate_driver_cleanup();
2054                return ret;
2055        }
2056
2057        global.min_perf_pct = min_perf_pct_min();
2058
2059        return 0;
2060}
2061
2062static int intel_pstate_unregister_driver(void)
2063{
2064        if (hwp_active)
2065                return -EBUSY;
2066
2067        cpufreq_unregister_driver(intel_pstate_driver);
2068        intel_pstate_driver_cleanup();
2069
2070        return 0;
2071}
2072
2073static ssize_t intel_pstate_show_status(char *buf)
2074{
2075        if (!intel_pstate_driver)
2076                return sprintf(buf, "off\n");
2077
2078        return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2079                                        "active" : "passive");
2080}
2081
2082static int intel_pstate_update_status(const char *buf, size_t size)
2083{
2084        int ret;
2085
2086        if (size == 3 && !strncmp(buf, "off", size))
2087                return intel_pstate_driver ?
2088                        intel_pstate_unregister_driver() : -EINVAL;
2089
2090        if (size == 6 && !strncmp(buf, "active", size)) {
2091                if (intel_pstate_driver) {
2092                        if (intel_pstate_driver == &intel_pstate)
2093                                return 0;
2094
2095                        ret = intel_pstate_unregister_driver();
2096                        if (ret)
2097                                return ret;
2098                }
2099
2100                return intel_pstate_register_driver(&intel_pstate);
2101        }
2102
2103        if (size == 7 && !strncmp(buf, "passive", size)) {
2104                if (intel_pstate_driver) {
2105                        if (intel_pstate_driver == &intel_cpufreq)
2106                                return 0;
2107
2108                        ret = intel_pstate_unregister_driver();
2109                        if (ret)
2110                                return ret;
2111                }
2112
2113                return intel_pstate_register_driver(&intel_cpufreq);
2114        }
2115
2116        return -EINVAL;
2117}
2118
2119static int no_load __initdata;
2120static int no_hwp __initdata;
2121static int hwp_only __initdata;
2122static unsigned int force_load __initdata;
2123
2124static int __init intel_pstate_msrs_not_valid(void)
2125{
2126        if (!pstate_funcs.get_max() ||
2127            !pstate_funcs.get_min() ||
2128            !pstate_funcs.get_turbo())
2129                return -ENODEV;
2130
2131        return 0;
2132}
2133
2134static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2135{
2136        pstate_funcs.get_max   = funcs->get_max;
2137        pstate_funcs.get_max_physical = funcs->get_max_physical;
2138        pstate_funcs.get_min   = funcs->get_min;
2139        pstate_funcs.get_turbo = funcs->get_turbo;
2140        pstate_funcs.get_scaling = funcs->get_scaling;
2141        pstate_funcs.get_val   = funcs->get_val;
2142        pstate_funcs.get_vid   = funcs->get_vid;
2143        pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2144}
2145
2146#ifdef CONFIG_ACPI
2147
2148static bool __init intel_pstate_no_acpi_pss(void)
2149{
2150        int i;
2151
2152        for_each_possible_cpu(i) {
2153                acpi_status status;
2154                union acpi_object *pss;
2155                struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2156                struct acpi_processor *pr = per_cpu(processors, i);
2157
2158                if (!pr)
2159                        continue;
2160
2161                status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2162                if (ACPI_FAILURE(status))
2163                        continue;
2164
2165                pss = buffer.pointer;
2166                if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2167                        kfree(pss);
2168                        return false;
2169                }
2170
2171                kfree(pss);
2172        }
2173
2174        return true;
2175}
2176
2177static bool __init intel_pstate_has_acpi_ppc(void)
2178{
2179        int i;
2180
2181        for_each_possible_cpu(i) {
2182                struct acpi_processor *pr = per_cpu(processors, i);
2183
2184                if (!pr)
2185                        continue;
2186                if (acpi_has_method(pr->handle, "_PPC"))
2187                        return true;
2188        }
2189        return false;
2190}
2191
2192enum {
2193        PSS,
2194        PPC,
2195};
2196
2197/* Hardware vendor-specific info that has its own power management modes */
2198static struct acpi_platform_list plat_info[] __initdata = {
2199        {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2200        {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2201        {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2202        {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2203        {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2204        {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2205        {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2206        {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2207        {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2208        {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2209        {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2210        {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2211        {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2212        {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2213        {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2214        { } /* End */
2215};
2216
2217static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2218{
2219        const struct x86_cpu_id *id;
2220        u64 misc_pwr;
2221        int idx;
2222
2223        id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2224        if (id) {
2225                rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2226                if ( misc_pwr & (1 << 8))
2227                        return true;
2228        }
2229
2230        idx = acpi_match_platform_list(plat_info);
2231        if (idx < 0)
2232                return false;
2233
2234        switch (plat_info[idx].data) {
2235        case PSS:
2236                return intel_pstate_no_acpi_pss();
2237        case PPC:
2238                return intel_pstate_has_acpi_ppc() && !force_load;
2239        }
2240
2241        return false;
2242}
2243
2244static void intel_pstate_request_control_from_smm(void)
2245{
2246        /*
2247         * It may be unsafe to request P-states control from SMM if _PPC support
2248         * has not been enabled.
2249         */
2250        if (acpi_ppc)
2251                acpi_processor_pstate_control();
2252}
2253#else /* CONFIG_ACPI not enabled */
2254static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2255static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2256static inline void intel_pstate_request_control_from_smm(void) {}
2257#endif /* CONFIG_ACPI */
2258
2259static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2260        { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2261        {}
2262};
2263
2264static int __init intel_pstate_init(void)
2265{
2266        int rc;
2267
2268        if (no_load)
2269                return -ENODEV;
2270
2271        if (x86_match_cpu(hwp_support_ids)) {
2272                copy_cpu_funcs(&core_funcs);
2273                if (!no_hwp) {
2274                        hwp_active++;
2275                        intel_pstate.attr = hwp_cpufreq_attrs;
2276                        goto hwp_cpu_matched;
2277                }
2278        } else {
2279                const struct x86_cpu_id *id;
2280
2281                id = x86_match_cpu(intel_pstate_cpu_ids);
2282                if (!id)
2283                        return -ENODEV;
2284
2285                copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2286        }
2287
2288        if (intel_pstate_msrs_not_valid())
2289                return -ENODEV;
2290
2291hwp_cpu_matched:
2292        /*
2293         * The Intel pstate driver will be ignored if the platform
2294         * firmware has its own power management modes.
2295         */
2296        if (intel_pstate_platform_pwr_mgmt_exists())
2297                return -ENODEV;
2298
2299        if (!hwp_active && hwp_only)
2300                return -ENOTSUPP;
2301
2302        pr_info("Intel P-state driver initializing\n");
2303
2304        all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2305        if (!all_cpu_data)
2306                return -ENOMEM;
2307
2308        intel_pstate_request_control_from_smm();
2309
2310        intel_pstate_sysfs_expose_params();
2311
2312        mutex_lock(&intel_pstate_driver_lock);
2313        rc = intel_pstate_register_driver(default_driver);
2314        mutex_unlock(&intel_pstate_driver_lock);
2315        if (rc)
2316                return rc;
2317
2318        if (hwp_active)
2319                pr_info("HWP enabled\n");
2320
2321        return 0;
2322}
2323device_initcall(intel_pstate_init);
2324
2325static int __init intel_pstate_setup(char *str)
2326{
2327        if (!str)
2328                return -EINVAL;
2329
2330        if (!strcmp(str, "disable")) {
2331                no_load = 1;
2332        } else if (!strcmp(str, "passive")) {
2333                pr_info("Passive mode enabled\n");
2334                default_driver = &intel_cpufreq;
2335                no_hwp = 1;
2336        }
2337        if (!strcmp(str, "no_hwp")) {
2338                pr_info("HWP disabled\n");
2339                no_hwp = 1;
2340        }
2341        if (!strcmp(str, "force"))
2342                force_load = 1;
2343        if (!strcmp(str, "hwp_only"))
2344                hwp_only = 1;
2345        if (!strcmp(str, "per_cpu_perf_limits"))
2346                per_cpu_limits = true;
2347
2348#ifdef CONFIG_ACPI
2349        if (!strcmp(str, "support_acpi_ppc"))
2350                acpi_ppc = true;
2351#endif
2352
2353        return 0;
2354}
2355early_param("intel_pstate", intel_pstate_setup);
2356
2357MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2358MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2359MODULE_LICENSE("GPL");
2360