linux/drivers/crypto/n2_core.c
<<
>>
Prefs
   1/* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
   2 *
   3 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/of.h>
  11#include <linux/of_device.h>
  12#include <linux/cpumask.h>
  13#include <linux/slab.h>
  14#include <linux/interrupt.h>
  15#include <linux/crypto.h>
  16#include <crypto/md5.h>
  17#include <crypto/sha.h>
  18#include <crypto/aes.h>
  19#include <crypto/des.h>
  20#include <linux/mutex.h>
  21#include <linux/delay.h>
  22#include <linux/sched.h>
  23
  24#include <crypto/internal/hash.h>
  25#include <crypto/scatterwalk.h>
  26#include <crypto/algapi.h>
  27
  28#include <asm/hypervisor.h>
  29#include <asm/mdesc.h>
  30
  31#include "n2_core.h"
  32
  33#define DRV_MODULE_NAME         "n2_crypto"
  34#define DRV_MODULE_VERSION      "0.2"
  35#define DRV_MODULE_RELDATE      "July 28, 2011"
  36
  37static const char version[] =
  38        DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  39
  40MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  41MODULE_DESCRIPTION("Niagara2 Crypto driver");
  42MODULE_LICENSE("GPL");
  43MODULE_VERSION(DRV_MODULE_VERSION);
  44
  45#define N2_CRA_PRIORITY         200
  46
  47static DEFINE_MUTEX(spu_lock);
  48
  49struct spu_queue {
  50        cpumask_t               sharing;
  51        unsigned long           qhandle;
  52
  53        spinlock_t              lock;
  54        u8                      q_type;
  55        void                    *q;
  56        unsigned long           head;
  57        unsigned long           tail;
  58        struct list_head        jobs;
  59
  60        unsigned long           devino;
  61
  62        char                    irq_name[32];
  63        unsigned int            irq;
  64
  65        struct list_head        list;
  66};
  67
  68struct spu_qreg {
  69        struct spu_queue        *queue;
  70        unsigned long           type;
  71};
  72
  73static struct spu_queue **cpu_to_cwq;
  74static struct spu_queue **cpu_to_mau;
  75
  76static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
  77{
  78        if (q->q_type == HV_NCS_QTYPE_MAU) {
  79                off += MAU_ENTRY_SIZE;
  80                if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
  81                        off = 0;
  82        } else {
  83                off += CWQ_ENTRY_SIZE;
  84                if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
  85                        off = 0;
  86        }
  87        return off;
  88}
  89
  90struct n2_request_common {
  91        struct list_head        entry;
  92        unsigned int            offset;
  93};
  94#define OFFSET_NOT_RUNNING      (~(unsigned int)0)
  95
  96/* An async job request records the final tail value it used in
  97 * n2_request_common->offset, test to see if that offset is in
  98 * the range old_head, new_head, inclusive.
  99 */
 100static inline bool job_finished(struct spu_queue *q, unsigned int offset,
 101                                unsigned long old_head, unsigned long new_head)
 102{
 103        if (old_head <= new_head) {
 104                if (offset > old_head && offset <= new_head)
 105                        return true;
 106        } else {
 107                if (offset > old_head || offset <= new_head)
 108                        return true;
 109        }
 110        return false;
 111}
 112
 113/* When the HEAD marker is unequal to the actual HEAD, we get
 114 * a virtual device INO interrupt.  We should process the
 115 * completed CWQ entries and adjust the HEAD marker to clear
 116 * the IRQ.
 117 */
 118static irqreturn_t cwq_intr(int irq, void *dev_id)
 119{
 120        unsigned long off, new_head, hv_ret;
 121        struct spu_queue *q = dev_id;
 122
 123        pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
 124               smp_processor_id(), q->qhandle);
 125
 126        spin_lock(&q->lock);
 127
 128        hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
 129
 130        pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
 131               smp_processor_id(), new_head, hv_ret);
 132
 133        for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
 134                /* XXX ... XXX */
 135        }
 136
 137        hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
 138        if (hv_ret == HV_EOK)
 139                q->head = new_head;
 140
 141        spin_unlock(&q->lock);
 142
 143        return IRQ_HANDLED;
 144}
 145
 146static irqreturn_t mau_intr(int irq, void *dev_id)
 147{
 148        struct spu_queue *q = dev_id;
 149        unsigned long head, hv_ret;
 150
 151        spin_lock(&q->lock);
 152
 153        pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
 154               smp_processor_id(), q->qhandle);
 155
 156        hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
 157
 158        pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
 159               smp_processor_id(), head, hv_ret);
 160
 161        sun4v_ncs_sethead_marker(q->qhandle, head);
 162
 163        spin_unlock(&q->lock);
 164
 165        return IRQ_HANDLED;
 166}
 167
 168static void *spu_queue_next(struct spu_queue *q, void *cur)
 169{
 170        return q->q + spu_next_offset(q, cur - q->q);
 171}
 172
 173static int spu_queue_num_free(struct spu_queue *q)
 174{
 175        unsigned long head = q->head;
 176        unsigned long tail = q->tail;
 177        unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
 178        unsigned long diff;
 179
 180        if (head > tail)
 181                diff = head - tail;
 182        else
 183                diff = (end - tail) + head;
 184
 185        return (diff / CWQ_ENTRY_SIZE) - 1;
 186}
 187
 188static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
 189{
 190        int avail = spu_queue_num_free(q);
 191
 192        if (avail >= num_entries)
 193                return q->q + q->tail;
 194
 195        return NULL;
 196}
 197
 198static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
 199{
 200        unsigned long hv_ret, new_tail;
 201
 202        new_tail = spu_next_offset(q, last - q->q);
 203
 204        hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
 205        if (hv_ret == HV_EOK)
 206                q->tail = new_tail;
 207        return hv_ret;
 208}
 209
 210static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
 211                             int enc_type, int auth_type,
 212                             unsigned int hash_len,
 213                             bool sfas, bool sob, bool eob, bool encrypt,
 214                             int opcode)
 215{
 216        u64 word = (len - 1) & CONTROL_LEN;
 217
 218        word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
 219        word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
 220        word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
 221        if (sfas)
 222                word |= CONTROL_STORE_FINAL_AUTH_STATE;
 223        if (sob)
 224                word |= CONTROL_START_OF_BLOCK;
 225        if (eob)
 226                word |= CONTROL_END_OF_BLOCK;
 227        if (encrypt)
 228                word |= CONTROL_ENCRYPT;
 229        if (hmac_key_len)
 230                word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
 231        if (hash_len)
 232                word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
 233
 234        return word;
 235}
 236
 237#if 0
 238static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
 239{
 240        if (this_len >= 64 ||
 241            qp->head != qp->tail)
 242                return true;
 243        return false;
 244}
 245#endif
 246
 247struct n2_ahash_alg {
 248        struct list_head        entry;
 249        const u8                *hash_zero;
 250        const u32               *hash_init;
 251        u8                      hw_op_hashsz;
 252        u8                      digest_size;
 253        u8                      auth_type;
 254        u8                      hmac_type;
 255        struct ahash_alg        alg;
 256};
 257
 258static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
 259{
 260        struct crypto_alg *alg = tfm->__crt_alg;
 261        struct ahash_alg *ahash_alg;
 262
 263        ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 264
 265        return container_of(ahash_alg, struct n2_ahash_alg, alg);
 266}
 267
 268struct n2_hmac_alg {
 269        const char              *child_alg;
 270        struct n2_ahash_alg     derived;
 271};
 272
 273static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
 274{
 275        struct crypto_alg *alg = tfm->__crt_alg;
 276        struct ahash_alg *ahash_alg;
 277
 278        ahash_alg = container_of(alg, struct ahash_alg, halg.base);
 279
 280        return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
 281}
 282
 283struct n2_hash_ctx {
 284        struct crypto_ahash             *fallback_tfm;
 285};
 286
 287#define N2_HASH_KEY_MAX                 32 /* HW limit for all HMAC requests */
 288
 289struct n2_hmac_ctx {
 290        struct n2_hash_ctx              base;
 291
 292        struct crypto_shash             *child_shash;
 293
 294        int                             hash_key_len;
 295        unsigned char                   hash_key[N2_HASH_KEY_MAX];
 296};
 297
 298struct n2_hash_req_ctx {
 299        union {
 300                struct md5_state        md5;
 301                struct sha1_state       sha1;
 302                struct sha256_state     sha256;
 303        } u;
 304
 305        struct ahash_request            fallback_req;
 306};
 307
 308static int n2_hash_async_init(struct ahash_request *req)
 309{
 310        struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 311        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 312        struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 313
 314        ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 315        rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 316
 317        return crypto_ahash_init(&rctx->fallback_req);
 318}
 319
 320static int n2_hash_async_update(struct ahash_request *req)
 321{
 322        struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 323        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 324        struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 325
 326        ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 327        rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 328        rctx->fallback_req.nbytes = req->nbytes;
 329        rctx->fallback_req.src = req->src;
 330
 331        return crypto_ahash_update(&rctx->fallback_req);
 332}
 333
 334static int n2_hash_async_final(struct ahash_request *req)
 335{
 336        struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 337        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 338        struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 339
 340        ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 341        rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 342        rctx->fallback_req.result = req->result;
 343
 344        return crypto_ahash_final(&rctx->fallback_req);
 345}
 346
 347static int n2_hash_async_finup(struct ahash_request *req)
 348{
 349        struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 350        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 351        struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 352
 353        ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 354        rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 355        rctx->fallback_req.nbytes = req->nbytes;
 356        rctx->fallback_req.src = req->src;
 357        rctx->fallback_req.result = req->result;
 358
 359        return crypto_ahash_finup(&rctx->fallback_req);
 360}
 361
 362static int n2_hash_cra_init(struct crypto_tfm *tfm)
 363{
 364        const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 365        struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 366        struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 367        struct crypto_ahash *fallback_tfm;
 368        int err;
 369
 370        fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 371                                          CRYPTO_ALG_NEED_FALLBACK);
 372        if (IS_ERR(fallback_tfm)) {
 373                pr_warning("Fallback driver '%s' could not be loaded!\n",
 374                           fallback_driver_name);
 375                err = PTR_ERR(fallback_tfm);
 376                goto out;
 377        }
 378
 379        crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 380                                         crypto_ahash_reqsize(fallback_tfm)));
 381
 382        ctx->fallback_tfm = fallback_tfm;
 383        return 0;
 384
 385out:
 386        return err;
 387}
 388
 389static void n2_hash_cra_exit(struct crypto_tfm *tfm)
 390{
 391        struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 392        struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
 393
 394        crypto_free_ahash(ctx->fallback_tfm);
 395}
 396
 397static int n2_hmac_cra_init(struct crypto_tfm *tfm)
 398{
 399        const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 400        struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 401        struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 402        struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
 403        struct crypto_ahash *fallback_tfm;
 404        struct crypto_shash *child_shash;
 405        int err;
 406
 407        fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
 408                                          CRYPTO_ALG_NEED_FALLBACK);
 409        if (IS_ERR(fallback_tfm)) {
 410                pr_warning("Fallback driver '%s' could not be loaded!\n",
 411                           fallback_driver_name);
 412                err = PTR_ERR(fallback_tfm);
 413                goto out;
 414        }
 415
 416        child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
 417        if (IS_ERR(child_shash)) {
 418                pr_warning("Child shash '%s' could not be loaded!\n",
 419                           n2alg->child_alg);
 420                err = PTR_ERR(child_shash);
 421                goto out_free_fallback;
 422        }
 423
 424        crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
 425                                         crypto_ahash_reqsize(fallback_tfm)));
 426
 427        ctx->child_shash = child_shash;
 428        ctx->base.fallback_tfm = fallback_tfm;
 429        return 0;
 430
 431out_free_fallback:
 432        crypto_free_ahash(fallback_tfm);
 433
 434out:
 435        return err;
 436}
 437
 438static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
 439{
 440        struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 441        struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
 442
 443        crypto_free_ahash(ctx->base.fallback_tfm);
 444        crypto_free_shash(ctx->child_shash);
 445}
 446
 447static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
 448                                unsigned int keylen)
 449{
 450        struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 451        struct crypto_shash *child_shash = ctx->child_shash;
 452        struct crypto_ahash *fallback_tfm;
 453        SHASH_DESC_ON_STACK(shash, child_shash);
 454        int err, bs, ds;
 455
 456        fallback_tfm = ctx->base.fallback_tfm;
 457        err = crypto_ahash_setkey(fallback_tfm, key, keylen);
 458        if (err)
 459                return err;
 460
 461        shash->tfm = child_shash;
 462        shash->flags = crypto_ahash_get_flags(tfm) &
 463                CRYPTO_TFM_REQ_MAY_SLEEP;
 464
 465        bs = crypto_shash_blocksize(child_shash);
 466        ds = crypto_shash_digestsize(child_shash);
 467        BUG_ON(ds > N2_HASH_KEY_MAX);
 468        if (keylen > bs) {
 469                err = crypto_shash_digest(shash, key, keylen,
 470                                          ctx->hash_key);
 471                if (err)
 472                        return err;
 473                keylen = ds;
 474        } else if (keylen <= N2_HASH_KEY_MAX)
 475                memcpy(ctx->hash_key, key, keylen);
 476
 477        ctx->hash_key_len = keylen;
 478
 479        return err;
 480}
 481
 482static unsigned long wait_for_tail(struct spu_queue *qp)
 483{
 484        unsigned long head, hv_ret;
 485
 486        do {
 487                hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
 488                if (hv_ret != HV_EOK) {
 489                        pr_err("Hypervisor error on gethead\n");
 490                        break;
 491                }
 492                if (head == qp->tail) {
 493                        qp->head = head;
 494                        break;
 495                }
 496        } while (1);
 497        return hv_ret;
 498}
 499
 500static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
 501                                              struct cwq_initial_entry *ent)
 502{
 503        unsigned long hv_ret = spu_queue_submit(qp, ent);
 504
 505        if (hv_ret == HV_EOK)
 506                hv_ret = wait_for_tail(qp);
 507
 508        return hv_ret;
 509}
 510
 511static int n2_do_async_digest(struct ahash_request *req,
 512                              unsigned int auth_type, unsigned int digest_size,
 513                              unsigned int result_size, void *hash_loc,
 514                              unsigned long auth_key, unsigned int auth_key_len)
 515{
 516        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 517        struct cwq_initial_entry *ent;
 518        struct crypto_hash_walk walk;
 519        struct spu_queue *qp;
 520        unsigned long flags;
 521        int err = -ENODEV;
 522        int nbytes, cpu;
 523
 524        /* The total effective length of the operation may not
 525         * exceed 2^16.
 526         */
 527        if (unlikely(req->nbytes > (1 << 16))) {
 528                struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 529                struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 530
 531                ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 532                rctx->fallback_req.base.flags =
 533                        req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 534                rctx->fallback_req.nbytes = req->nbytes;
 535                rctx->fallback_req.src = req->src;
 536                rctx->fallback_req.result = req->result;
 537
 538                return crypto_ahash_digest(&rctx->fallback_req);
 539        }
 540
 541        nbytes = crypto_hash_walk_first(req, &walk);
 542
 543        cpu = get_cpu();
 544        qp = cpu_to_cwq[cpu];
 545        if (!qp)
 546                goto out;
 547
 548        spin_lock_irqsave(&qp->lock, flags);
 549
 550        /* XXX can do better, improve this later by doing a by-hand scatterlist
 551         * XXX walk, etc.
 552         */
 553        ent = qp->q + qp->tail;
 554
 555        ent->control = control_word_base(nbytes, auth_key_len, 0,
 556                                         auth_type, digest_size,
 557                                         false, true, false, false,
 558                                         OPCODE_INPLACE_BIT |
 559                                         OPCODE_AUTH_MAC);
 560        ent->src_addr = __pa(walk.data);
 561        ent->auth_key_addr = auth_key;
 562        ent->auth_iv_addr = __pa(hash_loc);
 563        ent->final_auth_state_addr = 0UL;
 564        ent->enc_key_addr = 0UL;
 565        ent->enc_iv_addr = 0UL;
 566        ent->dest_addr = __pa(hash_loc);
 567
 568        nbytes = crypto_hash_walk_done(&walk, 0);
 569        while (nbytes > 0) {
 570                ent = spu_queue_next(qp, ent);
 571
 572                ent->control = (nbytes - 1);
 573                ent->src_addr = __pa(walk.data);
 574                ent->auth_key_addr = 0UL;
 575                ent->auth_iv_addr = 0UL;
 576                ent->final_auth_state_addr = 0UL;
 577                ent->enc_key_addr = 0UL;
 578                ent->enc_iv_addr = 0UL;
 579                ent->dest_addr = 0UL;
 580
 581                nbytes = crypto_hash_walk_done(&walk, 0);
 582        }
 583        ent->control |= CONTROL_END_OF_BLOCK;
 584
 585        if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
 586                err = -EINVAL;
 587        else
 588                err = 0;
 589
 590        spin_unlock_irqrestore(&qp->lock, flags);
 591
 592        if (!err)
 593                memcpy(req->result, hash_loc, result_size);
 594out:
 595        put_cpu();
 596
 597        return err;
 598}
 599
 600static int n2_hash_async_digest(struct ahash_request *req)
 601{
 602        struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
 603        struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 604        int ds;
 605
 606        ds = n2alg->digest_size;
 607        if (unlikely(req->nbytes == 0)) {
 608                memcpy(req->result, n2alg->hash_zero, ds);
 609                return 0;
 610        }
 611        memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
 612
 613        return n2_do_async_digest(req, n2alg->auth_type,
 614                                  n2alg->hw_op_hashsz, ds,
 615                                  &rctx->u, 0UL, 0);
 616}
 617
 618static int n2_hmac_async_digest(struct ahash_request *req)
 619{
 620        struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
 621        struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 622        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 623        struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
 624        int ds;
 625
 626        ds = n2alg->derived.digest_size;
 627        if (unlikely(req->nbytes == 0) ||
 628            unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
 629                struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
 630                struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
 631
 632                ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
 633                rctx->fallback_req.base.flags =
 634                        req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
 635                rctx->fallback_req.nbytes = req->nbytes;
 636                rctx->fallback_req.src = req->src;
 637                rctx->fallback_req.result = req->result;
 638
 639                return crypto_ahash_digest(&rctx->fallback_req);
 640        }
 641        memcpy(&rctx->u, n2alg->derived.hash_init,
 642               n2alg->derived.hw_op_hashsz);
 643
 644        return n2_do_async_digest(req, n2alg->derived.hmac_type,
 645                                  n2alg->derived.hw_op_hashsz, ds,
 646                                  &rctx->u,
 647                                  __pa(&ctx->hash_key),
 648                                  ctx->hash_key_len);
 649}
 650
 651struct n2_cipher_context {
 652        int                     key_len;
 653        int                     enc_type;
 654        union {
 655                u8              aes[AES_MAX_KEY_SIZE];
 656                u8              des[DES_KEY_SIZE];
 657                u8              des3[3 * DES_KEY_SIZE];
 658                u8              arc4[258]; /* S-box, X, Y */
 659        } key;
 660};
 661
 662#define N2_CHUNK_ARR_LEN        16
 663
 664struct n2_crypto_chunk {
 665        struct list_head        entry;
 666        unsigned long           iv_paddr : 44;
 667        unsigned long           arr_len : 20;
 668        unsigned long           dest_paddr;
 669        unsigned long           dest_final;
 670        struct {
 671                unsigned long   src_paddr : 44;
 672                unsigned long   src_len : 20;
 673        } arr[N2_CHUNK_ARR_LEN];
 674};
 675
 676struct n2_request_context {
 677        struct ablkcipher_walk  walk;
 678        struct list_head        chunk_list;
 679        struct n2_crypto_chunk  chunk;
 680        u8                      temp_iv[16];
 681};
 682
 683/* The SPU allows some level of flexibility for partial cipher blocks
 684 * being specified in a descriptor.
 685 *
 686 * It merely requires that every descriptor's length field is at least
 687 * as large as the cipher block size.  This means that a cipher block
 688 * can span at most 2 descriptors.  However, this does not allow a
 689 * partial block to span into the final descriptor as that would
 690 * violate the rule (since every descriptor's length must be at lest
 691 * the block size).  So, for example, assuming an 8 byte block size:
 692 *
 693 *      0xe --> 0xa --> 0x8
 694 *
 695 * is a valid length sequence, whereas:
 696 *
 697 *      0xe --> 0xb --> 0x7
 698 *
 699 * is not a valid sequence.
 700 */
 701
 702struct n2_cipher_alg {
 703        struct list_head        entry;
 704        u8                      enc_type;
 705        struct crypto_alg       alg;
 706};
 707
 708static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
 709{
 710        struct crypto_alg *alg = tfm->__crt_alg;
 711
 712        return container_of(alg, struct n2_cipher_alg, alg);
 713}
 714
 715struct n2_cipher_request_context {
 716        struct ablkcipher_walk  walk;
 717};
 718
 719static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 720                         unsigned int keylen)
 721{
 722        struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 723        struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 724        struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 725
 726        ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
 727
 728        switch (keylen) {
 729        case AES_KEYSIZE_128:
 730                ctx->enc_type |= ENC_TYPE_ALG_AES128;
 731                break;
 732        case AES_KEYSIZE_192:
 733                ctx->enc_type |= ENC_TYPE_ALG_AES192;
 734                break;
 735        case AES_KEYSIZE_256:
 736                ctx->enc_type |= ENC_TYPE_ALG_AES256;
 737                break;
 738        default:
 739                crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 740                return -EINVAL;
 741        }
 742
 743        ctx->key_len = keylen;
 744        memcpy(ctx->key.aes, key, keylen);
 745        return 0;
 746}
 747
 748static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 749                         unsigned int keylen)
 750{
 751        struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 752        struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 753        struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 754        u32 tmp[DES_EXPKEY_WORDS];
 755        int err;
 756
 757        ctx->enc_type = n2alg->enc_type;
 758
 759        if (keylen != DES_KEY_SIZE) {
 760                crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 761                return -EINVAL;
 762        }
 763
 764        err = des_ekey(tmp, key);
 765        if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
 766                tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
 767                return -EINVAL;
 768        }
 769
 770        ctx->key_len = keylen;
 771        memcpy(ctx->key.des, key, keylen);
 772        return 0;
 773}
 774
 775static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 776                          unsigned int keylen)
 777{
 778        struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 779        struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 780        struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 781
 782        ctx->enc_type = n2alg->enc_type;
 783
 784        if (keylen != (3 * DES_KEY_SIZE)) {
 785                crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 786                return -EINVAL;
 787        }
 788        ctx->key_len = keylen;
 789        memcpy(ctx->key.des3, key, keylen);
 790        return 0;
 791}
 792
 793static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
 794                          unsigned int keylen)
 795{
 796        struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 797        struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 798        struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
 799        u8 *s = ctx->key.arc4;
 800        u8 *x = s + 256;
 801        u8 *y = x + 1;
 802        int i, j, k;
 803
 804        ctx->enc_type = n2alg->enc_type;
 805
 806        j = k = 0;
 807        *x = 0;
 808        *y = 0;
 809        for (i = 0; i < 256; i++)
 810                s[i] = i;
 811        for (i = 0; i < 256; i++) {
 812                u8 a = s[i];
 813                j = (j + key[k] + a) & 0xff;
 814                s[i] = s[j];
 815                s[j] = a;
 816                if (++k >= keylen)
 817                        k = 0;
 818        }
 819
 820        return 0;
 821}
 822
 823static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
 824{
 825        int this_len = nbytes;
 826
 827        this_len -= (nbytes & (block_size - 1));
 828        return this_len > (1 << 16) ? (1 << 16) : this_len;
 829}
 830
 831static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
 832                            struct spu_queue *qp, bool encrypt)
 833{
 834        struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
 835        struct cwq_initial_entry *ent;
 836        bool in_place;
 837        int i;
 838
 839        ent = spu_queue_alloc(qp, cp->arr_len);
 840        if (!ent) {
 841                pr_info("queue_alloc() of %d fails\n",
 842                        cp->arr_len);
 843                return -EBUSY;
 844        }
 845
 846        in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
 847
 848        ent->control = control_word_base(cp->arr[0].src_len,
 849                                         0, ctx->enc_type, 0, 0,
 850                                         false, true, false, encrypt,
 851                                         OPCODE_ENCRYPT |
 852                                         (in_place ? OPCODE_INPLACE_BIT : 0));
 853        ent->src_addr = cp->arr[0].src_paddr;
 854        ent->auth_key_addr = 0UL;
 855        ent->auth_iv_addr = 0UL;
 856        ent->final_auth_state_addr = 0UL;
 857        ent->enc_key_addr = __pa(&ctx->key);
 858        ent->enc_iv_addr = cp->iv_paddr;
 859        ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
 860
 861        for (i = 1; i < cp->arr_len; i++) {
 862                ent = spu_queue_next(qp, ent);
 863
 864                ent->control = cp->arr[i].src_len - 1;
 865                ent->src_addr = cp->arr[i].src_paddr;
 866                ent->auth_key_addr = 0UL;
 867                ent->auth_iv_addr = 0UL;
 868                ent->final_auth_state_addr = 0UL;
 869                ent->enc_key_addr = 0UL;
 870                ent->enc_iv_addr = 0UL;
 871                ent->dest_addr = 0UL;
 872        }
 873        ent->control |= CONTROL_END_OF_BLOCK;
 874
 875        return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
 876}
 877
 878static int n2_compute_chunks(struct ablkcipher_request *req)
 879{
 880        struct n2_request_context *rctx = ablkcipher_request_ctx(req);
 881        struct ablkcipher_walk *walk = &rctx->walk;
 882        struct n2_crypto_chunk *chunk;
 883        unsigned long dest_prev;
 884        unsigned int tot_len;
 885        bool prev_in_place;
 886        int err, nbytes;
 887
 888        ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
 889        err = ablkcipher_walk_phys(req, walk);
 890        if (err)
 891                return err;
 892
 893        INIT_LIST_HEAD(&rctx->chunk_list);
 894
 895        chunk = &rctx->chunk;
 896        INIT_LIST_HEAD(&chunk->entry);
 897
 898        chunk->iv_paddr = 0UL;
 899        chunk->arr_len = 0;
 900        chunk->dest_paddr = 0UL;
 901
 902        prev_in_place = false;
 903        dest_prev = ~0UL;
 904        tot_len = 0;
 905
 906        while ((nbytes = walk->nbytes) != 0) {
 907                unsigned long dest_paddr, src_paddr;
 908                bool in_place;
 909                int this_len;
 910
 911                src_paddr = (page_to_phys(walk->src.page) +
 912                             walk->src.offset);
 913                dest_paddr = (page_to_phys(walk->dst.page) +
 914                              walk->dst.offset);
 915                in_place = (src_paddr == dest_paddr);
 916                this_len = cipher_descriptor_len(nbytes, walk->blocksize);
 917
 918                if (chunk->arr_len != 0) {
 919                        if (in_place != prev_in_place ||
 920                            (!prev_in_place &&
 921                             dest_paddr != dest_prev) ||
 922                            chunk->arr_len == N2_CHUNK_ARR_LEN ||
 923                            tot_len + this_len > (1 << 16)) {
 924                                chunk->dest_final = dest_prev;
 925                                list_add_tail(&chunk->entry,
 926                                              &rctx->chunk_list);
 927                                chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
 928                                if (!chunk) {
 929                                        err = -ENOMEM;
 930                                        break;
 931                                }
 932                                INIT_LIST_HEAD(&chunk->entry);
 933                        }
 934                }
 935                if (chunk->arr_len == 0) {
 936                        chunk->dest_paddr = dest_paddr;
 937                        tot_len = 0;
 938                }
 939                chunk->arr[chunk->arr_len].src_paddr = src_paddr;
 940                chunk->arr[chunk->arr_len].src_len = this_len;
 941                chunk->arr_len++;
 942
 943                dest_prev = dest_paddr + this_len;
 944                prev_in_place = in_place;
 945                tot_len += this_len;
 946
 947                err = ablkcipher_walk_done(req, walk, nbytes - this_len);
 948                if (err)
 949                        break;
 950        }
 951        if (!err && chunk->arr_len != 0) {
 952                chunk->dest_final = dest_prev;
 953                list_add_tail(&chunk->entry, &rctx->chunk_list);
 954        }
 955
 956        return err;
 957}
 958
 959static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
 960{
 961        struct n2_request_context *rctx = ablkcipher_request_ctx(req);
 962        struct n2_crypto_chunk *c, *tmp;
 963
 964        if (final_iv)
 965                memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
 966
 967        ablkcipher_walk_complete(&rctx->walk);
 968        list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 969                list_del(&c->entry);
 970                if (unlikely(c != &rctx->chunk))
 971                        kfree(c);
 972        }
 973
 974}
 975
 976static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
 977{
 978        struct n2_request_context *rctx = ablkcipher_request_ctx(req);
 979        struct crypto_tfm *tfm = req->base.tfm;
 980        int err = n2_compute_chunks(req);
 981        struct n2_crypto_chunk *c, *tmp;
 982        unsigned long flags, hv_ret;
 983        struct spu_queue *qp;
 984
 985        if (err)
 986                return err;
 987
 988        qp = cpu_to_cwq[get_cpu()];
 989        err = -ENODEV;
 990        if (!qp)
 991                goto out;
 992
 993        spin_lock_irqsave(&qp->lock, flags);
 994
 995        list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
 996                err = __n2_crypt_chunk(tfm, c, qp, encrypt);
 997                if (err)
 998                        break;
 999                list_del(&c->entry);
1000                if (unlikely(c != &rctx->chunk))
1001                        kfree(c);
1002        }
1003        if (!err) {
1004                hv_ret = wait_for_tail(qp);
1005                if (hv_ret != HV_EOK)
1006                        err = -EINVAL;
1007        }
1008
1009        spin_unlock_irqrestore(&qp->lock, flags);
1010
1011out:
1012        put_cpu();
1013
1014        n2_chunk_complete(req, NULL);
1015        return err;
1016}
1017
1018static int n2_encrypt_ecb(struct ablkcipher_request *req)
1019{
1020        return n2_do_ecb(req, true);
1021}
1022
1023static int n2_decrypt_ecb(struct ablkcipher_request *req)
1024{
1025        return n2_do_ecb(req, false);
1026}
1027
1028static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1029{
1030        struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1031        struct crypto_tfm *tfm = req->base.tfm;
1032        unsigned long flags, hv_ret, iv_paddr;
1033        int err = n2_compute_chunks(req);
1034        struct n2_crypto_chunk *c, *tmp;
1035        struct spu_queue *qp;
1036        void *final_iv_addr;
1037
1038        final_iv_addr = NULL;
1039
1040        if (err)
1041                return err;
1042
1043        qp = cpu_to_cwq[get_cpu()];
1044        err = -ENODEV;
1045        if (!qp)
1046                goto out;
1047
1048        spin_lock_irqsave(&qp->lock, flags);
1049
1050        if (encrypt) {
1051                iv_paddr = __pa(rctx->walk.iv);
1052                list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1053                                         entry) {
1054                        c->iv_paddr = iv_paddr;
1055                        err = __n2_crypt_chunk(tfm, c, qp, true);
1056                        if (err)
1057                                break;
1058                        iv_paddr = c->dest_final - rctx->walk.blocksize;
1059                        list_del(&c->entry);
1060                        if (unlikely(c != &rctx->chunk))
1061                                kfree(c);
1062                }
1063                final_iv_addr = __va(iv_paddr);
1064        } else {
1065                list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1066                                                 entry) {
1067                        if (c == &rctx->chunk) {
1068                                iv_paddr = __pa(rctx->walk.iv);
1069                        } else {
1070                                iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1071                                            tmp->arr[tmp->arr_len-1].src_len -
1072                                            rctx->walk.blocksize);
1073                        }
1074                        if (!final_iv_addr) {
1075                                unsigned long pa;
1076
1077                                pa = (c->arr[c->arr_len-1].src_paddr +
1078                                      c->arr[c->arr_len-1].src_len -
1079                                      rctx->walk.blocksize);
1080                                final_iv_addr = rctx->temp_iv;
1081                                memcpy(rctx->temp_iv, __va(pa),
1082                                       rctx->walk.blocksize);
1083                        }
1084                        c->iv_paddr = iv_paddr;
1085                        err = __n2_crypt_chunk(tfm, c, qp, false);
1086                        if (err)
1087                                break;
1088                        list_del(&c->entry);
1089                        if (unlikely(c != &rctx->chunk))
1090                                kfree(c);
1091                }
1092        }
1093        if (!err) {
1094                hv_ret = wait_for_tail(qp);
1095                if (hv_ret != HV_EOK)
1096                        err = -EINVAL;
1097        }
1098
1099        spin_unlock_irqrestore(&qp->lock, flags);
1100
1101out:
1102        put_cpu();
1103
1104        n2_chunk_complete(req, err ? NULL : final_iv_addr);
1105        return err;
1106}
1107
1108static int n2_encrypt_chaining(struct ablkcipher_request *req)
1109{
1110        return n2_do_chaining(req, true);
1111}
1112
1113static int n2_decrypt_chaining(struct ablkcipher_request *req)
1114{
1115        return n2_do_chaining(req, false);
1116}
1117
1118struct n2_cipher_tmpl {
1119        const char              *name;
1120        const char              *drv_name;
1121        u8                      block_size;
1122        u8                      enc_type;
1123        struct ablkcipher_alg   ablkcipher;
1124};
1125
1126static const struct n2_cipher_tmpl cipher_tmpls[] = {
1127        /* ARC4: only ECB is supported (chaining bits ignored) */
1128        {       .name           = "ecb(arc4)",
1129                .drv_name       = "ecb-arc4",
1130                .block_size     = 1,
1131                .enc_type       = (ENC_TYPE_ALG_RC4_STREAM |
1132                                   ENC_TYPE_CHAINING_ECB),
1133                .ablkcipher     = {
1134                        .min_keysize    = 1,
1135                        .max_keysize    = 256,
1136                        .setkey         = n2_arc4_setkey,
1137                        .encrypt        = n2_encrypt_ecb,
1138                        .decrypt        = n2_decrypt_ecb,
1139                },
1140        },
1141
1142        /* DES: ECB CBC and CFB are supported */
1143        {       .name           = "ecb(des)",
1144                .drv_name       = "ecb-des",
1145                .block_size     = DES_BLOCK_SIZE,
1146                .enc_type       = (ENC_TYPE_ALG_DES |
1147                                   ENC_TYPE_CHAINING_ECB),
1148                .ablkcipher     = {
1149                        .min_keysize    = DES_KEY_SIZE,
1150                        .max_keysize    = DES_KEY_SIZE,
1151                        .setkey         = n2_des_setkey,
1152                        .encrypt        = n2_encrypt_ecb,
1153                        .decrypt        = n2_decrypt_ecb,
1154                },
1155        },
1156        {       .name           = "cbc(des)",
1157                .drv_name       = "cbc-des",
1158                .block_size     = DES_BLOCK_SIZE,
1159                .enc_type       = (ENC_TYPE_ALG_DES |
1160                                   ENC_TYPE_CHAINING_CBC),
1161                .ablkcipher     = {
1162                        .ivsize         = DES_BLOCK_SIZE,
1163                        .min_keysize    = DES_KEY_SIZE,
1164                        .max_keysize    = DES_KEY_SIZE,
1165                        .setkey         = n2_des_setkey,
1166                        .encrypt        = n2_encrypt_chaining,
1167                        .decrypt        = n2_decrypt_chaining,
1168                },
1169        },
1170        {       .name           = "cfb(des)",
1171                .drv_name       = "cfb-des",
1172                .block_size     = DES_BLOCK_SIZE,
1173                .enc_type       = (ENC_TYPE_ALG_DES |
1174                                   ENC_TYPE_CHAINING_CFB),
1175                .ablkcipher     = {
1176                        .min_keysize    = DES_KEY_SIZE,
1177                        .max_keysize    = DES_KEY_SIZE,
1178                        .setkey         = n2_des_setkey,
1179                        .encrypt        = n2_encrypt_chaining,
1180                        .decrypt        = n2_decrypt_chaining,
1181                },
1182        },
1183
1184        /* 3DES: ECB CBC and CFB are supported */
1185        {       .name           = "ecb(des3_ede)",
1186                .drv_name       = "ecb-3des",
1187                .block_size     = DES_BLOCK_SIZE,
1188                .enc_type       = (ENC_TYPE_ALG_3DES |
1189                                   ENC_TYPE_CHAINING_ECB),
1190                .ablkcipher     = {
1191                        .min_keysize    = 3 * DES_KEY_SIZE,
1192                        .max_keysize    = 3 * DES_KEY_SIZE,
1193                        .setkey         = n2_3des_setkey,
1194                        .encrypt        = n2_encrypt_ecb,
1195                        .decrypt        = n2_decrypt_ecb,
1196                },
1197        },
1198        {       .name           = "cbc(des3_ede)",
1199                .drv_name       = "cbc-3des",
1200                .block_size     = DES_BLOCK_SIZE,
1201                .enc_type       = (ENC_TYPE_ALG_3DES |
1202                                   ENC_TYPE_CHAINING_CBC),
1203                .ablkcipher     = {
1204                        .ivsize         = DES_BLOCK_SIZE,
1205                        .min_keysize    = 3 * DES_KEY_SIZE,
1206                        .max_keysize    = 3 * DES_KEY_SIZE,
1207                        .setkey         = n2_3des_setkey,
1208                        .encrypt        = n2_encrypt_chaining,
1209                        .decrypt        = n2_decrypt_chaining,
1210                },
1211        },
1212        {       .name           = "cfb(des3_ede)",
1213                .drv_name       = "cfb-3des",
1214                .block_size     = DES_BLOCK_SIZE,
1215                .enc_type       = (ENC_TYPE_ALG_3DES |
1216                                   ENC_TYPE_CHAINING_CFB),
1217                .ablkcipher     = {
1218                        .min_keysize    = 3 * DES_KEY_SIZE,
1219                        .max_keysize    = 3 * DES_KEY_SIZE,
1220                        .setkey         = n2_3des_setkey,
1221                        .encrypt        = n2_encrypt_chaining,
1222                        .decrypt        = n2_decrypt_chaining,
1223                },
1224        },
1225        /* AES: ECB CBC and CTR are supported */
1226        {       .name           = "ecb(aes)",
1227                .drv_name       = "ecb-aes",
1228                .block_size     = AES_BLOCK_SIZE,
1229                .enc_type       = (ENC_TYPE_ALG_AES128 |
1230                                   ENC_TYPE_CHAINING_ECB),
1231                .ablkcipher     = {
1232                        .min_keysize    = AES_MIN_KEY_SIZE,
1233                        .max_keysize    = AES_MAX_KEY_SIZE,
1234                        .setkey         = n2_aes_setkey,
1235                        .encrypt        = n2_encrypt_ecb,
1236                        .decrypt        = n2_decrypt_ecb,
1237                },
1238        },
1239        {       .name           = "cbc(aes)",
1240                .drv_name       = "cbc-aes",
1241                .block_size     = AES_BLOCK_SIZE,
1242                .enc_type       = (ENC_TYPE_ALG_AES128 |
1243                                   ENC_TYPE_CHAINING_CBC),
1244                .ablkcipher     = {
1245                        .ivsize         = AES_BLOCK_SIZE,
1246                        .min_keysize    = AES_MIN_KEY_SIZE,
1247                        .max_keysize    = AES_MAX_KEY_SIZE,
1248                        .setkey         = n2_aes_setkey,
1249                        .encrypt        = n2_encrypt_chaining,
1250                        .decrypt        = n2_decrypt_chaining,
1251                },
1252        },
1253        {       .name           = "ctr(aes)",
1254                .drv_name       = "ctr-aes",
1255                .block_size     = AES_BLOCK_SIZE,
1256                .enc_type       = (ENC_TYPE_ALG_AES128 |
1257                                   ENC_TYPE_CHAINING_COUNTER),
1258                .ablkcipher     = {
1259                        .ivsize         = AES_BLOCK_SIZE,
1260                        .min_keysize    = AES_MIN_KEY_SIZE,
1261                        .max_keysize    = AES_MAX_KEY_SIZE,
1262                        .setkey         = n2_aes_setkey,
1263                        .encrypt        = n2_encrypt_chaining,
1264                        .decrypt        = n2_encrypt_chaining,
1265                },
1266        },
1267
1268};
1269#define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1270
1271static LIST_HEAD(cipher_algs);
1272
1273struct n2_hash_tmpl {
1274        const char      *name;
1275        const u8        *hash_zero;
1276        const u32       *hash_init;
1277        u8              hw_op_hashsz;
1278        u8              digest_size;
1279        u8              block_size;
1280        u8              auth_type;
1281        u8              hmac_type;
1282};
1283
1284static const u32 md5_init[MD5_HASH_WORDS] = {
1285        cpu_to_le32(MD5_H0),
1286        cpu_to_le32(MD5_H1),
1287        cpu_to_le32(MD5_H2),
1288        cpu_to_le32(MD5_H3),
1289};
1290static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
1291        SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1292};
1293static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
1294        SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1295        SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1296};
1297static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
1298        SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1299        SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1300};
1301
1302static const struct n2_hash_tmpl hash_tmpls[] = {
1303        { .name         = "md5",
1304          .hash_zero    = md5_zero_message_hash,
1305          .hash_init    = md5_init,
1306          .auth_type    = AUTH_TYPE_MD5,
1307          .hmac_type    = AUTH_TYPE_HMAC_MD5,
1308          .hw_op_hashsz = MD5_DIGEST_SIZE,
1309          .digest_size  = MD5_DIGEST_SIZE,
1310          .block_size   = MD5_HMAC_BLOCK_SIZE },
1311        { .name         = "sha1",
1312          .hash_zero    = sha1_zero_message_hash,
1313          .hash_init    = sha1_init,
1314          .auth_type    = AUTH_TYPE_SHA1,
1315          .hmac_type    = AUTH_TYPE_HMAC_SHA1,
1316          .hw_op_hashsz = SHA1_DIGEST_SIZE,
1317          .digest_size  = SHA1_DIGEST_SIZE,
1318          .block_size   = SHA1_BLOCK_SIZE },
1319        { .name         = "sha256",
1320          .hash_zero    = sha256_zero_message_hash,
1321          .hash_init    = sha256_init,
1322          .auth_type    = AUTH_TYPE_SHA256,
1323          .hmac_type    = AUTH_TYPE_HMAC_SHA256,
1324          .hw_op_hashsz = SHA256_DIGEST_SIZE,
1325          .digest_size  = SHA256_DIGEST_SIZE,
1326          .block_size   = SHA256_BLOCK_SIZE },
1327        { .name         = "sha224",
1328          .hash_zero    = sha224_zero_message_hash,
1329          .hash_init    = sha224_init,
1330          .auth_type    = AUTH_TYPE_SHA256,
1331          .hmac_type    = AUTH_TYPE_RESERVED,
1332          .hw_op_hashsz = SHA256_DIGEST_SIZE,
1333          .digest_size  = SHA224_DIGEST_SIZE,
1334          .block_size   = SHA224_BLOCK_SIZE },
1335};
1336#define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1337
1338static LIST_HEAD(ahash_algs);
1339static LIST_HEAD(hmac_algs);
1340
1341static int algs_registered;
1342
1343static void __n2_unregister_algs(void)
1344{
1345        struct n2_cipher_alg *cipher, *cipher_tmp;
1346        struct n2_ahash_alg *alg, *alg_tmp;
1347        struct n2_hmac_alg *hmac, *hmac_tmp;
1348
1349        list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1350                crypto_unregister_alg(&cipher->alg);
1351                list_del(&cipher->entry);
1352                kfree(cipher);
1353        }
1354        list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1355                crypto_unregister_ahash(&hmac->derived.alg);
1356                list_del(&hmac->derived.entry);
1357                kfree(hmac);
1358        }
1359        list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1360                crypto_unregister_ahash(&alg->alg);
1361                list_del(&alg->entry);
1362                kfree(alg);
1363        }
1364}
1365
1366static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1367{
1368        tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1369        return 0;
1370}
1371
1372static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1373{
1374        struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1375        struct crypto_alg *alg;
1376        int err;
1377
1378        if (!p)
1379                return -ENOMEM;
1380
1381        alg = &p->alg;
1382
1383        snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1384        snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1385        alg->cra_priority = N2_CRA_PRIORITY;
1386        alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1387                         CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1388        alg->cra_blocksize = tmpl->block_size;
1389        p->enc_type = tmpl->enc_type;
1390        alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1391        alg->cra_type = &crypto_ablkcipher_type;
1392        alg->cra_u.ablkcipher = tmpl->ablkcipher;
1393        alg->cra_init = n2_cipher_cra_init;
1394        alg->cra_module = THIS_MODULE;
1395
1396        list_add(&p->entry, &cipher_algs);
1397        err = crypto_register_alg(alg);
1398        if (err) {
1399                pr_err("%s alg registration failed\n", alg->cra_name);
1400                list_del(&p->entry);
1401                kfree(p);
1402        } else {
1403                pr_info("%s alg registered\n", alg->cra_name);
1404        }
1405        return err;
1406}
1407
1408static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1409{
1410        struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1411        struct ahash_alg *ahash;
1412        struct crypto_alg *base;
1413        int err;
1414
1415        if (!p)
1416                return -ENOMEM;
1417
1418        p->child_alg = n2ahash->alg.halg.base.cra_name;
1419        memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1420        INIT_LIST_HEAD(&p->derived.entry);
1421
1422        ahash = &p->derived.alg;
1423        ahash->digest = n2_hmac_async_digest;
1424        ahash->setkey = n2_hmac_async_setkey;
1425
1426        base = &ahash->halg.base;
1427        snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1428        snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1429
1430        base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1431        base->cra_init = n2_hmac_cra_init;
1432        base->cra_exit = n2_hmac_cra_exit;
1433
1434        list_add(&p->derived.entry, &hmac_algs);
1435        err = crypto_register_ahash(ahash);
1436        if (err) {
1437                pr_err("%s alg registration failed\n", base->cra_name);
1438                list_del(&p->derived.entry);
1439                kfree(p);
1440        } else {
1441                pr_info("%s alg registered\n", base->cra_name);
1442        }
1443        return err;
1444}
1445
1446static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1447{
1448        struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1449        struct hash_alg_common *halg;
1450        struct crypto_alg *base;
1451        struct ahash_alg *ahash;
1452        int err;
1453
1454        if (!p)
1455                return -ENOMEM;
1456
1457        p->hash_zero = tmpl->hash_zero;
1458        p->hash_init = tmpl->hash_init;
1459        p->auth_type = tmpl->auth_type;
1460        p->hmac_type = tmpl->hmac_type;
1461        p->hw_op_hashsz = tmpl->hw_op_hashsz;
1462        p->digest_size = tmpl->digest_size;
1463
1464        ahash = &p->alg;
1465        ahash->init = n2_hash_async_init;
1466        ahash->update = n2_hash_async_update;
1467        ahash->final = n2_hash_async_final;
1468        ahash->finup = n2_hash_async_finup;
1469        ahash->digest = n2_hash_async_digest;
1470
1471        halg = &ahash->halg;
1472        halg->digestsize = tmpl->digest_size;
1473
1474        base = &halg->base;
1475        snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1476        snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1477        base->cra_priority = N2_CRA_PRIORITY;
1478        base->cra_flags = CRYPTO_ALG_TYPE_AHASH |
1479                          CRYPTO_ALG_KERN_DRIVER_ONLY |
1480                          CRYPTO_ALG_NEED_FALLBACK;
1481        base->cra_blocksize = tmpl->block_size;
1482        base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1483        base->cra_module = THIS_MODULE;
1484        base->cra_init = n2_hash_cra_init;
1485        base->cra_exit = n2_hash_cra_exit;
1486
1487        list_add(&p->entry, &ahash_algs);
1488        err = crypto_register_ahash(ahash);
1489        if (err) {
1490                pr_err("%s alg registration failed\n", base->cra_name);
1491                list_del(&p->entry);
1492                kfree(p);
1493        } else {
1494                pr_info("%s alg registered\n", base->cra_name);
1495        }
1496        if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1497                err = __n2_register_one_hmac(p);
1498        return err;
1499}
1500
1501static int n2_register_algs(void)
1502{
1503        int i, err = 0;
1504
1505        mutex_lock(&spu_lock);
1506        if (algs_registered++)
1507                goto out;
1508
1509        for (i = 0; i < NUM_HASH_TMPLS; i++) {
1510                err = __n2_register_one_ahash(&hash_tmpls[i]);
1511                if (err) {
1512                        __n2_unregister_algs();
1513                        goto out;
1514                }
1515        }
1516        for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1517                err = __n2_register_one_cipher(&cipher_tmpls[i]);
1518                if (err) {
1519                        __n2_unregister_algs();
1520                        goto out;
1521                }
1522        }
1523
1524out:
1525        mutex_unlock(&spu_lock);
1526        return err;
1527}
1528
1529static void n2_unregister_algs(void)
1530{
1531        mutex_lock(&spu_lock);
1532        if (!--algs_registered)
1533                __n2_unregister_algs();
1534        mutex_unlock(&spu_lock);
1535}
1536
1537/* To map CWQ queues to interrupt sources, the hypervisor API provides
1538 * a devino.  This isn't very useful to us because all of the
1539 * interrupts listed in the device_node have been translated to
1540 * Linux virtual IRQ cookie numbers.
1541 *
1542 * So we have to back-translate, going through the 'intr' and 'ino'
1543 * property tables of the n2cp MDESC node, matching it with the OF
1544 * 'interrupts' property entries, in order to to figure out which
1545 * devino goes to which already-translated IRQ.
1546 */
1547static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1548                             unsigned long dev_ino)
1549{
1550        const unsigned int *dev_intrs;
1551        unsigned int intr;
1552        int i;
1553
1554        for (i = 0; i < ip->num_intrs; i++) {
1555                if (ip->ino_table[i].ino == dev_ino)
1556                        break;
1557        }
1558        if (i == ip->num_intrs)
1559                return -ENODEV;
1560
1561        intr = ip->ino_table[i].intr;
1562
1563        dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1564        if (!dev_intrs)
1565                return -ENODEV;
1566
1567        for (i = 0; i < dev->archdata.num_irqs; i++) {
1568                if (dev_intrs[i] == intr)
1569                        return i;
1570        }
1571
1572        return -ENODEV;
1573}
1574
1575static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1576                       const char *irq_name, struct spu_queue *p,
1577                       irq_handler_t handler)
1578{
1579        unsigned long herr;
1580        int index;
1581
1582        herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1583        if (herr)
1584                return -EINVAL;
1585
1586        index = find_devino_index(dev, ip, p->devino);
1587        if (index < 0)
1588                return index;
1589
1590        p->irq = dev->archdata.irqs[index];
1591
1592        sprintf(p->irq_name, "%s-%d", irq_name, index);
1593
1594        return request_irq(p->irq, handler, 0, p->irq_name, p);
1595}
1596
1597static struct kmem_cache *queue_cache[2];
1598
1599static void *new_queue(unsigned long q_type)
1600{
1601        return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1602}
1603
1604static void free_queue(void *p, unsigned long q_type)
1605{
1606        kmem_cache_free(queue_cache[q_type - 1], p);
1607}
1608
1609static int queue_cache_init(void)
1610{
1611        if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1612                queue_cache[HV_NCS_QTYPE_MAU - 1] =
1613                        kmem_cache_create("mau_queue",
1614                                          (MAU_NUM_ENTRIES *
1615                                           MAU_ENTRY_SIZE),
1616                                          MAU_ENTRY_SIZE, 0, NULL);
1617        if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1618                return -ENOMEM;
1619
1620        if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1621                queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1622                        kmem_cache_create("cwq_queue",
1623                                          (CWQ_NUM_ENTRIES *
1624                                           CWQ_ENTRY_SIZE),
1625                                          CWQ_ENTRY_SIZE, 0, NULL);
1626        if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1627                kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1628                return -ENOMEM;
1629        }
1630        return 0;
1631}
1632
1633static void queue_cache_destroy(void)
1634{
1635        kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1636        kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1637}
1638
1639static long spu_queue_register_workfn(void *arg)
1640{
1641        struct spu_qreg *qr = arg;
1642        struct spu_queue *p = qr->queue;
1643        unsigned long q_type = qr->type;
1644        unsigned long hv_ret;
1645
1646        hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1647                                 CWQ_NUM_ENTRIES, &p->qhandle);
1648        if (!hv_ret)
1649                sun4v_ncs_sethead_marker(p->qhandle, 0);
1650
1651        return hv_ret ? -EINVAL : 0;
1652}
1653
1654static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1655{
1656        int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1657        struct spu_qreg qr = { .queue = p, .type = q_type };
1658
1659        return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1660}
1661
1662static int spu_queue_setup(struct spu_queue *p)
1663{
1664        int err;
1665
1666        p->q = new_queue(p->q_type);
1667        if (!p->q)
1668                return -ENOMEM;
1669
1670        err = spu_queue_register(p, p->q_type);
1671        if (err) {
1672                free_queue(p->q, p->q_type);
1673                p->q = NULL;
1674        }
1675
1676        return err;
1677}
1678
1679static void spu_queue_destroy(struct spu_queue *p)
1680{
1681        unsigned long hv_ret;
1682
1683        if (!p->q)
1684                return;
1685
1686        hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1687
1688        if (!hv_ret)
1689                free_queue(p->q, p->q_type);
1690}
1691
1692static void spu_list_destroy(struct list_head *list)
1693{
1694        struct spu_queue *p, *n;
1695
1696        list_for_each_entry_safe(p, n, list, list) {
1697                int i;
1698
1699                for (i = 0; i < NR_CPUS; i++) {
1700                        if (cpu_to_cwq[i] == p)
1701                                cpu_to_cwq[i] = NULL;
1702                }
1703
1704                if (p->irq) {
1705                        free_irq(p->irq, p);
1706                        p->irq = 0;
1707                }
1708                spu_queue_destroy(p);
1709                list_del(&p->list);
1710                kfree(p);
1711        }
1712}
1713
1714/* Walk the backward arcs of a CWQ 'exec-unit' node,
1715 * gathering cpu membership information.
1716 */
1717static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1718                               struct platform_device *dev,
1719                               u64 node, struct spu_queue *p,
1720                               struct spu_queue **table)
1721{
1722        u64 arc;
1723
1724        mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1725                u64 tgt = mdesc_arc_target(mdesc, arc);
1726                const char *name = mdesc_node_name(mdesc, tgt);
1727                const u64 *id;
1728
1729                if (strcmp(name, "cpu"))
1730                        continue;
1731                id = mdesc_get_property(mdesc, tgt, "id", NULL);
1732                if (table[*id] != NULL) {
1733                        dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1734                                dev->dev.of_node);
1735                        return -EINVAL;
1736                }
1737                cpumask_set_cpu(*id, &p->sharing);
1738                table[*id] = p;
1739        }
1740        return 0;
1741}
1742
1743/* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1744static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1745                            struct platform_device *dev, struct mdesc_handle *mdesc,
1746                            u64 node, const char *iname, unsigned long q_type,
1747                            irq_handler_t handler, struct spu_queue **table)
1748{
1749        struct spu_queue *p;
1750        int err;
1751
1752        p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1753        if (!p) {
1754                dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1755                        dev->dev.of_node);
1756                return -ENOMEM;
1757        }
1758
1759        cpumask_clear(&p->sharing);
1760        spin_lock_init(&p->lock);
1761        p->q_type = q_type;
1762        INIT_LIST_HEAD(&p->jobs);
1763        list_add(&p->list, list);
1764
1765        err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1766        if (err)
1767                return err;
1768
1769        err = spu_queue_setup(p);
1770        if (err)
1771                return err;
1772
1773        return spu_map_ino(dev, ip, iname, p, handler);
1774}
1775
1776static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1777                          struct spu_mdesc_info *ip, struct list_head *list,
1778                          const char *exec_name, unsigned long q_type,
1779                          irq_handler_t handler, struct spu_queue **table)
1780{
1781        int err = 0;
1782        u64 node;
1783
1784        mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1785                const char *type;
1786
1787                type = mdesc_get_property(mdesc, node, "type", NULL);
1788                if (!type || strcmp(type, exec_name))
1789                        continue;
1790
1791                err = handle_exec_unit(ip, list, dev, mdesc, node,
1792                                       exec_name, q_type, handler, table);
1793                if (err) {
1794                        spu_list_destroy(list);
1795                        break;
1796                }
1797        }
1798
1799        return err;
1800}
1801
1802static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1803                         struct spu_mdesc_info *ip)
1804{
1805        const u64 *ino;
1806        int ino_len;
1807        int i;
1808
1809        ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1810        if (!ino) {
1811                printk("NO 'ino'\n");
1812                return -ENODEV;
1813        }
1814
1815        ip->num_intrs = ino_len / sizeof(u64);
1816        ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1817                                 ip->num_intrs),
1818                                GFP_KERNEL);
1819        if (!ip->ino_table)
1820                return -ENOMEM;
1821
1822        for (i = 0; i < ip->num_intrs; i++) {
1823                struct ino_blob *b = &ip->ino_table[i];
1824                b->intr = i + 1;
1825                b->ino = ino[i];
1826        }
1827
1828        return 0;
1829}
1830
1831static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1832                                struct platform_device *dev,
1833                                struct spu_mdesc_info *ip,
1834                                const char *node_name)
1835{
1836        const unsigned int *reg;
1837        u64 node;
1838
1839        reg = of_get_property(dev->dev.of_node, "reg", NULL);
1840        if (!reg)
1841                return -ENODEV;
1842
1843        mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1844                const char *name;
1845                const u64 *chdl;
1846
1847                name = mdesc_get_property(mdesc, node, "name", NULL);
1848                if (!name || strcmp(name, node_name))
1849                        continue;
1850                chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1851                if (!chdl || (*chdl != *reg))
1852                        continue;
1853                ip->cfg_handle = *chdl;
1854                return get_irq_props(mdesc, node, ip);
1855        }
1856
1857        return -ENODEV;
1858}
1859
1860static unsigned long n2_spu_hvapi_major;
1861static unsigned long n2_spu_hvapi_minor;
1862
1863static int n2_spu_hvapi_register(void)
1864{
1865        int err;
1866
1867        n2_spu_hvapi_major = 2;
1868        n2_spu_hvapi_minor = 0;
1869
1870        err = sun4v_hvapi_register(HV_GRP_NCS,
1871                                   n2_spu_hvapi_major,
1872                                   &n2_spu_hvapi_minor);
1873
1874        if (!err)
1875                pr_info("Registered NCS HVAPI version %lu.%lu\n",
1876                        n2_spu_hvapi_major,
1877                        n2_spu_hvapi_minor);
1878
1879        return err;
1880}
1881
1882static void n2_spu_hvapi_unregister(void)
1883{
1884        sun4v_hvapi_unregister(HV_GRP_NCS);
1885}
1886
1887static int global_ref;
1888
1889static int grab_global_resources(void)
1890{
1891        int err = 0;
1892
1893        mutex_lock(&spu_lock);
1894
1895        if (global_ref++)
1896                goto out;
1897
1898        err = n2_spu_hvapi_register();
1899        if (err)
1900                goto out;
1901
1902        err = queue_cache_init();
1903        if (err)
1904                goto out_hvapi_release;
1905
1906        err = -ENOMEM;
1907        cpu_to_cwq = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
1908                             GFP_KERNEL);
1909        if (!cpu_to_cwq)
1910                goto out_queue_cache_destroy;
1911
1912        cpu_to_mau = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
1913                             GFP_KERNEL);
1914        if (!cpu_to_mau)
1915                goto out_free_cwq_table;
1916
1917        err = 0;
1918
1919out:
1920        if (err)
1921                global_ref--;
1922        mutex_unlock(&spu_lock);
1923        return err;
1924
1925out_free_cwq_table:
1926        kfree(cpu_to_cwq);
1927        cpu_to_cwq = NULL;
1928
1929out_queue_cache_destroy:
1930        queue_cache_destroy();
1931
1932out_hvapi_release:
1933        n2_spu_hvapi_unregister();
1934        goto out;
1935}
1936
1937static void release_global_resources(void)
1938{
1939        mutex_lock(&spu_lock);
1940        if (!--global_ref) {
1941                kfree(cpu_to_cwq);
1942                cpu_to_cwq = NULL;
1943
1944                kfree(cpu_to_mau);
1945                cpu_to_mau = NULL;
1946
1947                queue_cache_destroy();
1948                n2_spu_hvapi_unregister();
1949        }
1950        mutex_unlock(&spu_lock);
1951}
1952
1953static struct n2_crypto *alloc_n2cp(void)
1954{
1955        struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1956
1957        if (np)
1958                INIT_LIST_HEAD(&np->cwq_list);
1959
1960        return np;
1961}
1962
1963static void free_n2cp(struct n2_crypto *np)
1964{
1965        if (np->cwq_info.ino_table) {
1966                kfree(np->cwq_info.ino_table);
1967                np->cwq_info.ino_table = NULL;
1968        }
1969
1970        kfree(np);
1971}
1972
1973static void n2_spu_driver_version(void)
1974{
1975        static int n2_spu_version_printed;
1976
1977        if (n2_spu_version_printed++ == 0)
1978                pr_info("%s", version);
1979}
1980
1981static int n2_crypto_probe(struct platform_device *dev)
1982{
1983        struct mdesc_handle *mdesc;
1984        struct n2_crypto *np;
1985        int err;
1986
1987        n2_spu_driver_version();
1988
1989        pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1990
1991        np = alloc_n2cp();
1992        if (!np) {
1993                dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1994                        dev->dev.of_node);
1995                return -ENOMEM;
1996        }
1997
1998        err = grab_global_resources();
1999        if (err) {
2000                dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2001                        dev->dev.of_node);
2002                goto out_free_n2cp;
2003        }
2004
2005        mdesc = mdesc_grab();
2006
2007        if (!mdesc) {
2008                dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2009                        dev->dev.of_node);
2010                err = -ENODEV;
2011                goto out_free_global;
2012        }
2013        err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2014        if (err) {
2015                dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2016                        dev->dev.of_node);
2017                mdesc_release(mdesc);
2018                goto out_free_global;
2019        }
2020
2021        err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2022                             "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2023                             cpu_to_cwq);
2024        mdesc_release(mdesc);
2025
2026        if (err) {
2027                dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2028                        dev->dev.of_node);
2029                goto out_free_global;
2030        }
2031
2032        err = n2_register_algs();
2033        if (err) {
2034                dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2035                        dev->dev.of_node);
2036                goto out_free_spu_list;
2037        }
2038
2039        dev_set_drvdata(&dev->dev, np);
2040
2041        return 0;
2042
2043out_free_spu_list:
2044        spu_list_destroy(&np->cwq_list);
2045
2046out_free_global:
2047        release_global_resources();
2048
2049out_free_n2cp:
2050        free_n2cp(np);
2051
2052        return err;
2053}
2054
2055static int n2_crypto_remove(struct platform_device *dev)
2056{
2057        struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2058
2059        n2_unregister_algs();
2060
2061        spu_list_destroy(&np->cwq_list);
2062
2063        release_global_resources();
2064
2065        free_n2cp(np);
2066
2067        return 0;
2068}
2069
2070static struct n2_mau *alloc_ncp(void)
2071{
2072        struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2073
2074        if (mp)
2075                INIT_LIST_HEAD(&mp->mau_list);
2076
2077        return mp;
2078}
2079
2080static void free_ncp(struct n2_mau *mp)
2081{
2082        if (mp->mau_info.ino_table) {
2083                kfree(mp->mau_info.ino_table);
2084                mp->mau_info.ino_table = NULL;
2085        }
2086
2087        kfree(mp);
2088}
2089
2090static int n2_mau_probe(struct platform_device *dev)
2091{
2092        struct mdesc_handle *mdesc;
2093        struct n2_mau *mp;
2094        int err;
2095
2096        n2_spu_driver_version();
2097
2098        pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2099
2100        mp = alloc_ncp();
2101        if (!mp) {
2102                dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2103                        dev->dev.of_node);
2104                return -ENOMEM;
2105        }
2106
2107        err = grab_global_resources();
2108        if (err) {
2109                dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2110                        dev->dev.of_node);
2111                goto out_free_ncp;
2112        }
2113
2114        mdesc = mdesc_grab();
2115
2116        if (!mdesc) {
2117                dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2118                        dev->dev.of_node);
2119                err = -ENODEV;
2120                goto out_free_global;
2121        }
2122
2123        err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2124        if (err) {
2125                dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2126                        dev->dev.of_node);
2127                mdesc_release(mdesc);
2128                goto out_free_global;
2129        }
2130
2131        err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2132                             "mau", HV_NCS_QTYPE_MAU, mau_intr,
2133                             cpu_to_mau);
2134        mdesc_release(mdesc);
2135
2136        if (err) {
2137                dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2138                        dev->dev.of_node);
2139                goto out_free_global;
2140        }
2141
2142        dev_set_drvdata(&dev->dev, mp);
2143
2144        return 0;
2145
2146out_free_global:
2147        release_global_resources();
2148
2149out_free_ncp:
2150        free_ncp(mp);
2151
2152        return err;
2153}
2154
2155static int n2_mau_remove(struct platform_device *dev)
2156{
2157        struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2158
2159        spu_list_destroy(&mp->mau_list);
2160
2161        release_global_resources();
2162
2163        free_ncp(mp);
2164
2165        return 0;
2166}
2167
2168static const struct of_device_id n2_crypto_match[] = {
2169        {
2170                .name = "n2cp",
2171                .compatible = "SUNW,n2-cwq",
2172        },
2173        {
2174                .name = "n2cp",
2175                .compatible = "SUNW,vf-cwq",
2176        },
2177        {
2178                .name = "n2cp",
2179                .compatible = "SUNW,kt-cwq",
2180        },
2181        {},
2182};
2183
2184MODULE_DEVICE_TABLE(of, n2_crypto_match);
2185
2186static struct platform_driver n2_crypto_driver = {
2187        .driver = {
2188                .name           =       "n2cp",
2189                .of_match_table =       n2_crypto_match,
2190        },
2191        .probe          =       n2_crypto_probe,
2192        .remove         =       n2_crypto_remove,
2193};
2194
2195static const struct of_device_id n2_mau_match[] = {
2196        {
2197                .name = "ncp",
2198                .compatible = "SUNW,n2-mau",
2199        },
2200        {
2201                .name = "ncp",
2202                .compatible = "SUNW,vf-mau",
2203        },
2204        {
2205                .name = "ncp",
2206                .compatible = "SUNW,kt-mau",
2207        },
2208        {},
2209};
2210
2211MODULE_DEVICE_TABLE(of, n2_mau_match);
2212
2213static struct platform_driver n2_mau_driver = {
2214        .driver = {
2215                .name           =       "ncp",
2216                .of_match_table =       n2_mau_match,
2217        },
2218        .probe          =       n2_mau_probe,
2219        .remove         =       n2_mau_remove,
2220};
2221
2222static struct platform_driver * const drivers[] = {
2223        &n2_crypto_driver,
2224        &n2_mau_driver,
2225};
2226
2227static int __init n2_init(void)
2228{
2229        return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2230}
2231
2232static void __exit n2_exit(void)
2233{
2234        platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2235}
2236
2237module_init(n2_init);
2238module_exit(n2_exit);
2239